Search Results

Search found 25758 results on 1031 pages for 'oracle security'.

Page 645/1031 | < Previous Page | 641 642 643 644 645 646 647 648 649 650 651 652  | Next Page >

  • EZ Systems publie trois patchs de sécurité, qui concernent des failles sur les versions 4.1 et 4.2 d

    EZ System, éditeur du gestionnaire de contenu EZ Publish vient de publier une série de trois patchs de sécurité. [IMG]http://djug.developpez.com/rsc/Ez-publish-Logo_medium.gif[/IMG] ces patchs concernent des failles affectant les versions 4.1 et 4.2 du CMS, il est vivement recommandé d'appliquer ce patch. -> Les patchs se trouvent ici http://ez.no/developer/security/secu...y_in_ez_search -> Communiqué officiel http://share.ez.no/blogs/ez/security...lish-instances...

    Read the article

  • What books would I recommend?

    - by user12277104
    One of my mentees (I have three right now) said he had some time on his hands this Summer and was looking for good UX books to read ... I sigh heavily, because there is no shortage of good UX books to read. My bookshelves have titles by well-read authors like Nielsen, Norman, Tufte, Dumas, Krug, Gladwell, Pink, Csikszentmihalyi, and Roam. I have titles buy lesser-known authors, many whom I call friends, and many others whom I'll likely never meet. I have books on Excel pivot tables, typography, mental models, culture, accessibility, surveys, checklists, prototyping, Agile, Java, sketching, project management, HTML, negotiation, statistics, user research methods, six sigma, usability guidelines, dashboards, the effects of aging on cognition, UI design, and learning styles, among others ... many others. So I feel the need to qualify any book recommendations with "it depends ...", because it depends on who I'm talking to, and what they are looking for.  It's probably best that I also mention that the views expressed in this blog are mine, and may not necessarily reflect the views of Oracle. There. I'm glad I got that off my chest. For that mentee, who will be graduating with his MS HFID + MBA from Bentley in the Fall, I'll recommend this book: Universal Principles of Design -- this is a great book, which in its first edition held "100  ways to enhance usability, influence perception, increase appeal, make better design decisions, and teach through design." Granted, the second edition expanded that number to 125, but when I first found this book, I felt like I'd discovered the Grail. Its research-based principles are all laid out in 2 pages each, with lots of pictures and good references. A must-have for the new grad. Do I have recommendations for a book that will teach you how to conduct a usability test? Yes, three of them. To communicate what we do to management? Yes. To create personas? Yep -- two or three. Help you with UX in an Agile environment? You bet, I've got two I'd recommend. Create an excellent presentation? Uh hunh. Get buy-in from your team? Of course. There are a plethora of excellent UX books out there. But which ones I recommend ... well ... it depends. 

    Read the article

  • ISP Privacy Proposal Draws Fire

    <b>Krebs on Security:</b> "A proposal to let Internet service providers conceal the contact information for their business customers is drawing fire from a number of experts in the security community, who say the change will make it harder to mitigate the threat from spam and malicious software."

    Read the article

  • 2012 EC Election Ballot open; Meet the Candidates Call tomorrow

    - by heathervc
    The JCP Executive Committee (EC) Election ballot is now open and all of the candidates' nominations materials are now available on JCP.org -- note that two new candidates were nominated late last week:  Liferay and North Sixty-One. It is shaping up to be an exciting election this year! The ratified candidates are:  Cinterion, Credit Suisse, Fujitsu and HP.The elected candidates are (9 candidates, 2 open seats):  Cisco Systems, CloudBees, Giuseppe Dell'Abate, Liferay, London Java Community, MoroccoJUG, North Sixty-One, Software AG, and Zero Turnaround. Tomorrow, 18 October, we will hold an open teleconference for the Java Community to meet the candidates and ask questions regarding their nomination.  We hope you will be able to participate in the call.  Should the time be inconvenient, a recording will be made available for download, and candidate questions may be posted on this blog entry or sent to [email protected]. Topic: Meet the EC Candidates Date: Thursday, October 18, 2012 Time: 9:30 am, Pacific Daylight Time (San Francisco, GMT-07:00) Meeting Number: 807 818 225 Meeting Password: MeetEC ------------------------------------------------------- To join the online meeting (Now from mobile devices) ------------------------------------------------------- 1. Go to https://jcp.webex.com/jcp/j.php?ED=186721592&UID=0&PW=NMmUzNjY5ZTMw&RT=MiM0 2. If requested, enter your name and email address. 3. If a password is required, enter the meeting password: MeetEC 4. Click "Join". To view in other time zones or languages, please click the link: https://jcp.webex.com/jcp/j.php?ED=186721592&UID=0&PW=NMmUzNjY5ZTMw&ORT=MiM0 ------------------------------------------------------- To join the audio conference only -------------------------------------------------------     +1 (866) 682-4770     Outside the US: global access numbers  https://www.intercallonline.com/portlets/scheduling/viewNumbers/listNumbersByCode.do?confCode=6279803 or +1 (408) 774-4073     Conference code: 9454597     Security code: JCPEC (52732)------------------------------------------------------- For assistance ------------------------------------------------------- 1. Go to https://jcp.webex.com/jcp/mc 2. On the left navigation bar, click "Support".

    Read the article

  • problems in fetching upgrades

    - by andre
    presently using ubuntu 10.04 and I would like to upgrade to the latest ubuntu release but while trying to ugrade I have this errors . Can anybody help me how to solve this and proceed..just a beginner in using ubuntu. thanks W: Failed to fetch http://security.ubuntu.com/ubuntu/pool/main/l/linux-meta/linux-image-generic_2.6.32.38.44_i386.deb 404 Not Found [IP: 91.189.92.166 80] W: Failed to fetch http://security.ubuntu.com/ubuntu/pool/main/l/linux-meta/linux-headers-generic_2.6.32.38.44_i386.deb 404 Not Found [IP: 91.189.92.166 80]

    Read the article

  • "Expecting A Different Result?" (2 of 3 in 'No Customer Left Behind' Series)

    - by Kathryn Perry
    A guest post by David Vap, Group Vice President, Oracle Applications Product Development Many companies already have some type of customer experience initiative in process or one that could be framed as such. The challenge is that the initiatives too often are started in a department silo, don't have the right level of executive sponsorship, or have been initiated without the necessary insight and strategic business alignment. You can't keep doing the same things, give it a customer experience name, and expect a different result. You can't continue to just compete on price or features - that is not sustainable in commoditized markets. And ultimately, investing in technology alone doesn't solve customer experience problems; it just adds to the complexity of them. You need a customer experience strategy and approach on how to execute a customer-centric worldview within your business. To develop this, you must take an outside in journey on how your customers are interacting with your business to establish a benchmark of your customers' experiences. Then you must get cross-functional alignment on what you are trying to achieve, near, mid, and long term. Your execution of that strategy should be based on a customer experience approach: Understand your customer: You need to capture the insights across interactions, channels (including social), and personas to better understand whom to serve, how to serve them, and when to serve them. Not all experiences or customers are equal, so leverage this insight to understand the strategic business objectives you need to address. Then determine which experiences can be improved immediately and which over time to get the result you need. Empower your ecosystem: You need to align your front-line employees with your strategy and give them the power, insight, and tools that allow them to cultivate a culture around strengthening the relationships with your customers. You also need to provide the transparency, access, and collaboration that enable your customers and partners to self serve and self solve and to share with ease. Adapt your business: You need to enable the discipline of agility within your organization and infrastructure so that you can innovate, tailor, and personalize experiences. This needs to be done both reactively from insight and proactively in real time so you can stay ahead of shifting market trends and evolving consumer behaviors. No longer will the old approaches provide the same returns. To compete, differentiate, and win in a world where the customer has the power, you must execute a strategy that is sure to deliver a better brand experience for your customers. Note: This is Part 2 in a three-part series. Part 1 is here. Stop back for Part 3 on November 28.

    Read the article

  • Have You Visited the New Procurement Enhancement Request Community?

    - by LuciaC
    Have you visited the new Procurement Enhancement Request Community yet?  If not, we strongly encourage you to visit this site to vote on current Enhancement Requests (ERs) available through the ‘Quick Preview of Voting List’.  You can also vote on any ER currently displayed.  Have an ER that is not listed?  Simply add it by creating a thread stating the ER and any detailed information you would like to include.  If the ER already exists in the database, we will add the ER # to the thread so that development can provide updates around the requested ERs. This community is your one-stop source for all Enhancement information.  It is being monitored regularly by development and soon we will be posting some updates around some of the top voted Enhancement Requests.  Know that your vote counts!  By voting, you will bring forward those ERs that impact the Procurement Suite's value and usability.  Is your request industry specific?  Let us know by posting this information in the body of the thread.  We have a team monitoring these ERs and will be happy to highlight industry specific ERs to ensure they also get equal visibility! Coming Soon:  A list of the Top implemented ERs!  Development has been working hard to make improvements to the Procurement Suite of Products and they want you to know about them!  Until then, check out the Best Practices Section for some key ERs and how they can help your company secure the most value from your implementation!! What you need to know: The Procurement Enhancement Requests Community is your 1-stop shop for the latest information on Enhancements! The Community allows you to vote on ERs bringing visibility to the collective audience interest in value and usability recommendations. Your place to submit any new enhancement requests. Get the latest on top Procurement Enhancement Requests (ERs) - know when an improvement is PLANNED, COMING SOON, and DELIVERED. This Community is owned and managed by the Oracle Procurement Development team! Let your voice be heard by telling us what you want to see implemented in the Procurement Suite.

    Read the article

  • Patch Tuesday Again!

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/06/10/patch-tuesday-again.aspxThe second Tuesday of the month is “Patch Tuesday” when Microsoft issues the security and other important fixes for the month. This month there are two critical and five important patches. So watch out for these patches and apply them to your Windows PCs as soon as you can. For more details see http://www.itpro.co.uk/desktop-software/22421/microsoft-to-roll-out-two-critical-security-bug-fixes.

    Read the article

  • New SQL Monitor Metric: Principals with Sysadmin Login

    This metric counts the number of principals who are members of the sysadmin fixed server role. SQL Server relies on role-based security to manage permissions. If multiple IT system administrators have permissions to set up new SQL Server logins, they might be inclined to do so as part of the sysadmin role. Adding a normal user to the sysadmin role could pose a security risk and is not recommended unless the principal is highly trusted.

    Read the article

  • The Minimalist Approach to Content Governance - Manage Phase

    - by Kellsey Ruppel
    Originally posted by John Brunswick. Most people would probably agree that creating content is the enjoyable part of the content life cycle. Management, on the other hand, is generally not. This is why we thankfully have an opportunity to leverage meta data, security and other settings that have been applied or inherited in the prior parts of our governance process. In the interests of keeping this process pragmatic, there is little day to day activity that needs to happen here. Most of the activity that happens post creation will occur in the final "Retire" phase in which content may be archived or removed. The Manage Phase will focus on updating content and the meta data associated with it - specifically around ownership. Often times the largest issues with content ownership occur when a content creator leaves and organization or changes roles within an organization.   1. Update Content Ownership (as needed and on a quarterly basis) Why - Without updating content to reflect ownership changes it will be impossible to continue to meaningfully govern the content. How - Run reports against the meta data (creator and department to which the creator belongs) on content items for a particular user that may have left the organization or changed job roles. If the content is without and owner connect with the department marked as responsible. The content's ownership should be reassigned or if the content is no longer needed by that department for some reason it can be archived and or deleted. With a minimal investment it is possible to create reports that use an LDAP or Active Directory system to contrast all noted content owners versus the users that exist in the directory. The delta will indicate which content will need new ownership assigned. Impact - This implicitly keeps your repository and search collection clean. A very large percent of content that ends up no longer being useful to an organization falls into this category. This management phase (automated if possible) should be completed every quarter or as needed. The impact of actually following through with this phase is substantial and will provide end users with a better experience when browsing and searching for content.

    Read the article

  • Are SSL Certificates Really Secure

    The biggest challenge for internet these days is in the form of fraud or hacking. Security of any transaction on the WWW is very crucial and therefore, several security tools are developed for the sa... [Author: Jack Melde - Computers and Internet - May 01, 2010]

    Read the article

  • SQL Server Integration Services package to delete files from a Network or Local path based on date

    We have a requirement to delete a group of files that are older than the specified number of days from the company file share. Due to the complex folder hierarchy and delicate nature of the data stored in these files, this task has to be originated from SQL Server. However, due to company security policy, and based on SQL Server security best practices, we blocked access to OLE Automation stored procedures, CLR features, and xp_cmdshell. Is there any way to accomplish this task without using these features?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • JavaOne Latin America 2012 is a wrap!

    - by arungupta
    Third JavaOne in Latin America (2010, 2011) is now a wrap! Like last year, the event started with a Geek Bike Ride. I could not attend the bike ride because of pre-planned activities but heard lots of good comments about it afterwards. This is a great way to engage with JavaOne attendees in an informal setting. I highly recommend you joining next time! JavaOne Blog provides a a great coverage for the opening keynotes. I talked about all the great set of functionality that is coming in the Java EE 7 Platform. Also shared the details on how Java EE 7 JSRs are willing to take help from the Adopt-a-JSR program. glassfish.org/adoptajsr bridges the gap between JUGs willing to participate and looking for areas on where to help. The different specification leads have identified areas on where they are looking for feedback. So if you are JUG is interested in picking a JSR, I recommend to take a look at glassfish.org/adoptajsr and jump on the bandwagon. The main attraction for the Tuesday evening was the GlassFish Party. The party was packed with Latin American JUG leaders, execs from Oracle, and local community members. Free flowing food and beer/caipirinhas acted as great lubricant for great conversations. Some of them were considering the migration from Spring -> Java EE 6 and replacing their primary app server with GlassFish. Locaweb, a local hosting provider sponsored a round of beer at the party as well. They are planning to come with Java EE hosting next year and GlassFish would be a logical choice for them ;) I heard lots of positive feedback about the party afterwards. Many thanks to Bruno Borges for organizing a great party! Check out some more fun pictures of the party! Next day, I gave a presentation on "The Java EE 7 Platform: Productivity and HTML 5" and the slides are now available: With so much new content coming in the plaform: Java Caching API (JSR 107) Concurrency Utilities for Java EE (JSR 236) Batch Applications for the Java Platform (JSR 352) Java API for JSON (JSR 353) Java API for WebSocket (JSR 356) And JAX-RS 2.0 (JSR 339) and JMS 2.0 (JSR 343) getting major updates, there is definitely lot of excitement that was evident amongst the attendees. The talk was delivered in the biggest hall and had about 200 attendees. Also spent a lot of time talking to folks at the OTN Lounge. The JUG leaders appreciation dinner in the evening had its usual share of fun. Day 3 started with a session on "Building HTML5 WebSocket Apps in Java". The slides are now available: The room was packed with about 150 attendees and there was good interaction in the room as well. A collaborative whiteboard built using WebSocket was very well received. The following tweets made it more worthwhile: A WebSocket speek, by @ArunGupta, was worth every hour lost in transit. #JavaOneBrasil2012, #JavaOneBr @arungupta awesome presentation about WebSockets :) The session was immediately followed by the hands-on lab "Developing JAX-RS Web Applications Utilizing Server-Sent Events and WebSocket". The lab covers JAX-RS 2.0, Jersey-specific features such as Server-Sent Events, and a WebSocket endpoint using JSR 356. The complete self-paced lab guide can be downloaded from here. The lab was planned for 2 hours but several folks finished the entire exercise in about 75 mins. The wonderfully written lab material and an added incentive of Java EE 6 Pocket Guide did the trick ;-) I also spoke at "The Java Community Process: How You Can Make a Positive Difference". It was really great to see several JUG leaders talking about Adopt-a-JSR program and other activities that attendees can do to participate in the JCP. I shared details about Adopt a Java EE 7 JSR as well. The community keynote in the evening was looking fun but I had to leave in between to go through the peak Sao Paulo traffic time :) Enjoy the complete set of pictures in the album:

    Read the article

  • Text Expansion Awareness for UX Designers: Points to Consider

    - by ultan o'broin
    Awareness of translated text expansion dynamics is important for enterprise applications UX designers (I am assuming all source text for translation is in English, though apps development can takes place in other natural languages too). This consideration goes beyond the standard 'character multiplication' rule and must take into account the avoidance of other layout tricks that a designer might be tempted to try. Follow these guidelines. For general text expansion, remember the simple rule that the shorter the word is in the English, the longer it will need to be in English. See the examples provided by Richard Ishida of the W3C and you'll get the idea. So, forget the 30 percent or one inch minimum expansion rule of the old Forms days. Unfortunately remembering convoluted text expansion rules, based as a percentage of the US English character count can be tough going. Try these: Up to 10 characters: 100 to 200% 11 to 20 characters: 80 to 100% 21 to 30 characters: 60 to 80% 31 to 50 characters: 40 to 60% 51 to 70 characters: 31 to 40% Over 70 characters: 30% (Source: IBM) So it might be easier to remember a rule that if your English text is less than 20 characters then allow it to double in length (200 percent), and then after that assume an increase by half the length of the text (50%). (Bear in mind that ADF can apply truncation rules on some components in English too). (If your text is stored in a database, developers must make sure the table column widths can accommodate the expansion of your text when translated based on byte size for the translated character and not numbers of characters. Use Unicode. One character does not equal one byte in the multilingual enterprise apps world.) Rely on a graceful transformation of translated text. Let all pages to resize dynamically so the text wraps and flow naturally. ADF pages supports this already. Think websites. Don't hard-code alignments. Use Start and End properties on components and not Left or Right. Don't force alignments of components on the page by using texts of a certain length as spacers. Use proper label positioning and anchoring in ADF components or other technologies. Remember that an increase in text length means an increase in vertical space too when pages are resized. So don't hard-code vertical heights for any text areas. Don't be tempted to manually create text or printed reports this way either. They cannot be translated successfully, and are very difficult to maintain in English. Use XML, HTML, RTF and so on. Check out what Oracle BI Publisher offers. Don't force wrapping by using tricks such as /n or /t characters or HTML BR tags or forced page breaks. Once the text is translated the alignment will be destroyed. The position of the breaking character or tag would need to be moved anyway, or even removed. When creating tables, then use table components. Don't use manually created tables that reply on word length to maintain column and row alignment. For example, don't use codeblock elements in HTML; use the proper table elements instead. Once translated, the alignment of manually formatted tabular data is destroyed. Finally, if there is a space restriction, then don't use made-up acronyms, abbreviations or some form of daft text speak to save space. Besides being incomprehensible in English, they may need full translations of the shortened words, even if they can be figured out. Use approved or industry standard acronyms according to the UX style rules, not as a space-saving device. Restricted Real Estate on Mobile Devices On mobile devices real estate is limited. Using shortened text is fine once it is comprehensible. Users in the mobile space prefer brevity too, as they are on the go, performing three-minute tasks, with no time to read lengthy texts. Using fragments and lightning up on unnecessary articles and getting straight to the point with imperative forms of verbs makes sense both on real estate and user experience grounds.

    Read the article

  • Social Media Talk: Facebook, Really?? How Has It Become This Popular??

    - by david.talamelli
    If you have read some of my previous posts over the past few years either here or on my personal blog David's Journal on Tap you will know I am a Social Media enthusiast. I use various social media sites everday in both my work and personal life. I was surprised to read today on Mashable.com that Facebook now Commands 41% of Social Media Trafic. When I think of the Social Media sites I use most, the sites that jump into my mind first are LinkedIn, Blogging and Twitter. I do use Facebook in both work and in my personal life but on the list of sites I use it probably ranks closer to the bottom of the list rather than the top. I know Facebook is engrained in everything these days - but really I am not a huge Facebook fan - and I am finding that over the past 3-6 months my interest in Facebook is going down rather than up. From a work perspective - SM sites let me connect with candidates and communities and they help me talk about the things that I am doing here at Oracle. From a personal perspective SM sites let me keep in touch with friends and family both here and overseas in a really simple and easy way. Sites like LinkedIn give me a great way to proactively talk to both active and passive candidates. Twitter is fantastic to keep in touch with industry trends and keep up to date on the latest trending topics as well as follow conversations about whatever keyword you want to follow. Blogging lets me share my thoughts and ideas with others and while FB does have some great benefits I don't think the benefits outweigh the negatives of using FB. I use TweetDeck to keep track of my twitter feeds, the latest LinkedIn updates and Facebook updates. Tweetdeck is a great tool as it consolidates these 3 SM sites for me and I can quickly scan to see the latest news on any of them. From what I have seen from Facebook it looks like 70%-80% of people are using FB to grow their farm on farmville, start a mafia war on mafiawars or read their horoscope, check their love percentage, etc...... In between all these "updates" every now and again you do see a real update from someone who actually has something to say but there is so much "white noise" on FB from all the games and apps that is hard to see the real messages from all the 'games' information. I don't like having to scroll through what seems likes pages of farmville updates only to get one real piece of information. For me this is where FB's value really drops off. While I use SM everyday I try to use SM effectively. Sifting through so much noise is not effective and really I am not all that interested in Farmville, MafiaWars or any similar game/app. But what about Groups and Facebook Ads?? Groups are ok, but I am not sure I would call them SM game changers - yes there is a group for everything out there, but a group whether it is on FB or not is only as good as the community that supports and participates in it. Many of the Groups on FB (and elsewhere) are set up and never used or promoted by the moderator. I have heard that FB ads do have an impact, and I have not really looked at them - the question of cost jumps and return on investment comes to my mind though. FB does have some benefits, it is a great way to keep in touch with people and a great way to talk to others. I think it would have been interesting to see a different statistic measuring how effective that 41% of Social Media Traffic via FB really is or is it just a case of more people jumping online to play games. To me FB does not equal SM effectiveness, at the moment it is a tool that I sometimes need to use as opposed to want to use. This article was originally posted on David Talamelli's Blog - David's Journal on Tap

    Read the article

  • Logging WebSocket Frames using Chrome Developer Tools, Net-internals and Wireshark (TOTD #184)

    - by arungupta
    TOTD #183 explained how to build a WebSocket-driven application using GlassFish 4. This Tip Of The Day (TOTD) will explain how do view/debug on-the-wire messages, or frames as they are called in WebSocket parlance, over this upgraded connection. This blog will use the application built in TOTD #183. First of all, make sure you are using a browser that supports WebSocket. If you recall from TOTD #183 then WebSocket is combination of Protocol and JavaScript API. A browser supporting WebSocket, or not, means they understand your web pages with the WebSocket JavaScript. caniuse.com/websockets provide a current status of WebSocket support in different browsers. Most of the major browsers such as Chrome, Firefox, Safari already support WebSocket for the past few versions. As of this writing, IE still does not support WebSocket however its planned for a future release. Viewing WebSocket farmes require special settings because all the communication happens over an upgraded HTTP connection over a single TCP connection. If you are building your application using Java, then there are two common ways to debug WebSocket messages today. Other language libraries provide different mechanisms to log the messages. Lets get started! Chrome Developer Tools provide information about the initial handshake only. This can be viewed in the Network tab and selecting the endpoint hosting the WebSocket endpoint. You can also click on "WebSockets" on the bottom-right to show only the WebSocket endpoints. Click on "Frames" in the right panel to view the actual frames being exchanged between the client and server. The frames are not refreshed when new messages are sent or received. You need to refresh the panel by clicking on the endpoint again. To see more detailed information about the WebSocket frames, you need to type "chrome://net-internals" in a new tab. Click on "Sockets" in the left navigation bar and then on "View live sockets" to see the page. Select the box with the address to your WebSocket endpoint and see some basic information about connection and bytes exchanged between the client and the endpoint. Clicking on the blue text "source dependency ..." shows more details about the handshake. If you are interested in viewing the exact payload of WebSocket messages then you need a network sniffer. These tools are used to snoop network traffic and provide a lot more details about the raw messages exchanged over the network. However because they provide lot more information so they need to be configured in order to view the relevant information. Wireshark (nee Ethereal) is a pretty standard tool for sniffing network traffic and will be used here. For this blog purpose, we'll assume that the WebSocket endpoint is hosted on the local machine. These tools do allow to sniff traffic across the network though. Wireshark is quite a comprehensive tool and we'll capture traffic on the loopback address. Start wireshark, select "loopback" and click on "Start". By default, all traffic information on the loopback address is displayed. That includes tons of TCP protocol messages, applications running on your local machines (like GlassFish or Dropbox on mine), and many others. Specify "http" as the filter in the top-left. Invoke the application built in TOTD #183 and click on "Say Hello" button once. The output in wireshark looks like Here is a description of the messages exchanged: Message #4: Initial HTTP request of the JSP page Message #6: Response returning the JSP page Message #16: HTTP Upgrade request Message #18: Upgrade request accepted Message #20: Request favicon Message #22: Responding with favicon not found Message #24: Browser making a WebSocket request to the endpoint Message #26: WebSocket endpoint responding back You can also use Fiddler to debug your WebSocket messages. How are you viewing your WebSocket messages ? Here are some references for you: JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) TOTD #183 - Getting Started with WebSocket in GlassFish Subsequent blogs will discuss the following topics (not necessary in that order) ... Binary data as payload Custom payloads using encoder/decoder Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API

    Read the article

  • Framework 4 Features: Support for Timed Jobs

    - by Anthony Shorten
    One of the new features of the Oracle Utilities Application Framework V4 is the ability for the batch framework to support Timed Batch. Traditionally batch is associated with set processing in the background in a fixed time frame. For example, billing customers. Over the last few versions their has been functionality required by the products required a more monitoring style batch process. The monitor is a batch process that looks for specific business events based upon record status or other pieces of data. For example, the framework contains a fact monitor (F1-FCTRN) that can be configured to look for specific status's or other conditions. The batch process then uses the instructions on the object to determine what to do. To support monitor style processing, you need to run the process regularly a number of times a day (for example, every ten minutes). Traditional batch could support this but it was not as optimal as expected (if you are a site using the old Workflow subsystem, you understand what I mean). The Batch framework was extended to add additional facilities to support times (and continuous batch which is another new feature for another blog entry). The new facilities include: The batch control now defines the job as Timed or Not Timed. Non-Timed batch are traditional batch jobs. The timer interval (the interval between executions) can be specified The timer can be made active or inactive. Only active timers are executed. Setting the Timer Active to inactive will stop the job at the next time interval. Setting the Timer Active to Active will start the execution of the timed job. You can specify the credentials, language to view the messages and an email address to send the a summary of the execution to. The email address is optional and requires an email server to be specified in the relevant feature configuration. You can specify the thread limits and commit intervals to be sued for the multiple executions. Once a timer job is defined it will be executed automatically by the Business Application Server process if the DEFAULT threadpool is active. This threadpool can be started using the online batch daemon (for non-production) or externally using the threadpoolworker utility. At that time any batch process with the Timer Active set to Active and Batch Control Type of Timed will begin executing. As Timed jobs are executed automatically then they do not appear in any external schedule or are managed by an external scheduler (except via the DEFAULT threadpool itself of course). Now, if the job has no work to do as the timer interval is being reached then that instance of the job is stopped and the next instance started at the timer interval. If there is still work to complete when the interval interval is reached, the instance will continue processing till the work is complete, then the instance will be stopped and the next instance scheduled for the next timer interval. One of the key ways of optimizing this processing is to set the timer interval correctly for the expected workload. This is an interesting new feature of the batch framework and we anticipate it will come in handy for specific business situations with the monitor processes.

    Read the article

  • Java Spotlight Episode 57: Live From #Devoxx - Ben Evans and Martijn Verburg of the London JUG with Yara Senger of SouJava

    - by Roger Brinkley
    Tweet Live from Devoxx 11,  an interview with Ben Evans and Martijn Verburg from the London JUG along with  Yara Senger from the SouJava JUG on the JCP Executive Committee Elections, JSR 248, and Adopt-a-JSR program. Both the London JUG and SouJava JUG are JCP Standard Edition Executive Committee Members. Joining us this week on the Java All Star Developer Panel are Geertjan Wielenga, Principal Product Manger in Oracle Developer Tools; Stephen Chin, Java Champion and Java FX expert; and Antonio Goncalves, Paris JUG leader. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link: Java Spotlight Podcast in iTunes. Show Notes News Netbeans 7.1 JDK 7 upgrade tools Netbeans First Patch Program OpenJFX approved as an OpenJDK project Devoxx France April 18-20, 2012 Events Nov 22-25, OTN Developer Days in the Nordics Nov 22-23, Goto Conference, Prague Dec 6-8, Java One Brazil, Sao Paulo Feature interview Ben Evans has lived in "Interesting Times" in technology - he was the lead performance testing engineer for the Google IPO, worked on the initial UK trials of 3G networks with BT, built award-winning websites for some of Hollywood's biggest hits of the 90s, rearchitected and reimagined technology helping some of the most vulnerable people in the UK and has worked on everything from some of the UKs very first ecommerce sites, through to multi-billion dollar currency trading systems. He helps to run the London Java Community, and represents the JUG on the Java SE/EE Executive Committee. His first book "The Well-Grounded Java Developer" (with Martijn Verburg) has just been published by Manning. Martijn Verburg (aka 'the Diabolical Developer') herds Cats in the Java/open source communities and is constantly humbled by the creative power to be found there. Currently he resides in London where he co-leads the London JUG (a JCP EC member), runs a couple of open source projects & drinks too much beer at his local pub. You can find him online moderating at the Javaranch or discussing (ranting?) subjects on the Prgorammers Stack Exchange site. Most recently he's become a regular speaker at conferences on Java, open source and software development and has recently wrapped up his first Manning title - "The Well-Grounded Java Developer" with his co-author Ben Evans. Yara Senger is the partner and director of teacher education and Globalcode, graduated from the University of Sao Paulo, Sao Carlos, has significant experience in Brazil and abroad in developing solutions to critical Java. She is the co-creator of Java programs Academy and Academy of Web Developer, accumulating over 1000 hours in the classroom teaching Java. She currently serves as the President of Sou Java. In this interview Ben, Martijn, and Yara talk about the JCP Executive Committee Elections, JSR 348, and the Adopt-a-JSR program. Mail Bag What's Cool Show Transcripts Transcript for this show is available here when available.

    Read the article

  • How To Clear An Alert - Part 2

    - by werner.de.gruyter
    There were some interesting comments and remarks on the original posting, so I decided to do a follow-up and address some of the issues that got raised... Handling Metric Errors First of all, there is a significant difference between an 'error' and an 'alert'. An 'alert' is the violation of a condition (a threshold) specified for a given metric. That means that the Agent is collecting and gathering the data for the metric, but there is a situation that requires the attention of an administrator. An 'error' on the other hand however, is a failure to collect metric data: The Agent is throwing the error because it cannot determine the value for the metric Whereas the 'alert' guarantees continuity of the metric data, an 'error' signals a big unknown. And the unknown aspect of all this is what makes an error a lot more serious than a regular alert: If you don't know what the current state of affairs is, there could be some serious issues brewing that nobody is aware of... The life-cycle of a Metric Error Clearing a metric error is pretty much the same workflow as a metric 'alert': The Agent signals the error after it failed to execute the metric The error is uploaded to the OMS/repository, where it becomes visible in the Console The error will remain active until the Agent is able to execute the metric successfully. Even though the metric is still getting scheduled and executed on a regular basis, the error will remain outstanding as long as the Agent is not capable of executing the metric correctly Knowing this, the way to fix the metric error should be obvious: Take the 'problem' away, and as soon as the metric is executed again (based on the frequency of the metric), the error will go away. The same tricks used to clear alerts can be used here too: Wait for the next scheduled execution. For those metrics that are executed regularly (like every 15 minutes or so), it's just a matter of waiting those minutes to see the updates. The 'Reevaluate Alert' button can be used to force a re-execution of the metric. In case a metric is executed once a day, this will be a better way to make sure that the underlying problem has been solved. And if it has been, the metric error will be removed, and the regular data points will be uploaded to the repository. And just in case you have to 'force' the issue a little: If you disable and re-enable a metric, it will get re-scheduled. And that means a new metric execution, and an update of the (hopefully) fixed problem. Database server-generated alerts and problem checkers There are various ways the Agent can collect metric data: Via a script or a SQL statement, reading a log file, getting a value from an SNMP OID or listening for SNMP traps or via the DBMS_SERVER_ALERTS mechanism of an Oracle database. For those alert which are generated by the database (like tablespace metrics for 10g and above databases), the Agent just 'waits' for the database to report any new findings. If the Agent has lost the current state of the server-side metrics (due to an incomplete recovery after a disaster, or after an improper use of the 'emctl clearstate' command), the Agent might be still aware of an alert that the database no longer has (or vice versa). The same goes for 'problem checker' alerts: Those metrics that only report data if there is a problem (like the 'invalid objects' metric) will also have a problem if the Agent state has been tampered with (again, the incomplete recovery, and after improper use of 'emctl clearstate' are the two main causes for this). The best way to deal with these kinds of mismatches, is to simple disable and re-enable the metric again: The disabling will clear the state of the metric, and the re-enabling will force a re-execution of the metric, so the new and updated results can get uploaded to the repository. Starting 10gR5, the Agent performs additional checks and verifications after each restart of the Agent and/or each state change of the database (shutdown/startup or failover in case of DataGuard) to catch these kinds of mismatches.

    Read the article

< Previous Page | 641 642 643 644 645 646 647 648 649 650 651 652  | Next Page >