Search Results

Search found 41789 results on 1672 pages for 'software development'.

Page 565/1672 | < Previous Page | 561 562 563 564 565 566 567 568 569 570 571 572  | Next Page >

  • Modern techniques for spriting

    - by DevilWithin
    Hello, I would like to know the flow for making modern 2D game artwork. How are the assets made nowadays? Bitmap? Vector-based? Hand-drawn and painted? Drawn digitally? Modeled in 3D and exported to bitmaps? I would like some information on programs as well, for fine looking art. Why does Flash's vector art style look good in most games? How do I make equivalent graphics with external tools? Or equaly good and not vector-based, anyway. Any special hints for animating? An answer oriented towards a one-man-army indie developer with little experience but some artistic sense would be appreciated! Not a complete dummy with paint programs, but also not a master at all, just need efficient ways to achieve results. Thanks. NOTE: Pixel art is not the goal of this question, nothing related to direct pixel manipulation should be brought up here, but you're free to do exactly that :)

    Read the article

  • How to flip a BC6/BC7 texture?

    - by postgoodism
    I have some code to load DDS image files into OpenGL textures, and I'd like to extend it to support the BC6 and BC7 compressed formats introduced in D3D11. Since DirectX and OpenGL disagree about whether a texture's origin is in the upper-left or lower-left corner, my DDS loader flips each image's pixels along the Y axis before passing the pixels to OpenGL. Flipping compressed textures presents an additional wrinkle: in addition to flipping each row of 4x4-pixel blocks, you also need to flip the pixels within each block. I found code here to flip BC1/BC2/BC3 blocks, and from the block diagrams on MSDN it was easy to adapt the BC3-flipping code to handle BC4 and BC5. The BC6 and BC7 formats look significantly more intimidating, though. Is there a similar bit-twiddling trick to flip these formats, or would I have to fully decompress and recompress each block?

    Read the article

  • How do you structure a 2D level format with collisions etc. in Java (Slick 2D)?

    - by liamzebedee
    I am developing a game in Java. 2D Fighter, Kind of like the 2d flash game Raze(http://armorgames.com/play/5395/raze). I currently am using the Slick 2D game library and am researching how to structure my levels. I am currently stuck on the problem of the level format(e.g. file format). How do you structure a 2d level with collisions etc.? Level Notes: Will go up down left right NOTE: New to gamedev

    Read the article

  • Using DLLEXPORT to export DLL function With Class to C#

    - by SICGames2013
    In my previous revision game engine I deported major functions for the game editor for C#. Now, I'm beginning to revise the game engine with a static library. There's a already dynamic library created in C++ to use DLLEXPORT for C#. Just now I want to test out the newer functions and created a DLL file from C++. Because the DLL contains classes I was wondering how would I be able to use DLL Export. Would I do this: [DLLEXPORT("GameEngine.dll", EntryPoint="SomeClass", Conventional=_stdcall)] static extern void functionFromClass(); I have a feeling it's probably DLLImport and not DLLExport. I was wondering how would I go about this? Another way I was thinking was because I already have the DLL in C++ prepared already to go the C# Class Library. I could just keep the new engine as a lib, and link the lib with the old DLL C++ file. Wouldn't the EntryPoint be able to point to the class the function is in?

    Read the article

  • Dynamic character animation - Using the physics engine or not

    - by Lex Webb
    I'm planning on building a dynamic reactant animation engine for the characters in my 2D Game. I have already built templates for a skeleton based animation system using key frames and interpolation to specify a limbs position at any given moment in time. I am using Farseer physics (an extension of Box2D) in Monogame/XNA in C# My real question lies in how i go about tying this character animation into the physics engine. I have two options: Moving limbs using physics engine - applying a interpolated force to each limb (dynamic body) in order to attempt to get it to its position as donated by the skeleton animation. Moving limbs by simply changing the position of a fixed body - Updating the new position of each limb manually, attempting to take into account physics collisions. Then stepping the physics after the animation to allow for environment interaction. Each of these methods have their distinct advantages and disadvantages. Physics based movement Advantages: Possibly more natural/realistic movement Better interaction with game objects as force applying to objects colliding with characters would be calculated for me. No need to convert to dynamic bodies when reacting to projectiles/death/fighting. Disadvantages: Possible difficulty in calculating correct amount of force to move a limb a certain distance at a constant rate. Underlying character balance system would need to be created that would need to be robust enough to prevent characters falling over at the touch of a feather. Added code complexity and processing time for the above. Static Object movement Advantages: Easy to interpolate movement of limbs between game steps Moving limbs is as simple as applying a rotation to the skeleton bone. Greater control over limbs, wont need to worry about characters falling over as all animation would be pre-defined. Disadvantages: Possible unnatural movement (Depends entirely on my animation skills!) Bad physics collision reactions with physics engine (Dynamic bodies simply slide out of the way of static objects) Need to calculate collisions with physics objects and my limbs myself and apply directional forces to them. Hard to account for slopes/stairs/non standard planes when animating walking/running animations. Need to convert objects to dynamic when reacting to projectile/fighting/death physics objects. The Question! As you can see, i have thought about this extensively, i have also had Google into physics based animation and have found mostly dissertation papers! Which is filling me with sense that it may a lot more advanced than my mathematics skills. My question is mostly subjective based on my findings above/any experience you may have: Which of the above methods should i use when creating my game? I am willing to spend the time to get a physics solution working if you think it would be possible. In the end i want to provide the most satisfying experience for the gamer, as well as a robust and dynamic system i can use to animate pretty much anything i need.

    Read the article

  • Collision between sprites in game programming?

    - by Lyn Maxino
    I've since just started coding for an android game using eclipse. I've read Beginning Android Game Programming and various other e-books. Recently, I've encountered a problem with collision between sprites. I've used this code template for my program. package com.project.CAI_test; import java.util.Random; import android.graphics.Bitmap; import android.graphics.Canvas; import android.graphics.Rect; public class Sprite { // direction = 0 up, 1 left, 2 down, 3 right, // animation = 3 back, 1 left, 0 front, 2 right int[] DIRECTION_TO_ANIMATION_MAP = { 3, 1, 0, 2 }; private static final int BMP_ROWS = 4; private static final int BMP_COLUMNS = 3; private static final int MAX_SPEED = 5; private GameView gameView; private Bitmap bmp; private int x = 0; private int y = 0; private int xSpeed; private int ySpeed; private int currentFrame = 0; private int width; private int height; public Sprite(GameView gameView, Bitmap bmp) { this.width = bmp.getWidth() / BMP_COLUMNS; this.height = bmp.getHeight() / BMP_ROWS; this.gameView = gameView; this.bmp = bmp; Random rnd = new Random(); x = rnd.nextInt(gameView.getWidth() - width); y = rnd.nextInt(gameView.getHeight() - height); xSpeed = rnd.nextInt(MAX_SPEED * 2) - MAX_SPEED; ySpeed = rnd.nextInt(MAX_SPEED * 2) - MAX_SPEED; } private void update() { if (x >= gameView.getWidth() - width - xSpeed || x + xSpeed <= 0) { xSpeed = -xSpeed; } x = x + xSpeed; if (y >= gameView.getHeight() - height - ySpeed || y + ySpeed <= 0) { ySpeed = -ySpeed; } y = y + ySpeed; currentFrame = ++currentFrame % BMP_COLUMNS; } public void onDraw(Canvas canvas) { update(); int srcX = currentFrame * width; int srcY = getAnimationRow() * height; Rect src = new Rect(srcX, srcY, srcX + width, srcY + height); Rect dst = new Rect(x, y, x + width, y + height); canvas.drawBitmap(bmp, src, dst, null); } private int getAnimationRow() { double dirDouble = (Math.atan2(xSpeed, ySpeed) / (Math.PI / 2) + 2); int direction = (int) Math.round(dirDouble) % BMP_ROWS; return DIRECTION_TO_ANIMATION_MAP[direction]; } public boolean isCollition(float x2, float y2) { return x2 > x && x2 < x + width && y2 > y && y2 < y + height; } } The above code only detects collision between the generated sprites and the surface border. What I want to achieve is a collision detection that is controlled by the update function without having to change much of the coding. Probably several lines placed in the update() function. Tnx for any comment/suggestion.

    Read the article

  • Ray Tracing Shadows in deferred rendering

    - by Grieverheart
    Recently I have programmed a raytracer for fun and found it beutifully simple how shadows are created compared to a rasterizer. Now, I couldn't help but I think if it would be possible to implement somthing similar for ray tracing of shadows in a deferred renderer. The way I though this could work is after drawing to the gbuffer, in a separate pass and for each pixel to calculate rays to the lights and draw them as lines of unique color together with the geometry (with color 0). The lines will be cut-off if there is occlusion and this fact could be used in a fragment shader to calculate which rays are occluded. I guess there must be something I'm missing, for example I'm not sure how the fragment shader could save the occlusion results for each ray so that they are available for pixel at the ray's origin. Has this method been tried before, is it possible to implement it as I described and if yes what would be the drawbacks in performance of calculating shadows this way?

    Read the article

  • How to utilize miniMax algorithm in Checkers game

    - by engineer
    I am sorry...as there are too many articles about it.But I can't simple get this. I am confused in the implementation of AI. I have generated all possible moves of computer's type pieces. Now I can't decide the flow. Whether I need to start a loop for the possible moves of each piece and assign score to it.... or something else is to be done. Kindly tell me the proper flow/algorithm for this. Thanks

    Read the article

  • Rotate sphere in Javascript / three.js while moving on x/z axes

    - by kaipr
    I have a sphere/ball in three.js which I want to "roll" arround on a x/z axis. For the z axe I could simply do this no matter what the current x and y rotation is: sphere.roll_z = function(distance) { sphere.position.z += distance; sphere.rotation.x += distance > 0 ? 0.05 : -0.05; } But how can I roll it along the x axe? And how could I properly do the roll_z? I've found a lot about quateration and matrixes, but I can't figure out how to use them properly to achieve my (rather simple) goal. I'm aware that I have to update multiple rotations and that I have to calculate how far to rotate the sphere to match the distance, but the "how" is the question. It's probably just lack of mathematical skills which I should train, but a working example/short explanation would help alot to start with.

    Read the article

  • DirectX10 How to use Constant Buffers

    - by schnozzinkobenstein
    I'm trying to access some variables in my shader, but I think I'm doing this wrong. Say I have a constant buffer that looks like this: cbuffer perFrame { float foo; float bar; }; I got an ID3D10EffectConstantBuffer reference to it, and I can get a specific index by calling GetMemberByIndex, but how can I figure out how many members perFrame has so that I can get each member without going out of bounds?

    Read the article

  • Limit the amount a camera can pitch

    - by ChocoMan
    I'm having problems trying to limit the range my camera can pitch. Currently my camera can pitch around a model without restriction, but having a hard time trying to find the value of the degree/radian the camera is currently at after pitching. Here is what I got so far: // Moves camera with thumbstick Pitch = pController.ThumbSticks.Right.Y * MathHelper.ToRadians(speedAngleMAX); // Pitch Camera around model public void cameraPitch(float pitch) { pitchAngle = ModelLoad.camTarget - ModelLoad.CameraPos; axisPitch = Vector3.Cross(Vector3.Up, pitchAngle); // pitch constrained to model's orientation axisPitch.Normalize(); ModelLoad.CameraPos = Vector3.Transform(ModelLoad.CameraPos - ModelLoad.camTarget, Matrix.CreateFromAxisAngle(axisPitch, pitch)) + ModelLoad.camTarget; } I've tried restraining the Y-camera position of ModelLoad.CameraPos.Y, but doing so gave me some unwanted results.

    Read the article

  • Limiting game loop to exactly 60 tics per second (Android / Java)

    - by user22241
    So I'm having terrible problems with stuttering sprites. My rendering and logic takes less than a game tic (16.6667ms) However, although my game loop runs most of the time at 60 ticks per second, it sometimes goes up to 61 - when this happens, the sprites stutter. Currently, my variables used are: //Game updates per second final int ticksPerSecond = 60; //Amount of time each update should take final int skipTicks = (1000 / ticksPerSecond); This is my current game loop @Override public void onDrawFrame(GL10 gl) { // TODO Auto-generated method stub //This method will run continuously //You should call both 'render' and 'update' methods from here //Set curTime initial value if '0' //Set/Re-set loop back to 0 to start counting again loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip){ SceneManager.getInstance().getCurrentScene().updateLogic(); //Time correction to compensate for the missing .6667ms when using int values nextGameTick+=skipTicks; timeCorrection += (1000d/ticksPerSecond) % 1; nextGameTick+=timeCorrection; timeCorrection %=1; //Increase loops loops++; } render(); } I realise that my skipTicks is an int and therefore will come out as 16 rather that 16.6667 However, I tried changing it (and ticksPerSecond) to Longs but got the same problem). I also tried to change the timer used to Nanotime and skiptics to 1000000000/ticksPerSecond, but everything just ran at about 300 ticks per seconds. All I'm attempting to do is to limit my game loop to 60 - what is the best way to guarantee that my game updates never happen at more than 60 times a second? Please note, I do realise that very very old devices might not be able to handle 60 although I really don't expect this to happen - I've tested it on the lowest device I have and it easily achieves 60 tics. So I'm not worried about a device not being able to handle the 60 ticks per second, but rather need to limit it - any help would be appreciated.

    Read the article

  • Fastest way to group units that can see each other?

    - by mac
    In the 2D game I'm working with, the game engine is able to give me, for each unit, the list of other units that are in its view range. I would like to know if there is an established algorithm to sort the units in groups, where each group would be defined by all those units which are "connected" to each other (even through others). An example might help understand the question better (E=enemy, O=own unit). First the data that I would get from the game engine: E1 can see E2, E3, O5 E2 can see E1 E3 can see E1 E4 can see O5 E5 can see O2 E6 can see E7, O9, O1 E7 can see E6 O1 can see E6 O2 can see O5, E5 O5 can see E1, E4, O2 O9 can see E6 Then I should compute the groups as follow: G1 = E1, E2, E3, E4, E5, O2, O5 G2 = O1, O9, E6, E7 It can be safely assumed that there is a transitive property for the field of view: [if A sees B, then B sees A]. Just to clarify: I already wrote a naïve implementation that loops on each row of the game engine info, but from the look of it, it seems a problem general enough for it to have been studied in depth and have various established algorithms (maybe passing through some tree-like structure?). My problem is that I couldn't find a way to describe my problem that returned useful google hits. Thank you in advance for your help!

    Read the article

  • Algorithmically generating neon layers on pixel grid

    - by user190929
    In an attempt at a screensaver I am making, I am a fan of neo-like graphics, which, of course, look great against a black background. As I understand it, neon, graphically speaking, is essentially a gradient of a color, brightest in the center, and gets darker proceeding outward. Although, more accurate is similar, but separating it into tubes and glow. The tubes are mostly white, while the glow is where most of the color is seen. Well... the tubes could also be a light variant of the color, you could say. The glow is darker. Anyhow, my question is, how could you generate such things given an initial pattern of pixels that would be the tubes? For example, let's say I want to make a neon 'H'. I, via the libraries, can attain the rectangles of pixels which represent it, but I want to make it look neonized. How could I algorithmically achieve such an effect given a base tube shape and base color? EDIT: ok, I mistated that. Got a bit distracted. My purpose for this was similar to a neon effect, but not. Sorry about that. What I am looking for is something like this: Start with a pattern of pixels: [!][!][!][!][!][!][!][!] [!][!][O][!][!][!][!][!] [!][!][O][O][!][!][!][!] [!][!][!][!][O][!][!][!] [!][!][!][!][!][!][!][!] How to I find the U pixels? [!][E][E][E][!][!][!][!] [!][E][O][E][E][!][!][!] [!][E][O][O][E][E][!][!] [!][E][E][E][O][E][!][!] [!][!][!][E][E][E][!][!] Sorry if that looks bad.

    Read the article

  • Cocos2d sprite's parent not reflecting true scale value

    - by Paul Renton
    I am encountering issues with determining a CCSprite's parent node's scale value. In my game I have a class that extends CCLayer and scales itself based on game triggers. Certain child sprites of this CCLayer have mathematical calculations that become inaccurate once I scale the parent CCLayer. For instance, I have a tank sprite that needs to determine its firing point within the parent node. Whenever I scale the layer and ask the layer for its scale values, they are accurate. However, when I poll the sprites contained within the layer for their parent's scale values, they always appear as one. // From within the sprite CCLOG(@"ChildSprite-> Parent's scale values are scaleX: %f, scaleY: %f", self.parent.scaleX, self.parent.scaleY); // Outputs 1.0,1.0 // From within the layer CCLOG(@"Layer-> ScaleX : %f, ScaleY: %f , SCALE: %f", self.scaleX, self.scaleY, self.scale); // Output is 0.80,0.80 Could anyone explain to me why this is the case? I don't understand why these values are different. Maybe I don't understand the inner design of Cocos2d fully. Any help is appreciated.

    Read the article

  • How to use shared_ptr for COM interface pointers

    - by Seefer
    I've been reading about various usage advice relating to the new c++ standard smart pointers unique_ptr, shared_ptr and weak_ptr and generally 'grok' what they are about when I'm writing my own code that declares and consumes them. However, all the discussions I've read seem restricted to this simple usage situation where the programmer is using smart in his/her own code, with no real discussion on techniques when having to work with libraries that expect raw pointers or other types of 'smart pointers' such as COM interface pointers. Specifically I'm learning my way through C++ by attempting to get a standard Win32 real-time game loop up and running that uses Direct2D & DirectWrite to render text to the display showing frames per second. My first task with Direct2D is in creating a Direct2D Factory object with the following code from the Direct2D examples on MSDN: ID2D1Factory* pD2DFactory = nullptr; HRESULT hr = D2D1CreateFactory(D2D1_FACTORY_TYPE_SINGLE_THREADED, &pD2DFactory); pD2DFactory is obviously an 'out' parameter and it's here where I become uncertain how to make use of smart pointers in this context, if indeed it's possible. My inexperienced C++ mind tells me I have two problems: With pD2DFactory being a COM interface pointer type, how would smart_ptr work with the Add() / Release() member functions for a COM object instance? Are smart pointers able to be passed to functions in situations where the function is using an 'out' pointer parameter technique? I did experiment with the alternative of using _com_ptr_t in the comip.h header file to help with pointer lifetime management and declared the pD2DFactory pointer with the following code: _com_ptr_t<_com_IIID<pD2DFactory, &__uuidof(pD2DFactory)>> pD2DFactory = nullptr; and it appears to work so far but, as you can see, the syntax is cumbersome :) So, I was wondering if any C++ gurus here could confirm whether smart pointers are able to help in cases like this and provide examples of usage, or point me to more in-depth discussions of smart pointer usage when needing to work with other code libraries that know nothing of them. Or is it simply a case of my trying to use the wrong tool for the job? :)

    Read the article

  • Greiner-Hormann clipping problem

    - by Belgin
    I have a set of planar polygons in 3D space defined by their vertices in counterclockwise order. Let's define the 'positive face' as being the face of the 3D polygon such as when observed, the vertices appear in counterclockwise order, and the 'negative face', the face which when observed, the vertices appear in clockwise order. I'm doing perspective projection of the set of polygons onto a projection polygon defined by the points in this order: (0, h, 0), (0, 0, 0), (w, 0, 0), and (w, h, 0), where w and h are strictly positive integers. The positive face of this projection polygon is oriented towards positive Z, and the camera point is somewhere at (0, 0, d), where d is a strictly negative number. In order to 'clip' the projected polygons into the projection polygon, I'm applying the Greiner-Hormann (PDF) clipping algorithm, which requires that the clipper and the to-be-clipped polygons be in the same order (i.e. clockwise or counterclockwise). My question is the following: How can I determine whether the projected face of the 3D polygon is the negative or the positive one? Meaning, how do I find out if I have to work with the vertices in normal or inverted order for the algorithm to work? I noticed that only if the 3D polygon is facing the projection polygon with its negative face, both of them are in the same order (counterclockwise), otherwise, a modification needs to be done. Here is a picture (PNG) that illustrates this. Note that the planes described by the polygon from the set and the projection polygon may not always be parallel.

    Read the article

  • Only draw visible objects to the camera in 2D

    - by Deukalion
    I have Map, each map has an array of Ground, each Ground consists of an array of VertexPositionTexture and a texture name reference so it renders a texture at these points (as a shape through triangulation). Now when I render my map I only want to get a list of all objects that are visible in the camera. (So I won't loop through more than I have to) Structs: public struct Map { public Ground[] Ground { get; set; } } public struct Ground { public int[] Indexes { get; set; } public VertexPositionNormalTexture[] Points { get; set; } public Vector3 TopLeft { get; set; } public Vector3 TopRight { get; set; } public Vector3 BottomLeft { get; set; } public Vector3 BottomRight { get; set; } } public struct RenderBoundaries<T> { public BoundingBox Box; public T Items; } when I load a map: foreach (Ground ground in CurrentMap.Ground) { Boundaries.Add(new RenderBoundaries<Ground>() { Box = BoundingBox.CreateFromPoints(new Vector3[] { ground.TopLeft, ground.TopRight, ground.BottomLeft, ground.BottomRight }), Items = ground }); } TopLeft, TopRight, BottomLeft, BottomRight are simply the locations of each corner that the shape make. A rectangle. When I try to loop through only the objects that are visible I do this in my Draw method: public int Draw(GraphicsDevice device, ICamera camera) { BoundingFrustum frustum = new BoundingFrustum(camera.View * camera.Projection); // Visible count int count = 0; EffectTexture.World = camera.World; EffectTexture.View = camera.View; EffectTexture.Projection = camera.Projection; foreach (EffectPass pass in EffectTexture.CurrentTechnique.Passes) { pass.Apply(); foreach (RenderBoundaries<Ground> render in Boundaries.Where(m => frustum.Contains(m.Box) != ContainmentType.Disjoint)) { // Draw ground count++; } } return count; } When I try adding just one ground, then moving the camera so the ground is out of frame it still returns 1 which means it still gets draw even though it's not within the camera's view. Am I doing something or wrong or can it be because of my Camera? Any ideas why it doesn't work?

    Read the article

  • Physics like asteroides

    - by user2933016
    I try to make a ship that has the physic properties like asteroides. I have this for now(All in Java): Ship.class public class Ship { public static final float sMaxHealth = 0.1F; public static final float sMaxMoveVelocity = 5.0F; public static final float sMaxAngleVelocity = 20.0F; public static final float sRadius = 1.0F; public static final float sMoveDeceleration = 10.0F; public static final float sMoveAcceleration = 2.0F; public static final float sAngleDeceleration = 15.0F; public static final float sAngleAcceleration = 20.0F; private float mHealth; private float mXVelocity; private float mYVelocity; private float mAngleVelocity; private float mX; private float mY; private float mAngle; } (I let the getter and setter away for now) Controller code // Player input if(Gdx.input.isKeyPressed(Keys.UP)) { mPlayer.setXVelocity(mPlayer.getXVelocity() + (float) Math.cos(mPlayer.getAngle()) * Ship.sMoveAcceleration); mPlayer.setYVelocity(mPlayer.getYVelocity() + (float) Math.sin(mPlayer.getAngle()) * Ship.sMoveAcceleration); } if(Gdx.input.isKeyPressed(Keys.LEFT)) { mPlayer.setAngleVelocity(mPlayer.getAngleVelocity() + Ship.sAngleAcceleration * pDeltaTime); } if(Gdx.input.isKeyPressed(Keys.RIGHT)) { mPlayer.setAngleVelocity(mPlayer.getAngleVelocity() - Ship.sAngleAcceleration * pDeltaTime); } // X velocity if(mPlayer.getXVelocity() < 0) { if(-mPlayer.getXVelocity() > Ship.sMaxMoveVelocity) { mPlayer.setXVelocity(-Ship.sMaxMoveVelocity); } mPlayer.setXVelocity(mPlayer.getXVelocity() + Ship.sMoveDeceleration * pDeltaTime); if(mPlayer.getXVelocity() > 0) { mPlayer.setXVelocity(0); } } else if(mPlayer.getXVelocity() > 0) { if(mPlayer.getXVelocity() > Ship.sMaxMoveVelocity) { mPlayer.setXVelocity(Ship.sMaxMoveVelocity); } mPlayer.setXVelocity(mPlayer.getXVelocity() - Ship.sMoveDeceleration * pDeltaTime); if(mPlayer.getXVelocity() < 0) { mPlayer.setXVelocity(0); } } // Y velocity if(mPlayer.getYVelocity() < 0) { if(-mPlayer.getYVelocity() > Ship.sMaxMoveVelocity) { mPlayer.setYVelocity(-Ship.sMaxMoveVelocity); } mPlayer.setYVelocity(mPlayer.getYVelocity() + Ship.sMoveDeceleration * pDeltaTime); if(mPlayer.getYVelocity() > 0) { mPlayer.setYVelocity(0); } } else if(mPlayer.getYVelocity() > 0) { if(mPlayer.getYVelocity() > Ship.sMaxMoveVelocity) { mPlayer.setYVelocity(Ship.sMaxMoveVelocity); } mPlayer.setYVelocity(mPlayer.getYVelocity() - Ship.sMoveDeceleration * pDeltaTime); if(mPlayer.getYVelocity() < 0) { mPlayer.setYVelocity(0); } } // Angle velocity if(mPlayer.getAngleVelocity() < 0) { if(-mPlayer.getAngleVelocity() > Ship.sMaxAngleVelocity) { mPlayer.setAngleVelocity(-Ship.sMaxAngleVelocity); } mPlayer.setAngleVelocity(mPlayer.getAngleVelocity() + Ship.sAngleDeceleration * pDeltaTime); if(mPlayer.getAngleVelocity() > 0) { mPlayer.setAngleVelocity(0); } } else if(mPlayer.getAngleVelocity() > 0) { if(mPlayer.getAngleVelocity() > Ship.sMaxAngleVelocity) { mPlayer.setAngleVelocity(Ship.sMaxAngleVelocity); } mPlayer.setAngleVelocity(mPlayer.getAngleVelocity() - Ship.sAngleDeceleration * pDeltaTime); if(mPlayer.getAngleVelocity() < 0) { mPlayer.setAngleVelocity(0); } } mPlayer.setX(mPlayer.getX() + mPlayer.getXVelocity() * pDeltaTime); mPlayer.setY(mPlayer.getY() + mPlayer.getYVelocity() * pDeltaTime); mPlayer.setAngle(mPlayer.getAngle() + mPlayer.getAngleVelocity() * pDeltaTime); Why the ship does not behave like in asteroides ? What do I wrong?

    Read the article

  • Does md2 support skeletal meshes?

    - by jsvcycling
    I'm creating an FPS game. I'm writing my own game engine. So far all the backend stuff is going great. I'd like to support md2 as the native file format for 3D Objects, but I also want to use skeletal meshes. Does anyone know if the md2 file format supports skeletal meshes? In-case you need to know, I'm going to use blender as my Mesh creation tool and C++ as my programming language... Thanks For got to mention, the engine is based on OpenGL... Alright, for anyone who is reading this, I just found the Doom 3 md5 specifications (http://tfc.duke.free.fr/coding/md5-specs-en.html). It gives you some help on writing a parser (see bottom of link), but the example doesn't support lighting and texture mapping (the second set of example code allows for animation). Thanks @Neverender for answering my question...

    Read the article

  • Registering InputListener in libGDX

    - by JPRO
    I'm just getting started with libGDX and have run into a snag registering an InputListener for a button. I've gone through many examples and this code appears correct to me but the associated callback never triggers ("touched" is not printed to console). I'm just posting the code with the abstract game screen and the implementing screen. The application starts successfully with a label of "Exit" in the bottom left hand corner, but clicking the button/label does nothing. I'm guessing the fix is something simple. What am I overlooking? public abstract class GameScreen<T> implements Screen { protected final T game; protected final SpriteBatch batch; protected final Stage stage; public GameScreen(T game) { this.game = game; this.batch = new SpriteBatch(); this.stage = new Stage(0, 0, true); } @Override public final void render(float delta) { update(delta); // Clear the screen with the given RGB color (black) Gdx.gl.glClearColor(0f, 0f, 0f, 1f); Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT); stage.act(delta); stage.draw(); } public abstract void update(float delta); @Override public void resize(int width, int height) { stage.setViewport(width, height, true); } @Override public void show() { Gdx.input.setInputProcessor(stage); } // hide, pause, resume, dipose } public class ExampleScreen extends GameScreen<MyGame> { private TextButton exitButton; public ExampleScreen(MyGame game) { super(game); } @Override public void show() { super.show(); TextButton.TextButtonStyle buttonStyle = new TextButton.TextButtonStyle(); buttonStyle.font = Font.getFont("Origicide", 32); buttonStyle.fontColor = Color.WHITE; exitButton = new TextButton("Exit", buttonStyle); exitButton.addListener(new InputListener() { @Override public void touchUp (InputEvent event, float x, float y, int pointer, int button) { System.out.println("touched"); } }); stage.addActor(exitButton); } @Override public void update(float delta) { } }

    Read the article

  • Pitch camera around model

    - by ChocoMan
    Currently, my camera rotates with my model's Y-Axis (yaw) perfectly. What I'm having trouble with is rotating the X-Axis (pitch) along with it. I've tried the same method for cameraYaw() in the form of cameraPitch(), while adjusting the axis to Vector.Right, but the camera wouldn't pitch at all in accordance to the Y-Axes of the controller. Is there a way similar to this to get the same effect for pitching the camera around the model? // Rotates model on its own Y-axis public void modelRotMovement(GamePadState pController) { Yaw = pController.ThumbSticks.Right.X * MathHelper.ToRadians(speedAngleMAX); AddRotation = Quaternion.CreateFromYawPitchRoll(Yaw, 0, 0); ModelLoad.MRotation *= AddRotation; MOrientation = Matrix.CreateFromQuaternion(ModelLoad.MRotation); } // Orbit (yaw) Camera around model public void cameraYaw(Vector3 axis, float yaw, float pitch) { Pitch = pController.ThumbSticks.Right.Y * MathHelper.ToRadians(speedAngleMAX); ModelLoad.CameraPos = Vector3.Transform(ModelLoad.CameraPos - ModelLoad.camTarget, Matrix.CreateFromAxisAngle(axis, yaw)) + ModelLoad.camTarget; } public void updateCamera() { cameraYaw(Vector3.Up, Yaw); }

    Read the article

  • 2D Skeletal Animation Transformations

    - by Brad Zeis
    I have been trying to build a 2D skeletal animation system for a while, and I believe that I'm fairly close to finishing. Currently, I have the following data structures: struct Bone { Bone *parent; int child_count; Bone **children; double x, y; }; struct Vertex { double x, y; int bone_count; Bone **bones; double *weights; }; struct Mesh { int vertex_count; Vertex **vertices; Vertex **tex_coords; } Bone->x and Bone->y are the coordinates of the end point of the Bone. The starting point is given by (bone->parent->x, bone->parent->y) or (0, 0). Each entity in the game has a Mesh, and Mesh->vertices is used as the bounding area for the entity. Mesh->tex_coords are texture coordinates. In the entity's update function, the position of the Bone is used to change the coordinates of the Vertices that are bound to it. Currently what I have is: void Mesh_update(Mesh *mesh) { int i, j; double sx, sy; for (i = 0; i < vertex_count; i++) { if (mesh->vertices[i]->bone_count == 0) { continue; } sx, sy = 0; for (j = 0; j < mesh->vertices[i]->bone_count; j++) { sx += (/* ??? */) * mesh->vertices[i]->weights[j]; sy += (/* ??? */) * mesh->vertices[i]->weights[j]; } mesh->vertices[i]->x = sx; mesh->vertices[i]->y = sy; } } I think I have everything I need, I just don't know how to apply the transformations to the final mesh coordinates. What tranformations do I need here? Or is my approach just completely wrong?

    Read the article

  • Open source level editor for HTML5 platform game?

    - by Lai Yu-Hsuan
    A natty GUI editor is very helpful to create level map. I want to use some open-source choices rather than build my own from scratch. I found Tiled Map Editor but it doesn't work for what I want. Though I'm building HTML5 game, I don't have to use a HTML5 level editor as long as it can output well-formatted map files which my javascript can read. Edit: Sorry for the confusion. Tiled does not work for me because to make the player perform a 'tricky' jump, sometimes I want to set the distance between two platforms to, say, 7/3 or 8/3 tiles. But in Tiled I get only 2 or 3. If Tiled can do this, please teach me.

    Read the article

  • Normal map applied as diffuse textures looks wrong

    - by KaiserJohaan
    Diffuse textures works fine, but I am having problem with normal maps, so I thought I'd tried to apply the normal maps as the diffuse map in my fragment shader so I could see everything is OK. I comment-out my normal map code and just set the diffuse map to the normal map and I get this: http://postimg.org/image/j9gudjl7r/ Looks like a smurf! This is the actual normal map of the main body: http://postimg.org/image/sbkyr6fg9/ Here is my fragment shader, notice I commented out normal map code so I could debug the normal map as a diffuse texture "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Here is my wrapper around a texture OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureFormat textureFormat, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); GLint glTextureFormat = (textureFormat == TextureFormat::TEXTURE_FORMAT_RGB ? GL_RGB : textureFormat == TextureFormat::TEXTURE_FORMAT_RGBA ? GL_RGBA : GL_RED); glTexImage2D(GL_TEXTURE_2D, 0, glTextureFormat, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } OpenGLTexture::~OpenGLTexture() { glDeleteBuffers(1, &mTexture); CHECK_GL_ERROR(mLogger); } And here is the sampler I create which is shared between Diffuse and normal textures // texture sampler setup glGenSamplers(1, &mTextureSampler); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameterf(mTextureSampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, mCurrentAnisotropy); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifDiffuseTexture"), OpenGLTexture::TEXTURE_UNIT_DIFFUSE); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifNormalTexture"), OpenGLTexture::TEXTURE_UNIT_NORMAL); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_DIFFUSE, mTextureSampler); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_NORMAL, mTextureSampler); CHECK_GL_ERROR(mLogger); SetAnisotropicFiltering(mCurrentAnisotropy); The diffuse textures looks like they should, but the normal looks so wierd. Why is this?

    Read the article

< Previous Page | 561 562 563 564 565 566 567 568 569 570 571 572  | Next Page >