Search Results

Search found 15777 results on 632 pages for 'desktop computers'.

Page 582/632 | < Previous Page | 578 579 580 581 582 583 584 585 586 587 588 589  | Next Page >

  • What Did You Do? is a Bad Question

    - by Ajarn Mark Caldwell
    Brian Moran (blog | Twitter) did a great presentation today for the PASS Professional Development Virtual Chapter on The Art of Questions.  One of the points that Brian made was that there are good questions and bad (or at least not-as-good) questions.  Good questions tend to open-up the conversation and engender positive reactions (perhaps even trust and respect) between the participants; and bad questions tend to close-down a conversation either through the narrow list of possible responses (e.g. strictly Yes/No) or through the negative reactions they can produce.  And this explains why I so frequently had problems troubleshooting real-time problems with users in the past.  I’ll explain that in more detail below, but before we go on, let me recommend that you watch the recording of Brian’s presentation to learn why the question Why is often problematic in the U.S. and yet we so often resort to it. For a short portion (3 years) of my career, I taught basic computer skills and Office applications in an adult vocational school, and this gave me ample opportunity to do live troubleshooting of user challenges with computers.  And like many people who ended up in computer related jobs, I also have had numerous times where I was called upon by less computer-savvy individuals to help them with some challenge they were having, whether it was part of my job or not.  One of the things that I noticed, especially during my time as a teacher, was that when I was helping somebody, typically the first question I would ask them was, “What did you do?”  This seemed to me like a good way to start my detective work trying to figure out what happened, what went wrong, how to fix it, and how to help the person avoid it again in the future.  I always asked it in a polite tone of voice as I was just trying to gather the facts before diving in deeper.  However; 99.999% of the time, I always got the same answer, “Nothing!”  For a long time this frustrated me because (remember I’m in detective mode at that point) I knew it could not possibly be true.  They HAD to have done SOMETHING…just tell me what were the last actions you took before this problem presented itself.  But no, they always stuck with “Nothing”.  At which point, with frustration growing, and not a little bit of disdain for their lack of helpfulness, I would usually ask them to move aside while I took over their machine and got them out of whatever they had gotten themselves into.  After a while I just grew used to the fact that this was the answer I would usually receive, but I always kept asking because for the .001% of the people who would actually tell me, I could then help them understand what went wrong and how to avoid it in the future. Now, after hearing Brian’s talk, I understand what the problem was.  Even though I meant to just be in an information gathering mode, the words I was using, “What did YOU do?” have such a strong negative connotation that people would instinctively go into defense-mode and stop sharing information that might make them look bad.  Many of them probably were not even consciously aware that they had gone on the defensive, but the self-preservation instinct, especially self-preservation of the ego, is so strong that people would end up there without even realizing it. So, if “What did you do” is a bad question, what would have been better?  Well, one suggestion that Brian makes in his talk is something along the lines of, “Can you tell me what led up to this?” or “what was happening on the computer right before this came up?”  It’s subtle, but the point is to take the focus off of the person and their behavior; instead depersonalizing it and talk about events from more of a 3rd-party observer point of view.  With this approach, people will be more likely to talk about what the computer did and what they did in response to it without feeling the interrogation spotlight is on them.  They are also more likely to mention other events that occurred around the same time that may or may not be related, but which could certainly help you troubleshoot a larger problem if it is not just user actions.  And that is the ultimate goal of your asking the questions.  So yes, it does matter how you ask the question; and there are such things as good questions and bad questions.  Excellent topic Brian!  Thanks for getting the thinking gears churning! (Cross-posted to the Professional Development Virtual Chapter blog.)

    Read the article

  • Find only physical network adapters with WMI Win32_NetworkAdapter class

    - by Mladen Prajdic
    WMI is Windows Management Instrumentation infrastructure for managing data and machines. We can access it by using WQL (WMI querying language or SQL for WMI). One thing to remember from the WQL link is that it doesn't support ORDER BY. This means that when you do SELECT * FROM wmiObject, the returned order of the objects is not guaranteed. It can return adapters in different order based on logged-in user, permissions of that user, etc… This is not documented anywhere that I've looked and is derived just from my observations. To get network adapters we have to query the Win32_NetworkAdapter class. This returns us all network adapters that windows detect, real and virtual ones, however it only supplies IPv4 data. I've tried various methods of combining properties that are common on all systems since Windows XP. The first thing to do to remove all virtual adapters (like tunneling, WAN miniports, etc…) created by Microsoft. We do this by adding WHERE Manufacturer!='Microsoft' to our WMI query. This greatly narrows the number of adapters we have to work with. Just on my machine it went from 20 adapters to 5. What was left were one real physical Realtek LAN adapter, 2 virtual adapters installed by VMware and 2 virtual adapters installed by VirtualBox. If you read the Win32_NetworkAdapter help page you'd notice that there's an AdapterType that enumerates various adapter types like LAN or Wireless and AdapterTypeID that gives you the same information as AdapterType only in integer form. The dirty little secret is that these 2 properties don't work. They are both hardcoded, AdapterTypeID to "0" and AdapterType to "Ethernet 802.3". The only exceptions I've seen so far are adapters that have no values at all for the two properties, "RAS Async Adapter" that has values of AdapterType = "Wide Area Network" and AdapterTypeID = "3" and various tunneling adapters that have values of AdapterType = "Tunnel" and AdapterTypeID = "15". In the help docs there isn't even a value for 15. So this property was of no help. Next property to give hope is NetConnectionId. This is the name of the network connection as it appears in the Control Panel -> Network Connections. Problem is this value is also localized into various languages and can have different names for different connection. So both of these properties don't help and we haven't even started talking about eliminating virtual adapters. Same as the previous one this property was also of no help. Next two properties I checked were ConfigManagerErrorCode and NetConnectionStatus in hopes of finding disabled and disconnected adapters. If an adapter is enabled but disconnected the ConfigManagerErrorCode = 0 with different NetConnectionStatus. If the adapter is disabled it reports ConfigManagerErrorCode = 22. This looked like a win by using (ConfigManagerErrorCode=0 or ConfigManagerErrorCode=22) in our condition. This way we get enabled (connected and disconnected adapters). Problem with all of the above properties is that none of them filter out the virtual adapters installed by virtualization software like VMware and VirtualBox. The last property to give hope is PNPDeviceID. There's an interesting observation about physical and virtual adapters with this property. Every virtual adapter PNPDeviceID starts with "ROOT\". Even VMware and VirtualBox ones. There were some really, really old physical adapters that had PNPDeviceID starting with "ROOT\" but those were in pre win XP era AFAIK. Since my minimum system to check was Windows XP SP2 I didn't have to worry about those. The only virtual adapter I've seen to not have PNPDeviceID start with "ROOT\" is the RAS Async Adapter for Wide Area Network. But because it is made by Microsoft we've eliminated it with the first condition for the manufacturer. Using the PNPDeviceID has so far proven to be really effective and I've tested it on over 20 different computers of various configurations from Windows XP laptops with wireless and bluetooth cards to virtualized Windows 2008 R2 servers. So far it always worked as expected. I will appreciate you letting me know if you find a configuration where it doesn't work. Let's see some C# code how to do this: ManagementObjectSearcher mos = null;// WHERE Manufacturer!='Microsoft' removes all of the // Microsoft provided virtual adapters like tunneling, miniports, and Wide Area Network adapters.mos = new ManagementObjectSearcher(@"SELECT * FROM Win32_NetworkAdapter WHERE Manufacturer != 'Microsoft'");// Trying the ConfigManagerErrorCode and NetConnectionStatus variations // proved to still not be enough and it returns adapters installed by // the virtualization software like VMWare and VirtualBox// ConfigManagerErrorCode = 0 -> Device is working properly. This covers enabled and/or disconnected devices// ConfigManagerErrorCode = 22 AND NetConnectionStatus = 0 -> Device is disabled and Disconnected. // Some virtual devices report ConfigManagerErrorCode = 22 (disabled) and some other NetConnectionStatus than 0mos = new ManagementObjectSearcher(@"SELECT * FROM Win32_NetworkAdapter WHERE Manufacturer != 'Microsoft' AND (ConfigManagerErrorCode = 0 OR (ConfigManagerErrorCode = 22 AND NetConnectionStatus = 0))");// Final solution with filtering on the Manufacturer and PNPDeviceID not starting with "ROOT\"// Physical devices have PNPDeviceID starting with "PCI\" or something else besides "ROOT\"mos = new ManagementObjectSearcher(@"SELECT * FROM Win32_NetworkAdapter WHERE Manufacturer != 'Microsoft' AND NOT PNPDeviceID LIKE 'ROOT\\%'");// Get the physical adapters and sort them by their index. // This is needed because they're not sorted by defaultIList<ManagementObject> managementObjectList = mos.Get() .Cast<ManagementObject>() .OrderBy(p => Convert.ToUInt32(p.Properties["Index"].Value)) .ToList();// Let's just show all the properties for all physical adapters.foreach (ManagementObject mo in managementObjectList){ foreach (PropertyData pd in mo.Properties) Console.WriteLine(pd.Name + ": " + (pd.Value ?? "N/A"));}   That's it. Hope this helps you in some way.

    Read the article

  • Why lock-free data structures just aren't lock-free enough

    - by Alex.Davies
    Today's post will explore why the current ways to communicate between threads don't scale, and show you a possible way to build scalable parallel programming on top of shared memory. The problem with shared memory Soon, we will have dozens, hundreds and then millions of cores in our computers. It's inevitable, because individual cores just can't get much faster. At some point, that's going to mean that we have to rethink our architecture entirely, as millions of cores can't all access a shared memory space efficiently. But millions of cores are still a long way off, and in the meantime we'll see machines with dozens of cores, struggling with shared memory. Alex's tip: The best way for an application to make use of that increasing parallel power is to use a concurrency model like actors, that deals with synchronisation issues for you. Then, the maintainer of the actors framework can find the most efficient way to coordinate access to shared memory to allow your actors to pass messages to each other efficiently. At the moment, NAct uses the .NET thread pool and a few locks to marshal messages. It works well on dual and quad core machines, but it won't scale to more cores. Every time we use a lock, our core performs an atomic memory operation (eg. CAS) on a cell of memory representing the lock, so it's sure that no other core can possibly have that lock. This is very fast when the lock isn't contended, but we need to notify all the other cores, in case they held the cell of memory in a cache. As the number of cores increases, the total cost of a lock increases linearly. A lot of work has been done on "lock-free" data structures, which avoid locks by using atomic memory operations directly. These give fairly dramatic performance improvements, particularly on systems with a few (2 to 4) cores. The .NET 4 concurrent collections in System.Collections.Concurrent are mostly lock-free. However, lock-free data structures still don't scale indefinitely, because any use of an atomic memory operation still involves every core in the system. A sync-free data structure Some concurrent data structures are possible to write in a completely synchronization-free way, without using any atomic memory operations. One useful example is a single producer, single consumer (SPSC) queue. It's easy to write a sync-free fixed size SPSC queue using a circular buffer*. Slightly trickier is a queue that grows as needed. You can use a linked list to represent the queue, but if you leave the nodes to be garbage collected once you're done with them, the GC will need to involve all the cores in collecting the finished nodes. Instead, I've implemented a proof of concept inspired by this intel article which reuses the nodes by putting them in a second queue to send back to the producer. * In all these cases, you need to use memory barriers correctly, but these are local to a core, so don't have the same scalability problems as atomic memory operations. Performance tests I tried benchmarking my SPSC queue against the .NET ConcurrentQueue, and against a standard Queue protected by locks. In some ways, this isn't a fair comparison, because both of these support multiple producers and multiple consumers, but I'll come to that later. I started on my dual-core laptop, running a simple test that had one thread producing 64 bit integers, and another consuming them, to measure the pure overhead of the queue. So, nothing very interesting here. Both concurrent collections perform better than the lock-based one as expected, but there's not a lot to choose between the ConcurrentQueue and my SPSC queue. I was a little disappointed, but then, the .NET Framework team spent a lot longer optimising it than I did. So I dug out a more powerful machine that Red Gate's DBA tools team had been using for testing. It is a 6 core Intel i7 machine with hyperthreading, adding up to 12 logical cores. Now the results get more interesting. As I increased the number of producer-consumer pairs to 6 (to saturate all 12 logical cores), the locking approach was slow, and got even slower, as you'd expect. What I didn't expect to be so clear was the drop-off in performance of the lock-free ConcurrentQueue. I could see the machine only using about 20% of available CPU cycles when it should have been saturated. My interpretation is that as all the cores used atomic memory operations to safely access the queue, they ended up spending most of the time notifying each other about cache lines that need invalidating. The sync-free approach scaled perfectly, despite still working via shared memory, which after all, should still be a bottleneck. I can't quite believe that the results are so clear, so if you can think of any other effects that might cause them, please comment! Obviously, this benchmark isn't realistic because we're only measuring the overhead of the queue. Any real workload, even on a machine with 12 cores, would dwarf the overhead, and there'd be no point worrying about this effect. But would that be true on a machine with 100 cores? Still to be solved. The trouble is, you can't build many concurrent algorithms using only an SPSC queue to communicate. In particular, I can't see a way to build something as general purpose as actors on top of just SPSC queues. Fundamentally, an actor needs to be able to receive messages from multiple other actors, which seems to need an MPSC queue. I've been thinking about ways to build a sync-free MPSC queue out of multiple SPSC queues and some kind of sign-up mechanism. Hopefully I'll have something to tell you about soon, but leave a comment if you have any ideas.

    Read the article

  • How to Share Files Between User Accounts on Windows, Linux, or OS X

    - by Chris Hoffman
    Your operating system provides each user account with its own folders when you set up several different user accounts on the same computer. Shared folders allow you to share files between user accounts. This process works similarly on Windows, Linux, and Mac OS X. These are all powerful multi-user operating systems with similar folder and file permission systems. Windows On Windows, the “Public” user’s folders are accessible to all users. You’ll find this folder under C:\Users\Public by default. Files you place in any of these folders will be accessible to other users, so it’s a good way to share music, videos, and other types of files between users on the same computer. Windows even adds these folders to each user’s libraries by default. For example, a user’s Music library contains the user’s music folder under C:\Users\NAME\as well as the public music folder under C:\Users\Public\. This makes it easy for each user to find the shared, public files. It also makes it easy to make a file public — just drag and drop a file from the user-specific folder to the public folder in the library. Libraries are hidden by default on Windows 8.1, so you’ll have to unhide them to do this. These Public folders can also be used to share folders publically on the local network. You’ll find the Public folder sharing option under Advanced sharing settings in the Network and Sharing Control Panel. You could also choose to make any folder shared between users, but this will require messing with folder permissions in Windows. To do this, right-click a folder anywhere in the file system and select Properties. Use the options on the Security tab to change the folder’s permissions and make it accessible to different user accounts. You’ll need administrator access to do this. Linux This is a bit more complicated on Linux, as typical Linux distributions don’t come with a special user folder all users have read-write access to. The Public folder on Ubuntu is for sharing files between computers on a network. You can use Linux’s permissions system to give other user accounts read or read-write access to specific folders. The process below is for Ubuntu 14.04, but it should be identical on any other Linux distribution using GNOME with the Nautilus file manager. It should be similar for other desktop environments, too. Locate the folder you want to make accessible to other users, right-click it, and select Properties. On the Permissions tab, give “Others” the “Create and delete files” permission. Click the Change Permissions for Enclosed Files button and give “Others” the “Read and write” and “Create and Delete Files” permissions. Other users on the same computer will then have read and write access to your folder. They’ll find it under /home/YOURNAME/folder under Computer. To speed things up, they can create a link or bookmark to the folder so they always have easy access to it. Mac OS X Mac OS X creates a special Shared folder that all user accounts have access to. This folder is intended for sharing files between different user accounts. It’s located at /Users/Shared. To access it, open the Finder and click Go > Computer. Navigate to Macintosh HD > Users > Shared. Files you place in this folder can be accessed by any user account on your Mac. These tricks are useful if you’re sharing a computer with other people and you all have your own user accounts — maybe your kids have their own limited accounts. You can share a music library, downloads folder, picture archive, videos, documents, or anything else you like without keeping duplicate copies.

    Read the article

  • GlassFish Clustering with DCOM on Windows

    - by ByronNevins
    DCOM - Distributed COM, a Microsoft protocol for communicating with Windows machines. Why use DCOM? In GlassFish 3.1 SSH is used as the standard way to run commands on remote nodes for clustering.  It is very difficult for users to get SSH configured properly on Windows.  SSH does not come with Windows so we have to depend on third party tools.  And then the user is forced to install and configure these tools -- which can be tricky. DCOM is available on all supported platforms.  It is built-in to Windows. The idea is to use DCOM to communicate with remote Windows nodes.  This has the huge advantage that the user has to do minimal, if any, configuration on the Windows nodes. Implementation HighlightsTwo open Source Libraries have been added to GlassFish: Jcifs – a SAMBA implementation in Java J-interop – A Java implementation for making DCOM calls to remote Windows computers.   Note that any supported platform can use DCOM to work with Windows nodes -- not just Windows.E.g. you can have a Linux DAS work with Windows remote instances.All existing SSH commands now have a corresponding DCOM command – except for setup-ssh which isn’t needed for DCOM.  validate-dcom is an all new command. New DCOM Commands create-node-dcom delete-node-dcom install-node-dcom list-nodes-dcom ping-node-dcom uninstall-node-dcom update-node-dcom validate-dcom setup-local-dcom (This is only available via Update Center for GlassFish 3.1.2) These commands are in-place in the trunk (4.0).  And in the branch (3.1.2) Windows Configuration Challenges There are an infinite number of possible configurations of Windows if you look at it as a combination of main release, service-pack, special drivers, software, configuration etc.  Later versions of Windows err on the side of tightening security be default.  This means that the Windows host may need to have configuration changes made.These configuration changes mostly need to be made by the user.  setup-local-dcom will assist you in making required changes to the Windows Registry.  See the reference blogs for details. The validate-dcom Command validate-dcom is a crucial command.  It should be run before any other commands.  If it does not run successfully then there is no point in running other commands.The validate-dcom command must be used from a DAS machine to test a different Windows machine.  If  validate-dcom runs successfully you can be confident that all the DCOM commands will work.  Conversely, the opposite is also true:  If validate-dcom fails, then no DCOM commands will work. What validate-dcom does Verify that the remote host is not the local machine. Resolves the remote host name Checks that the remote DCOM port is being listened on (135, 139) Checks that the remote host’s File Sharing is enabled (port 445) It copies a file (a script) to the remote host to verify that SAMBA is working and authorization is correct It runs a script that it copied on-the-fly to the remote host. Tips and Tricks The bread and butter commands that use DCOM are existing commands like create-instance, start-instance etc.   All of the commands that have dcom in their name are for dealing with the actual nodes. The way the software works is to call asadmin.bat on the remote machine and run a command.  This means that you can track these commands easily on the remote machine with the usual tools.  E.g. using AS_LOGFILE, looking at log files, etc.  It’s easy to attach a debugger to the remote asadmin process, “just in time”, if necessary. How to debug the remote commands:Edit the asadmin.bat file that is in the glassfish/bin folder.  Use glassfish/lib/nadmin.bat in GlassFish 4.0+Add these options to the java call:-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=1234  Now if you run, say start-instance on DAS, you can attach your debugger, at your leisure, to the remote machines port 1234.  It will be running start-local-instance and patiently waiting for you to attach.

    Read the article

  • Mixed Emotions: Humans React to Natural Language Computer

    - by Applications User Experience
    There was a big event in Silicon Valley on Tuesday, November 15. Watson, the natural language computer developed at IBM Watson Research Center in Yorktown Heights, New York, and its inventor and principal research investigator, David Ferrucci, were guests at the Computer History Museum in Mountain View, California for another round of the television game Jeopardy. You may have read about or watched on YouTube how Watson beat Ken Jennings and Brad Rutter, two top Jeopardy competitors, last February. This time, Watson swept the floor with two Silicon Valley high-achievers, one a venture capitalist with a background  in math, computer engineering, and physics, and the other a technology and finance writer well-versed in all aspects of culture and humanities. Watson is the product of the DeepQA research project, which attempts to create an artificially intelligent computing system through advances in natural language processing (NLP), among other technologies. NLP is a computing strategy that seeks to provide answers by processing large amounts of unstructured data contained in multiple large domains of human knowledge. There are several ways to perform NLP, but one way to start is by recognizing key words, then processing  contextual  cues associated with the keyword concepts so that you get many more “smart” (that is, human-like) deductions,  rather than a series of “dumb” matches.  Jeopardy questions often require more than key word matching to get the correct answer; typically several pieces of information put together, often from vastly different categories, to come up with a satisfactory word string solution that can be rephrased as a question.  Smarter than your average search engine, but is it as smart as a human? Watson was especially fast at descrambling mixed-up state capital names, and recalling and pairing movie titles where one started and the other ended in the same word (e.g., Billion Dollar Baby Boom, where both titles used the word Baby). David said they had basically removed the variable of how fast Watson hit the buzzer compared to human contestants, but frustration frequently appeared on the faces of the contestants beaten to the punch by Watson. David explained that top Jeopardy winners like Jennings achieved their success with a similar strategy, timing their buzz to the end of the reading of the clue,  and “running the board”, being first to respond on about 60% of the clues.  Similar results for Watson. It made sense that Watson would be good at the technical and scientific stuff, so I figured the venture capitalist was toast. But I thought for sure Watson would lose to the writer in categories such as pop culture, wines and foods, and other humanities. Surprisingly, it held its own. I was amazed it could recognize a word definition of a syllogism in the category of philosophy. So what was the audience reaction to all of this? We started out expecting our formidable human contestants to easily run some of their categories; however, they started off on the wrong foot with the state capitals which Watson could unscramble so efficiently. By the end of the first round, contestants and the audience were feeling a little bit, well, …. deflated. Watson was winning by about $13,000, and the humans had gone into negative dollars. The IBM host said he was going to “slow Watson down a bit,” and the humans came back with respectable scores in Double Jeopardy. This was partially thanks to a very sympathetic audience (and host, also a human) providing “group-think” on many questions, especially baseball ‘s most valuable players, which by the way, couldn’t have been hard because even I knew them.  Yes, that’s right, the humans cheated. Since Watson could speak but not hear us (it didn’t have speech recognition capability), it was probably unaware of this. In Final Jeopardy, the single question had to do with law. I was sure Watson would blow this one, but all contestants were able to answer correctly about a copyright law. In a career devoted to making computers more helpful to people, I think I may have seen how a computer can do too much. I’m not sure I’d want to work side-by-side with a Watson doing my job. Certainly listening and empathy are important traits we humans still have over Watson.  While there was great enthusiasm in the packed room of computer scientists and their friends for this standing-room-only show, I think it made several of us uneasy (especially the poor human contestants whose egos were soundly bashed in the first round). This computer system, by the way , only took 4 years to program. David Ferrucci mentioned several practical uses for Watson, including medical diagnoses and legal strategies. Are you “the expert” in your job? Imagine NLP computing on an Oracle database.   This may be the user interface of the future to enable users to better process big data. How do you think you’d like it? Postscript: There were three little boys sitting in front of me in the very first row. They looked, how shall I say it, … unimpressed!

    Read the article

  • Interview with Geoff Bones, developer on SQL Storage Compress

    - by red(at)work
    How did you come to be working at Red Gate? I've been working at Red Gate for nine months; before that I had been at a multinational engineering company. A number of my colleagues had left to work at Red Gate and spoke very highly of it, but I was happy in my role and thought, 'It can't be that great there, surely? They'll be back!' Then one day I visited to catch up them over lunch in the Red Gate canteen. I was so impressed with what I found there, that, three days later, I'd applied for a role as a developer. And how did you get into software development? My first job out of university was working as a systems programmer on IBM mainframes. This was quite a while ago: there was a lot of assembler and loading programs from tape drives and that kind of stuff. I learned a lot about how computers work, and this stood me in good stead when I moved over the development in the 90s. What's the best thing about working as a developer at Red Gate? Where should I start? One of the great things as a developer at Red Gate is the useful feedback and close contact we have with the people who use our products, either directly at trade shows and other events or through information coming through the product managers. The company's whole ethos is built around assisting the user, and this is in big contrast to my previous development roles. We aim to produce tools that people really want to use, that they enjoy using, and, as a developer, this is a great thing to aim for and a great feeling when we get it right. At Red Gate we also try to cut out the things that distract and stop us doing our jobs. As a developer, this means that I can focus on the code and the product I'm working on, knowing that others are doing a first-class job of making sure that the builds are running smoothly and that I'm getting great feedback from the testers. We keep our process light and effective, as we want to produce great software more than we want to produce great audit trails. Tell us a bit about the products you are currently working on. You mean HyperBac? First let me explain a bit about what HyperBac is. At heart it's a compression and encryption technology, but with a few added features that open up a wealth of really exciting possibilities. Right now we have the HyperBac technology in just three products: SQL HyperBac, SQL Virtual Restore and SQL Storage Compress, but we're only starting to develop what it can do. My personal favourite is SQL Virtual Restore; for example, I love the way you can use it to run independent test databases that are all backed by a single compressed backup. I don't think the market yet realises the kind of things you do once you are using these products. On the other hand, the benefits of SQL Storage Compress are straightforward: run your databases but use only 20% of the disk space. Databases are getting larger and larger, and, as they do, so does your ROI. What's a typical day for you? My days are pretty varied. We have our daily team stand-up meeting and then sometimes I will work alone on a current issue, or I'll be pair programming with one of my colleagues. From time to time we give half a day up to future planning with the team, when we look at the long and short term aims for the product and working out the development priorities. I also get to go to conferences and events, which is unusual for a development role and gives me the chance to meet and talk to our customers directly. Have you noticed anything different about developing tools for DBAs rather than other IT kinds of user? It seems to me that DBAs are quite independent minded; they know exactly what the problem they are facing is, and often have a solution in mind before they begin to look for what's on the market. This means that they're likely to cherry-pick tools from a range of vendors, picking the ones that are the best fit for them and that disrupt their environments the least. When I've met with DBAs, I've often been very impressed at their ability to summarise their set up, the issues, the obstacles they face when implementing a tool and their plans for their environment. It's easier to develop products for this audience as they give such a detailed overview of their needs, and I feel I understand their problems.

    Read the article

  • Wireless not working on Dell XPS 17 after installing 12.04

    - by user60622
    I (linux newbie) have a Dell XPS 17 and tried to install Ubuntu 12.04. After installation all WLAN accesspoints near are detected. But I can not connect (but I am able to connect with other computers as well as with Dell XPS 17 under windows). Outputs: iwconfig lo no wireless extensions. wlan0 IEEE 802.11bg ESSID:"LerchenPoint" Mode:Managed Frequency:2.412 GHz Access Point: 58:6D:8F:A0:2D:58 Bit Rate=1 Mb/s Tx-Power=14 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=70/70 Signal level=-37 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:19 Missed beacon:0 eth0 no wireless extensions. sudo lshw -class network *-network description: Wireless interface product: Centrino Wireless-N 1000 vendor: Intel Corporation physical id: 0 bus info: pci@0000:04:00.0 logical name: wlan0 version: 00 serial: 00:26:c7:99:98:28 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.2.0-24-generic firmware=39.31.5.1 build 35138 latency=0 link=no multicast=yes wireless=IEEE 802.11bg resources: irq:50 memory:f0400000-f0401fff *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:0a:00.0 logical name: eth0 version: 06 serial: f0:4d:a2:56:e3:94 size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168e-2.fw ip=192.168.0.123 latency=0 link=yes multicast=yes port=MII speed=1Gbit/s resources: irq:47 ioport:6000(size=256) memory:f0a04000-f0a04fff memory:f0a00000-f0a03fff dmesg | grep iwl [ 10.157531] iwlwifi 0000:04:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 10.157561] iwlwifi 0000:04:00.0: setting latency timer to 64 [ 10.157598] iwlwifi 0000:04:00.0: pci_resource_len = 0x00002000 [ 10.157599] iwlwifi 0000:04:00.0: pci_resource_base = ffffc90011090000 [ 10.157601] iwlwifi 0000:04:00.0: HW Revision ID = 0x0 [ 10.157731] iwlwifi 0000:04:00.0: irq 50 for MSI/MSI-X [ 10.157834] iwlwifi 0000:04:00.0: Detected Intel(R) Centrino(R) Wireless-N 1000 BGN, REV=0x6C [ 10.157976] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 10.179772] iwlwifi 0000:04:00.0: device EEPROM VER=0x15d, CALIB=0x6 [ 10.179775] iwlwifi 0000:04:00.0: Device SKU: 0X50 [ 10.179777] iwlwifi 0000:04:00.0: Valid Tx ant: 0X1, Valid Rx ant: 0X3 [ 10.179796] iwlwifi 0000:04:00.0: Tunable channels: 13 802.11bg, 0 802.11a channels [ 10.574728] iwlwifi 0000:04:00.0: loaded firmware version 39.31.5.1 build 35138 [ 10.726409] ieee80211 phy0: Selected rate control algorithm 'iwl-agn-rs' [ 19.714132] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 19.777862] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2251.603089] iwlwifi 0000:04:00.0: PCI INT A disabled [ 2266.578350] iwlwifi 0000:04:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [ 2266.578399] iwlwifi 0000:04:00.0: setting latency timer to 64 [ 2266.578435] iwlwifi 0000:04:00.0: pci_resource_len = 0x00002000 [ 2266.578437] iwlwifi 0000:04:00.0: pci_resource_base = ffffc90011090000 [ 2266.578439] iwlwifi 0000:04:00.0: HW Revision ID = 0x0 [ 2266.578704] iwlwifi 0000:04:00.0: irq 50 for MSI/MSI-X [ 2266.578808] iwlwifi 0000:04:00.0: Detected Intel(R) Centrino(R) Wireless-N 1000 BGN, REV=0x6C [ 2266.578916] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2266.600709] iwlwifi 0000:04:00.0: device EEPROM VER=0x15d, CALIB=0x6 [ 2266.600712] iwlwifi 0000:04:00.0: Device SKU: 0X50 [ 2266.600713] iwlwifi 0000:04:00.0: Valid Tx ant: 0X1, Valid Rx ant: 0X3 [ 2266.600727] iwlwifi 0000:04:00.0: Tunable channels: 13 802.11bg, 0 802.11a channels [ 2266.605978] iwlwifi 0000:04:00.0: loaded firmware version 39.31.5.1 build 35138 [ 2266.606331] ieee80211 phy0: Selected rate control algorithm 'iwl-agn-rs' [ 2266.614179] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S [ 2266.681541] iwlwifi 0000:04:00.0: L1 Enabled; Disabling L0S Solutions I tried: rfkill list all 0: dell-wifi: Wireless LAN Soft blocked: no Hard blocked: no 2: phy0: Wireless LAN Soft blocked: no Hard blocked: no echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf options iwlwifi 11n_disable=1 sudo modprobe -rfv iwlwifi WARNING: All config files need .conf: /etc/modprobe.d/blacklist, it will be ignored in a future release. rmmod /lib/modules/3.2.0-24-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko rmmod /lib/modules/3.2.0-24-generic/kernel/net/mac80211/mac80211.ko rmmod /lib/modules/3.2.0-24-generic/kernel/net/wireless/cfg80211.ko sudo modprobe iwlwifi WARNING: All config files need .conf: /etc/modprobe.d/blacklist, it will be ignored in a future release. replacing iwlwifi-1000-5.ucode (current driver) against iwlwifi-1000-3.ucode sudo jockey-gtk: (jockey-gtk:2493): Gtk-CRITICAL **: gtk_icon_set_render_icon_pixbuf: assertion icon_set != NULL' failed (jockey-gtk:2493): Gtk-CRITICAL **: gtk_icon_set_render_icon_pixbuf: assertion icon_set != NULL' failed nothing is listet in "Additional drivers" (german: "Zusätzliche Treiber"). gksudo gedit /etc/modprobe.d/blacklist.conf add "blacklist acer_wmi" Any help would be appreciated very much. Thanks!!

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 2

    - by Simon Cooper
    Before we look any further at the CLR metadata, we need a quick diversion to understand how the metadata is actually stored. Encoding table information As an example, we'll have a look at a row in the TypeDef table. According to the spec, each TypeDef consists of the following: Flags specifying various properties of the class, including visibility. The name of the type. The namespace of the type. What type this type extends. The field list of this type. The method list of this type. How is all this data actually represented? Offset & RID encoding Most assemblies don't need to use a 4 byte value to specify heap offsets and RIDs everywhere, however we can't hard-code every offset and RID to be 2 bytes long as there could conceivably be more than 65535 items in a heap or more than 65535 fields or types defined in an assembly. So heap offsets and RIDs are only represented in the full 4 bytes if it is required; in the header information at the top of the #~ stream are 3 bits indicating if the #Strings, #GUID, or #Blob heaps use 2 or 4 bytes (the #US stream is not accessed from metadata), and the rowcount of each table. If the rowcount for a particular table is greater than 65535 then all RIDs referencing that table throughout the metadata use 4 bytes, else only 2 bytes are used. Coded tokens Not every field in a table row references a single predefined table. For example, in the TypeDef extends field, a type can extend another TypeDef (a type in the same assembly), a TypeRef (a type in a different assembly), or a TypeSpec (an instantiation of a generic type). A token would have to be used to let us specify the table along with the RID. Tokens are always 4 bytes long; again, this is rather wasteful of space. Cutting the RID down to 2 bytes would make each token 3 bytes long, which isn't really an optimum size for computers to read from memory or disk. However, every use of a token in the metadata tables can only point to a limited subset of the metadata tables. For the extends field, we only need to be able to specify one of 3 tables, which we can do using 2 bits: 0x0: TypeDef 0x1: TypeRef 0x2: TypeSpec We could therefore compress the 4-byte token that would otherwise be needed into a coded token of type TypeDefOrRef. For each type of coded token, the least significant bits encode the table the token points to, and the rest of the bits encode the RID within that table. We can work out whether each type of coded token needs 2 or 4 bytes to represent it by working out whether the maximum RID of every table that the coded token type can point to will fit in the space available. The space available for the RID depends on the type of coded token; a TypeOrMethodDef coded token only needs 1 bit to specify the table, leaving 15 bits available for the RID before a 4-byte representation is needed, whereas a HasCustomAttribute coded token can point to one of 18 different tables, and so needs 5 bits to specify the table, only leaving 11 bits for the RID before 4 bytes are needed to represent that coded token type. For example, a 2-byte TypeDefOrRef coded token with the value 0x0321 has the following bit pattern: 0 3 2 1 0000 0011 0010 0001 The first two bits specify the table - TypeRef; the other bits specify the RID. Because we've used the first two bits, we've got to shift everything along two bits: 000000 1100 1000 This gives us a RID of 0xc8. If any one of the TypeDef, TypeRef or TypeSpec tables had more than 16383 rows (2^14 - 1), then 4 bytes would need to be used to represent all TypeDefOrRef coded tokens throughout the metadata tables. Lists The third representation we need to consider is 1-to-many references; each TypeDef refers to a list of FieldDef and MethodDef belonging to that type. If we were to specify every FieldDef and MethodDef individually then each TypeDef would be very large and a variable size, which isn't ideal. There is a way of specifying a list of references without explicitly specifying every item; if we order the MethodDef and FieldDef tables by the owning type, then the field list and method list in a TypeDef only have to be a single RID pointing at the first FieldDef or MethodDef belonging to that type; the end of the list can be inferred by the field list and method list RIDs of the next row in the TypeDef table. Going back to the TypeDef If we have a look back at the definition of a TypeDef, we end up with the following reprensentation for each row: Flags - always 4 bytes Name - a #Strings heap offset. Namespace - a #Strings heap offset. Extends - a TypeDefOrRef coded token. FieldList - a single RID to the FieldDef table. MethodList - a single RID to the MethodDef table. So, depending on the number of entries in the heaps and tables within the assembly, the rows in the TypeDef table can be as small as 14 bytes, or as large as 24 bytes. Now we've had a look at how information is encoded within the metadata tables, in the next post we can see how they are arranged on disk.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 5

    - by MarkPearl
    Learning Outcomes Describe the operation of a memory cell Explain the difference between DRAM and SRAM Discuss the different types of ROM Explain the concepts of a hard failure and a soft error respectively Describe SDRAM organization Semiconductor Main Memory The two traditional forms of RAM used in computers are DRAM and SRAM DRAM (Dynamic RAM) Divided into two technologies… Dynamic Static Dynamic RAM is made with cells that store data as charge on capacitors. The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0. Because capacitors have natural tendency to discharge, dynamic RAM requires periodic charge refreshing to maintain data storage. The term dynamic refers to the tendency of the stored charge to leak away, even with power continuously applied. Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analogue device. The capacitor can store any charge value within a range, a threshold value determines whether the charge is interpreted as a 1 or 0. SRAM (Static RAM) SRAM is a digital device that uses the same logic elements used in the processor. In SRAM, binary values are stored using traditional flip flop logic configurations. SRAM will hold its data as along as power is supplied to it. Unlike DRAM, no refresh is required to retain data. SRAM vs. DRAM DRAM is simpler and smaller than SRAM. Thus it is more dense and less expensive than SRAM. The cost of the refreshing circuitry for DRAM needs to be considered, but if the machine requires a large amount of memory, DRAM turns out to be cheaper than SRAM. SRAMS are somewhat faster than DRAM, thus SRAM is generally used for cache memory and DRAM is used for main memory. Types of ROM Read Only Memory (ROM) contains a permanent pattern of data that cannot be changed. ROM is non volatile meaning no power source is required to maintain the bit values in memory. While it is possible to read a ROM, it is not possible to write new data into it. An important application of ROM is microprogramming, other applications include library subroutines for frequently wanted functions, System programs, Function tables. A ROM is created like any other integrated circuit chip, with the data actually wired into the chip as part of the fabrication process. To reduce costs of fabrication, we have PROMS. PROMS are… Written only once Non-volatile Written after fabrication Another variation of ROM is the read-mostly memory, which is useful for applications in which read operations are far more frequent than write operations, but for which non volatile storage is required. There are three common forms of read-mostly memory, namely… EPROM EEPROM Flash memory Error Correction Semiconductor memory is subject to errors, which can be classed into two categories… Hard failure – Permanent physical defect so that the memory cell or cells cannot reliably store data Soft failure – Random error that alters the contents of one or more memory cells without damaging the memory (common cause includes power supply issues, etc.) Most modern main memory systems include logic for both detecting and correcting errors. Error detection works as follows… When data is to be read into memory, a calculation is performed on the data to produce a code Both the code and the data are stored When the previously stored word is read out, the code is used to detect and possibly correct errors The error checking provides one of 3 possible results… No errors are detected – the fetched data bits are sent out An error is detected, and it is possible to correct the error. The data bits plus error correction bits are fed into a corrector, which produces a corrected set of bits to be sent out An error is detected, but it is not possible to correct it. This condition is reported Hamming Code See wiki for detailed explanation. We will probably need to know how to do a hemming code – refer to the textbook (pg. 188 – 189) Advanced DRAM organization One of the most critical system bottlenecks when using high-performance processors is the interface to main memory. This interface is the most important pathway in the entire computer system. The basic building block of main memory remains the DRAM chip. In recent years a number of enhancements to the basic DRAM architecture have been explored, and some of these are now on the market including… SDRAM (Synchronous DRAM) DDR-DRAM RDRAM SDRAM (Synchronous DRAM) SDRAM exchanges data with the processor synchronized to an external clock signal and running at the full speed of the processor/memory bus without imposing wait states. SDRAM employs a burst mode to eliminate the address setup time and row and column line precharge time after the first access In burst mode a series of data bits can be clocked out rapidly after the first bit has been accessed SDRAM has a multiple bank internal architecture that improves opportunities for on chip parallelism SDRAM performs best when it is transferring large blocks of data serially There is now an enhanced version of SDRAM known as double data rate SDRAM or DDR-SDRAM that overcomes the once-per-cycle limitation of SDRAM

    Read the article

  • Ransomware: Why This New Malware is So Dangerous and How to Protect Yourself

    - by Chris Hoffman
    Ransomware is a type of malware that tries to extort money from you. One of the nastiest examples, CryptoLocker, takes your files hostage and holds them for ransom, forcing you to pay hundreds of dollars to regain access. Most malware is no longer created by bored teenagers looking to cause some chaos. Much of the current malware is now produced by organized crime for profit and is becoming increasingly sophisticated. How Ransomware Works Not all ransomware is identical. The key thing that makes a piece of malware “ransomware” is that it attempts to extort a direct payment from you. Some ransomware may be disguised. It may function as “scareware,” displaying a pop-up that says something like “Your computer is infected, purchase this product to fix the infection” or “Your computer has been used to download illegal files, pay a fine to continue using your computer.” In other situations, ransomware may be more up-front. It may hook deep into your system, displaying a message saying that it will only go away when you pay money to the ransomware’s creators. This type of malware could be bypassed via malware removal tools or just by reinstalling Windows. Unfortunately, Ransomware is becoming more and more sophisticated. One of the latest examples, CryptoLocker, starts encrypting your personal files as soon as it gains access to your system, preventing access to the files without knowing the encryption key. CryptoLocker then displays a message informing you that your files have been locked with encryption and that you have just a few days to pay up. If you pay them $300, they’ll hand you the encryption key and you can recover your files. CryptoLocker helpfully walks you through choosing a payment method and, after paying, the criminals seem to actually give you a key that you can use to restore your files. You can never be sure that the criminals will keep their end of the deal, of course. It’s not a good idea to pay up when you’re extorted by criminals. On the other hand, businesses that lose their only copy of business-critical data may be tempted to take the risk — and it’s hard to blame them. Protecting Your Files From Ransomware This type of malware is another good example of why backups are essential. You should regularly back up files to an external hard drive or a remote file storage server. If all your copies of your files are on your computer, malware that infects your computer could encrypt them all and restrict access — or even delete them entirely. When backing up files, be sure to back up your personal files to a location where they can’t be written to or erased. For example, place them on a removable hard drive or upload them to a remote backup service like CrashPlan that would allow you to revert to previous versions of files. Don’t just store your backups on an internal hard drive or network share you have write access to. The ransomware could encrypt the files on your connected backup drive or on your network share if you have full write access. Frequent backups are also important. You wouldn’t want to lose a week’s worth of work because you only back up your files every week. This is part of the reason why automated back-up solutions are so convenient. If your files do become locked by ransomware and you don’t have the appropriate backups, you can try recovering them with ShadowExplorer. This tool accesses “Shadow Copies,” which Windows uses for System Restore — they will often contain some personal files. How to Avoid Ransomware Aside from using a proper backup strategy, you can avoid ransomware in the same way you avoid other forms of malware. CryptoLocker has been verified to arrive through email attachments, via the Java plug-in, and installed on computers that are part of the Zeus botnet. Use a good antivirus product that will attempt to stop ransomware in its tracks. Antivirus programs are never perfect and you could be infected even if you run one, but it’s an important layer of defense. Avoid running suspicious files. Ransomware can arrive in .exe files attached to emails, from illicit websites containing pirated software, or anywhere else that malware comes from. Be alert and exercise caution over the files you download and run. Keep your software updated. Using an old version of your web browser, operating system, or a browser plugin can allow malware in through open security holes. If you have Java installed, you should probably uninstall it. For more tips, read our list of important security practices you should be following. Ransomware — CryptoLocker in particular — is brutally efficient and smart. It just wants to get down to business and take your money. Holding your files hostage is an effective way to prevent removal by antivirus programs after it’s taken root, but CryptoLocker is much less scary if you have good backups. This sort of malware demonstrates the importance of backups as well as proper security practices. Unfortunately, CryptoLocker is probably a sign of things to come — it’s the kind of malware we’ll likely be seeing more of in the future.     

    Read the article

  • Specs, Form and Function – What am I Missing?

    - by Barry Shulam
    0 0 1 628 3586 08041 29 8 4206 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} Friday October 26th the Microsoft Surface RT arrived at the office.  I was summoned to my boss’s office for the grand unpacking.  If I had planned ahead I could have used my iPhone 4 to film the event and post it on YouTube however the desire to hold the device and turn it ON was more inviting than becoming a proxy reviewer for Engadget’s website.  1980 was the first time we had a personal computer in our house.  It was a  Kaypro computer. It weighed 29 pounds more than any persons lap could hold.  Then the term “portable computer” meant you could remove it from the building and take it else where.  Today I am typing on this entry on a Macbook Air which weighs 2.38 pounds. This morning Amazons front page main title is: “Much More for Much Less” I was born at the right time to start with the CPM operating system on the Kaypro thru the DOS, Windows, Linux, Mac OSX and mobile phone operating systems and languages.  If you are not aware Technology is moving at a rapid pace.  The New iPad (those who are keeping score – iPad4) is replacing a 7 month old machine the New iPad (iPad 3) I have used and owned many technology devices in my life.  The main point that most of the reader who are in the USA overlook is the fact that we are in the USA.  The devices we purchase have a great digital garden to support them.  The Kaypro computer had a 7-inch screen.  It was a TV tube with two colors – Black and Green.  You could see the 80-column screen flicker with characters – have you every played Pac-Man emulated on the screen with the ABC characters. Traveling across the world you will find that not all apps on your device will function as they did back home because they are not offered outside of your country of origin. I think the main question a buyer of technology should be asking is Function.  The greatest Specs with out function limit you.  The most beautiful form with out function is the same as a crystal vase on your shelf – not a good cereal bowl in the morning. Microsoft Surface RT, Amazon Kindle Fire and Apple iPad all great devices in their respective customers hands. My advice for those looking to purchase on this year:  If the device is your only technology device you buy what you WANT and LIKE. Consider this parallel universe if its not your only device?  Ever go shopping for clothing, shoes, and accessories with your wife, girlfriend, sister or mother?  If you listen carefully you will hear the little voices coming out of there heads saying:  “This goes well with that and I can use it also with that outfit” ”Do you think this clashes with that?”  “Ohh I love how that combination looks on you”.  Portable devices such as tablets and computers can offer a whole lot more when they are combined with the digital echo system you have at home and the manufacturer offers online. Pros of each Device: Microsoft Surface RT: There is a new functionality named SmartGlass which will let you share the content off your tablet to your XBOX 360.  Microsoft office is loaded on the tablet.  You can have more than one user profile on the tablet if you share it with others.   Amazon Kindle or Kindle HD: If you are an Amazon consumer with an annual Amazon Prime service you can consume videos and read books off the Amazon site.  Its the cheapest device.  Its a step up from the kindle reader in many ways.   Apple Ipad or Ipad mini: Over 270 Thousand applications.  Airplay permits you the ability to share to your TV screen. If you are a cord cutter (a person who gets their entertainment content over the web or air vs Cable Providers) the Airplay or Smart glass are a huge bonus.  iPad mini or not: The mini will fit in a purse where the larger one will not.  Its lighter which makes it nice to hold for prolonged periods.  It has an option for LTE wireless which non of the other sub 9 inch tables offer.  The screen is non retina which means the applications are smaller.  Speaking with individuals who are above 50 in age that wear glasses they retina does not make a difference for them however they prefer the larger iPad over the new mini.   Happy Shopping this Channuka Season.   The Kosher Coder.   Follow me on twitter @KosherCoder

    Read the article

  • Defaulting the HLSL Vertex and Pixel Shader Levels to Feature Level 9_1 in VS 2012

    - by Michael B. McLaughlin
    I love Visual Studio 2012. But this is not a post about that. This is a post about tweaking one particular parameter that I’ve found a bit annoying. Disclaimer: You will be modifying important MSBuild files. If you screw up you will break your build tools. And maybe your computer will catch fire. I’m not responsible. No warranties or guaranties of any sort. This info is provided “as is”. By default, if you add a new vertex shader or pixel shader item to a project, it will be set to build with shader profile 4.0_level_9_3. If you need 9_3 functionality, this is all well and good. But (especially for Windows Store apps) you really want to target the lowest shader profile possible so that your game will run on as many computers as possible. So it’s a good idea to default to 9_1. To do this you could add in new HLSL files via “Add->New Item->Visual C++->HLSL->______ Shader File (.hlsl)” and then edit the shader files’ properties to set them manually to use 9_1 via “Properties->HLSL Compiler->General->Shader Model”. This is fine unless you forget to do this once and then submit your game with 9_3 shaders instead of 9_1 shaders to the Windows Store or to some other game store. Then you’d wind up with either rejection or angry “this doesn’t work on my computer! ripoff!” messages. There’s another option though. In “Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\ItemTemplates\VC\HLSL\1033\VertexShader” (note the path might vary slightly for you if you are using a 32-bit system or have a non-ENU version of Visual Studio 2012) you will find a “VertexShader.vstemplate” file. If you open this file in a text editor (e.g. Notepad++), then inside the CustomParameters tag within the TemplateContent tag you should see a CustomParameter tag for the ShaderType, i.e.: <CustomParameter Name="$ShaderType$" Value="Vertex"/> On a new line, we are going to add another CustomParameter tag to the CustomParameters tag. It will look like this: <CustomParameter Name="$ShaderModel$" Value="4.0_level_9_1"/> such that we now have:     <CustomParameters>       <CustomParameter Name="$ShaderType$" Value="Vertex"/>       <CustomParameter Name="$ShaderModel$" Value="4.0_level_9_1"/>     </CustomParameters> You can then save the file (you will need to be an Administrator or have Administrator access). Back in the 1033 directory (or whatever the number is for your language), go into the “PixelShader” directory. Edit the “PixelShader.vstemplate” file and make the same change (note that this time $ShaderType$ is “Pixel” not “Vertex”; you shouldn’t be changing that line anyway, but if you were to just copy and replace the above four lines then you will wind up creating pixel shaders that the HLSL compiler would try to compile as vertex shaders, with all sort of weird errors as a result). Once you’ve added the $ShaderModel$ line to “PixelShader.vstemplate” and have saved it, everything should be done. Since Feature Level 9_1 and 9_3 don’t support any of the other shader types, those are set to default to their appropriate minimums already (Compute and Geometry are set to “4.0” and Domain and Hull are set to “5.0”, which are their respective minimums (though not all 4.0 cards support Compute shaders; they were an optional feature added with DirectX 10.1 and only became required for DirectX 11 hardware). In case you are wondering where these magic values come from, you can find them all in the “fxc.xml” file in the “\Program Files (x86)\MSBuild\Microsoft.CPP\v4.0\V110\1033” directory (or whatever your language number is; 1033 is ENU and various other product languages have their own respective numbers (see: http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx ) such that Japanese is 1041 (for example), though for all I know MSBuild tasks might be 1033 for everyone). If, like me, you installed VS 2012 to a drive other than the C:\ drive, you will find the vstemplate files in the drive to which you installed VS 2012 (D:\ in my case) but you will find the fxc.xml file on the C:\ drive. You should not edit fxc.xml. You will almost definitely break things by doing that; it’s just something you can look through to see all the other options that the FXC task takes such that you could, if needed, add further CustomParameter tags if you wanted to default to other supported options. I haven’t tried any others though so I don’t have any advice on how to set them.

    Read the article

  • Why do we use Pythagoras in game physics?

    - by Starkers
    I've recently learned that we use Pythagoras a lot in our physics calculations and I'm afraid I don't really get the point. Here's an example from a book to make sure an object doesn't travel faster than a MAXIMUM_VELOCITY constant in the horizontal plane: MAXIMUM_VELOCITY = <any number>; SQUARED_MAXIMUM_VELOCITY = MAXIMUM_VELOCITY * MAXIMUM_VELOCITY; function animate(){ var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; x_velocity = x_velocity / scalar; z_velocity = x_velocity / scalar; } } Let's try this with some numbers: An object is attempting to move 5 units in x and 5 units in z. It should only be able to move 5 units horizontally in total! MAXIMUM_VELOCITY = 5; SQUARED_MAXIMUM_VELOCITY = 5 * 5; SQUARED_MAXIMUM_VELOCITY = 25; function animate(){ var x_velocity = 5; var z_velocity = 5; var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); var squared_horizontal_velocity = 5 * 5 + 5 * 5; var squared_horizontal_velocity = 25 + 25; var squared_horizontal_velocity = 50; // if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ if( 50 <= 25 ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; scalar = 50 / 25; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Now this works well, but we can do the same thing without Pythagoras: MAXIMUM_VELOCITY = 5; function animate(){ var x_velocity = 5; var z_velocity = 5; var horizontal_velocity = x_velocity + z_velocity; var horizontal_velocity = 5 + 5; var horizontal_velocity = 10; // if( horizontal_velocity >= MAXIMUM_VELOCITY ){ if( 10 >= 5 ){ scalar = horizontal_velocity / MAXIMUM_VELOCITY; scalar = 10 / 5; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Benefits of doing it without Pythagoras: Less lines Within those lines, it's easier to read what's going on ...and it takes less time to compute, as there are less multiplications Seems to me like computers and humans get a better deal without Pythagoras! However, I'm sure I'm wrong as I've seen Pythagoras' theorem in a number of reputable places, so I'd like someone to explain me the benefit of using Pythagoras to a maths newbie. Does this have anything to do with unit vectors? To me a unit vector is when we normalize a vector and turn it into a fraction. We do this by dividing the vector by a larger constant. I'm not sure what constant it is. The total size of the graph? Anyway, because it's a fraction, I take it, a unit vector is basically a graph that can fit inside a 3D grid with the x-axis running from -1 to 1, z-axis running from -1 to 1, and the y-axis running from -1 to 1. That's literally everything I know about unit vectors... not much :P And I fail to see their usefulness. Also, we're not really creating a unit vector in the above examples. Should I be determining the scalar like this: // a mathematical work-around of my own invention. There may be a cleverer way to do this! I've also made up my own terms such as 'divisive_scalar' so don't bother googling var divisive_scalar = (squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY); var divisive_scalar = ( 50 / 25 ); var divisive_scalar = 2; var multiplicative_scalar = (divisive_scalar / (2*divisive_scalar)); var multiplicative_scalar = (2 / (2*2)); var multiplicative_scalar = (2 / 4); var multiplicative_scalar = 0.5; x_velocity = x_velocity * multiplicative_scalar x_velocity = 5 * 0.5 x_velocity = 2.5 Again, I can't see why this is better, but it's more "unit-vector-y" because the multiplicative_scalar is a unit_vector? As you can see, I use words such as "unit-vector-y" so I'm really not a maths whiz! Also aware that unit vectors might have nothing to do with Pythagoras so ignore all of this if I'm barking up the wrong tree. I'm a very visual person (3D modeller and concept artist by trade!) and I find diagrams and graphs really, really helpful so as many as humanely possible please!

    Read the article

  • How customers view and interact with a company

    The Harvard Business Review article written by Rayport and Jaworski is aptly titled “Best Face Forward” because it sheds light on how customers view and interact with a company. In the past most business interaction between customers was performed in a face to face meeting where one party would present an item for sale and then the other would decide whether to purchase the item. In addition, if there was a problem with a purchased item then they would bring the item back to the person who sold the item for resolution. One of my earliest examples of witnessing this was when I was around 6 or 7 years old and I was allowed to spend the summer in Tennessee with my Grandparents. My Grandfather had just written a book about the local history of his town and was selling them to his friends and local bookstores. I still remember he offered to pay me a small commission for every book I helped him sell because I was carrying the books around for him. Every sale he made was face to face with his customers which allowed him to share his excitement for the book with everyone. In today’s modern world there is less and less human interaction as the use of computers and other technologies allow us to communicate within seconds even though both parties may be across the globe or just next door. That being said, customers view a company through multiple access points called faces that represent the ability to interact without actually seeing a human face. As a software engineer this is a good and a bad thing because direct human interaction and technology based interaction have both good and bad attributes based on the customer. How organizations coordinate business and IT functions, to provide quality service varies based on each individual business and the goals and directives put in place by its management. According to Rayport and Jaworski, the type of interaction used through a particular access point may lend itself to be people-dominate, machine-dominate, or a combination of both. The method by which a company communicates information through an access point is a strategic choice that relates costs and customer outcomes. To simplify this, the choice is based on what can give the customer the best experience interacting with the company when the cost of the interaction is also a factor. I personally see examples of this every day at work. The company website is machine-dominate with people updating and maintaining information, our groups department is people dominate because most of the customer interaction is done at the customers location and is backed up by machine based data sources, and our sales/member service department is a hybrid because employees work in tandem with machines in order for them to assist customers with signing up or any other issue they may have. The positive and negative aspects of human and machine interfaces are a key aspect in deciding which interface to use when allowing customers to access a company or a combination of the two. Rayport and Jaworski also used MIT professor Erik Brynjolfsson preliminary catalog of human and machine strengths. He stated that humans outperform machines in judgment, pattern recognition, exception processing, insight, and creativity. I have found this to be true based on the example of how sales and member service reps at my company handle a multitude of questions and various situations with a lot of unknown variables. A machine interface could never effectively be able to handle these scenarios because there are too many variables to consider and would not have the built-in logic to process each customer’s claims and needs. In addition, he also stated that machines outperform humans in collecting, storing, transmitting and routine processing. An example of this would be my employer’s website. Customers can simply go online and purchase a product without even talking to a sales or member services representative. The information is then stored in a database so that the customer can always go back and review there order, and access their selected services. A human, no matter how smart they are would never be able to keep track of hundreds of thousands of customers let alone know what they purchased or how much they paid. In today’s technology driven economy every company must offer their customers multiple methods of accessibly in order to survive. The more of an opportunity a company has to create a positive experience for their customers, in my opinion, they more likely the customer will return to that company again. I have noticed this with my personal shopping habits and experiences. References Rayport, J., & Jaworski, B. (2004). Best Face Forward. Harvard Business Review, 82(12), 47-58. Retrieved from Business Source Complete database.

    Read the article

  • Revisiting the Generations

    - by Row Henson
    I was asked earlier this year to contribute an article to the IHRIM publication – Workforce Solutions Review.  My topic focused on the reality of the Gen Y population 10 years after their entry into the workforce.  Below is an excerpt from that article: It seems like yesterday that we were all talking about the entry of the Gen Y'ers into the workforce and what a radical change that would have on how we attract, retain, motivate, reward, and engage this new, younger segment of the workforce.  We all heard and read that these youngsters would be more entrepreneurial than their predecessors – the Gen X'ers – who were said to be more loyal to their profession than their employer. And, we heard that these “youngsters” would certainly be far less loyal to their employers than the Baby Boomers or even earlier Traditionalists. It was also predicted that – at least for the developed parts of the world – they would be more interested in work/life balance than financial reward; they would need constant and immediate reinforcement and recognition and we would be lucky to have them in our employment for two to three years. And, to keep them longer than that we would need to promote them often so they would be continuously learning since their long-term (10-year) goal would be to own their own business or be an independent consultant.  Well, it occurred to me recently that the first of the Gen Y'ers are now in their early 30s and it is time to look back on some of these predictions. Many really believed the Gen Y'ers would enter the workforce with an attitude – expect everything to be easy for them – have their employers meet their demands or move to the next employer, and I believe that we can now say that, generally, has not been the case. Speaking from personal experience, I have mentored a number of Gen Y'ers and initially felt that with a 40-year career in Human Resources and Human Resources Technology – I could share a lot with them. I found out very quickly that I was learning at least as much from them! Some of the amazing attributes I found from these under-30s was their fearlessness, ease of which they were able to multi-task, amazing energy and great technical savvy. They were very comfortable with collaborating with colleagues from both inside the company and peers outside their organization to problem-solve quickly. Most were eager to learn and willing to work hard.  This brings me to the generation that will follow the Gen Y'ers – the Generation Z'ers – those born after 1998. We have come full circle. If we look at the Silent Generation or Traditionalists, we find a workforce that preceded the television and even very early telephones. We Baby Boomers (as I fall right squarely in this category) remembered the invention of the television and telephone – but laptop computers and personal digital assistants (PDAs) were a thing of “StarTrek” and other science fiction movies and publications. Certainly, the Gen X'ers and Gen Y'ers grew up with the comfort of these devices just as we did with calculators. But, what of those under the age of 10 – how will the workplace look in 15 more years and what type of workforce will be required to operate in the mobile, global, virtual world. I spoke to a friend recently who had her four-year-old granddaughter for a visit. She said she found her in the den in front of the TV trying to use her hand to get the screen to move! So, you see – we have come full circle. The under-70 Traditionalist grew up in a world without TV and the Generation Z'er may never remember the TV we knew just a few years ago. As with every generation – we spend much time generalizing on their characteristics. The most important thing to remember is every generation – just like every individual – is different. The important thing for those of us in Human Resources to remember is that one size doesn’t fit all. What motivates one employee to come to work for you and stay there and be productive is very different than what the next employee is looking for and the organization that can provide this fluidity and flexibility will be the survivor for generations to come. And, finally, just when we think we have it figured out, a multitude of external factors such as the economy, world politics, industries, and technologies we haven’t even thought about will come along and change those predictions. As I reach retirement age – I do so believing that our organizations are in good hands with the generations to follow – energetic, collaborative and capable of working hard while still understanding the need for balance at work, at home and in the community! Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Why do we use the Pythagorean theorem in game physics?

    - by Starkers
    I've recently learned that we use Pythagorean theorem a lot in our physics calculations and I'm afraid I don't really get the point. Here's an example from a book to make sure an object doesn't travel faster than a MAXIMUM_VELOCITY constant in the horizontal plane: MAXIMUM_VELOCITY = <any number>; SQUARED_MAXIMUM_VELOCITY = MAXIMUM_VELOCITY * MAXIMUM_VELOCITY; function animate(){ var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; x_velocity = x_velocity / scalar; z_velocity = x_velocity / scalar; } } Let's try this with some numbers: An object is attempting to move 5 units in x and 5 units in z. It should only be able to move 5 units horizontally in total! MAXIMUM_VELOCITY = 5; SQUARED_MAXIMUM_VELOCITY = 5 * 5; SQUARED_MAXIMUM_VELOCITY = 25; function animate(){ var x_velocity = 5; var z_velocity = 5; var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); var squared_horizontal_velocity = 5 * 5 + 5 * 5; var squared_horizontal_velocity = 25 + 25; var squared_horizontal_velocity = 50; // if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ if( 50 <= 25 ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; scalar = 50 / 25; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Now this works well, but we can do the same thing without Pythagoras: MAXIMUM_VELOCITY = 5; function animate(){ var x_velocity = 5; var z_velocity = 5; var horizontal_velocity = x_velocity + z_velocity; var horizontal_velocity = 5 + 5; var horizontal_velocity = 10; // if( horizontal_velocity >= MAXIMUM_VELOCITY ){ if( 10 >= 5 ){ scalar = horizontal_velocity / MAXIMUM_VELOCITY; scalar = 10 / 5; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Benefits of doing it without Pythagoras: Less lines Within those lines, it's easier to read what's going on ...and it takes less time to compute, as there are less multiplications Seems to me like computers and humans get a better deal without Pythagorean theorem! However, I'm sure I'm wrong as I've seen Pythagoras' theorem in a number of reputable places, so I'd like someone to explain me the benefit of using Pythagorean theorem to a maths newbie. Does this have anything to do with unit vectors? To me a unit vector is when we normalize a vector and turn it into a fraction. We do this by dividing the vector by a larger constant. I'm not sure what constant it is. The total size of the graph? Anyway, because it's a fraction, I take it, a unit vector is basically a graph that can fit inside a 3D grid with the x-axis running from -1 to 1, z-axis running from -1 to 1, and the y-axis running from -1 to 1. That's literally everything I know about unit vectors... not much :P And I fail to see their usefulness. Also, we're not really creating a unit vector in the above examples. Should I be determining the scalar like this: // a mathematical work-around of my own invention. There may be a cleverer way to do this! I've also made up my own terms such as 'divisive_scalar' so don't bother googling var divisive_scalar = (squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY); var divisive_scalar = ( 50 / 25 ); var divisive_scalar = 2; var multiplicative_scalar = (divisive_scalar / (2*divisive_scalar)); var multiplicative_scalar = (2 / (2*2)); var multiplicative_scalar = (2 / 4); var multiplicative_scalar = 0.5; x_velocity = x_velocity * multiplicative_scalar x_velocity = 5 * 0.5 x_velocity = 2.5 Again, I can't see why this is better, but it's more "unit-vector-y" because the multiplicative_scalar is a unit_vector? As you can see, I use words such as "unit-vector-y" so I'm really not a maths whiz! Also aware that unit vectors might have nothing to do with Pythagorean theorem so ignore all of this if I'm barking up the wrong tree. I'm a very visual person (3D modeller and concept artist by trade!) and I find diagrams and graphs really, really helpful so as many as humanely possible please!

    Read the article

  • TCP RST Reset Every 5 Minutes on Windows 2003 sp2

    - by Dan
    Hey, Recently I had a web developer come to me and ask why he was receiving connection errors in his app that was accessing a sql database. So, I went through my normal trouble shooting steps to isolate or reproduce the issue. I discovered that if I connected to the database using Query Analyzer and let the connection idle for 5 minutes it would disconnect. Meaning... I would no longer be able to refresh my tables or any other object/node within the object browser in Query Analyzer. I would have to right click on the instance and refresh for it to re-establish the connection. Next I went to wireshark and ran a capture on the client pc's nic card. Sure enough it was receiving a TCP RST reset every 5 min if the connection idled longer than 5 min. I also ran a capture on the SQL Server and noticed the TCP RST reset command as well. Attached below is the capture from the client Machine. If someone could please assist... That would be great. -I checked all settings within SQL Server 2000 against another server and they all seem to be the same. -Issue does not occur if I connect to any other SQL server 2000 server. -Issue does not occur if connecting to SQL on the server itself... so only over the network. -I consulted with network team and this is the response back: There are no firewalls or proxies in between SQL Server and your desktop. The traffic flows like this: Desktop-Access Switch-Distro Switch-Core Switch-Datacenter Switch-SQL Server None of the switches have security ACL’s configured on them. Also they stated that NAT was not turned on. -Issue does not occur with SQL server Enterprise Manager. -Ran SQL Profiler at the same time and did not see anything out of the ordinary during the RST I HAVE SEARCHED HIGH AND LOW ON GOOGLE FOR A RESOLUTION FOR THIS ISSUE. NO LUCK! My questions are: What could be causing this? Wrong Sequence number? setting in a router or switch the network team may have over looked? Setting within Windows? Setting within SQL Server 2000 that I have over looked? Better way to utilize Wireshark to find more answers? RST is about 10 from the bottom. No. Time Source Destination Protocol Info 258 24.390708 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [SYN] Seq=0 Len=0 MSS=1260 259 24.401679 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 260 24.401729 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 261 24.402212 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 262 24.413335 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 285 24.466512 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 286 24.466536 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=437 289 24.478168 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [ACK] Seq=38 Ack=1740 Win=64240 Len=0 290 24.480078 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=38 Ack=1740 Win=64240 Len=385 293 24.493629 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1740 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=60 294 24.504637 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=423 Ack=1800 Win=64180 Len=17 295 24.533197 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1800 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=44 296 24.544098 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=440 Ack=1844 Win=64136 Len=17 297 24.544524 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1844 Ack=457 Win=65079 [TCP CHECKSUM INCORRECT] Len=58 298 24.558033 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=457 Ack=1902 Win=64078 Len=31 299 24.558493 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1902 Ack=488 Win=65048 [TCP CHECKSUM INCORRECT] Len=92 300 24.569984 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=488 Ack=1994 Win=63986 Len=70 301 24.577395 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [PSH, ACK] Seq=1994 Ack=558 Win=64978 [TCP CHECKSUM INCORRECT] Len=448 303 24.589834 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [PSH, ACK] Seq=558 Ack=2442 Win=63538 Len=64 304 24.590122 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [FIN, ACK] Seq=2442 Ack=622 Win=64914 [TCP CHECKSUM INCORRECT] Len=0 305 24.601094 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [ACK] Seq=622 Ack=2443 Win=63538 Len=0 306 24.601659 x.x.x.10 x.x.x.99 TCP 2226 > 14488 [FIN, ACK] Seq=622 Ack=2443 Win=63538 Len=0 307 24.601686 x.x.x.99 x.x.x.10 TCP 14488 > 2226 [ACK] Seq=2443 Ack=623 Win=64914 [TCP CHECKSUM INCORRECT] Len=0 321 25.839371 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [SYN] Seq=0 Len=0 MSS=1260 322 25.850291 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 323 25.850321 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 324 25.850660 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 325 25.861573 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 326 25.863103 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 327 25.863130 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=463 328 25.874417 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [ACK] Seq=38 Ack=1766 Win=64240 Len=0 329 25.876315 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=38 Ack=1766 Win=64240 Len=385 330 25.876905 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1766 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=60 331 25.887773 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=423 Ack=1826 Win=64180 Len=17 332 25.888299 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1826 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=44 333 25.899169 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=440 Ack=1870 Win=64136 Len=17 334 25.899574 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1870 Ack=457 Win=65079 [TCP CHECKSUM INCORRECT] Len=58 335 25.910618 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=457 Ack=1928 Win=64078 Len=31 336 25.911051 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=1928 Ack=488 Win=65048 [TCP CHECKSUM INCORRECT] Len=92 337 25.922068 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=488 Ack=2020 Win=63986 Len=70 338 25.922500 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2020 Ack=558 Win=64978 [TCP CHECKSUM INCORRECT] Len=34 339 25.933621 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=558 Ack=2054 Win=63952 Len=29 340 25.941165 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2054 Ack=587 Win=64949 [TCP CHECKSUM INCORRECT] Len=54 341 25.952164 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=587 Ack=2108 Win=63898 Len=17 342 25.952993 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2108 Ack=604 Win=64932 [TCP CHECKSUM INCORRECT] Len=72 343 25.963889 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=604 Ack=2180 Win=63826 Len=17 344 25.964366 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2180 Ack=621 Win=64915 [TCP CHECKSUM INCORRECT] Len=52 345 25.975253 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=621 Ack=2232 Win=63774 Len=17 346 25.975590 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2232 Ack=638 Win=64898 [TCP CHECKSUM INCORRECT] Len=32 347 25.986588 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=638 Ack=2264 Win=63742 Len=167 348 25.987262 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2264 Ack=805 Win=64731 [TCP CHECKSUM INCORRECT] Len=512 349 25.998464 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=805 Ack=2776 Win=63230 Len=89 350 25.998861 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2776 Ack=894 Win=64642 [TCP CHECKSUM INCORRECT] Len=46 351 26.009849 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=894 Ack=2822 Win=63184 Len=17 352 26.010175 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2822 Ack=911 Win=64625 [TCP CHECKSUM INCORRECT] Len=80 353 26.021220 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=911 Ack=2902 Win=63104 Len=33 354 26.022613 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [PSH, ACK] Seq=2902 Ack=944 Win=64592 [TCP CHECKSUM INCORRECT] Len=498 355 26.034018 x.x.x.10 x.x.x.99 TCP 2226 > 14492 [PSH, ACK] Seq=944 Ack=3400 Win=64240 Len=89 356 26.046501 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [SYN] Seq=0 Len=0 MSS=1260 357 26.057323 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 358 26.057355 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 359 26.057661 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1 Ack=1 Win=65535 [TCP CHECKSUM INCORRECT] Len=42 361 26.068606 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=1 Ack=43 Win=64198 Len=37 362 26.070087 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=43 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=1260 363 26.070113 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1303 Ack=38 Win=65498 [TCP CHECKSUM INCORRECT] Len=485 364 26.081336 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [ACK] Seq=38 Ack=1788 Win=64240 Len=0 365 26.083330 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=38 Ack=1788 Win=64240 Len=385 366 26.083943 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1788 Ack=423 Win=65113 [TCP CHECKSUM INCORRECT] Len=46 368 26.094921 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=423 Ack=1834 Win=64194 Len=17 369 26.095317 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [PSH, ACK] Seq=1834 Ack=440 Win=65096 [TCP CHECKSUM INCORRECT] Len=48 370 26.107553 x.x.x.10 x.x.x.99 TCP 2226 > 14493 [PSH, ACK] Seq=440 Ack=1882 Win=64146 Len=877 371 26.241285 x.x.x.99 x.x.x.10 TCP 14492 > 2226 [ACK] Seq=3400 Ack=1033 Win=64503 [TCP CHECKSUM INCORRECT] Len=0 372 26.241307 x.x.x.99 x.x.x.10 TCP 14493 > 2226 [ACK] Seq=1882 Ack=1317 Win=65535 [TCP CHECKSUM INCORRECT] Len=0 653 55.913838 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 > 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 654 55.924547 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 > 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 910 85.887176 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 > 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 911 85.898010 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 > 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1155 115.859520 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1156 115.870285 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1395 145.934403 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1396 145.945938 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1649 175.906767 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1650 175.917741 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 1887 205.881080 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 1888 205.891818 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2112 235.854408 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2113 235.865482 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2398 265.928342 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2399 265.939242 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2671 295.900714 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2672 295.911590 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2880 315.705029 x.x.x.10 x.x.x.99 TCP 2226 14493 [RST] Seq=1317 Len=0 2973 325.975607 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive] 14492 2226 [ACK] Seq=3399 Ack=1033 Win=64503 Len=1 2974 325.986337 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive ACK] 2226 14492 [ACK] Seq=1033 Ack=3400 Win=64240 Len=0 2975 326.154327 x.x.x.10 x.x.x.99 TCP [TCP Keep-Alive] 2226 14492 [ACK] Seq=1032 Ack=3400 Win=64240 Len=1 2976 326.154350 x.x.x.99 x.x.x.10 TCP [TCP Keep-Alive ACK] 14492 2226 [ACK] Seq=3400 Ack=1033 Win=64503 [TCP CHECKSUM INCORRECT] Len=0

    Read the article

  • PC hangs and reboots from time to time

    - by Bevor
    Hello, I have a very strange problem: Since I have my new PC, I have always had problems with it. From time to time the computer freezes for some seconds and suddendly reboots by itself. I've had this problem since Ubuntu 9.10. The same with 10.04 and 10.10. That's why I don't think it's a software failure because the problem persist too long. It doesn't have anything to do with what I'm doing at this time. Sometimes I listen to music, sometimes I only use Firefox, sometimes I'm running 2 or 3 VMs, sometimes I watch DVD. So it's not isolatable. I could freeze once a day or once a week. I put the PC to the vendor twice(!). The first time they changed my power supply but the problem persisted. The second time they told me that they made some heavy performance tests 50 hours long but they didn't find anything. (How can that be that I have daily freezes with normal usage). The vendor didn't check the hard discs because they used their own disc with Windows. (So they never checked the Linux installation). Yesterday I made some intensive hard disc scans with "SMART" but no errors were found. I ran memtest for 3 times but no errors found. I already had this problem in my old flat, so I doubt that I has something to do with current fluctuation. I already tried another electrical socket and changed to connector strip but the problem persists. At the moment I removed 2 of the RAMs (2x 2GB). In all I have 6GB, 2x2GB and 2x1GB. Could this difference maybe be a problem? Here is a list of my components. I hope that anybody find something I didn't think about yet. And here a list of my components: 1x AMD Phenom II X4 965 Black Edition, 3,4Ghz, Quad Core, S-AM3, Boxed 2x DDR3-RAM 2048MB, PC3-1333 Mhz, CL9, Kingston ValueRAM 2x DDR3-RAM 1024MB, PC3-1333 Mhz, CL9, Kingston ValueRAM 2x SATA II Seagate Barracuda 7200.12, 1TB 32MB Cache = RAID 1 1x DVD ROM SATA LG DH16NSR, 16x/52x 1x DVD-+R/-+RW SATA LG GH-22NS50 1x Cardreader 18in1 1x PCI-E 2.0 GeForce GTS 250, Retail, 1024MB 1x Power Supply ATX 400 Watt, CHIEFTEC APS-400S, 80 Plus 1x Network card PCI Intel PRO/1000GT 10/100/1000 MBit 1x Mainboard Socket-AM3 ASUS M4A79XTD EVO, ATX lshw: description: Desktop Computer product: System Product Name vendor: System manufacturer version: System Version serial: System Serial Number width: 64 bits capabilities: smbios-2.5 dmi-2.5 vsyscall64 vsyscall32 configuration: boot=normal chassis=desktop uuid=80E4001E-8C00-002C-AA59-E0CB4EBAC29A *-core description: Motherboard product: M4A79XTD EVO vendor: ASUSTeK Computer INC. physical id: 0 version: Rev X.0X serial: MT709CK11101196 slot: To Be Filled By O.E.M. *-firmware description: BIOS vendor: American Megatrends Inc. physical id: 0 version: 0704 (11/25/2009) size: 64KiB capacity: 960KiB capabilities: isa pci pnp apm upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot zipboot biosbootspecification *-cpu description: CPU product: AMD Phenom(tm) II X4 965 Processor vendor: Advanced Micro Devices [AMD] physical id: 4 bus info: cpu@0 version: AMD Phenom(tm) II X4 965 Processor serial: To Be Filled By O.E.M. slot: AM3 size: 800MHz capacity: 3400MHz width: 64 bits clock: 200MHz capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp x86-64 3dnowext 3dnow constant_tsc rep_good nonstop_tsc extd_apicid pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save cpufreq *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 512KiB capacity: 512KiB capabilities: pipeline-burst internal varies data *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 2MiB capacity: 2MiB capabilities: pipeline-burst internal varies unified *-cache:2 description: L3 cache physical id: 7 slot: L3-Cache size: 6MiB capacity: 6MiB capabilities: pipeline-burst internal varies unified *-memory description: System Memory physical id: 36 slot: System board or motherboard size: 2GiB *-bank:0 description: DIMM Synchronous 1333 MHz (0.8 ns) product: ModulePartNumber00 vendor: Manufacturer00 physical id: 0 serial: SerNum00 slot: DIMM0 size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: DIMM Synchronous 1333 MHz (0.8 ns) product: ModulePartNumber01 vendor: Manufacturer01 physical id: 1 serial: SerNum01 slot: DIMM1 size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: DIMM [empty] product: ModulePartNumber02 vendor: Manufacturer02 physical id: 2 serial: SerNum02 slot: DIMM2 *-bank:3 description: DIMM [empty] product: ModulePartNumber03 vendor: Manufacturer03 physical id: 3 serial: SerNum03 slot: DIMM3 *-pci:0 description: Host bridge product: RD780 Northbridge only dual slot PCI-e_GFX and HT1 K8 part vendor: ATI Technologies Inc physical id: 100 bus info: pci@0000:00:00.0 version: 00 width: 32 bits clock: 66MHz *-pci:0 description: PCI bridge product: RD790 PCI to PCI bridge (external gfx0 port A) vendor: ATI Technologies Inc physical id: 2 bus info: pci@0000:00:02.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:a000(size=4096) memory:f8000000-fbbfffff ioport:d0000000(size=268435456) *-display description: VGA compatible controller product: G92 [GeForce GTS 250] vendor: nVidia Corporation physical id: 0 bus info: pci@0000:01:00.0 version: a2 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vga_controller bus_master cap_list rom configuration: driver=nvidia latency=0 resources: irq:18 memory:fa000000-faffffff memory:d0000000-dfffffff memory:f8000000-f9ffffff ioport:ac00(size=128) memory:fbbe0000-fbbfffff *-pci:1 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port C) vendor: ATI Technologies Inc physical id: 6 bus info: pci@0000:00:06.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:b000(size=4096) memory:fbc00000-fbcfffff ioport:f6f00000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: 03 serial: e0:cb:4e:ba:c2:9a size: 10MB/s capacity: 1GB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10MB/s resources: irq:45 ioport:b800(size=256) memory:f6fff000-f6ffffff memory:f6ff8000-f6ffbfff memory:fbcf0000-fbcfffff *-pci:2 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port D) vendor: ATI Technologies Inc physical id: 7 bus info: pci@0000:00:07.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:c000(size=4096) memory:fbd00000-fbdfffff *-firewire description: FireWire (IEEE 1394) product: VT6315 Series Firewire Controller vendor: VIA Technologies, Inc. physical id: 0 bus info: pci@0000:03:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress ohci bus_master cap_list configuration: driver=firewire_ohci latency=0 resources: irq:19 memory:fbdff800-fbdfffff ioport:c800(size=256) *-pci:3 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port E) vendor: ATI Technologies Inc physical id: 9 bus info: pci@0000:00:09.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:43 ioport:d000(size=4096) memory:fbe00000-fbefffff *-ide description: IDE interface product: 88SE6121 SATA II Controller vendor: Marvell Technology Group Ltd. physical id: 0 bus info: pci@0000:04:00.0 version: b2 width: 32 bits clock: 33MHz capabilities: ide pm msi pciexpress bus_master cap_list configuration: driver=pata_marvell latency=0 resources: irq:17 ioport:dc00(size=8) ioport:d880(size=4) ioport:d800(size=8) ioport:d480(size=4) ioport:d400(size=16) memory:fbeffc00-fbefffff *-storage description: SATA controller product: SB700/SB800 SATA Controller [IDE mode] vendor: ATI Technologies Inc physical id: 11 bus info: pci@0000:00:11.0 logical name: scsi0 logical name: scsi2 version: 00 width: 32 bits clock: 66MHz capabilities: storage msi ahci_1.0 bus_master cap_list emulated configuration: driver=ahci latency=64 resources: irq:44 ioport:9000(size=8) ioport:8000(size=4) ioport:7000(size=8) ioport:6000(size=4) ioport:5000(size=16) memory:f7fffc00-f7ffffff *-disk:0 description: ATA Disk product: ST31000528AS vendor: Seagate physical id: 0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: CC38 serial: 9VP3WD9Z size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000ad206 *-volume:0 UNCLAIMED description: Linux filesystem partition vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 version: 1.0 serial: 81839235-21ea-4853-90a4-814779f49000 size: 972MiB capacity: 972MiB capabilities: primary ext2 initialized configuration: filesystem=ext2 modified=2010-12-06 18:32:58 mounted=2010-11-01 07:05:10 state=unknown *-volume:1 UNCLAIMED description: Linux swap volume physical id: 2 bus info: scsi@0:0.0.0,2 version: 1 serial: 22b881d5-6f5c-484d-94e8-e231896fa91b size: 486MiB capacity: 486MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-volume:2 UNCLAIMED description: EXT3 volume vendor: Linux physical id: 3 bus info: scsi@0:0.0.0,3 version: 1.0 serial: ad5b0daf-11e8-4f8f-8598-4e89da9c0d84 size: 47GiB capacity: 47GiB capabilities: primary journaled extended_attributes large_files recover ext3 ext2 initialized configuration: created=2010-02-16 20:42:29 filesystem=ext3 modified=2010-11-29 17:02:34 mounted=2010-12-06 18:32:50 state=clean *-volume:3 UNCLAIMED description: Extended partition physical id: 4 bus info: scsi@0:0.0.0,4 size: 882GiB capacity: 882GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume UNCLAIMED description: Linux filesystem partition physical id: 5 capacity: 882GiB *-disk:1 description: ATA Disk product: ST31000528AS vendor: Seagate physical id: 1 bus info: scsi@2:0.0.0 logical name: /dev/sdb version: CC38 serial: 9VP3SCPF size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000ad206 *-volume:0 UNCLAIMED description: Linux filesystem partition vendor: Linux physical id: 1 bus info: scsi@2:0.0.0,1 version: 1.0 serial: 81839235-21ea-4853-90a4-814779f49000 size: 972MiB capacity: 972MiB capabilities: primary ext2 initialized configuration: filesystem=ext2 modified=2010-12-06 18:32:58 mounted=2010-11-01 07:05:10 state=unknown *-volume:1 UNCLAIMED description: Linux swap volume physical id: 2 bus info: scsi@2:0.0.0,2 version: 1 serial: 22b881d5-6f5c-484d-94e8-e231896fa91b size: 486MiB capacity: 486MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-volume:2 UNCLAIMED description: EXT3 volume vendor: Linux physical id: 3 bus info: scsi@2:0.0.0,3 version: 1.0 serial: ad5b0daf-11e8-4f8f-8598-4e89da9c0d84 size: 47GiB capacity: 47GiB capabilities: primary journaled extended_attributes large_files recover ext3 ext2 initialized configuration: created=2010-02-16 20:42:29 filesystem=ext3 modified=2010-11-29 17:02:34 mounted=2010-12-06 18:32:50 state=clean *-volume:3 UNCLAIMED description: Extended partition physical id: 4 bus info: scsi@2:0.0.0,4 size: 882GiB capacity: 882GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume UNCLAIMED description: Linux filesystem partition physical id: 5 capacity: 882GiB *-usb:0 description: USB Controller product: SB700/SB800 USB OHCI0 Controller vendor: ATI Technologies Inc physical id: 12 bus info: pci@0000:00:12.0 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:16 memory:f7ffd000-f7ffdfff *-usb:1 description: USB Controller product: SB700 USB OHCI1 Controller vendor: ATI Technologies Inc physical id: 12.1 bus info: pci@0000:00:12.1 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:16 memory:f7ffe000-f7ffefff *-usb:2 description: USB Controller product: SB700/SB800 USB EHCI Controller vendor: ATI Technologies Inc physical id: 12.2 bus info: pci@0000:00:12.2 version: 00 width: 32 bits clock: 66MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=64 resources: irq:17 memory:f7fff800-f7fff8ff *-usb:3 description: USB Controller product: SB700/SB800 USB OHCI0 Controller vendor: ATI Technologies Inc physical id: 13 bus info: pci@0000:00:13.0 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffb000-f7ffbfff *-usb:4 description: USB Controller product: SB700 USB OHCI1 Controller vendor: ATI Technologies Inc physical id: 13.1 bus info: pci@0000:00:13.1 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffc000-f7ffcfff *-usb:5 description: USB Controller product: SB700/SB800 USB EHCI Controller vendor: ATI Technologies Inc physical id: 13.2 bus info: pci@0000:00:13.2 version: 00 width: 32 bits clock: 66MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=64 resources: irq:19 memory:f7fff400-f7fff4ff *-serial UNCLAIMED description: SMBus product: SBx00 SMBus Controller vendor: ATI Technologies Inc physical id: 14 bus info: pci@0000:00:14.0 version: 3c width: 32 bits clock: 66MHz capabilities: ht cap_list configuration: latency=0 *-ide description: IDE interface product: SB700/SB800 IDE Controller vendor: ATI Technologies Inc physical id: 14.1 bus info: pci@0000:00:14.1 logical name: scsi5 version: 00 width: 32 bits clock: 66MHz capabilities: ide msi bus_master cap_list emulated configuration: driver=pata_atiixp latency=64 resources: irq:16 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:ff00(size=16) *-cdrom:0 description: DVD reader product: DVDROM DH16NS30 vendor: HL-DT-ST physical id: 0.0.0 bus info: scsi@5:0.0.0 logical name: /dev/cdrom1 logical name: /dev/dvd1 logical name: /dev/scd0 logical name: /dev/sr0 version: 1.00 capabilities: removable audio dvd configuration: ansiversion=5 status=nodisc *-cdrom:1 description: DVD-RAM writer product: DVDRAM GH22NS50 vendor: HL-DT-ST physical id: 0.1.0 bus info: scsi@5:0.1.0 logical name: /dev/cdrom logical name: /dev/cdrw logical name: /dev/dvd logical name: /dev/dvdrw logical name: /dev/scd1 logical name: /dev/sr1 version: TN02 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-multimedia description: Audio device product: SBx00 Azalia (Intel HDA) vendor: ATI Technologies Inc physical id: 14.2 bus info: pci@0000:00:14.2 version: 00 width: 64 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: driver=HDA Intel latency=64 resources: irq:16 memory:f7ff4000-f7ff7fff *-isa description: ISA bridge product: SB700/SB800 LPC host controller vendor: ATI Technologies Inc physical id: 14.3 bus info: pci@0000:00:14.3 version: 00 width: 32 bits clock: 66MHz capabilities: isa bus_master configuration: latency=0 *-pci:4 description: PCI bridge product: SBx00 PCI to PCI Bridge vendor: ATI Technologies Inc physical id: 14.4 bus info: pci@0000:00:14.4 version: 00 width: 32 bits clock: 66MHz capabilities: pci subtractive_decode bus_master resources: ioport:e000(size=4096) memory:fbf00000-fbffffff *-network description: Ethernet interface product: 82541PI Gigabit Ethernet Controller vendor: Intel Corporation physical id: 5 bus info: pci@0000:05:05.0 logical name: eth1 version: 05 serial: 00:1b:21:56:f3:60 size: 100MB/s capacity: 1GB/s width: 32 bits clock: 66MHz capabilities: pm pcix bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e1000 driverversion=7.3.21-k6-NAPI duplex=full firmware=N/A ip=192.168.1.2 latency=64 link=yes mingnt=255 multicast=yes port=twisted pair speed=100MB/s resources: irq:20 memory:fbfe0000-fbffffff memory:fbfc0000-fbfdffff ioport:ec00(size=64) memory:fbfa0000-fbfbffff *-usb:6 description: USB Controller product: SB700/SB800 USB OHCI2 Controller vendor: ATI Technologies Inc physical id: 14.5 bus info: pci@0000:00:14.5 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffa000-f7ffafff *-pci:1 description: Host bridge product: Family 10h Processor HyperTransport Configuration vendor: Advanced Micro Devices [AMD] physical id: 101 bus info: pci@0000:00:18.0 version: 00 width: 32 bits clock: 33MHz *-pci:2 description: Host bridge product: Family 10h Processor Address Map vendor: Advanced Micro Devices [AMD] physical id: 102 bus info: pci@0000:00:18.1 version: 00 width: 32 bits clock: 33MHz *-pci:3 description: Host bridge product: Family 10h Processor DRAM Controller vendor: Advanced Micro Devices [AMD] physical id: 103 bus info: pci@0000:00:18.2 version: 00 width: 32 bits clock: 33MHz *-pci:4 description: Host bridge product: Family 10h Processor Miscellaneous Control vendor: Advanced Micro Devices [AMD] physical id: 104 bus info: pci@0000:00:18.3 version: 00 width: 32 bits clock: 33MHz configuration: driver=k10temp resources: irq:0 *-pci:5 description: Host bridge product: Family 10h Processor Link Control vendor: Advanced Micro Devices [AMD] physical id: 105 bus info: pci@0000:00:18.4 version: 00 width: 32 bits clock: 33MHz *-scsi physical id: 1 bus info: usb@2:3 logical name: scsi8 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk:0 description: SCSI Disk physical id: 0.0.0 bus info: scsi@8:0.0.0 logical name: /dev/sdc *-disk:1 description: SCSI Disk physical id: 0.0.1 bus info: scsi@8:0.0.1 logical name: /dev/sdd *-disk:2 description: SCSI Disk physical id: 0.0.2 bus info: scsi@8:0.0.2 logical name: /dev/sde *-disk:3 description: SCSI Disk physical id: 0.0.3 bus info: scsi@8:0.0.3 logical name: /dev/sdf *-network DISABLED description: Ethernet interface physical id: 1 logical name: vboxnet0 serial: 0a:00:27:00:00:00 capabilities: ethernet physical configuration: broadcast=yes multicast=yes

    Read the article

  • iphone - direct link to iPhone review form from inside iphone

    - by Mike
    I am trying to link directly to the review link of one of my Apps. I know that it is possible because Appirater did it in the past, but some change in iTunes turned the API down. Appirater uses this URL NSString *templateReviewURL = @"itms-apps://itunes.apple.com/WebObjects/MZStore.woa/wa/viewContentsUserReviews?id=APP_ID&onlyLatestVersion=true&pageNumber=0&sortOrdering=1&type=Purple+Software"; where APP_ID is the ID of an application. running this from inside the APP gives me the message Cannot Connect to iTunes Store. This Page talks about another kind of link https://userpub.itunes.apple.com/WebObjects/MZUserPublishing.woa/wa/addUserReview?id=APP_ID&type=Purple+Software and also itms-apps://ax.itunes.apple.com/WebObjects/MZStore.woa/wa/viewContentsUserReviews?type=Purple+Software&id=APP_ID The first one works, but just from the desktop mac. The second gives me the same error as the first... Cannot Connect to iTunes Store. iTunes link maker is not helping too, because it has no tools for iPad links... Do you guys know how to link to an app's review form from inside an app? In case you don't know, what kind of package should I use to dig this? a package sniffer? thanks for any help.

    Read the article

  • Using Perl WWW::Facebook::API to Publish To Facebook Newsfeed

    - by Russell C.
    We use Facebook Connect on our site in conjunction with the WWW::Facebook::API CPAN module to publish to our users newsfeed when requested by the user. So far we've been able to successfully update the user's status using the following code: use WWW::Facebook::API; my $facebook = WWW::Facebook::API->new( desktop => 0, api_key => $fb_api_key, secret => $fb_secret, session_key => $query->cookie($fb_api_key.'_session_key'), session_expires => $query->cookie($fb_api_key.'_expires'), session_uid => $query->cookie($fb_api_key.'_user') ); my $response = $facebook->stream->publish( message => qq|Test status message|, ); However, when we try to update the code above so we can publish newsfeed stories that include attachments and action links as specified in the Facebook API documentation for Stream.Publish, we have tried about 100 different ways without any success. According to the CPAN documentation all we should have to do is update our code to something like the following and pass the attachments & action links appropriately which doesn't seem to work: my $response = $facebook->stream->publish( message => qq|Test status message|, attachment => $json, action_links => [@links], ); For example, we are passing the above arguments as follows: $json = qq|{ 'name': 'i\'m bursting with joy', 'href': ' http://bit.ly/187gO1', 'caption': '{*actor*} rated the lolcat 5 stars', 'description': 'a funny looking cat', 'properties': { 'category': { 'text': 'humor', 'href': 'http://bit.ly/KYbaN'}, 'ratings': '5 stars' }, 'media': [{ 'type': 'image', 'src': 'http://icanhascheezburger.files.wordpress.com/2009/03/funny-pictures-your-cat-is-bursting-with-joy1.jpg', 'href': 'http://bit.ly/187gO1'}] }|; @links = ["{'text':'Link 1', 'href':'http://www.link1.com'}","{'text':'Link 2', 'href':'http://www.link2.com'}"]; The above, nor any of the other representations we tried seem to work. I'm hoping some other perl developer out there has this working and can explain how to create the attachment and action_links variables appropriately in Perl for posting to the Facebook news feed through WWW::Facebook::API. Thanks in advance for your help!

    Read the article

  • ASP.NET websites under IIS 7.5 (Windows 7) running extremely slow

    - by emzero
    I've just installed Windows 7 x64 Ultimate on my desktop PC. I installed IIS, Visual Studio 2008, registered ASP.NET, etc. I have this ASP.NET 3.5 website I'm working on running EXTREMELY slow on this new IIS. On STA and PROD servers (Windows 2003 Server) and on my old XP/IIS 5.1 everything runs smoothly. A page which usually takes 1-2 seconds to load is taking 8 seconds!!! I saw this post on IIS forum. It says something about Vista/7 not pooling connections (just to let you know, the website is running locally but it's connecting to a SQL Server 2005 hosted on a remote server). It seems that it takes a while to "start loading" the page... I mean, I click refresh and it stays for several seconds "Waiting for localhost"... Then when it gets response it loads the whole page normally... I don't have a clue how to force Win7/IIS7.5 to pool database connections. EDIT: I've created a new empty ASP.NET web application to see if the problems happens too. The answer is no, it responds fast as it should with an empty default page. Maybe is something related to the DB connection. I will do a further test. It should be a way to fix it... EDIT 2: Debugging the app I noticed that the delay occurs AFTER the execution of .NET code (Page_Load, etc)... so the delay seems to be somewhere when IIS serves the page to the browser.

    Read the article

  • Very slow performance deserializing using datacontractserializer in a Silverlight Application.

    - by caryden
    Here is the situation: Silverlight 3 Application hits an asp.net hosted WCF service to get a list of items to display in a grid. Once the list is brought down to the client it is cached in IsolatedStorage. This is done by using the DataContractSerializer to serialize all of these objects to a stream which is then zipped and then encrypted. When the application is relaunched, it first loads from the cache (reversing the process above) and the deserializes the objects using the DataContractSerializer.ReadObject() method. All of this was working wonderfully under all scenarios until recently with the entire "load from cache" path (decrypt/unzip/deserialize) taking hundreds of milliseconds at most. On some development machines but not all (all machines Windows 7) the deserialize process - that is the call to ReadObject(stream) takes several minutes an seems to lock up the entire machine BUT ONLY WHEN RUNNING IN THE DEBUGGER in VS2008. Running the Debug configuration code outside the debugger has no problem. One thing that seems to look suspicious is that when you turn on stop on Exceptions, you can see that the ReadObject() throws many, many System.FormatException's indicating that a number was not in the correct format. When I turn off "Just My Code" thousands of these get dumped to the screen. None go unhandled. These occur both on the read back from the cache AND on a deserialization at the conclusion of a web service call to get the data from the WCF Service. HOWEVER, these same exceptions occur on my laptop development machine that does not experience the slowness at all. And FWIW, my laptop is really old and my desktop is a 4 core, 6GB RAM beast. Again, no problems unless running under the debugger in VS2008. Anyone else seem this? Any thoughts? Here is the bug report link: https://connect.microsoft.com/VisualStudio/feedback/details/539609/very-slow-performance-deserializing-using-datacontractserializer-in-a-silverlight-application-only-in-debugger

    Read the article

  • fatal error C1034: windows.h: no include path set

    - by nathan
    OS Windows Vista Ultimate trying to run a program called minimal.c when i type at command line C:\Users\nathan\Desktopcl minimal.c Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.762 for 80x86 Copyright (C) Microsoft Corporation. All rights reserved. minimal.c minimal.c(5) : fatal error C1034: windows.h: no include path set i have set all the paths: C:\Users\nathan\Desktoppath PATH=C:\Program Files (x86)\Microsoft Visual Studio 8\VC\bin;C:\Windows\system3 ;C:\Windows;C:\Windows\System32\Wbem;C:\Program Files (x86)\ATI Technologies\AT .ACE\Core-Static;C:\Program Files\Intel\DMIX;c:\Program Files (x86)\Microsoft S L Server\100\Tools\Binn\;c:\Program Files (x86)\Microsoft SQL Server\100\DTS\Bi n\;C:\Program Files (x86)\QuickTime\QTSystem\;C:\Program Files (x86)\Java\jdk1. .0_13\bin;C:\Program Files (x86)\Autodesk\Backburner\;C:\Program Files (x86)\Co mon Files\Autodesk Shared\;C:\Program Files (x86)\Microsoft DirectX SDK (March 009)\Include;C:\Users\nathan\Desktop\glut-3.7.6-bin\glut-3.7.6-bin;C:\Program F les (x86)\Microsoft Visual Studio 8\Common7\IDE;C:\Program Files (x86)\Microsof Visual Studio 8\VC\PlatformSDK\Include;C:\Program Files (x86)\Microsoft Visual Studio 8\VC\PlatformSDK\Include\gl i have gone and made sure windows.h is in the directory im setting the path too. its in C:\Program Files (x86)\Microsoft Visual Studio 8\VC\PlatformSDK\Include. i have visual studio 2005 i have exhausted all possiblies any ideas

    Read the article

  • Android SDK Manager and AVD Manager doesn't have the correct information and fails to update on Ubun

    - by Johan Carlsson
    I'm trying to install Android SDK on Ubuntu but fail when I try to use the SDK Manager and AVD Manager to install Android platforms. I've downloaded: android-sdk_r04-linux_86.tgz The I start the SDK Manager and AVD Manager (UI) according to the README file: ./tools/android And I get the following Installed Packages: - Install SDK Tools, revision 4 Available Packages: - https://dl-ssl.google.com/android/repoisotry/repository.xml - This repository requires a more recent version of the Tools. Please update- - Android SDK Tools, revision 4 - Archive for Linux (comment: funny since rev 4 seems to be what's installed this is what seems to be installed) Now doing an update of the Android SDK Tools, revision 4 or everything results in 99% progress and then the application hangs. Here's the console feedback: johanc@johan-desktop:~/android/android-sdk-linux_86$ tools/android Starting Android SDK and AVD Manager No command line parameters provided, launching UI. See 'android --help' for operations from the command line. Error: null In the app I choose to upgate the following package: Package Description Android SDK Tools, revision 4 Archive Description Archive for Linux Size: 15 MiB SHA1: 99380c9330c1c3728c836206947350cc00fa28c2 Site https://dl-ssl.google.com/android/repository/repository.xml The console output reads (and the app hangs at 99%): Exception in thread "Installing Archives" java.lang.AssertionError at com.android.sdkuilib.internal.tasks.ProgressTask.incProgress(ProgressTask.java:97) at com.android.sdkuilib.internal.repository.UpdaterData$2.run(UpdaterData.java:358) at com.android.sdkuilib.internal.tasks.ProgressTask$1.run(ProgressTask.java:135)

    Read the article

< Previous Page | 578 579 580 581 582 583 584 585 586 587 588 589  | Next Page >