Search Results

Search found 35708 results on 1429 pages for 'default copy constructor'.

Page 612/1429 | < Previous Page | 608 609 610 611 612 613 614 615 616 617 618 619  | Next Page >

  • Perfect solution to enable both two finger scrolling and edge scrolling in Ubuntu 13.10 permanantly

    - by Habi
    Recently, I have upgraded from 13.04 to 13.10. First, I found problem in edge scrolling. After surfing in net about the problem I came to know that Ubuntu 13.10 has default two-finger scroll option enabled in Mouse and Touchpad setting. After unchecking two-finger scroll edge scrolling was enabled. In windows, I have used both feature. How can I use both two finger scrolling and edge scrolling in Ubuntu 13.10 permanently so that the setting won't reset even after I restart, shutdown or suspend my laptop.

    Read the article

  • Tool to export Microsoft project to website?

    - by Rory
    Just wondering does anyone know of a free/open source tool that take a Microsoft project file and export it to HTML? I know you can save a project file as HTML, so wanted a tool that would do this automatically? Maybe also displaying graphs/gantt chart as well? If not, any ideas of how I would write a program to do this, preferably in java? I know of Aspose.Tasks (http://www.aspose.com/categories/.net-components/aspose.tasks-for-.net/default.aspx), which can export projects files to gantt charts in png format, but it's not free and is only available in C#.

    Read the article

  • Packages are not available for installation

    - by Alex Farber
    Changing some Software Update settings I possibly corrupted something, and now I don't see many packages in the list. For example: alex@u120464:~$ sudo apt-get install codeblocks [sudo] password for alex: Reading package lists... Done Building dependency tree Reading state information... Done E: Unable to locate package codeblocks I checked all options in the Software Sources dialog, but packages are still not available. How can I fix this? OS: Ubuntu 12.04, 64 bit. Additional information. alex@u120464:~$ sudo apt-get update [sudo] password for alex: Ign http://extras.ubuntu.com precise InRelease Ign http://security.ubuntu.com precise-security InRelease Ign http://archive.canonical.com precise InRelease Ign http://archive.ubuntu.com precise InRelease Ign http://archive.ubuntu.com precise-updates InRelease ... It looks like most Ubuntu repositories are not searched, how can I restore default update behaviour?

    Read the article

  • C++ Little Wonders: The C++11 auto keyword redux

    - by James Michael Hare
    I’ve decided to create a sub-series of my Little Wonders posts to focus on C++.  Just like their C# counterparts, these posts will focus on those features of the C++ language that can help improve code by making it easier to write and maintain.  The index of the C# Little Wonders can be found here. This has been a busy week with a rollout of some new website features here at my work, so I don’t have a big post for this week.  But I wanted to write something up, and since lately I’ve been renewing my C++ skills in a separate project, it seemed like a good opportunity to start a C++ Little Wonders series.  Most of my development work still tends to focus on C#, but it was great to get back into the saddle and renew my C++ knowledge.  Today I’m going to focus on a new feature in C++11 (formerly known as C++0x, which is a major move forward in the C++ language standard).  While this small keyword can seem so trivial, I feel it is a big step forward in improving readability in C++ programs. The auto keyword If you’ve worked on C++ for a long time, you probably have some passing familiarity with the old auto keyword as one of those rarely used C++ keywords that was almost never used because it was the default. That is, in the code below (before C++11): 1: int foo() 2: { 3: // automatic variables (allocated and deallocated on stack) 4: int x; 5: auto int y; 6:  7: // static variables (retain their value across calls) 8: static int z; 9:  10: return 0; 11: } The variable x is assumed to be auto because that is the default, thus it is unnecessary to specify it explicitly as in the declaration of y below that.  Basically, an auto variable is one that is allocated and de-allocated on the stack automatically.  Contrast this to static variables, that are allocated statically and exist across the lifetime of the program. Because auto was so rarely (if ever) used since it is the norm, they decided to remove it for this purpose and give it new meaning in C++11.  The new meaning of auto: implicit typing Now, if your compiler supports C++ 11 (or at least a good subset of C++11 or 0x) you can take advantage of type inference in C++.  For those of you from the C# world, this means that the auto keyword in C++ now behaves a lot like the var keyword in C#! For example, many of us have had to declare those massive type declarations for an iterator before.  Let’s say we have a std::map of std::string to int which will map names to ages: 1: std::map<std::string, int> myMap; And then let’s say we want to find the age of a given person: 1: // Egad that's a long type... 2: std::map<std::string, int>::const_iterator pos = myMap.find(targetName); Notice that big ugly type definition to declare variable pos?  Sure, we could shorten this by creating a typedef of our specific map type if we wanted, but now with the auto keyword there’s no need: 1: // much shorter! 2: auto pos = myMap.find(targetName); The auto now tells the compiler to determine what type pos should be based on what it’s being assigned to.  This is not dynamic typing, it still determines the type as if it were explicitly declared and once declared that type cannot be changed.  That is, this is invalid: 1: // x is type int 2: auto x = 42; 3:  4: // can't assign string to int 5: x = "Hello"; Once the compiler determines x is type int it is exactly as if we typed int x = 42; instead, so don’t' confuse it with dynamic typing, it’s still very type-safe. An interesting feature of the auto keyword is that you can modify the inferred type: 1: // declare method that returns int* 2: int* GetPointer(); 3:  4: // p1 is int*, auto inferred type is int 5: auto *p1 = GetPointer(); 6:  7: // ps is int*, auto inferred type is int* 8: auto p2 = GetPointer(); Notice in both of these cases, p1 and p2 are determined to be int* but in each case the inferred type was different.  because we declared p1 as auto *p1 and GetPointer() returns int*, it inferred the type int was needed to complete the declaration.  In the second case, however, we declared p2 as auto p2 which means the inferred type was int*.  Ultimately, this make p1 and p2 the same type, but which type is inferred makes a difference, if you are chaining multiple inferred declarations together.  In these cases, the inferred type of each must match the first: 1: // Type inferred is int 2: // p1 is int* 3: // p2 is int 4: // p3 is int& 5: auto *p1 = GetPointer(), p2 = 42, &p3 = p2; Note that this works because the inferred type was int, if the inferred type was int* instead: 1: // syntax error, p1 was inferred to be int* so p2 and p3 don't make sense 2: auto p1 = GetPointer(), p2 = 42, &p3 = p2; You could also use const or static to modify the inferred type: 1: // inferred type is an int, theAnswer is a const int 2: const auto theAnswer = 42; 3:  4: // inferred type is double, Pi is a static double 5: static auto Pi = 3.1415927; Thus in the examples above it inferred the types int and double respectively, which were then modified to const and static. Summary The auto keyword has gotten new life in C++11 to allow you to infer the type of a variable from it’s initialization.  This simple little keyword can be used to cut down large declarations for complex types into a much more readable form, where appropriate.   Technorati Tags: C++, C++11, Little Wonders, auto

    Read the article

  • Succesful Hosted TFS Event at VISUG by Hassan Fadili at Microsoft Belgium

    - by hassanfadili
    On Tuesday November 22th, VISUG User Group has hosted an event at Microsoft Belgium about Hosted TFS by Hassan Fadili see http://www.visug.be/Eventdetails/tabid/95/EventId/48/Default.aspx. This event was very interactive and many as 60 people have taken part. The topic was about Build, Relase and Deploy with TFS2011 and MS Deploy. A combination of Slides and Demo's was perfect to explain this common mechanism for developers.To learn more about this topic check the earlier article pubished by Hassan Fadili for Software Developer Network Community at: http://www.sdn.nl/SDN/Artikelen/tabid/58/view/View/ArticleID/3199/Build-Release-and-Deploy-BRD-using-TFS2010-MS-Web-Deploy-and-WIX3X.aspxIf you have questions/Suggestions or thoughts about this topic, feel free to contact me by E-mail: [email protected] and/or via Twitter: @HassanFad

    Read the article

  • SQL SERVER – Auditing and Profiling Database Made Easy with SQL Audit and Comply

    - by Pinal Dave
    Do you like auditing your database, or can you think of about a million other things you’d rather do?  Unfortunately, auditing is incredibly important.  As with tax audits, it is important to audit databases to ensure they are following all the rules, but they are also important for troubleshooting and security. There are several ways to audit SQL Server.  There is manual auditing, which is going through your database “by hand,” and obviously takes a long time and is quite inefficient.  SQL Server also provides programs to help you audit your systems.  Different administrators will have different opinions about best practices and which tools to use, and each one will be perfected for certain systems and certain users. Today, though, I would like to talk about Apex SQL Audit.  It is an auditing tool that acts like “track changes” in a word processing document.  It will log what has changed on the database, who made the changes, and what effects these changes have had (i.e. what objects were affected down the line).  All this information is logged, and can be easily viewed or printed for easy access. One of the best features of Apex is that it is so customizable (and easy to use!).  First, start Apex.  Then you can connect to the database you would like to monitor. Once you select your database, you can select which table you want to audit. You can customize right down to the field you’d like to audit, and then select which types of actions you’d like tracked – insert, delete, or update.  Repeat these steps for every database you want monitored. To create the logs, choose “Create triggers” in the menu.  The script written here will be what logs each insert, delete, and update function.  Press F5 to execute.  All this tracking information will be stored in AUDIT_LOG_DATA and AUDIT_LOG_TRANSACTIONS tables.  View these tables using ApexSQL Audit reports. These transaction logs can be extremely detailed – especially on very busy servers, where every move it traced.  Reading them can be overwhelming, to say the least.  Apex has tried to make things easier for the average DBA, though. You can read these tracking logs in Apex, and it will display data and objects that affect your server – even things that were happening on your server before you installed Apex! To read these logs, open Apex, and connect to that database you want to audit. Go to the Transaction Logs tab, and add the logs you want to read. To narrow down what results you want to see, you can use the Filter tab to choose time, operation type, name, users, and more. Click Open, and you can see the results in a grid (as shown below).  You can export these results to CSV, HTML, XML or SQL files and save on the hard disk. One of the advantages is that since there are no triggers here, there are no other processes that will affect SQL Server performance.  Using this method is also how to view history from your database that occurred before Apex was installed.  This type of tracking does require storage space for the data sources, as the database must be fully running, and the transaction logs must exist (things not stored in the transactions logs will not be recoverable). Apex can also replace SQL Server Profiler and SQL Server Traces – which are much more complex and error-prone – with its ApexSQL Comply.  It can do fault tolerant auditing, centralized reporting, and “who saw what” information in an easy-to-use interface.  The tracking settings can be altered by the user, or the default options will provide solutions to the most common auditing problems. To get started: open ApexSQL Comply, and selected Database Filter Settings to choose which database you’d like to audit.  You can select which tracking you’re like in Operation Types – DML, DDL, queries executed, execute statements, and more.  To get started, click Start Auditing. After this, every action will be stored in the central repository database (ApexSQLCrd).  You can view the audit and create a report (or view the standard default report) using a wizard. You can see how easy it is to use ApexSQL Comply.  You can easily set audits, including the type and time, and create customized reports.  Remote users can easily access the reports through the user interface (available online, as well), and security concerns are all taken care of by the program.  Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Team Leaders & Authors - Manage and Report Workflow using "Print an Outline" in UPK

    - by [email protected]
    Did you know you can "print an outline?" You can print any outline or portion of an outline. Why might you want to "print an outline" in UPK... Have you ever wondered how many topics you have recorded, how many of your topics are ready for review, or even better, how many topics are complete! Do you need to report your project status to management? Maybe you just like to have a copy of your outline to refer to during development. Included in this output is the outline structure as well as the layout defined in the Details View of the Outline Editor. To print an outline, you must open either a module or section in the Outline Editor. A set of default data columns is automatically included in the output; however, you can configure which columns you want to appear in the report by switching to the Details view and customizing the columns. (To learn more about customizing your columns refer to the Add and Remove Columns section of the Content Development.pdf guide) To print an outline from the Outline Editor: 1. Open a module or section document in the Outline Editor. 2. Expand the documents to display the details that you want included in the report. 3. On the File menu, choose Print and use the toolbar icons to print, view, or save the report to a file. Personally, I opt to save my outline in Microsoft Excel. Using the delivered features of Microsoft Excel you can add columns of information, such as development notes, to your outline or you can graph and chart your Project status. As mentioned above you can configure what columns you want to appear in the outline. When utilizing the Print an Outline feature in conjunction with the Managing Workflow features of the UPK Multi-user instance you as a Team Lead or Author can better report project status. Read more about Managing Workflow below. Managing Workflow: The Properties toolpane contains special properties that allow authors to track document status or State as well as assign Document Ownership. Assign Content State The State property is an editable property for communicating the status of a document. This is particularly helpful when collaborating with other authors in a development team. Authors can assign a state to documents from the master list defined by the administrator. The default list of States includes (blank), Not Started, Draft, In Review, and Final. Administrators can customize the list by adding, deleting or renaming the values. To assign a State value to a document: 1. Make sure you are working online. 2. Display the Properties toolpane. 3. Select the document(s) to which you want to assign a state. Note: You can select multiple documents using the standard Windows selection keys (CTRL+click and SHIFT+click). 4. In the Workflow category, click in the State cell. 5. Select a value from the list. Assign Document Ownership In many enterprises, multiple authors often work together developing content in a team environment. Team leaders typically handle large projects by assigning specific development responsibilities to authors. The Owner property allows team leaders and authors to assign documents to themselves and other authors to track who is responsible for a specific document. You view and change document assignments for a document using the Owner property in the Properties toolpane. To assign a document owner: 1. Make sure you are working online. 2. On the View menu, choose Properties. 3. Select the document(s) to which you want to assign document responsibility. Note: You can select multiple documents using the standard Windows selection keys (CTRL+click and SHIFT+click). 4. In the Workflow category, click in the Owner cell. 5. Select a name from the list. Is anyone out there already using this feature? Share your ideas with the group. Those of you new to this feature, give it a test drive and let us know what you think. - Kathryn Lustenberger, Oracle UPK & Tutor Outbound Product Management

    Read the article

  • How to implement Undo and Redo feature in as3

    - by Swati Singh
    I am going to create an application in that i have to implement an Undo and Redo feature. In the application there will be multiple objects located on stage and user can customize the position of the objects. But when user clicks on Undo the object go back to their default position and after clicking on redo object will move on the new position. So my question is how can i apply these feature in my application? Is there any library or any third party classes? Can some one help me? Thanks in advance.

    Read the article

  • Screen brightness control not working on Lenovo T530

    - by Matt
    My brightness control doesn't work with a fresh install of 12.10 (brand new laptop). It is set to the brightest setting when I boot up and when I try to change it, I see the notification bar come up but the brightness doesn't actually change. I've tried all the solutions I could find around the Internet but none of them work. Things I have tried include: Editing /sys/class/backlight/acpi_video0/brightness In /usr/share/X11/xorg.conf.d/10-brightness-control.conf: Option "RegistryDwords" "EnableBrightnessControl=1" In /etc/default/grub: GRUB_CMDLINE_LINUX_DEFAULT="quiet splash acpi_osi=Linux acpi_backlight=vendor" There is no xorg.conf file in 12.10 that I have found, so the solutions that suggest editing that file don't do me a whole lot of good. I am currently using the Nouveau driver, but switching to the Nvidia proprietary drivers made no difference. Any other ideas? When is this bug going to be fixed? With all the reports I've come across I would think it would get a lot of attention. Thanks.

    Read the article

  • How to Activate VLC’s Web Interface, Control VLC From a Browser, & Use Any Smartphone as a Remote

    - by Chris Hoffman
    VLC includes a web interface, which you can enable to access your VLC player from a web browser, controlling playback from another device – particularly useful for a media center PC. VLC also offers a mobile web interface for smartphones. The web interface is turned off and locked down by default – you have to edit the web server’s .hosts file or VLC will disallow all incoming connections from other devices. How to Make Your Laptop Choose a Wired Connection Instead of Wireless HTG Explains: What Is Two-Factor Authentication and Should I Be Using It? HTG Explains: What Is Windows RT and What Does It Mean To Me?

    Read the article

  • Plan your SharePoint 2010 Content Type Hub carefully

    - by Wayne
    Currently setting up a new environment on SharePoint 2010 (which was made available for download yesterday if anyone missed that :-). One of the new features of SharePoint 2010 is to set up a Content Type Hub (which is a part of the Metadata Service Application), which is a hub for all Content Types that other Site Collections can subscribe to. That is you only need to manage your content types in one location. Setting up the Content Type Hub is not that difficult but you must make it very careful to avoid a lot of work and troubleshooting. Here is a short tutorial with a few tips and tricks to make it easy for you to get started. Determine location of Content Type Hub First of all you need to decide in which Site Collection to place your Content Type Hub; in the root site collection or a specific one. I think using a specific Site Collection that only acts as a Content Type Hub is the best way, there are no best practice as of now. So I create a new Site Collection, at for instance http://server/sites/CTH/. The top-level site of this site collection should be for instance a Team Site. You cannot use Blank Site by default, which would have been the best option IMHO, since that site does not have the Taxonomy feature stapled upon it (check the TaxonomyFeatureStapler feature for which site templates that can be used). Configure Managed Metadata Service Application Next you need to create your Managed Metadata Service Application or configure the existing one, Central Administration > Application Management > Manage Service Applications. Select the Managed Metadata service application and click Properties if you already have created it. In the bottom of the dialog window when you are creating the service application or when you are editing the properties is a section to fill in the Content Type Hub. In this text box fill in the URL of the Content Type Hub. It is essential that you have decided where your Content Type Hub will reside, since once this is set you cannot change it. The only way to change it is to rebuild the whole managed metadata service application! Also make sure that you enter the URL correctly. I did copy and paste the URL once and got the /default.aspx in the URL which funked the whole service up. Make sure that you only use the URL to the Site Collection of the hub. Now you have to set up so that other Site Collections can consume the content types from the hub. This is done by selecting the connection for the managed metadata service application and clicking properties. A new dialog window opens and there you need to click the Consumes content types from the Content Type Gallery at nnnn. Now you are free to syndicate your Content Types from the Hub. Publish Content Types To publish a Content Type from the hub you need to go to Site Settings > Content Types and select the content type that you would like to publish. Then select Manage publishing for this content type. This takes you to a page from where you can Publish, Unpublish or Republish the content type. Once the content type is published it can take up to an hour for the subscribing Site Collections to get it. This is controlled by the Content Type Subscriber job that is scheduled to run once an hour. To speed up your publishing just go to Central Administration > Monitoring > Review Job Definitions > Content Type Subscriber and click Run now and you content type is very soon available for use. Published Content Type status You can check the status of the content type publishing in your destination site collections by selecting Site Settings > Content Type Publishing. From here you can force a refresh of all subscribed content types, see which ones that are subscribed and finally check the publishing error log. This error log is very useful for detecting errors during the publishing. For instance if you use any features such as ratings, metadata, document ids in your content type hub and your destination site collection does not have those features available this will be reported here.

    Read the article

  • "lo: Disabled Privacy Extensions" and ipv6 disabling?

    - by Smartkid
    There are lots of "lo: Disabled Privacy Extensions" in var/log/messages . I googled and find it is ipv6 releated, so I tried to disable ipv6. I added the following lines to /etc/sysctl.conf net.ipv6.conf.all.disable_ipv6=1 net.ipv6.conf.default.disable_ipv6=1 net.ipv6.conf.lo.disable_ipv6=1 and blacklist ipv6 to /etc/modprobe.d/blacklist.conf after that, I restarted the network by /etc/init.d/networking restart . My question is: The ip addr still shows inet6 address attached to eth0 in forms like inet6 fe80::212:79ff:fecf:edaf/64 scope link Does it means my ipv6 not disabled?

    Read the article

  • aspnet_regiis -lk is not listing the site I need

    - by Luke Duddridge
    I am trying to release a site to run under framework 4 on a server that also hosts framework 2 sites. By default the App has defaulted to framework 2, but when I try to change it's framework to 4 I get a message saying that the following action will cause the iis to reset. The problem I have is there are serveral active sites that I do not want to interupt with a restart. The message goes on to say you can avoid restarting by running the following: aspnet_regiis -norestart -s [IIS Virtual Path] I have been attempting to find the site virtual path but when I run aspnet_regiis -lk the site I am after does not appear to be listed. My first thoughts were that it has something to do with the app pool?, but I'm sure I saw sites that are inactive listed, and after creating a basic site to get it to run under framework 2, the site still did not appear in the -lk list. Can anyone tell me if there is an alternative location to the -lk that I can find the specific information realating to the IIS Virtual Path?

    Read the article

  • Rhythmbox not saving the album art permanently

    - by Nik
    I run ubuntu 10.10 and use rhythmbox (version 0.13.1) regularly with the albumartsearch plugin installed. However when I change the album art it is only temporary. On moving to the next song it automatically removes the previous song's album art cover. (I do know about banshee but would like to use rhythmbox). The cover art plugin is also installed by default however it cannot display some of the album covers since the songs are in my local language (tamil) hence it cannot retrieve the album cover from the internet. However the albumartsearch plugin seems to do the job although only temporarily. Any reason why it might be? I have tried looking for other rhythmbox plugins which might be similar to albumartsearch but in vain. Any help would be appreciated. I have filed a bug in the albumartsearch plugin's website. Waiting for the reply.

    Read the article

  • Cannot locate Ubuntu Software Center via Firefox to open APT links

    - by Bobby Phoenix
    I'm trying to locate where the Ubuntu Software Center is to choose as default for handling APT links in Firefox. I can click on the links, and I get the pop-up, but Ubuntu Software Center is not there. I tried to choose an application through Firefox's settings and through the pop-up, but I don't know the path. As you can see by my screen shot for the pop-up I chose the wrong one as that doesn't work. What is the correct path I need to select the correct file? EDIT - I added a fourth screen shot. I don't have it in that location. This is what I have. My view is in ABC order, and it's showing hidden files.

    Read the article

  • Dash is slow and shows irrelevant results

    - by Alexey Frishman
    I currently have the latest Ubuntu 12.10 installed on my laptop. Usually I use Launchy application to have a quick access to any app/config/file etc. Now I'm trying to get used to Dash, which is supposed to be default way to do such things in recent Ubuntu versions. The difference between the usage of Launchy and Dash is following: Launchy: Alt+Space - Launchy shell shown instantly - type your request - open the target Dash: SuperKey - PERIOD - Dash is shown - type your request - PERIOD - navigate with arrow buttons between the results - open the desired result Another problem. When I type the term "ryth" (which is incorrectly spelled part of "Rhythmbox") what is shown in these 2 shells: Launchy: 1 result, which is Rhythmbox. The letters 'r', 'y', 't' and 'h' are highlighted. Dash: 2 results, which are MP3s from Amazon and are completely irrelevant to my request So is there any way to tweak the Dash to allow me to use it as I use Launchy with the same performance and results?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • wcf web service in post method, object properties are null, although the object is not null

    - by Abdalhadi Kolayb
    i have this problem in post method when i send object parameter to the method, then the object is not null, but all its properties have the default values. here is data module: [DataContract] public class Products { [DataMember(Order = 1)] public int ProdID { get; set; } [DataMember(Order = 2)] public string ProdName { get; set; } [DataMember(Order = 3)] public float PrpdPrice { get; set; } } and here is the interface: [OperationContract] [WebInvoke( Method = "POST", UriTemplate = "AddProduct", ResponseFormat = WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.WrappedRequest, RequestFormat = WebMessageFormat.Json)] string AddProduct([MessageParameter(Name = "prod")]Products prod); public string AddProduct(Products prod) { ProductsList.Add(prod); return "return string"; } here is the json request: Content-type:application/json {"prod":[{"ProdID": 111,"ProdName": "P111","PrpdPrice": 111}]} but in the server the object received: {"prod":[{"ProdID": 0,"ProdName": NULL,"PrpdPrice": 0}]}

    Read the article

  • doubleTwist is an iTunes Alternative that Supports Several Devices

    - by Mysticgeek
    There are a lot of iTunes users out there, but unfortunately you can’t use it with all of your portable devices. Today we take a look at doubleTwist, which allows you to sync your media with a multitude of portable devices and easily share it as well. Note: You can run doubleTwist on Windows or Mac, and here we take a look at the Windows version. Install & Setup doubleTwist Download and install doubleTwist using the defaults in the wizard… Installation takes several moments and you’ll see the progress while it finishes up. After installation is complete, sign up for an account if you don’t already have one. If you do have an account you can login right away. Enter in your username, email address, and password then click Sign Up.   You’ll get an confirmation email and need to activate the account before you can sign in. Once you’re all signed up, launch doubleTwist and you’ll be ready to start using it. doubleTwist Music The default music store is Amazon MP3 store which might appeal to those of you who are tired of the iTunes music store. A lot of times the music is cheaper and available at higher bit rates. You can start searching for music in the Amazon Music Store and previewing songs. To purchase anything though you will need to sign into your Amazon account.   Under Playlists it allows you to import your playlists from iTunes and Windows Media Player, which is a handy feature if you don’t want to set them up again. Of course you can play your songs through the music player on your desktop. Devices One of the coolest things about doubleTwist is that it supports a lot of different portable media devices including iPod, BlackBerry, Windows Mobile, Android, PSP, Smartphones, and much more. Unfortunately for Zune users…there isn’t any support for the Zune of Zune HD yet. Here we have a Creative Zen attached and can sync songs, pictures, and podcasts. An HTC-S620 Smartphone running Windows Mobile… Even a simple USB drive will be recognized and you can transfer your media to it as well.   Podcasts Finding your favorite audio and video podcasts is easy with the search feature. You can easily manage and subscribe to podcasts in the subscriptions section.   You can watch the video podcasts directly in doubleTwist. Sharing Media Also you can share digital media with your friends or add it to Flickr and YouTube. You can send any pictures, videos, or music in your library to other people by dragging it over. You can email users individually… Or access contacts from your Gmail and Yahoo accounts. There is a limit to how much you can send of video podcasts… only the first 10 minutes. The person you send it to will get a link in their email that points to your My Feed page on the doubleTwist site.   There they can access the media you sent…in this example it’s a video podcast but you can share any media. Other Features Under My Profile you can change your avatar and personal information.   In Preferences you can choose where media is stored, its startup actions, podcast subscriptions, and manage device syncing. Conclusion It’s still in beta stage so expect some bugs, but overall doubleTwist is a solid media player that is easy to use with a clean interface. It’s simple and doesn’t try to do too much so is fairly easy on system resources. The main annoyance is it tries to catalog all of your media out of the box. Which may be alright for some users with smaller media collections, but very irritating to advanced users with large collections. Also there is currently no support for the Zune, but according to their forums, it’s on the way. At the time of this writing it’s in public beta and can be downloaded for XP, Vista, Windows 7 (32 & 64 bit), and Mac OSX. If you’re looking for an iTunes alternative that works with several different portable devices, you might want to give DoubleTwist a try. Download DoubleTwist Public Beta See If Your Media Device is Supported by doubleTwist Similar Articles Productive Geek Tips MusicBee is a Fast and Powerful Music ManagerAvoid the Apple QuickTime Bloat with QT LiteBeginner Geek: Set Default Programs in Windows 7 and VistaBeginner Geeks: OpenOffice is a Free Cross Platform Alternative to MS OfficeManage Devices the Easy Way with Device Stage in Windows 7 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox) OldTvShows.org – Find episodes of Hitchcock, Soaps, Game Shows and more

    Read the article

  • How To Add MP3 Support to Audacity (to Save in MP3 Format)

    - by YatriTrivedi
    You may have noticed that the default installation of Audacity doesn’t have built-in support for MP3s due to licensing issues.  Here’s how to add it in yourself for free really easily in few simple steps. Photo by bobcat rock Latest Features How-To Geek ETC HTG Projects: How to Create Your Own Custom Papercraft Toy How to Combine Rescue Disks to Create the Ultimate Windows Repair Disk What is Camera Raw, and Why Would a Professional Prefer it to JPG? The How-To Geek Guide to Audio Editing: The Basics How To Boot 10 Different Live CDs From 1 USB Flash Drive The 20 Best How-To Geek Linux Articles of 2010 Five Sleek Audi R8 Car Themes for Chrome and Iron MS Notepad Replacement Metapad Returns with a New Beta Version Spybot Search and Destroy Now Available as a Portable App (PortableApps.com) ShapeShifter: What Are Dreams? [Video] This Computer Runs on Geek Power Wallpaper Bones, Clocks, and Counters; A Look at the First 35,000 Years of Computing

    Read the article

  • Some Adsense domain's ads are causing document.write() statements that remove the html from the page

    - by er1234
    All that is output on the page is the domain name of the advertiser, for example 'www.solar-aid.org'. The rest of the content is stripped, I believe because of a document.write() statement. I'd like to know if this is a common issue or something wrong with our setup. There are three domains causing the issue, which we've blocked from Adsense as a result. solar-aid.org kiva.org grameenfoundation.org Given the type of organizations I think they may be within the default group of 'public service ads' within the Backup Ads setting. If the issue doesn't completely resolve itself soon (one customer of ours complained today, even though I blocked them 5+ days ago), I'll disable public service ads and select the 'fill space with a solid color' option.

    Read the article

  • Ghost Incognito Automatically Loads Incognito Mode Based on Domain

    - by Jason Fitzpatrick
    Chrome: Ghost Incognito mode is a simple Chrome extension that automatically launches Incognito mode on a domain-by-domain basis. If you routinely visit the same sites using Incognito Mode, Ghost Incognito allows you to flag domains. By default it turns on Incognito for all .XXX domains and, once you select some domains, for any that you specify. Thus if you flag angrybirds.com, as we did for our test run of the app, every time you visit angrybirds.com or a sub-domain there of such as shop.angrybirds.com, you’ll be automatically directed to a new Incognito tab–no input from you necessary. Ghost Incognito is free, Chrome only. Ghost Incognito [via Addictive Tips] HTG Explains: When Do You Need to Update Your Drivers? How to Make the Kindle Fire Silk Browser *Actually* Fast! Amazon’s New Kindle Fire Tablet: the How-To Geek Review

    Read the article

  • Nebula Filled Skies Above a City Wallpaper

    - by Asian Angel
    Note: To view and download other color variations of this wallpaper vist welshdragon’s gallery. Nebula Skies 5 [deviantART] Latest Features How-To Geek ETC How to Enable User-Specific Wireless Networks in Windows 7 How to Use Google Chrome as Your Default PDF Reader (the Easy Way) How To Remove People and Objects From Photographs In Photoshop Ask How-To Geek: How Can I Monitor My Bandwidth Usage? Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware Comix is an Awesome Comics Archive Viewer for Linux Get the MakeUseOf eBook Guide to Speeding Up Windows for Free Need Tech Support? Call the Star Wars Help Desk! [Video Classic] Reclaim Vertical UI Space by Adding a Toolbar to the Left or Right Side of Firefox Androidify Turns You into an Android-style Avatar Reader for Android Updates; Now with Feed Widgets and More

    Read the article

  • Should my URLs be lowercase?

    - by Rowan Freeman
    According to this blog ("Understanding SEO Friendly URL Syntax Practices") I should change http://example.com/Hello-Dolly To http://example.com/hello-dolly The reasons given are: URLs, in general, are case-sensitive it will simplify any case sensitive SEO and analytics reports According to this GIF that I found on Wikipedia's article on URL Normalization I should convert my URLs from any uppercase to all lowercase. However I use ASP.NET MVC4 and by default my URLs are structured like this (CamelCase): http://www.domain.com/Controller/Action/Parameter http://www.greatsite.com/Categories/List/Bicycles I've skimmed through the RFC1738 but I didn't see any definitive answers to this. Should I go out of my way to force the framework to change everything to lower case? Why did Microsoft choose to design their framework like this if everybody is telling me to use lowercase?

    Read the article

  • Ardour won't rewind when jack time master

    - by Edward
    Using Ubuntu Studio 12.04, ardour will not rewind when it is set to the jack time master. I've read that this could be due to a jack/ardour version conflict, but I am not sure what the correct combo should be. The same thing happens with "ardour 2.8.14 (built from revision 13065)" and "ardour 2.8.12 (built from revision 10144)". The latter is the default installation with ubuntu studio 12.04 LTS. Linux "/proc/version" reports as Linux version 3.2.0-23-lowlatency-pae (buildd@vernadsky) (gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu4) ) #31-Ubuntu SMP PREEMPT Wed Apr 11 04:07:36 UTC 2012 and "jackd --version" reports as: jackdmp 1.9.8 Copyright 2001-2005 Paul Davis and others. Copyright 2004-2011 Grame. jackdmp comes with ABSOLUTELY NO WARRANTY This is free software, and you are welcome to redistribute it under certain conditions; see the file COPYING for details jackdmp version 1.9.8 tmpdir /dev/shm protocol 8 Thanks for any help.

    Read the article

< Previous Page | 608 609 610 611 612 613 614 615 616 617 618 619  | Next Page >