Search Results

Search found 98173 results on 3927 pages for 'maintaining old code'.

Page 643/3927 | < Previous Page | 639 640 641 642 643 644 645 646 647 648 649 650  | Next Page >

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • What makes a project big?

    - by Jonny
    Just out of curiosity what's the difference between a small, medium and large size project? Is it measured by lines of code or complexity or what? Im building a bartering system and so far have about 1000 lines of code for login/registration. Even though there's lots of LOC i wouldnt consider it a big project because its not that complex though this is my first project so im not sure. How is it measured?

    Read the article

  • Can't install Ubuntu one

    - by Yehonatan Tsirolnik
    While trying to install Ubuntu one it throwes me this error - W:Failed to fetch http://ppa.launchpad.net/rabbitvcs/ppa/ubuntu/dists/DISTIBUTION/main/binary-amd64/PAckages 404 Not Found, W:Failed to fetch http://ppa.launchpad.net/rabbitvcs/ppa/ubuntu/dists/DISTRIBUTION/main/binary-i386/Packages 404 Not Found, E:Some index files failed to download. They have been ignored, or old ones used instead. and I can't install it Thanks.

    Read the article

  • Bootloader Problems Grub Won't Load Windows 7

    - by user108805
    I sent this to [email protected], still no response thought I could get a faster solution here. I am running Windows 7 64-bit and Ubuntu 12.04 LTS on separate partitions. The message is sent is: Boot-Repair URL: http://paste.ubuntu.com/1365163/ Originally I was unable to access Ubuntu after a windows update (Ubuntu was installed using wubi). Rather than logging into Ubuntu from the Windows 7 Bootloader, it lead to the grub command prompt. No matter what I did here, it would not log me into linux. As a result I uninstalled Ubuntu from the Add/Remove Programs application in Windows 7. I then re-installed Ubuntu 12.04 LTS using a liveCD-USB. This time however, I created a partition. I then restarted and got the GRUB bootloader which loads Ubuntu 12.04 LTS with no problems, however when I select windows (listed as "Windows 7 (loader)"), it just refreshes the grub bootloader instead of loading Windows 7. I then used the Windows 7 repair disk to run bootrec/fixmbr and bootrec/fixboot. This led to no bootloader coming up when I started my computer. Instead I got a blank black screen with a flashing white cursor. I went on to do a bootrec/buildbcd and bootrec/scanos. These did nothing to change the situation. When I ran bootrec/scanos it said that no Windows 7 installations were present. After this I decided to reinstall WIndows 7 only for this to do nothing to change the situation. Afterwards I did a boot-repair in which I began to get the GRUB bootloader, which would load ubuntu 12.04 LTS, but still would not load Windows 7. I also did a sudo update-grub which recognized Windows 7 as being installed, but still didn't fix the issue of loading Windows 7. While running Ubuntu I have no problem accessing my WIndows 7 partition which is formatted as NTFS. It shows all the files and folders reflecting that the re-install did take place, and it also shows all of my old applications and folders in the Windows.old folder. I am completely stuck at this point and have no clue what I should do next. Any help you can offer me will be greatly appreciate. Thank You --gap

    Read the article

  • Java 1.7 update 07 and Google Chrome

    - by Peter
    I've just updated Java from 1.6 to 1.7 via the Software Centre - removing the old Java 1.6 and selecting the new Java 1.7. Firefox works fine. But when I use Google Chrome to access a Java test website it says the Plugin is out of date. I click on run anyway and it says that it's running version 1.7. I've cleared Chrome's Cache and Plugin data and this hasn't changed anything. Anyway ideas? (Ps. It's Ubuntu 12.04 64 bit)

    Read the article

  • Running C++ AMP kernels on the CPU

    - by Daniel Moth
    One of the FAQs we receive is whether C++ AMP can be used to target the CPU. For targeting multi-core we have a technology we released with VS2010 called PPL, which has had enhancements for VS 11 – that is what you should be using! FYI, it also has a Linux implementation via Intel's TBB which conforms to the same interface. When you choose to use C++ AMP, you choose to take advantage of massively parallel hardware, through accelerators like the GPU. Having said that, you can always use the accelerator class to check if you are running on a system where the is no hardware with a DirectX 11 driver, and decide what alternative code path you wish to follow.  In fact, if you do nothing in code, if the runtime does not find DX11 hardware to run your code on, it will choose the WARP accelerator which will run your code on the CPU, taking advantage of multi-core and SSE2 (depending on the CPU capabilities WARP also uses SSE3 and SSE 4.1 – it does not currently use AVX and on such systems you hopefully have a DX 11 GPU anyway). A few things to know about WARP It is our fallback CPU solution, not intended as a primary target of C++ AMP. WARP stands for Windows Advanced Rasterization Platform and you can read old info on this MSDN page on WARP. What is new in Windows 8 Developer Preview is that WARP now supports DirectCompute, which is what C++ AMP builds on. It is not currently clear if we will have a CPU fallback solution for non-Windows 8 platforms when we ship. When you create a WARP accelerator, its is_emulated property returns true. WARP does not currently support double precision.   BTW, when we refer to WARP, we refer to this accelerator described above. If we use lower case "warp", that refers to a bunch of threads that run concurrently in lock step and share the same instruction. In the VS 11 Developer Preview, the size of warp in our Ref emulator is 4 – Ref is another emulator that runs on the CPU, but it is extremely slow not intended for production, just for debugging. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Content API for Shopping Office Hours - June 12, 2012

    Content API for Shopping Office Hours - June 12, 2012 Hangout discussing Product Listing Ads (PLAs) and the Google Affiliate Network (GAN) with guest Mark Coppin (GAN) and Claire Hugo (PLAs) of Google. In the Hangout, we reference the video "How to create a new Product Listing Ads campaign" (www.youtube.com which can be found in the Getting Starting page on the Shopping/Ads integration site (www.google.com Also, check out the GAN site to learn more: www.google.com From: GoogleDevelopers Views: 703 6 ratings Time: 31:23 More in Science & Technology

    Read the article

  • More Blogginess

    Hello everyone, and welcome to a rare (in this space) blog about blogging. My name is Tim Bray, and I’m the new editor of this Android Developers’ Blog...

    Read the article

  • Google I/O 2012 - YouTube API + Cloud Rendering = Happy Mobile Gamers

    Google I/O 2012 - YouTube API + Cloud Rendering = Happy Mobile Gamers Jarek Wilkiewicz, Danny Hermes YouTube is one of the top destinations for gamers. Many console developers already incorporate video recording and uploading directly into their titles, but uploading to YouTube from a mobile game presents a unique set of challenges. Come and learn how the YouTube API combined with cloud computing can help enable video uploads in your mobile game. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 100 0 ratings Time: 57:05 More in Science & Technology

    Read the article

  • Google I/O 2012 - Writing Polished Apps that have Deep Integration into the Google Drive UI

    Google I/O 2012 - Writing Polished Apps that have Deep Integration into the Google Drive UI Mike Procopio, Steve Bazyl We'll go through how to implement complete Drive apps. This is not an introduction to Drive apps, but rather how to build your product into Google Drive, and ensure that the experience is seamless for a user. We will also discuss how to effectively distribute your app in the Chrome Web Store. The example app built in this talk will demonstrate an example use case, but otherwise be production-ready. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 829 5 ratings Time: 50:59 More in Science & Technology

    Read the article

  • C#/.NET Little Wonders: Interlocked Read() and Exchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Last time we discussed the Interlocked class and its Add(), Increment(), and Decrement() methods which are all useful for updating a value atomically by adding (or subtracting).  However, this begs the question of how do we set and read those values atomically as well? Read() – Read a value atomically Let’s begin by examining the following code: 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value { get { return _value; } } 6:  7: public void Increment() 8: { 9: Interlocked.Increment(ref _value); 10: } 11: } 12:  It uses an interlocked increment, as we discuss in my previous post (here), so we know that the increment will be thread-safe.  But, to realize what’s potentially wrong we have to know a bit about how atomic reads are in 32 bit and 64 bit .NET environments. When you are dealing with an item smaller or equal to the system word size (such as an int on a 32 bit system or a long on a 64 bit system) then the read is generally atomic, because it can grab all of the bits needed at once.  However, when dealing with something larger than the system word size (reading a long on a 32 bit system for example), it cannot grab the whole value at once, which can lead to some problems since this read isn’t atomic. For example, this means that on a 32 bit system we may read one half of the long before another thread increments the value, and the other half of it after the increment.  To protect us from reading an invalid value in this manner, we can do an Interlocked.Read() to force the read to be atomic (of course, you’d want to make sure any writes or increments are atomic also): 1: public class Incrementor 2: { 3: private long _value = 0; 4:  5: public long Value 6: { 7: get { return Interlocked.Read(ref _value); } 8: } 9:  10: public void Increment() 11: { 12: Interlocked.Increment(ref _value); 13: } 14: } Now we are guaranteed that we will read the 64 bit value atomically on a 32 bit system, thus ensuring our thread safety (assuming all other reads, writes, increments, etc. are likewise protected).  Note that as stated before, and according to the MSDN (here), it isn’t strictly necessary to use Interlocked.Read() for reading 64 bit values on 64 bit systems, but for those still working in 32 bit environments, it comes in handy when dealing with long atomically. Exchange() – Exchanges two values atomically Exchange() lets us store a new value in the given location (the ref parameter) and return the old value as a result. So just as Read() allows us to read atomically, one use of Exchange() is to write values atomically.  For example, if we wanted to add a Reset() method to our Incrementor, we could do something like this: 1: public void Reset() 2: { 3: _value = 0; 4: } But the assignment wouldn’t be atomic on 32 bit systems, since the word size is 32 bits and the variable is a long (64 bits).  Thus our assignment could have only set half the value when a threaded read or increment happens, which would put us in a bad state. So instead, we could write Reset() like this: 1: public void Reset() 2: { 3: Interlocked.Exchange(ref _value, 0); 4: } And we’d be safe again on a 32 bit system. But this isn’t the only reason Exchange() is valuable.  The key comes in realizing that Exchange() doesn’t just set a new value, it returns the old as well in an atomic step.  Hence the name “exchange”: you are swapping the value to set with the stored value. So why would we want to do this?  Well, anytime you want to set a value and take action based on the previous value.  An example of this might be a scheme where you have several tasks, and during every so often, each of the tasks may nominate themselves to do some administrative chore.  Perhaps you don’t want to make this thread dedicated for whatever reason, but want to be robust enough to let any of the threads that isn’t currently occupied nominate itself for the job.  An easy and lightweight way to do this would be to have a long representing whether someone has acquired the “election” or not.  So a 0 would indicate no one has been elected and 1 would indicate someone has been elected. We could then base our nomination strategy as follows: every so often, a thread will attempt an Interlocked.Exchange() on the long and with a value of 1.  The first thread to do so will set it to a 1 and return back the old value of 0.  We can use this to show that they were the first to nominate and be chosen are thus “in charge”.  Anyone who nominates after that will attempt the same Exchange() but will get back a value of 1, which indicates that someone already had set it to a 1 before them, thus they are not elected. Then, the only other step we need take is to remember to release the election flag once the elected thread accomplishes its task, which we’d do by setting the value back to 0.  In this way, the next thread to nominate with Exchange() will get back the 0 letting them know they are the new elected nominee. Such code might look like this: 1: public class Nominator 2: { 3: private long _nomination = 0; 4: public bool Elect() 5: { 6: return Interlocked.Exchange(ref _nomination, 1) == 0; 7: } 8: public bool Release() 9: { 10: return Interlocked.Exchange(ref _nomination, 0) == 1; 11: } 12: } There’s many ways to do this, of course, but you get the idea.  Running 5 threads doing some “sleep” work might look like this: 1: var nominator = new Nominator(); 2: var random = new Random(); 3: Parallel.For(0, 5, i => 4: { 5:  6: for (int j = 0; j < _iterations; ++j) 7: { 8: if (nominator.Elect()) 9: { 10: // elected 11: Console.WriteLine("Elected nominee " + i); 12: Thread.Sleep(random.Next(100, 5000)); 13: nominator.Release(); 14: } 15: else 16: { 17: // not elected 18: Console.WriteLine("Did not elect nominee " + i); 19: } 20: // sleep before check again 21: Thread.Sleep(1000); 22: } 23: }); And would spit out results like: 1: Elected nominee 0 2: Did not elect nominee 2 3: Did not elect nominee 1 4: Did not elect nominee 4 5: Did not elect nominee 3 6: Did not elect nominee 3 7: Did not elect nominee 1 8: Did not elect nominee 2 9: Did not elect nominee 4 10: Elected nominee 3 11: Did not elect nominee 2 12: Did not elect nominee 1 13: Did not elect nominee 4 14: Elected nominee 0 15: Did not elect nominee 2 16: Did not elect nominee 4 17: ... Another nice thing about the Interlocked.Exchange() is it can be used to thread-safely set pretty much anything 64 bits or less in size including references, pointers (in unsafe mode), floats, doubles, etc.  Summary So, now we’ve seen two more things we can do with Interlocked: reading and exchanging a value atomically.  Read() and Exchange() are especially valuable for reading/writing 64 bit values atomically in a 32 bit system.  Exchange() has value even beyond simply atomic writes by using the Exchange() to your advantage, since it reads and set the value atomically, which allows you to do lightweight nomination systems. There’s still a few more goodies in the Interlocked class which we’ll explore next time! Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked

    Read the article

  • How to become a good team player?

    - by Nick
    I've been programming (obsessively) since I was 12. I am fairly knowledgeable across the spectrum of languages out there, from assembly, to C++, to Javascript, to Haskell, Lisp, and Qi. But all of my projects have been by myself. I got my degree in chemical engineering, not CS or computer engineering, but for the first time this fall I'll be working on a large programming project with other people, and I have no clue how to prepare. I've been using Windows all of my life, but this project is going to be very unix-y, so I purchased a Mac recently in the hopes of familiarizing myself with the environment. I was fortunate to participate in a hackathon with some friends this past year -- both CS majors -- and excitingly enough, we won. But I realized as I worked with them that their workflow was very different from mine. They used Git for version control. I had never used it at the time, but I've since learned all that I can about it. They also used a lot of frameworks and libraries. I had to learn what Rails was pretty much overnight for the hackathon (on the other hand, they didn't know what lexical scoping or closures were). All of our code worked well, but they didn't understand mine, and I didn't understand theirs. I hear references to things that real programmers do on a daily basis -- unit testing, code reviews, but I only have the vaguest sense of what these are. I normally don't have many bugs in my little projects, so I have never needed a bug tracking system or tests for them. And the last thing is that it takes me a long time to understand other people's code. Variable naming conventions (that vary with each new language) are difficult (__mzkwpSomRidicAbbrev), and I find the loose coupling difficult. That's not to say I don't loosely couple things -- I think I'm quite good at it for my own work, but when I download something like the Linux kernel or the Chromium source code to look at it, I spend hours trying to figure out how all of these oddly named directories and files connect. It's a programming sin to reinvent the wheel, but I often find it's just quicker to write up the functionality myself than to spend hours dissecting some library. Obviously, people who do this for a living don't have these problems, and I'll need to get to that point myself. Question: What are some steps that I can take to begin "integrating" with everyone else? Thanks!

    Read the article

  • How do I install Myunity on 12.10?

    - by Brenton Horne
    Basically as is the title how do you install Myunity on 12.10. I've tried adding the repository ppa:myunity/ppa and doing: sudo add-apt-repository ppa:myunity/ppa sudo apt-get update sudo apt-get install myunity At which point I got the error: W: Failed to fetch http://ppa.launchpad.net/myunity/ppa/ubuntu/dists/quantal/main/binary-i386/Packages 404 Not Found E: Some index files failed to download. They have been ignored, or old ones used instead.

    Read the article

  • Updatable columnstore index, sp_spaceused and sys.partitions

    - by Michael Zilberstein
    Columnstore index in SQL Server 2014 contains 2 new important features: it can be clustered and it is updateable. So I decided to play with both. As a “control group” I’ve taken my old columnstore index demo from one of the ISUG (Israeli SQL Server Usergroup) sessions. The script itself isn’t important – it creates partition function with 7 partitions (actually 8 but one remains empty), table on it and populates the table with 63 million rows – 9 million in each partition. So I used the same script...(read more)

    Read the article

  • Load Balance and Parallel Performance

    Load balancing an application workload among threads is critical to performance. However, achieving perfect load balance is non-trivial, and it depends on the parallelism within the application, workload, the number of threads, load balancing policy, and the threading implementation.

    Read the article

  • Detecting Installed .NET Framework Versions

    - by João Angelo
    A new year is upon us and it’s also time for me to end my blogging vacations and get back to the blogosphere. However, let’s start simple… and short. More specifically with a quick way to detect the installed .NET Framework versions on a machine. You just need to fire up Internet Explorer, write the following in the address bar and press enter: javascript:alert(navigator.userAgent) If for any reason you need to copy/paste the resulting information then use the next command instead: javascript:document.write(navigator.userAgent)

    Read the article

  • Google I/O 2012 - New YouTube Android Player Tools

    Google I/O 2012 - New YouTube Android Player Tools Ross McIlroy, Anton Hansson If you are building Android smartphone, tablet or Google TV applications and want to incorporate high-quality YouTube video playback in your product this session will rock your world. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 1719 24 ratings Time: 51:10 More in Science & Technology

    Read the article

  • Google I/O 2012 - Advanced Design for Engineers

    Google I/O 2012 - Advanced Design for Engineers Alex Faaborg, Christian Robertson Design isn't black magic, it's a field that people can learn. In this talk two elite designers from Google will give you an advanced crash course in interactive and visual design. Topics will include mental models, natural mappings, metaphors, mode errors, visual hierarchies, typography and gestalt principles. Correctly applied this knowledge can drastically improve the quality of your work. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 158 9 ratings Time: 55:50 More in Science & Technology

    Read the article

  • Google I/O 2012 - App Engine Overview

    Google I/O 2012 - App Engine Overview Doug Orr, Jesse Jiang, Alexander Power Be the first to hear about the exciting new platform products which you can use to work better in the cloud. Discover how the Google Cloud Platform is expanding to meet your current and future needs. Learn how the over 150k developers in startups and businesses building mobile, games and modern web apps are already enjoying the benefits of the platform. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 1781 16 ratings Time: 54:04 More in Science & Technology

    Read the article

< Previous Page | 639 640 641 642 643 644 645 646 647 648 649 650  | Next Page >