Search Results

Search found 20021 results on 801 pages for 'key concepts'.

Page 6/801 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Install Windows 8 without a Product Key

    - by User
    Windows 8 setup asks for the product key at the beginning of the setup without letting you install it. I got the Windows 8 ISO from MSDN but I didn't get enough keys to install it on all my 7 computers. Also, my MSDN subscription level doesn't allow me to get the VL product key to Windows 8 Enterprise. Is there any way I can install Windows 8 for a limited time period like we used to do for Windows 7 ?

    Read the article

  • Defining Discovery: Core Concepts

    - by Joe Lamantia
    Discovery tools have had a referencable working definition since at least 2001, when Ben Shneiderman published 'Inventing Discovery Tools: Combining Information Visualization with Data Mining'.  Dr. Shneiderman suggested the combination of the two distinct fields of data mining and information visualization could manifest as new category of tools for discovery, an understanding that remains essentially unaltered over ten years later.  An industry analyst report titled Visual Discovery Tools: Market Segmentation and Product Positioning from March of this year, for example, reads, "Visual discovery tools are designed for visual data exploration, analysis and lightweight data mining." Tools should follow from the activities people undertake (a foundational tenet of activity centered design), however, and Dr. Shneiderman does not in fact describe or define discovery activity or capability. As I read it, discovery is assumed to be the implied sum of the separate fields of visualization and data mining as they were then understood.  As a working definition that catalyzes a field of product prototyping, it's adequate in the short term.  In the long term, it makes the boundaries of discovery both derived and temporary, and leaves a substantial gap in the landscape of core concepts around discovery, making consensus on the nature of most aspects of discovery difficult or impossible to reach.  I think this definitional gap is a major reason that discovery is still an ambiguous product landscape. To help close that gap, I'm suggesting a few definitions of four core aspects of discovery.  These come out of our sustained research into discovery needs and practices, and have the goal of clarifying the relationship between discvoery and other analytical categories.  They are suggested, but should be internally coherent and consistent.   Discovery activity is: "Purposeful sense making activity that intends to arrive at new insights and understanding through exploration and analysis (and for these we have specific defintions as well) of all types and sources of data." Discovery capability is: "The ability of people and organizations to purposefully realize valuable insights that address the full spectrum of business questions and problems by engaging effectively with all types and sources of data." Discovery tools: "Enhance individual and organizational ability to realize novel insights by augmenting and accelerating human sense making to allow engagement with all types of data at all useful scales." Discovery environments: "Enable organizations to undertake effective discovery efforts for all business purposes and perspectives, in an empirical and cooperative fashion." Note: applicability to a world of Big data is assumed - thus the refs to all scales / types / sources - rather than stated explicitly.  I like that Big Data doesn't have to be written into this core set of definitions, b/c I think it's a transitional label - the new version of Web 2.0 - and goes away over time. References and Resources: Inventing Discovery Tools Visual Discovery Tools: Market Segmentation and Product Positioning Logic versus usage: the case for activity-centered design A Taxonomy of Enterprise Search and Discovery

    Read the article

  • what is called KEY

    - by Bharanikumar
    CREATE TABLE `ost_staff` ( `staff_id` int(11) unsigned NOT NULL auto_increment, `group_id` int(10) unsigned NOT NULL default '0', `dept_id` int(10) unsigned NOT NULL default '0', `username` varchar(32) collate latin1_german2_ci NOT NULL default '', `firstname` varchar(32) collate latin1_german2_ci default NULL, `lastname` varchar(32) collate latin1_german2_ci default NULL, `passwd` varchar(128) collate latin1_german2_ci default NULL, `email` varchar(128) collate latin1_german2_ci default NULL, `phone` varchar(24) collate latin1_german2_ci NOT NULL default '', `phone_ext` varchar(6) collate latin1_german2_ci default NULL, `mobile` varchar(24) collate latin1_german2_ci NOT NULL default '', `signature` varchar(255) collate latin1_german2_ci NOT NULL default '', `isactive` tinyint(1) NOT NULL default '1', `isadmin` tinyint(1) NOT NULL default '0', `isvisible` tinyint(1) unsigned NOT NULL default '1', `onvacation` tinyint(1) unsigned NOT NULL default '0', `daylight_saving` tinyint(1) unsigned NOT NULL default '0', `append_signature` tinyint(1) unsigned NOT NULL default '0', `change_passwd` tinyint(1) unsigned NOT NULL default '0', `timezone_offset` float(3,1) NOT NULL default '0.0', `max_page_size` int(11) NOT NULL default '0', `created` datetime NOT NULL default '0000-00-00 00:00:00', `lastlogin` datetime default NULL, `updated` datetime NOT NULL default '0000-00-00 00:00:00', PRIMARY KEY (`staff_id`), UNIQUE KEY `username` (`username`), KEY `dept_id` (`dept_id`), **KEY `issuperuser` (`isadmin`),** **KEY `group_id` (`group_id`,`staff_id`)** ) ENGINE=MyISAM AUTO_INCREMENT=35 DEFAULT CHARSET=latin1 COLLATE=latin1_german2_ci; Hi the above query is the osticket open source one, i know primary key , foreign key , unique but AM NOT SURE WHAT IS THIS KEY group_id (group_id,staff_id) Please tell me, this constraints name....

    Read the article

  • Editing key inside array item - plist

    - by F0u4d
    I have the following plist: <plist version="1.0"> <dict> <key>General</key> <dict> <key>Table 1</key> <array> <dict> <key>subheadingName</key> <string>Item 1 of table 1</string> <key>subheadingDetail</key> <string>details about item 1</string> </dict> <dict> <key>subheadingName</key> <string>Item 2 of table 1</string> <key>subheadingDetail</key> <string>details about item 2!</string> </dict> <dict> <key>subheadingName</key> <string>Item 3 of table 1</string> <key>subheadingDetail</key> <string>details about item 3!</string> </dict> </array> </dict> <key>Table 2</key> <dict> <key>subheadingArr</key> <array> <dict> <key>subheadingName</key> <string>Item 1 of table 2</string> <key>subheadingDetail</key> <string>details about item 1</string> </dict> <dict> <key>subheadingName</key> <string>Item 2 of table 2</string> <key>subheadingDetail</key> <string>details about item 2!</string> </dict> <dict> <key>subheadingName</key> <string>Item 3 of table 2</string> <key>subheadingDetail</key> <string>details about item 3!</string> </dict> </array> </dict> </dict> </plist> I am trying to write and read the I have made these 2 methods trying to read and write subheadingDetail for a specific subheadingName but they are wrong/incomplete and can't manage to get it work. -(void)updateInfo:(NSString *)info forSubHeadingName:(NSString *)subheadingName { NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES); NSString *documentsDirectory = [paths objectAtIndex:0]; NSString *path = [documentsDirectory stringByAppendingPathComponent:@"DeviceInformation.plist"]; NSMutableDictionary *data = [[NSMutableDictionary alloc] initWithContentsOfFile:path]; [data setObject:info forKey:subheadingName]; [data writeToFile:path atomically:YES]; } -(NSString *)readInfoForSubHeadingName:(NSString *)subheadingName { NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES); NSString *documentsDirectory = [paths objectAtIndex:0]; NSString *path = [documentsDirectory stringByAppendingPathComponent:@"DeviceInformation.plist"]; NSMutableDictionary *data = [[NSMutableDictionary alloc] initWithContentsOfFile:path]; return [data objectForKey:subheadingDetail]; } Tried searching around the answers, but couldn't find anything similar to my issue. Thanks in advance.

    Read the article

  • Securing a license key with RSA key.

    - by Jesse Knott
    Hello, it's late, I'm tired, and probably being quite dense.... I have written an application that I need to secure so it will only run on machines that I generate a key for. What I am doing for now is getting the BIOS serial number and generating a hash from that, I then am encrypting it using a XML RSA private key. I then sign the XML to ensure that it is not tampered with. I am trying to package the public key to decrypt and verify the signature with, but every time I try to execute the code as a different user than the one that generated the signature I get a failure on the signature. Most of my code is modified from sample code I have found since I am not as familiar with RSA encryption as I would like to be. Below is the code I was using and the code I thought I needed to use to get this working right... Any feedback would be greatly appreciated as I am quite lost at this point the original code I was working with was this, this code works fine as long as the user launching the program is the same one that signed the document originally... CspParameters cspParams = new CspParameters(); cspParams.KeyContainerName = "XML_DSIG_RSA_KEY"; cspParams.Flags = CspProviderFlags.UseMachineKeyStore; // Create a new RSA signing key and save it in the container. RSACryptoServiceProvider rsaKey = new RSACryptoServiceProvider(cspParams) { PersistKeyInCsp = true, }; This code is what I believe I should be doing but it's failing to verify the signature no matter what I do, regardless if it's the same user or a different one... RSACryptoServiceProvider rsaKey = new RSACryptoServiceProvider(); //Load the private key from xml file XmlDocument xmlPrivateKey = new XmlDocument(); xmlPrivateKey.Load("KeyPriv.xml"); rsaKey.FromXmlString(xmlPrivateKey.InnerXml); I believe this to have something to do with the key container name (Being a real dumbass here please excuse me) I am quite certain that this is the line that is both causing it to work in the first case and preventing it from working in the second case.... cspParams.KeyContainerName = "XML_DSIG_RSA_KEY"; Is there a way for me to sign/encrypt the XML with a private key when the application license is generated and then drop the public key in the app directory and use that to verify/decrypt the code? I can drop the encryption part if I can get the signature part working right. I was using it as a backup to obfuscate the origin of the license code I am keying from. Does any of this make sense? Am I a total dunce? Thanks for any help anyone can give me in this..

    Read the article

  • Key combinations for a Hot key

    - by HanuAthena
    We are developing a hot key for one of our application. A key combination that is easy to remember easy to press (especially for people with small fingers) certainly not ctrl-alt-del ;) Which key combination do you suggest for a hot-key?

    Read the article

  • PHP Key name array

    - by Sean McRaghty
    I have an array $data fruit => apple, seat => sofa, etc. I want to loop through so that each key becomes type_key[0]['value'] so eg type_fruit[0]['value'] => apple, type_seat[0]['value'] => sofa, and what I thought would do this, namely foreach ($data as $key => $value) { # Create a new, renamed, key. $array[str_replace("/(.+)/", "type_$1[0]['value']", $key)] = $value; # Destroy the old key/value pair unset($array[$key]); } print_r($array); Doesn't work. How can I make it work? Also, I want everything to be in the keys (not the values) to be lowercase: is there an easy way of doing this too? Thanks.

    Read the article

  • Find key of parent in array / PHP

    - by 106691756905536410593
    Perhaps someone can help me out with this one: I'm using a basic search function to find an array deep within an array. The problem is, once that array is found, I'd also like to return it's parent key. Is there a PHP function that can determine the parent key of an array? Below is an example of the Search Function... Ideally I'd like to return the array that is found, as well as it's parent key. function search($array, $key, $value){ $results = array(); if (is_array($array)){ if ($array[$key] == $value){ $results[] = $array; } foreach ($array as $subarray){ $results = array_merge($results, search($subarray, $key, $value)); } } return $results; }

    Read the article

  • Can't DER encode and BER decode RSA public key

    - by Mildred
    I have problems using Crypto++ to save a RSA public key (that I obtained loading a private key file in PKCS#8 format). When decoding the key, I always get a BERDecodeErr exception. Here is the code I am using: CryptoPP::RSASSA_PKCS1v15_SHA_Signer _signer; CryptoPP::RSASSA_PKCS1v15_SHA_Verifier _verifier; CryptoPP::ByteQueue bytes; //_signer.AccessPublicKey().Save(bytes); // seem to save private key instead _signer.AccessKey().DEREncodePublicKey(bytes); //_verifier.AccessKey().Load(bytes); //_verifier.AccessKey().BERDecodePublicKey(bytes, 0, 0); _verifier.AccessPublicKey().Load(bytes); I also tried with the instructions commented above, without success. How do you do to save or open the public key? The public key looks like this in hex format, is there a tool to check its format / validity (regarding what crypto++ supports) ? 3081890281810097e24f2e95504a397e90fbc56d1b330ab2ab97a0d326007b890e40013f9e1d9bd9 f54b0c0840782ddae19b5b4595d8f8b9ffe0d2120174fcbc39585c5867cd2dfba69f8e540caa2c52 de8f08278a34e9249120500117f0ba756c5bb2be660013160db9f82f75deb7ccf63742a9e945da6c cf30c2b109b73342daaabd02b872e50203010001

    Read the article

  • mysql add auto increment and a additional key

    - by Lee
    Hey all I am trying to alter a table with adding a new column setting it as auto increment and with a key. The table already has one key and this one will be an addition. The error I get is the following. error : Multiple primary key defined My code is: alter table user add column id int (11) NOT NULL AUTO_INCREMENT PRIMARY KEY FIRST; I have also tries wrapping the key name ie alter table user add column id int (11) NOT NULL AUTO_INCREMENT PRIMARY (id) KEY FIRST; But still no luck. How can it be done ?

    Read the article

  • TFS 2010 Basic Concepts

    - by jehan
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Here, I’m going to discuss some key Architectural changes and concepts that have taken place in TFS 2010 when compared to TFS 2008. In TFS 2010 Installation, First you need to do the Installation and then you have to configure the Installation Feature from the available features. This is bit similar to SharePoint Installation, where you will first do the Installation and then configure the SharePoint Farms. 1) Installation Features available in TFS2010: a) Basic: It is the most compact TFS installation possible. It will install and configure Source Control, Work Item tracking and Build Services only. (SharePoint and Reporting Integration will not be possible). b) Standard Single Server: This is suitable for Single Server deployment of TFS. It will install and configure Windows SharePoint Services for you and will use the default instance of SQL Server. c) Advanced: It is suitable, if you want use Remote Servers for SQL Server Databases, SharePoint Products and Technologies and SQL Server Reporting Services. d) Application Tier Only: If you want to configure high availability for Team Foundation Server in a Load Balanced Environment (NLB) or you want to move Team Foundation Server from one server to other or you want to restore TFS. e) Upgrade: If you want to upgrade from a prior version of TFS. Note: One more important thing to know here about  TFS 2010 Basic is that,  it can be installed on Client Operations Systems(Windows 7 and Windows Vista SP3), Where as  earlier you cannot Install previous version of TFS (2008 and 2005) on client OS. 2) Team Project Collections: Connect to TFS dialog box in TFS 2008:  In TFS 2008, the TFS Server contains a set of Team Projects and each project may or may not be independent of other projects and every checkin gets a ever increasing  changeset ID  irrespective of the team project in which it is checked in and the same applies to work items  also, who also gets unique Work Item Ids.The main problem with this approach was that there are certain things which were impossible to do; those were required as per the Application Development Process. a)      If something has gone wrong in one team project and now you want to restore it back to earlier state where it was working properly then it requires you to restore the Database of Team Foundation Server from the backup you have taken as per your Maintenance plans and because of this the other team projects may lose out on the work which is not backed up. b)       Your company had a merge with some other company and now you have two TFS servers. One TFS Server which you are working on and other TFS server which other company was working and now after the merge you want to integrate the team projects from two TFS servers into one, which is almost impossible to achieve in TFS 2008. Though you can create the Team Projects in one server manually (In Source Control) which you want to integrate from the other TFS Server, but will lose out on History of Change Sets and Work items and others which are very important. There were few more issues of this sort, which were difficult to resolve in TFS 2008. To resolve issues related to above kind of scenarios which were mainly related TFS Maintenance, Integration, migration and Security,  Microsoft has come up with Team Project Collections concept in TFS 2010.This concept is similar to SharePoint Site Collections and if you are familiar with SharePoint Architecture, then it will help you to understand TFS 2010 Architecture easily. Connect to TFS dialog box in TFS 2010: In above dialog box as you can see there are two Team Project Collections, each team project can contain any number of team projects as you can see on right side it shows the two Team Projects in Team Project Collection (Default Collection) which I have chosen. Note: You can connect to only one Team project Collection at a time using an instance of  TFS Team Explorer. How does it work? To introduce Team Project Collections, changes have been done in reorganization of TFS databases. TFS 2008 was composed of 5-7 databases partitioned by subsystem (each for Version Control, Work Item Tracking, Build, Integration, Project Management...) New TFS 2010 database architecture: TFS_Config: It’s the root database and it contains centralized TFS configuration data, including the list of all team projects exist in TFS server. TFS_Warehouse: The data warehouse contains all the reporting data of served by this server (farm). TFS_* : This contains individual team project collection data. This database contains all the operational data of team project collection regardless of subsystem.In additional to this, you will have databases for SharePoint and Report Server. 3) TFS Farms:  As TFS 2010 is more flexible to configure as multiple Application tiers and multiple Database tiers, so it will be more appropriate to call as TFS Farm if you going for multi server installation of TFS. NLB support for TFS application tiers – With TFS 2010: you can configure multiple TFS application tier machines to serve the same set of Team Project Collections. The primary purpose of NLB support is to enable a cleaner and more complete high availability than in TFS 2008. Even if any application tier in the farm fails then farm will automatically continue to work with hardly any indication to end users of a problem. SQL data tiers: With 2010 you can configure many SQL Servers. Each Database can be configured to be on any SQL Server because each Team Project Collection is an independent database. This feature can also be used to load balance databases across SQL Servers.These new capabilities will significantly change the way enterprises manage their TFS installations in the future. With Team Project Collections and TFS farms, you can create a single, arbitrarily large TFS installation. You can grow it incrementally by adding ATs and SQL Servers as needed.

    Read the article

  • Mapping Left Alt key in vim?

    - by Yogesh Arora
    I am able to map the key combination Right Alt+Left Arrow with <a-left> or by <m-left>. But I am not able to map the Left Alt key. Is there a way to do that? Edit: Just to clarity <a-left> means Alt+Left Arrow. The important question here is what is difference between Left Alt and Right Alt from the perspective of keymappings in Vim?

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • Where can I get a list of SCHEMA / PATH / KEY to use with gsettings?

    - by Sri
    After doing some research, I found that I can quickly set configuration options using the gsettings command in the terminal, instead of installing dconf-editor or gconf-editor or CCSM. But we need the SCHEMA/PATH and KEY to set the value. Syntax is: gsettings set SCHEMA[:PATH] KEY VALUE For example to never auto-hide the launcher: gsettings set com.canonical.Unity2d.Launcher hide-mode 0 And, for windows not to overlap the launcher: gsettings set com.canonical.Unity2d.Launcher use-strut true So, where can I get a list of all the SCHEMA / PATH / KEY that can be set with gsettings? No, please don't suggest the gsettings list-keys command, because I don't know the possibly hundreds of schema available.

    Read the article

  • Fusion Concepts: Fusion Database Schemas

    - by Vik Kumar
    You often read about FUSION and FUSION_RUNTIME users while dealing with Fusion Applications. There is one more called FUSION_DYNAMIC. Here are some details on the difference between these three and the purpose of each type of schema. FUSION: It can be considered as an Administrator of the Fusion Applications with all the corresponding rights and powers such as owning tables and objects, providing grants to FUSION_RUNTIME.  It is used for patching and has grants to many internal DBMS functions. FUSION_RUNTIME: Used to run the Applications.  Contains no DB objects. FUSION_DYNAMIC: This schema owns the objects that are created dynamically through ADM_DDL. ADM_DDL is a package that acts as a wrapper around the DDL statement. ADM_DDL support operations like truncate table, create index etc. As the above statements indicate that FUSION owns the tables and objects including FND tables so using FUSION to run applications is insecure. It would be possible to modify security policies and other key information in the base tables (like FND) to break the Fusion Applications security via SQL injection etc. Other possibilities would be to write a logon DB trigger and steal credentials etc. Thus, to make Fusion Applications secure FUSION_RUNTIME is granted privileges to execute DMLs only on APPS tables. Another benefit of having separate users is achieving Separation of Duties (SODs) at schema level which is required by auditors. Below are the roles and privileges assigned to FUSION, FUSION_RUNTIME and FUSION_DYNAMIC schema: FUSION It has the following privileges: Create SESSION Do all types of DDL owned by FUSION. Additionally, some specific priveleges on other schemas is also granted to FUSION. EXECUTE ON various EDN_PUBLISH_EVENT It has the following roles: CTXAPP for managing Oracle Text Objects AQ_SER_ROLE and AQ_ADMINISTRATOR_ROLE for managing Advanced Queues (AQ) FUSION_RUNTIME It has the following privileges: CREATE SESSION CHANGE NOTIFICATION EXECUTE ON various EDN_PUBLISH_EVENT It has the following roles: FUSION_APPS_READ_WRITE for performing DML (Select, Insert, Delete) on Fusion Apps tables FUSION_APPS_EXECUTE for performing execute on objects such as procedures, functions, packages etc. AQ_SER_ROLE and AQ_ADMINISTRATOR_ROLE for managing Advanced Queues (AQ) FUSION_DYNAMIC It has following privileges: CREATE SESSION, PROCEDURE, TABLE, SEQUENCE, SYNONYM, VIEW UNLIMITED TABLESPACE ANALYZE ANY CREATE MINING MODEL EXECUTE on specific procedure, function or package and SELECT on specific tables. This depends on the objects identified by product teams that ADM_DDL needs to have access  in order to perform dynamic DDL statements. There is one more role FUSION_APPS_READ_ONLY which is not attached to any user and has only SELECT privilege on all the Fusion objects. FUSION_RUNTIME does not have any synonyms defined to access objects owned by FUSION schema. A logon trigger is defined in FUSION_RUNTIME which sets the current schema to FUSION and eliminates the need of any synonyms.   What it means for developers? Fusion Application developers should be using FUSION_RUNTIME for testing and running Fusion Applications UI, BC and to connect to any SQL front end like SQL *PLUS, SQL Loader etc. For testing ADFbc using AM tester while using FUSION_RUNTIME you may hit the following error: oracle.jbo.JboException: JBO-29000: Unexpected exception caught: java.sql.SQLException, msg=invalid name pattern: FUSION.FND_TABLE_OF_VARCHAR2_255 The fix is to add the below JVM parameter in the Run/Debug client property in the Model project properties -Doracle.jdbc.createDescriptorUseCurrentSchemaForSchemaName=true More details are discussed in this forum thread for it.

    Read the article

  • Access Control Service v2: Registering Web Identities in your Applications [concepts]

    - by Your DisplayName here!
    ACS v2 support two fundamental types of client identities– I like to call them “enterprise identities” (WS-*) and “web identities” (Google, LiveID, OpenId in general…). I also see two different “mind sets” when it comes to application design using the above identity types: Enterprise identities – often the fact that a client can present a token from a trusted identity provider means he is a legitimate user of the application. Trust relationships and authorization details have been negotiated out of band (often on paper). Web identities – the fact that a user can authenticate with Google et al does not necessarily mean he is a legitimate (or registered) user of an application. Typically additional steps are necessary (like filling out a form, email confirmation etc). Sometimes also a mixture of both approaches exist, for the sake of this post, I will focus on the web identity case. I got a number of questions how to implement the web identity scenario and after some conversations it turns out it is the old authentication vs. authorization problem that gets in the way. Many people use the IsAuthenticated property on IIdentity to make security decisions in their applications (or deny user=”?” in ASP.NET terms). That’s a very natural thing to do, because authentication was done inside the application and we knew exactly when the IsAuthenticated condition is true. Been there, done that. Guilty ;) The fundamental difference between these “old style” apps and federation is, that authentication is not done by the application anymore. It is done by a third party service, and in the case of web identity providers, in services that are not under our control (nor do we have a formal business relationship with these providers). Now the issue is, when you switch to ACS, and someone with a Google account authenticates, indeed IsAuthenticated is true – because that’s what he is! This does not mean, that he is also authorized to use the application. It just proves he was able to authenticate with Google. Now this obviously leads to confusion. How can we solve that? Easy answer: We have to deal with authentication and authorization separately. Job done ;) For many application types I see this general approach: Application uses ACS for authentication (maybe both enterprise and web identities, we focus on web identities but you could easily have a dual approach here) Application offers to authenticate (or sign in) via web identity accounts like LiveID, Google, Facebook etc. Application also maintains a database of its “own” users. Typically you want to store additional information about the user In such an application type it is important to have a unique identifier for your users (think the primary key of your user database). What would that be? Most web identity provider (and all the standard ACS v2 supported ones) emit a NameIdentifier claim. This is a stable ID for the client (scoped to the relying party – more on that later). Furthermore ACS emits a claims identifying the identity provider (like the original issuer concept in WIF). When you combine these two values together, you can be sure to have a unique identifier for the user, e.g.: Facebook-134952459903700\799880347 You can now check on incoming calls, if the user is already registered and if yes, swap the ACS claims with claims coming from your user database. One claims would maybe be a role like “Registered User” which can then be easily used to do authorization checks in the application. The WIF claims authentication manager is a perfect place to do the claims transformation. If the user is not registered, show a register form. Maybe you can use some claims from the identity provider to pre-fill form fields. (see here where I show how to use the Facebook API to fetch additional user properties). After successful registration (which may include other mechanisms like a confirmation email), flip the bit in your database to make the web identity a registered user. This is all very theoretical. In the next post I will show some code and provide a download link for the complete sample. More on NameIdentifier Identity providers “guarantee” that the name identifier for a given user in your application will always be the same. But different applications (in the case of ACS – different ACS namespaces) will see different name identifiers. This is by design to protect the privacy of users because identical name identifiers could be used to create “profiles” of some sort for that user. In technical terms they create the name identifier approximately like this: name identifier = Hash((Provider Internal User ID) + (Relying Party Address)) Why is this important to know? Well – when you change the name of your ACS namespace, the name identifiers will change as well and you will will lose your “connection” to your existing users. Oh an btw – never use any other claims (like email address or name) to form a unique ID – these can often be changed by users.

    Read the article

  • Upload Certificate and Key to RUEI in order to decrypt SSL traffic

    - by stefan.thieme(at)oracle.com
    So you want to monitor encrypted traffic with your RUEI collector ?Actually this is an easy thing if you follow the lines below...I will start out with creating a pair of snakeoil (so called self-signed) certificate and key with the make-ssl-cert tool which comes pre-packaged with apache only for the purpose of this example.$ sudo make-ssl-cert generate-default-snakeoil$ sudo ls -l /etc/ssl/certs/ssl-cert-snakeoil.pem /etc/ssl/private/ssl-cert-snakeoil.key-rw-r--r-- 1 root root     615 2010-06-07 10:03 /etc/ssl/certs/ssl-cert-snakeoil.pem-rw-r----- 1 root ssl-cert 891 2010-06-07 10:03 /etc/ssl/private/ssl-cert-snakeoil.keyRUEI Configuration of Security SSL Keys You will most likely get these two files from your Certificate Authority (CA) and/or your system administrators should be able to extract this from your WebServer or LoadBalancer handling SSL encryption for your infrastructure.Now let's look at the content of these two files, the certificate (apache assumes this is in PEM format) is called a public key and the private key is used by the apache server to encrypt traffic for a client using the certificate to initiate the SSL connection with the server.In case you already know that these two match, you simply have to paste them in one text file and upload this text file to your RUEI instance.$ sudo cat /etc/ssl/certs/ssl-cert-snakeoil.pem /etc/ssl/private/ssl-cert-snakeoil.key > /tmp/ruei.cert_and_key$ sudo cat /tmp/ruei.cert_and_key -----BEGIN CERTIFICATE----- MIIBmTCCAQICCQD7O3XXwVilWzANBgkqhkiG9w0BAQUFADARMQ8wDQYDVQQDEwZ1 YnVudHUwHhcNMTAwNjA3MDgwMzUzWhcNMjAwNjA0MDgwMzUzWjARMQ8wDQYDVQQD EwZ1YnVudHUwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBALbs+JnI+p+K7Iqa SQZdnYBxOpdRH0/9jt1QKvmH68v81h9+f1Z2rVR7Zrd/l+ruE3H9VvuzxMlKuMH7 qBX/gmjDZTlj9WJM+zc0tSk+e2udy9he20lGzTxv0vaykJkuKcvSWNk4WE9NuAdg IHZvjKgoTSVmvM1ApMCg69nyOy97AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAk2rv VEkxR1qPSpJiudDuGUHtWKBKWiWbmSwI3REZT+0vG+YDG5a55NdxgRk3zhQntqF7 gNYjKxblBByBpY7W0ci00kf7kFgvXWMeU96NSQJdnid/YxzQYn0dGL2rSh1dwdPN NPQlNSfnEQ1yxFevR7aRdCqTbTXU3mxi8YaSscE= -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIICXgIBAAKBgQC27PiZyPqfiuyKmkkGXZ2AcTqXUR9P/Y7dUCr5h+vL/NYffn9W dq1Ue2a3f5fq7hNx/Vb7s8TJSrjB+6gV/4Jow2U5Y/ViTPs3NLUpPntrncvYXttJ Rs08b9L2spCZLinL0ljZOFhPTbgHYCB2b4yoKE0lZrzNQKTAoOvZ8jsvewIDAQAB AoGBAJ7LCWeeUwnKNFqBYmD3RTFpmX4furnal3lBDX0945BZtJr0WZ/6N679zIYA aiVTdGfgjvDC9lHy3n3uctRd0Jqdh2QoSSxNBhq5elIApNIIYzu7w/XI/VhGcDlA b6uadURQEC2q+M8YYjw3mwR2omhCWlHIViOHe/9T8jfP/8pxAkEA7k39WRcQildH DFKcj7gurqlkElHysacMTFWf0ZDTEUS6bdkmNXwK6mH63BlmGLrYAP5AMgKgeDf8 D+WRfv8YKQJBAMSCQ7UGDN3ysyfIIrdc1RBEAk4BOrKHKtD5Ux0z5lcQkaCYrK8J DuSldreN2yOhS99/S4CRWmGkTj04wRSnjwMCQQCaR5mW3QzTU4/m1XEQxsBKSdZE 2hMSmsCmhuSyK13Kl0FPLr/C7qyuc4KSjksABa8kbXaoKfUz/6LLs+ePXZ2JAkAv +mIPk5+WnQgS4XFgdYDrzL8HTpOHPSs+BHG/goltnnT/0ebvgXWqa5+1pyPm6h29 PrYveM2pY1Va6z1xDowDAkEAttfzAwAHz+FUhWQCmOBpvBuW/KhYWKZTMpvxFMSY YD5PH6NNyLfBx0J4nGPN5n/f6il0s9pzt3ko++/eUtWSnQ== -----END RSA PRIVATE KEY----- Simply click on the add new key and browse for the cert_and_key file on your desktop which you concatenated earlier using any text editor. You may need to add a passphrase in order to decrypt the RSA key in some cases (it should tell you BEGIN ENCRYPTED PRIVATE KEY in the header line). I will show you the success screen after uploading the certificate to RUEI. You may want to restart your collector once you have uploaded all the certificate/key pairs you want to use in order to make sure they get picked up asap.You should be able to see the number of SSL Connections rising in the Collector statistics screen below. The figures for decrypt errors should slowly go down and the usage figures for your encryption algortihm on the subsequent SSL Encryption screen should go up. You should be 100% sure everything works fine by now, otherwise see below to distinguish the remaining 1% from your 99% certainty.Verify Certificate and Key are matchingYou can compare the modulus of private key and public certificate and they should match in order for the key to fit the lock. You only want to make sure they both fit each other.We are actually interested only in the following details of the two files, which can be determined by using the -subject, -dates and -modulus command line switches instead of the complete -text output of the x509 certificate/rsa key contents.$ sudo openssl x509 -noout -subject -in /etc/ssl/certs/ssl-cert-snakeoil.pemsubject= /CN=ubuntu$ sudo openssl x509 -noout -dates -in /etc/ssl/certs/ssl-cert-snakeoil.pemnotBefore=Jun  7 08:03:53 2010 GMTnotAfter=Jun  4 08:03:53 2020 GMT$ sudo openssl x509 -noout -modulus -in /etc/ssl/certs/ssl-cert-snakeoil.pem Modulus=B6ECF899C8FA9F8AEC8A9A49065D9D80713A97511F4FFD8EDD502AF987EBCBFCD61F7E7F5676AD547B66B77F97EAEE1371FD56FBB3C4C94AB8C1FBA815FF8268C3653963F5624CFB3734B5293E7B6B9DCBD85EDB4946CD3C6FD2F6B290992E29CBD258D938584F4DB8076020766F8CA8284D2566BCCD40A4C0A0EBD9F23B2F7B $ sudo openssl rsa -noout -modulus -in /etc/ssl/private/ssl-cert-snakeoil.keyModulus=B6ECF899C8FA9F8AEC8A9A49065D9D80713A97511F4FFD8EDD502AF987EBCBFCD61F7E7F5676AD547B66B77F97EAEE1371FD56FBB3C4C94AB8C1FBA815FF8268C3653963F5624CFB3734B5293E7B6B9DCBD85EDB4946CD3C6FD2F6B290992E29CBD258D938584F4DB8076020766F8CA8284D2566BCCD40A4C0A0EBD9F23B2F7BAs you can see the modulus matches exactly and we have the proof that the certificate has been created using the private key. OpenSSL Certificate and Key DetailsAs I already told you, you do not need all the greedy details, but in case you want to know it in depth what is actually in those hex-blocks can be made visible with the following commands which show you the actual content in a human readable format.Note: You may not want to post all the details of your private key =^) I told you I have been using a self-signed certificate only for showing you these details.$ sudo openssl rsa -noout -text -in /etc/ssl/private/ssl-cert-snakeoil.keyPrivate-Key: (1024 bit)modulus:    00:b6:ec:f8:99:c8:fa:9f:8a:ec:8a:9a:49:06:5d:    9d:80:71:3a:97:51:1f:4f:fd:8e:dd:50:2a:f9:87:    eb:cb:fc:d6:1f:7e:7f:56:76:ad:54:7b:66:b7:7f:    97:ea:ee:13:71:fd:56:fb:b3:c4:c9:4a:b8:c1:fb:    a8:15:ff:82:68:c3:65:39:63:f5:62:4c:fb:37:34:    b5:29:3e:7b:6b:9d:cb:d8:5e:db:49:46:cd:3c:6f:    d2:f6:b2:90:99:2e:29:cb:d2:58:d9:38:58:4f:4d:    b8:07:60:20:76:6f:8c:a8:28:4d:25:66:bc:cd:40:    a4:c0:a0:eb:d9:f2:3b:2f:7bpublicExponent: 65537 (0x10001)privateExponent:    00:9e:cb:09:67:9e:53:09:ca:34:5a:81:62:60:f7:    45:31:69:99:7e:1f:ba:b9:da:97:79:41:0d:7d:3d:    e3:90:59:b4:9a:f4:59:9f:fa:37:ae:fd:cc:86:00:    6a:25:53:74:67:e0:8e:f0:c2:f6:51:f2:de:7d:ee:    72:d4:5d:d0:9a:9d:87:64:28:49:2c:4d:06:1a:b9:    7a:52:00:a4:d2:08:63:3b:bb:c3:f5:c8:fd:58:46:    70:39:40:6f:ab:9a:75:44:50:10:2d:aa:f8:cf:18:    62:3c:37:9b:04:76:a2:68:42:5a:51:c8:56:23:87:    7b:ff:53:f2:37:cf:ff:ca:71prime1:    00:ee:4d:fd:59:17:10:8a:57:47:0c:52:9c:8f:b8:    2e:ae:a9:64:12:51:f2:b1:a7:0c:4c:55:9f:d1:90:    d3:11:44:ba:6d:d9:26:35:7c:0a:ea:61:fa:dc:19:    66:18:ba:d8:00:fe:40:32:02:a0:78:37:fc:0f:e5:    91:7e:ff:18:29prime2:    00:c4:82:43:b5:06:0c:dd:f2:b3:27:c8:22:b7:5c:    d5:10:44:02:4e:01:3a:b2:87:2a:d0:f9:53:1d:33:    e6:57:10:91:a0:98:ac:af:09:0e:e4:a5:76:b7:8d:    db:23:a1:4b:df:7f:4b:80:91:5a:61:a4:4e:3d:38:    c1:14:a7:8f:03exponent1:    00:9a:47:99:96:dd:0c:d3:53:8f:e6:d5:71:10:c6:    c0:4a:49:d6:44:da:13:12:9a:c0:a6:86:e4:b2:2b:    5d:ca:97:41:4f:2e:bf:c2:ee:ac:ae:73:82:92:8e:    4b:00:05:af:24:6d:76:a8:29:f5:33:ff:a2:cb:b3:    e7:8f:5d:9d:89exponent2:    2f:fa:62:0f:93:9f:96:9d:08:12:e1:71:60:75:80:    eb:cc:bf:07:4e:93:87:3d:2b:3e:04:71:bf:82:89:    6d:9e:74:ff:d1:e6:ef:81:75:aa:6b:9f:b5:a7:23:    e6:ea:1d:bd:3e:b6:2f:78:cd:a9:63:55:5a:eb:3d:    71:0e:8c:03coefficient:    00:b6:d7:f3:03:00:07:cf:e1:54:85:64:02:98:e0:    69:bc:1b:96:fc:a8:58:58:a6:53:32:9b:f1:14:c4:    98:60:3e:4f:1f:a3:4d:c8:b7:c1:c7:42:78:9c:63:    cd:e6:7f:df:ea:29:74:b3:da:73:b7:79:28:fb:ef:    de:52:d5:92:9d$ sudo openssl x509 -noout -text -in /etc/ssl/certs/ssl-cert-snakeoil.pemCertificate:    Data:        Version: 1 (0x0)        Serial Number:            fb:3b:75:d7:c1:58:a5:5b        Signature Algorithm: sha1WithRSAEncryption        Issuer: CN=ubuntu        Validity            Not Before: Jun  7 08:03:53 2010 GMT            Not After : Jun  4 08:03:53 2020 GMT        Subject: CN=ubuntu        Subject Public Key Info:            Public Key Algorithm: rsaEncryption            RSA Public Key: (1024 bit)                Modulus (1024 bit):                    00:b6:ec:f8:99:c8:fa:9f:8a:ec:8a:9a:49:06:5d:                    9d:80:71:3a:97:51:1f:4f:fd:8e:dd:50:2a:f9:87:                    eb:cb:fc:d6:1f:7e:7f:56:76:ad:54:7b:66:b7:7f:                    97:ea:ee:13:71:fd:56:fb:b3:c4:c9:4a:b8:c1:fb:                    a8:15:ff:82:68:c3:65:39:63:f5:62:4c:fb:37:34:                    b5:29:3e:7b:6b:9d:cb:d8:5e:db:49:46:cd:3c:6f:                    d2:f6:b2:90:99:2e:29:cb:d2:58:d9:38:58:4f:4d:                    b8:07:60:20:76:6f:8c:a8:28:4d:25:66:bc:cd:40:                    a4:c0:a0:eb:d9:f2:3b:2f:7b                Exponent: 65537 (0x10001)    Signature Algorithm: sha1WithRSAEncryption        93:6a:ef:54:49:31:47:5a:8f:4a:92:62:b9:d0:ee:19:41:ed:        58:a0:4a:5a:25:9b:99:2c:08:dd:11:19:4f:ed:2f:1b:e6:03:        1b:96:b9:e4:d7:71:81:19:37:ce:14:27:b6:a1:7b:80:d6:23:        2b:16:e5:04:1c:81:a5:8e:d6:d1:c8:b4:d2:47:fb:90:58:2f:        5d:63:1e:53:de:8d:49:02:5d:9e:27:7f:63:1c:d0:62:7d:1d:        18:bd:ab:4a:1d:5d:c1:d3:cd:34:f4:25:35:27:e7:11:0d:72:        c4:57:af:47:b6:91:74:2a:93:6d:35:d4:de:6c:62:f1:86:92:        b1:c1The above output can also be seen if you direct your browser client to your website and check the certificate sent by the server to your browser. You will be able to lookup all the details including the validity dates, subject common name and the public key modulus.Capture an SSL connection using WiresharkAnd as you would have expected, looking at the low-level tcp data that has been exchanged between the client and server with a tcp-diagnostics tool (i.e. wireshark/tcpdump) you can also see the modulus in there.These were the settings I used to capture all traffic on the local loopback interface, matching the filter expression: tcp and ip and host 127.0.0.1 and port 443. This tells Wireshark to leave out any other information, I may not have been interested in showing you.

    Read the article

  • How to generate a private/public key pair to use for a Linux server on Windows Azure?

    - by MainMa
    Following Windows Azure documentation, I generated a pair of private/public keys on an Ubuntu machine using the exact comment as given: openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout myPrivateKey.key -out myCert.pem When I open the private key in puttygen, the following error is displayed: Couldn't load private key (unrecognised key type) The private key generated by openssl looks correct: -----BEGIN PRIVATE KEY----- MIIEvQIBADANBgkqhkiG6w0xAQEFAASCBKcwggSjAgEsAoIBAQC6OEZ5ULe6F6u2 Cybhqqfqqh2ao9sd2tpqB+HGIoMMHrmnD3YegRgZJIddTQaWKdwaKrYul21YNt5y ... P0RyfL9kDnX/XmIOM38FOoucGvO+Zozsbmgmvw6AUhE0sPhkZnlaodAU1OnfaWJz KpBxkXulBaCJnC8w29dGKng= -----END PRIVATE KEY----- Note that the comments to Azure documentation (the same link as above) report that the pair should be generated using OpenSSL for Windows instead of openssl on Linux. This doesn't help, since the same error appears for a private key generated by OpenSSL for Windows. What am I doing wrong?

    Read the article

  • iTerm2 vim cannot map alt key

    - by Eddy
    I'm having trouble trying to map the alt-key bindings on vim in iTerm2. I want to map shortcuts for switching between buffers like this: map <A-Right> <C-w>l map <A-Left> <C-w>h map <A-Down> <C-w>j map <A-Up> <C-w>k But I can't get it to work. I've tried everything, setting the option key as "Normal", "Meta" and "+Esc" in the profile settings. I've tried <M-Right> and <T-Right> but those don't work either. There are posts on superuser and stackoverflow but they use the old version of iTerm2 (v0.x). The only things I've managed to get working are <T-up> and <T-down>, or when I just use Macvim. I'm using iTerm2 v1.0.0.20120203, and Mac OS X 10.7.5 on a Macbook Pro.

    Read the article

  • DB Designer creates compound primary key

    - by Jon Winstanley
    When adding relationships to a database model in DB Designer 4, a composite primary key is being created every time. So every foreign key I add, I get an extra key added to a composite primary key. I think I must have changed a setting as I don't remember it doing this in the past. Does anyone know how to turn off this feature as I prefer to use a single surrogate primary keys in my database tables?

    Read the article

  • RC2 key schedule

    - by calccrypto
    Can someone explain how the RC2 key schedule works (particularly the very beginning of it)? i know it uses little endian, but my implementation is not working for any key except "0000 0000 0000 0000" Test Vector Key = 88bc a90e 9087 5a Plaintext = 0000 0000 0000 0000 Ciphertext = 6ccf 4308 974c 267f im assuming that the first thing to do with the key would be to change it into bc88 0ea9 8790 5a and yes i know RC2 is not even used anymore, but i would still like to know

    Read the article

  • How can I permanently save a password-protected SSH key?

    - by pl1nk
    I am using Awesome Window Manager How can I permanently add private keys with password? Inspired by the answer here I have added the private keys in ~/.ssh/config Contents of ~/.ssh/config: IdentityFile 'private key full path' Permissions of ~/.ssh/config: 0700 But it doesn't work for me. If I manually add the key in every session, it works but I'm looking for a more elegant way (not in .bashrc)

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >