Search Results

Search found 24018 results on 961 pages for 'platform specific'.

Page 621/961 | < Previous Page | 617 618 619 620 621 622 623 624 625 626 627 628  | Next Page >

  • JAX-WS Consuming web service with WS-Security and WS-Addressing

    - by aurealus
    I'm trying to develop a standalone Java web service client with JAX-WS (Metro) that uses WS-Security with Username Token Authentication (Password digest, nonces and timestamp) and timestamp verification along with WS-Addressing over SSL. The WSDL I have to work with does not define any security policy information. I have been unable to figure out exactly how to add this header information (the correct way to do so) when the WSDL does not contain this information. Most examples I have found using Metro revolve around using Netbeans to automatically generate this from the WSDL which does not help me at all. I have looked into WSIT, XWSS, etc. without much clarity or direction. JBoss WS Metro looked promising not much luck yet there either. Anyone have experience doing this or have suggestions on how to accomplish this task? Even pointing me in the right direction would be helpful. I am not restricted to a specific technology other than it must be Java based.

    Read the article

  • PhantomJS not exactly rendering HTML to PNG

    - by John Leonard
    I'm having trouble adjusting PhantomJS to create a PNG file that matches the original browser presentation. Here is the entire sample html file. It's a sankey diagram creating using rCharts and d3-sankey. (You'll need to save the file to your hard drive and view it from there.) I'm running on Windows and using rasterize.js: >> phantomjs.exe rasterize.js test.html test.png ISSUE: Below is a snip of one of the text strings when viewed in a browser: And here is a snip of the same string from the PNG created by PhantomJS: How do I make the text-shadow go away? I've played around with various CSS attributes (text-shadow) and webkit-specific attributes (e.g., -webkit-text-rendering), but can't seem to make it go away. Is this a setting in PhantomJS? in the underlying webkit? or somewhere else? Many thanks!

    Read the article

  • Objective-C (iPhone) Memory Management

    - by Steven
    I'm sorry to ask such a simple question, but it's a specific question I've not been able to find an answer for. I'm not a native objective-c programmer, so I apologise if I use any C# terms! If I define an object in test.h @interface test : something { NSString *_testString; } Then initialise it in test.m -(id)init { _testString = [[NSString alloc] initWithString:@"hello"]; } Then I understand that I would release it in dealloc, as every init should have a release -(void)dealloc { [_testString release]; } However, what I need clarification on is what happens if in init, I use one of the shortcut methods for object creation, do I still release it in dealloc? Doesn't this break the "one release for one init" rule? e.g. -(id)init { _testString = [NSString stringWithString:@"hello"]; } Thanks for your helps, and if this has been answered somewhere else, I apologise!! Steven

    Read the article

  • Covariance and Contravariance on the same type argument

    - by William Edmondson
    The C# spec states that an argument type cannot be both covariant and contravariant at the same time. This is apparent when creating a covariant or contravariant interface you decorate your type parameters with "out" or "in" respectively. There is not option that allows both at the same time ("outin"). Is this limitation simply a language specific constraint or are there deeper, more fundamental reasons based in category theory that would make you not want your type to be both covariant and contravariant? Edit: My understanding was that arrays were actually both covariant and contravariant. public class Pet{} public class Cat : Pet{} public class Siamese : Cat{} Cat[] cats = new Cat[10]; Pet[] pets = new Pet[10]; Siamese[] siameseCats = new Siamese[10]; //Cat array is covariant pets = cats; //Cat array is also contravariant since it accepts conversions from wider types cats = siameseCats;

    Read the article

  • Relating NP-Complete problems to real world problems

    - by terru
    I have a decent grasp of NP Complete problems; that's not the issue. What I don't have is a good sense of where they turn up in "real" programming. Some (like knapsack and traveling salesman) are obvious, but others don't seem obviously connected to "real" problems. I've had the experience several times of struggling with a difficult problem only to realize it is a well known NP Complete problem that has been researched extensively. If I had recognized the connection more quickly I could have saved quite a bit of time researching existing solutions to my specific problem. Are there any resources (online or print) that specifically connect NP Complete to real world instances?

    Read the article

  • ICC vs GCC - Optimization and CPU architecture

    - by Rayne
    Hi all, I'm interested in knowing how GCC differs from Intel's ICC in terms of the optimization levels and catering to specific processor architecture. I'm using GCC 4.1.2 20070626 and ICC v11.1 for Linux. How does ICC's optimization levels (O1 to O3) differ from GCC, if they differ at all? The ICC is able to cater specifically to different architectures (IA-32, intel64 and IA-64). I've read that GCC has the -march compiler option which I think is similar, but I can't find a list of the options to use. I'm using Intel Xeon X5570, which is 64-bit. Are there any other GCC compiler options I could use that would cater my applications for 64-bit Intel CPUs? Thank you. Regards, Rayne

    Read the article

  • How can I locate the indexpath of the UITableviewCell a certain button is in when I click that butto

    - by Jake
    I've added a button as an accessory view to uitableviewcell, and I when I press it, I'd like to be able to access the index path of the table view cell it's currently inside of so I can delete/modify the contents of that cell. Should I subclass UIbutton and add make it have it's own index path property? If so, do I need to implement any specific button methods in that subclass of will they automatically be loaded? Any help would be greatly appreciated. Sorry if this is a noobie question.

    Read the article

  • PHP CMS with independent framework.

    - by Simon
    We currently use MySource Matrix CMS for large projects, Wordpress CMS for small projects and Zend Framework for bespoke applications... I'm not trying to confuse and compare a CMS to a framework, that has been done before :-) I want to identify a few CMSs for review that have foundations in strong (preferably independent) PHP frameworks. The only one I have looked at is SilverStripe CMS and Sapphire Framework. We have many clients that have a CMS for internet and/ or extranet and then various other bespoke applications that are then integrated via various means to look like they're in the CMS. I believe it will be more productive and beneficial to have a common framework between these branches so they can be natively merged. Hope this makes sense. PS. I have used custom assets in MySource Matrix and specific modules in other CMS but you feel you are working for the CMS not the application you are building.

    Read the article

  • How to void authorized transaction in authorize.net gateway using ActiveMerchant

    - by m7d
    Goal: Only have successful purchases show up on a customer's billing statement. I don't want declined authorizations showing up on their billing statement (as seen in an online banking system) as pending. A customer often will accidentally input an incorrect billing address, for example, followed by a correct one. Together, the two attempts, one successful and one not both show up on their billing statement as pending prior to settlement. This can scare the customer as it looks potentially like they will be charged twice. Details: When I do an AUTH_CAPTURE (via ActiveMerchant's purchase) or an AUTH (via ActiveMerchant's authorize) which is declined and subsequently want to void that authorization (via ActiveMerchant's void) so as not to have it appear on a customer's billing statement as pending (even though it will settle out after a few days), the gateway can't find the transaction to void using the authorization code returned from the authorization or capture method calls on the gateway. This is specific to the authorize.net AIM gateway. Please advise. Thanks!

    Read the article

  • ASPNETDB and ASPSTATE database. How to change the connectionstrings?

    - by George
    I have two ASP-specific SQL Server databases 1) ASPState - To store session state 2) ASPNETDB - To store Security/Role stuff. In my web.config, I am specifying the connection string used to identify the location of the APState database: <sessionState mode="SQLServer" sqlConnectionString="server=(local)\sql2008b;uid=sa;pwd=iainttelling;" timeout="120"/> Where is the conenction string specified for the ASPNETDB database? I am trying to point it to a db on a remote server. I have a feeling it is somewhere in IIS orthe Machine Config. I'd like to add it to my WEB.CONFIG Could someone help me to do this?

    Read the article

  • dojo/dijit and Printing

    - by Kitson
    I want to be able to provide a button to my users to just print a particular portion of my dojo/dijit application. There seems to be a general lack of documentation and examples when it comes to printing. For example, I have a specific dijit.layout.ContentPane that contains the content that I would like to print, but I wouldn't want to print the rest of the document. I have seen some pure JavaScript examples on the web where the node.innerHTML is read into a "hidden" iframe and then printed from there. I suspect that would work, but I was wondering if there was a more dojo centric approach to printing. Any thoughts?

    Read the article

  • Calling IPrincipal.IsInRole on Windows 7

    - by adrianbanks
    We use NTLM auth in our application to determine whether a user can perform certain operations. We use the IPrincipal of their current Windows login (in WinForms applications), calling IsInRole to check for specific group memberships. To check that a user is a local administrator on the machine, we use: AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal); ... bool allowed = Thread.CurrentPrincipal.IsInRole(@"Builtin\Administrators") This works if the current user is the Administrator user, or is another user that is a member of the Builtin\Administrators group. In our testing on Windows 7, we have found that this no longer works as expected. The Administrator user still works fine, but any other user that is a member of the Builtin\Administrators group returns false for the IsInRole call. What could be causing this difference? I have a gut feeling that a default setting has changed somewhere (possible in gpedit), but cannot find anything that looks like the culprit.

    Read the article

  • Firebird Insert Distinct Data Using ZeosLib and Delphi

    - by Brad
    I'm using Zeos 7, and Delphi 2K9 and want to check to see if a value is already in the database under a specific field before I post the data to the database. Example: Field Keyword Values of Cheese, Mouse, Trap tblkeywordKEYWORD.Value = Cheese What is wrong with the following? And is there a better way? zQueryKeyword.SQL.Add('IF NOT EXISTS(Select KEYWORD from KEYWORDLIST ='''+ tblkeywordKEYWORD.Value+''')INSERT into KEYWORDLIST(KEYWORD) VALUES ('''+ tblkeywordKEYWORD.Value+'''))'); zQueryKeyword.ExecSql; I tried using the unique constraint in IB Expert, but it gives the following error: Invalid insert or update value(s): object columns are constrained - no 2 table rows can have duplicate column values. attempt to store duplicate value (visible to active transactions) in unique index "UNQ1_KEYWORDLIST". Thanks for any help -Brad

    Read the article

  • DataGrid row and MVVM

    - by Titan
    Hi, I have a wpf datagrid with many rows, each row has some specific behaviors like selection changed of column 1 combo will filter column 2 combo, and what is selected in row 1 column 1 combo cannot be selected in row 2 column 1 combo, etc... So I am thinking of having a view model for the main datagrid, and another for each row. Is that a good MVVM implementation? It is so that I can handle each row's change event effectively. Question is, how do I create "each row" as a user control view? within the datagrid. I want to implement something like this: <TreeView Padding="0,4,12,0"> <controls:CommandTreeViewItem Header="Sales Orders" Command="{Binding SelectViewModelCommand}" CommandParameter="Sales Orders"/> </TreeView> Where instead of a TreeView I want a datagrid, and instead of controls:CommandTreeViewItem a datagrid row in WPF. Thanks in advance.

    Read the article

  • MSBuild Extension Pack Zip the folders and subfolders

    - by ManojTrek
    I have to Zip my folders and subfolders Using MSbuild, I was looking at the MSBuild Extension pack, and tried this <ItemGroup> <ZipFiles Include="\Test\Web\**\*.*" > <Group>Release</Group> </ZipFiles> </ItemGroup> <MSBuild.ExtensionPack.Compression.Zip TaskAction="Create" CompressFiles="@(ZipFiles)" ZipFileName="$(WorkingDir)%(ZipFiles.Group).zip"/> When I do this it just keep adding all the files to root, instead of adding it into the specific subfolder within the zip file. I am missing something, can anyone help here please.

    Read the article

  • libvirt and VirtualBox / Getting Started

    - by Marc Lucas
    I'm trying to get started on libvirt with VirtualBox as a virtualization solution. I installed everything and VirtualBox itself is running when using their VBoxHeadless command. However, libvirt fails to connect to VirtualBox: # virsh -c vbox:///session libvir: error : could not connect to vbox:///session error: failed to connect to the hypervisor I could not find any hints in the libvirt documentation that point to whether I have to make any domain specific configuration before using virsh. Does anyone have a hint? Or even better, maybe a tutorial that works through the way of using libvirt, virsh or it's APIs (my later goal) from the ground up.

    Read the article

  • QTreeWidget insertTopLevelItem - index given not accurately displayed in Tree?

    - by mleep
    I am unable to properly insert a QTreeWidgetItem at a specific index, in this case I am removing all QTreeWidgetItems from the tree, doing a custom sort on their Date Objects and then inserting them back into the QTreeWidget. However, upon inserting (even one at a time) the QTreeWidgetItem is not inserted into the correct place. The code below prints out: index 0: 0 index 0: 1 index 1: 0 index 0: 2 index 1: 1 index 2: 0 index 0: 3 index 1: 2 index 2: 0 index 3: 1 index 0: 4 index 1: 2 index 2: 0 index 3: 1 index 4: 3 print 'index 0: ', self.indexOfTopLevelItem(childrenList[0]) self.insertTopLevelItem(0, childrenList[1]) print 'index 0: ', self.indexOfTopLevelItem(childrenList[0]), ' index 1: ',\ self.indexOfTopLevelItem(childrenList[1]) self.insertTopLevelItem(0, childrenList[2]) print 'index 0: ', self.indexOfTopLevelItem(childrenList[0]), ' index 1: ',\ self.indexOfTopLevelItem(childrenList[1]), ' index 2: ', \ self.indexOfTopLevelItem(childrenList[2]) self.insertTopLevelItem(0, childrenList[3]) print 'index 0: ', self.indexOfTopLevelItem(childrenList[0]), ' index 1: ',\ self.indexOfTopLevelItem(childrenList[1]), ' index 2: ',\ self.indexOfTopLevelItem(childrenList[2]), 'index 3: ',\ self.indexOfTopLevelItem(childrenList[3]) self.insertTopLevelItem(0, childrenList[4]) print 'index 0: ', self.indexOfTopLevelItem(childrenList[0]),\ ' index 1: ', self.indexOfTopLevelItem(childrenList[1]),\ ' index 2: ', self.indexOfTopLevelItem(childrenList[2]),\ 'index 3: ', self.indexOfTopLevelItem(childrenList[3]),\ 'index 4: ', self.indexOfTopLevelItem(childrenList[4])

    Read the article

  • Silverlight 4.0: DataTemplate Error

    - by xscape
    Im trying to get the specific template in my resource dictionary. This is my resource dictionary <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:view="clr-namespace:Test.Layout.View" xmlns:toolkit="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"><DataTemplate x:Key="LeftRightLayout"> <toolkit:DockPanel> <view:SharedContainerView toolkit:DockPanel.Dock="Left"/> <view:SingleContainerView toolkit:DockPanel.Dock="Right"/> </toolkit:DockPanel> </DataTemplate> However when it gets to XamlReader.Load private static ResourceDictionary GetResource(string resourceName) { ResourceDictionary resource = null; XDocument xDoc = XDocument.Load(resourceName); resource = (ResourceDictionary)XamlReader.Load(xDoc.ToString(SaveOptions.None)); return resource; } The type 'SharedContainerView' was not found because 'clr-namespace:Test.Layout.View' is an unknown namespace. [Line: 4 Position: 56]

    Read the article

  • C# Resource Array

    - by user472875
    Hi, I have a bunch of pictures I'm using in a C# project, and I'm trying to initialize them all for later use. There are over 50 of them and they all have the same name format Properties.Resources._#, where # is the picture number. What I'm trying to do is something like: for(int i = 0; i < 100; i++) { pics[i] = Properties.Resources._i; } How would I go about embedding the index into the name? Thanks, and happy holidays. EDIT: Just realized that if I had a way to embed the index in the name, I could just have a function that returns the specific picture based on the number given, so that would work too.

    Read the article

  • DataAnnotations multiple property validation in MVC

    - by scottrakes
    I am struggling with DataAnnotations in MVC. I would like to validate a specific property, not the entire class but need to pass in another property value to validate against. I can't figure out how to pass the other property's value, ScheduleFlag, to the SignUpType Validation Attribute. public class Event { public bool ScheduleFlag {get;set;} [SignupType(ScheduleFlag=ScheduleFlag)] } public class SignupTypeAttribute : ValidationAttribute { public bool ScheduleFlag { get; set; } public override bool IsValid(object value) { var DonationFlag = (bool)value; if (DonationFlag == false && ScheduleFlag == false) return false; return true; } }

    Read the article

  • How to Visualize your Audit Data with BI Publisher?

    - by kanichiro.nishida
      Do you know how many reports on your BI Publisher server are accessed yesterday ? Or, how many users accessed to the reports yesterday, or what are the average number of the users accessed to the reports during the week vs. weekend or morning vs. afternoon ? With BI Publisher 11G, now you can audit your user’s reports access and understand the state of the reporting environment at your server, each user, or each report level. At the previous post I’ve talked about what the BI Publisher’s auditing functionality and how to enable it so that BI Publisher can start collecting such data. (How to Audit and Monitor BI Publisher Reports Access?)Now, how can you visualize such auditing data to have a better understanding and gain more insights? With Fusion Middleware Audit Framework you have an option to store the auditing data into a database instead of a log file, which is the default option. Once you enable the database storage option, that means you have your auditing data (or, user report access data) in your database tables, now no brainer, you can start visualize the data, create reports, analyze, and share with BI Publisher. So, first, let’s take a look on how to enable the database storage option for the auditing data. How to Feed the Auditing Data into Database First you need to create a database schema for Fusion Middleware Audit Framework with RCU (Repository Creation Utility). If you have already installed BI Publisher 11G you should be familiar with this RCU. It creates any database schema necessary to run any Fusion Middleware products including BI stuff. And you can use the same RCU that you used for your BI or BI Publisher installation to create this Audit schema. Create Audit Schema with RCU Here are the steps: Go to $RCU_HOME/bin and execute the ‘rcu’ command Choose Create at the starting screen and click Next. Enter your database details and click Next. Choose the option to create a new prefix, for example ‘BIP’, ‘KAN’, etc. Select 'Audit Services' from the list of schemas. Click Next and accept the tablespace creation. Click Finish to start the process. After this, there should be following three Audit related schema created in your database. <prefix>_IAU (e.g. KAN_IAU) <prefix>_IAU_APPEND (e.g. KAN_IAU_APPEND) <prefix>_IAU_VIEWER (e.g. KAN_IAU_VIEWER) Setup Datasource at WebLogic After you create a database schema for your auditing data, now you need to create a JDBC connection on your WebLogic Server so the Audit Framework can access to the database schema that was created with the RCU with the previous step. Connect to the Oracle WebLogic Server administration console: http://hostname:port/console (e.g. http://report.oracle.com:7001/console) Under Services, click the Data Sources link. Click ‘Lock & Edit’ so that you can make changes Click New –> ‘Generic Datasource’ to create a new data source. Enter the following details for the new data source:  Name: Enter a name such as Audit Data Source-0.  JNDI Name: jdbc/AuditDB  Database Type: Oracle  Click Next and select ‘Oracle's Driver (Thin XA) Versions: 9.0.1 or later’ as Database Driver (if you’re using Oracle database), and click Next. The Connection Properties page appears. Enter the following information: Database Name: Enter the name of the database (SID) to which you will connect. Host Name: Enter the hostname of the database.  Port: Enter the database port.  Database User Name: This is the name of the audit schema that you created in RCU. The suffix is always IAU for the audit schema. For example, if you gave the prefix as ‘BIP’, then the schema name would be ‘KAN_IAU’.  Password: This is the password for the audit schema that you created in RCU.   Click Next. Accept the defaults, and click Test Configuration to verify the connection. Click Next Check listed servers where you want to make this JDBC connection available. Click ‘Finish’ ! After that, make sure you click ‘Activate Changes’ at the left hand side top to take the new JDBC connection in effect. Register your Audit Data Storing Database to your Domain Finally, you can register the JNDI/JDBC datasource as your Auditing data storage with Fusion Middleware Control (EM). Here are the steps: 1. Login to Fusion Middleware Control 2. Navigate to Weblogic Domain, right click on ‘bifoundation…..’, select Security, then Audit Store. 3. Click the searchlight icon next to the Datasource JNDI Name field. 4.Select the Audit JNDI/JDBC datasource you created in the previous step in the pop-up window and click OK. 5. Click Apply to continue. 6. Restart the whole WebLogic Servers in the domain. After this, now the BI Publisher should start feeding all the auditing data into the database table called ‘IAU_BASE’. Try login to BI Publisher and open a couple of reports, you should see the activity audited in the ‘IAU_BASE’ table. If not working, you might want to check the log file, which is located at $BI_HOME/user_projects/domains/bifoundation_domain/servers/AdminServer/logs/AdminServer-diagnostic.log to see if there is any error. Once you have the data in the database table, now, it’s time to visualize with BI Publisher reports! Create a First BI Publisher Auditing Report Register Auditing Datasource as JNDI datasource First thing you need to do is to register the audit datasource (JNDI/JDBC connection) you created in the previous step as JNDI data source at BI Publisher. It is a JDBC connection registered as JNDI, that means you don’t need to create a new JDBC connection by typing the connection URL, username/password, etc. You can just register it using the JNDI name. (e.g. jdbc/AuditDB) Login to BI Publisher as Administrator (e.g. weblogic) Go to Administration Page Click ‘JNDI Connection’ under Data Sources and Click ‘New’ Type Data Source Name and JNDI Name. The JNDI Name is the one you created in the WebLogic Console as the auditing datasource. (e.g. jdbc/AuditDB) Click ‘Test Connection’ to make sure the datasource connection works. Provide appropriate roles so that the report developers or viewers can share this data source to view reports. Click ‘Apply’ to save. Create Data Model Select Data Model from the tool bar menu ‘New’ Set ‘Default Data Source’ to the audit JNDI data source you have created in the previous step. Select ‘SQL Query’ for your data set Use Query Builder to build a query or just type a sql query. Either way, the table you want to report against is ‘IAU_BASE’. This IAU_BASE table contains all the auditing data for other products running on the WebLogic Server such as JPS, OID, etc. So, if you care only specific to BI Publisher then you want to filter by using  ‘IAU_COMPONENTTYPE’ column which contains the product name (e.g. ’xmlpserver’ for BI Publisher). Here is my sample sql query. select     "IAU_BASE"."IAU_COMPONENTTYPE" as "IAU_COMPONENTTYPE",      "IAU_BASE"."IAU_EVENTTYPE" as "IAU_EVENTTYPE",      "IAU_BASE"."IAU_EVENTCATEGORY" as "IAU_EVENTCATEGORY",      "IAU_BASE"."IAU_TSTZORIGINATING" as "IAU_TSTZORIGINATING",    to_char("IAU_TSTZORIGINATING", 'YYYY-MM-DD') IAU_DATE,    to_char("IAU_TSTZORIGINATING", 'DAY') as IAU_DAY,    to_char("IAU_TSTZORIGINATING", 'HH24') as IAU_HH24,    to_char("IAU_TSTZORIGINATING", 'WW') as IAU_WEEK_OF_YEAR,      "IAU_BASE"."IAU_INITIATOR" as "IAU_INITIATOR",      "IAU_BASE"."IAU_RESOURCE" as "IAU_RESOURCE",      "IAU_BASE"."IAU_TARGET" as "IAU_TARGET",      "IAU_BASE"."IAU_MESSAGETEXT" as "IAU_MESSAGETEXT",      "IAU_BASE"."IAU_FAILURECODE" as "IAU_FAILURECODE",      "IAU_BASE"."IAU_REMOTEIP" as "IAU_REMOTEIP" from    "KAN3_IAU"."IAU_BASE" "IAU_BASE" where "IAU_BASE"."IAU_COMPONENTTYPE" = 'xmlpserver' Once you saved a sample XML for this data model, now you can create a report with this data model. Create Report Now you can use one of the BI Publisher’s layout options to design the report layout and visualize the auditing data. I’m a big fan of Online Layout Editor, it’s just so easy and simple to create reports, and on top of that, all the reports created with Online Layout Editor has the Interactive View with automatic data linking and filtering feature without any setting or coding. If you haven’t checked the Interactive View or Online Layout Editor you might want to check these previous blog posts. (Interactive Reporting with BI Publisher 11G, Interactive Master Detail Report Just A Few Clicks Away!) But of course, you can use other layout design option such as RTF template. Here are some sample screenshots of my report design with Online Layout Editor.     Visualize and Gain More Insights about your Customers (Users) ! Now you can visualize your auditing data to have better understanding and gain more insights about your reporting environment you manage. It’s been actually helping me personally to answer the  questios like below.  How many reports are accessed or opened yesterday, today, last week ? Who is accessing which report at what time ? What are the time windows when the most of the reports access happening ? What are the most viewed reports ? Who are the active users ? What are the # of reports access or user access trend for the last month, last 6 months, last 12 months, etc ? I was talking with one of the best concierge in the world at this hotel the other day, and he was telling me that the best concierge knows about their customers inside-out therefore they can provide a very private service that is customized to each customer to meet each customer’s specific needs. Well, this is true when it comes to how to administrate and manage your reporting environment, right ? The best way to serve your customers (report users, including both viewers and developers) is to understand how they use, what they use, when they use. Auditing is not just about compliance, but it’s the way to improve the customer service. The BI Publisher 11G Auditing feature enables just that to help you understand your customers better. Happy customer service, be the best reporting concierge! p.s. please share with us on what other information would be helpful for you for the auditing! Always, any feedback is a great value and inspiration for us!  

    Read the article

  • Does RVM "failover" to another ruby instance on error?

    - by JohnMetta
    Have a strange problem in that I have a Rake task that seems to be using multiple versions of Ruby. When one fails, it seems to try another one. Details MacBook running 10.6.5 rvm 1.1.0 Rubies: 1.8.7-p302, ree-1.8.7-2010.02, ruby-1.9.2-p0 Rake 0.8.7 Gem 1.3.7 Veewee (provisioning Virtual Machines using Opcode.com, Vagrant and Chef) I'm not entirely sure the specific details of the error matter, but since it might be an issue with Veewee itself. So, what I'm trying to do is build a new box base on a veewee definition. The command fails with an error about a missing method- but what's interesting is how it fails. Errors I managed to figure out that if I only have one Ruby installed with RVM, it just fails. If I have more than one Ruby install, it fails at the same place, but execution seems to continue in another interpreter. Here are two different clipped console outputs. I've clipped them for size. The full outputs of each error are available as a gist. One Ruby version installed Here is the command run when I only have a single version of Ruby (1.8.7) available in RVM boudica:veewee john$ rvm rake build['mettabox'] --trace rvm 1.1.0 by Wayne E. Seguin ([email protected]) [http://rvm.beginrescueend.com/] (in /Users/john/Work/veewee) ** Invoke build (first_time) ** Execute build … creating new harddrive rake aborted! undefined method `max_vdi_size' for #<VirtualBox::SystemProperties:0x102d6af80> /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/virtualbox-0.8.3/lib/virtualbox/abstract_model/dirty.rb:172:in `method_missing' <------ stacktraces cut ----------> /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/bin/rake:31 /Users/john/.rvm/gems/ruby-1.8.7-p302@global/bin/rake:19:in `load' /Users/john/.rvm/gems/ruby-1.8.7-p302@global/bin/rake:19 Multiple Ruby Versions Here is the same command run with three versions of Ruby available in RVM. Prior to doing this, I used "rvm use 1.8.7." Again, I don't know how important the details of the specific errors are- what's interesting to me is that there are three separate errors- each with it's own stacktrace- and each in a different Ruby interpreter. Look at the bottom of each stacktrace and you'll see that they are all sourced from different interpreter locations- First ree-1.8.7, then ruby-1.8.7, then ruby-1.9.2: boudica:veewee john$ rvm rake build['mettabox'] --trace rvm 1.1.0 by Wayne E. Seguin ([email protected]) [http://rvm.beginrescueend.com/] (in /Users/john/Work/veewee) ** Invoke build (first_time) ** Execute build … creating new harddrive rake aborted! undefined method `max_vdi_size' for #<VirtualBox::SystemProperties:0x1059dd608> /Users/john/.rvm/gems/ree-1.8.7-2010.02/gems/virtualbox-0.8.3/lib/virtualbox/abstract_model/dirty.rb:172:in `method_missing' … /Users/john/.rvm/gems/ree-1.8.7-2010.02/gems/rake-0.8.7/bin/rake:31 /Users/john/.rvm/gems/ree-1.8.7-2010.02@global/bin/rake:19:in `load' /Users/john/.rvm/gems/ree-1.8.7-2010.02@global/bin/rake:19 (in /Users/john/Work/veewee) ** Invoke build (first_time) ** Execute build isofile ubuntu-10.04.1-server-amd64.iso is available ["a1b857f92eecaf9f0a31ecfc39dee906", "30b5c6fdddbfe7b397fe506400be698d"] [] Last good state: -1 Current step: 0 last good state -1 destroying machine+disks (re-)executing step 0-initial-a1b857f92eecaf9f0a31ecfc39dee906 VBoxManage: error: Machine settings file '/Users/john/VirtualBox VMs/mettabox/mettabox.vbox' already exists VBoxManage: error: Details: code VBOX_E_FILE_ERROR (0x80bb0004), component Machine, interface IMachine, callee nsISupports Context: "CreateMachine(bstrSettingsFile.raw(), name.raw(), osTypeId.raw(), Guid(id).toUtf16().raw(), FALSE , machine.asOutParam())" at line 247 of file VBoxManageMisc.cpp rake aborted! undefined method `memory_size=' for nil:NilClass /Users/john/Work/veewee/lib/veewee/session.rb:303:in `create_vm' /Users/john/Work/veewee/lib/veewee/session.rb:166:in `build' /Users/john/Work/veewee/lib/veewee/session.rb:560:in `transaction' /Users/john/Work/veewee/lib/veewee/session.rb:163:in `build' /Users/john/Work/veewee/Rakefile:87 /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/lib/rake.rb:636:in `call' /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/lib/rake.rb:636:in `execute' /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/lib/rake.rb:631:in `each' … /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/bin/rake:31 /Users/john/.rvm/gems/ruby-1.8.7-p302@global/bin/rake:19:in `load' /Users/john/.rvm/gems/ruby-1.8.7-p302@global/bin/rake:19 (in /Users/john/Work/veewee) ** Invoke build (first_time) ** Execute build isofile ubuntu-10.04.1-server-amd64.iso is available ["a9c4ab3257e1da3479c984eae9905c2a", "30b5c6fdddbfe7b397fe506400be698d"] [] Last good state: -1 Current step: 0 last good state -1 (re-)executing step 0-initial-a9c4ab3257e1da3479c984eae9905c2a VBoxManage: error: Machine settings file '/Users/john/VirtualBox VMs/mettabox/mettabox.vbox' already exists VBoxManage: error: Details: code VBOX_E_FILE_ERROR (0x80bb0004), component Machine, interface IMachine, callee nsISupports Context: "CreateMachine(bstrSettingsFile.raw(), name.raw(), osTypeId.raw(), Guid(id).toUtf16().raw(), FALSE , machine.asOutParam())" at line 247 of file VBoxManageMisc.cpp rake aborted! undefined method `memory_size=' for nil:NilClass /Users/john/Work/veewee/lib/veewee/session.rb:303:in `create_vm' /Users/john/Work/veewee/lib/veewee/session.rb:166:in `block in build' /Users/john/Work/veewee/lib/veewee/session.rb:560:in `transaction' /Users/john/Work/veewee/lib/veewee/session.rb:163:in `build' /Users/john/Work/veewee/Rakefile:87:in `block in <top (required)>' /Users/john/.rvm/rubies/ruby-1.9.2-p0/lib/ruby/1.9.1/rake.rb:634:in `call' /Users/john/.rvm/rubies/ruby-1.9.2-p0/lib/ruby/1.9.1/rake.rb:634:in `block in execute' … /Users/john/.rvm/rubies/ruby-1.9.2-p0/lib/ruby/1.9.1/rake.rb:2013:in `top_level' /Users/john/.rvm/rubies/ruby-1.9.2-p0/lib/ruby/1.9.1/rake.rb:1992:in `run' /Users/john/.rvm/rubies/ruby-1.9.2-p0/bin/rake:35:in `<main>' It isn't until we reach the last installed version of Ruby that execution halts. Discussion Does anyone have any idea what's going on here? Has anyone seen this "failover"-like behavior before? It seems strange to me that the first exception would not halt execution as it did with one interpreter, but I wonder if there are things happening when RVM is installed that we Ruby developers are not considering.

    Read the article

  • How to learn high-level Java web development concepts

    - by titaniumdecoy
    I have some experience writing web applications in Java for class projects. My first project used Servlets and my second, the Stripes framework. However, I feel that I am missing the greater picture of Java web development. I don't really understand the web.xml and context.xml files. I'm not sure what constitutes a Java EE application as opposed to a generic Java web application. I can't figure out how a bean is different from an ordinary Java class (POJO?) and how that differs from an Enterprise Java Bean (EJB). These are just the first few questions I could think of, but there are many more. What is a good way to learn how Java web applications function from the top down rather than simply how to develop an application with a specific framework? (Is there a book for this sort of thing?) Ultimately, I would like to understand Java web applications well enough to write my own framework.

    Read the article

  • NHibernate 2.1.2 in medium trust.

    - by John
    I'm trying to configure nhibernate 2.1.2 to run in medium trust, without any luck. I have tried follwing the suggestions to run in medium trust and pre-generating the proxies. I then tried to remove all references to lazy loading setting the default-lazy="false" on all classes and bags. However this threw an exception asking me to configure the proxyfactory.factory_class None of these methds worked as they kept throwing generic security exceptions or throwing easying that libraries do not allow AllowPartiallyTrustedCallers. Am I using the wrong version of NHibernate if I want to run in medium trust? Is there a specific set of binaries, or source, which I should be using.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

< Previous Page | 617 618 619 620 621 622 623 624 625 626 627 628  | Next Page >