Search Results

Search found 37074 results on 1483 pages for 'define method'.

Page 658/1483 | < Previous Page | 654 655 656 657 658 659 660 661 662 663 664 665  | Next Page >

  • SQL Authority News – Play by Play with Pinal Dave – A Birthday Gift

    - by Pinal Dave
    Today is my birthday. Personal Note When I was young, I was always looking forward to my birthday as on this day, I used to get gifts from everybody. Now when I am getting old on each of my birthday, I have almost same feeling but the direction is different. Now on each of my birthday, I feel like giving gifts to everybody. I have received lots of support, love and respect from everybody; and now I must return it back.Well, on this birthday, I have very unique gifts for everybody – my latest course on SQL Server. How I Tune Performance I often get questions where I am asked how do I work on a normal day. I am often asked that how do I work when I have performance tuning project is assigned to me. Lots of people have expressed their desire that they want me to explain and demonstrate my own method of solving performance problem when I am facing real world problem. It is a pretty difficult task as in the real world, nothing goes as planned and usually planned demonstrations have no place there. The real world, demands real solutions and in a timely fashion. If a consultant goes to industry and does not demonstrate his/her capabilities in very first few minutes, it does not matter how much fame he/she is, the door is shown to them eventually. It is true and in my early career, I have faced it quite commonly. I have learned the trick to be honest from the start and request absolutely transparent communication from the organization where I am to consult. Play by Play Play by Play is a very unique setup. It is not planned and it is a step by step course. It is like a reality show – a very real encounter to the problem and real problem solving approach. I had a great time doing this course. Geoffrey Grosenbach (VP of Pluralsight) sits down with me to see what a SQL Server Admin does in the real world. This Play-by-Play focuses on SQL Server performance tuning and I go over optimizing queries and fine-tuning the server. The table of content of this course is very simple. Introduction In the introduction I explained my basic strategies when I am approached by a customer for performance tuning. Basic Information Gathering In this module I explain how I do gather various information for performance tuning project. It is very crucial to demonstrate to customers for consultant his capability of solving problem. I attempt to resolve a small problem which gives a big positive impact on performance, consultant have to gather proper information from the start. I demonstrate in this module, how one can collect all the important performance tuning metrics. Removing Performance Bottleneck In this module, I build upon the previous module’s statistics collected. I analysis various performance tuning measures and immediately start implementing various tweaks on the performance, which will start improving the performance of my server. This is a very effective method and it gives immediate return of efforts. Index Optimization Indexes are considered as a silver bullet for performance tuning. However, it is not true always there are plenty of examples where indexes even performs worst after implemented. The key is to understand a few of the basic properties of the index and implement the right things at the right time. In this module, I describe in detail how to do index optimizations and what are right and wrong with Index. If you are a DBA or developer, and if your application is running slow – this is must attend module for you. I have some really interesting stories to tell as well. Optimize Query with Rewrite Every problem has more than one solution, in this module we will see another very famous, but hard to master skills for performance tuning – Query Rewrite. There are few do’s and don’ts for any query rewrites. I take a very simple example and demonstrate how query rewrite can improve the performance of the query at many folds. I also share some real world funny stories in this module. This course is hosted at Pluralsight. You will need a valid login for Pluralsight to watch  Play by Play: Pinal Dave course. You can also sign up for FREE Trial of Pluralsight to watch this course. As today is my birthday – I will give 10 people (randomly) who will express their desire to learn this course, a free code. Please leave your comment and I will send you free code to watch this course for free. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Training, SQLAuthority News, T SQL, Video

    Read the article

  • Auto-cancel reason not found (6, 13906)

    - by Rajesh Sharma
    There are many errors in the application which are never invoked because of appropriate application configuration done at the time of implementation by the solution architects. So typically, as an application end user you would never stumble upon such errors. But what if the application administrator inadvertently changes the configuration/setup in the development, test, QA, or production environment? This is the time when you as an end user are introduced to a brand-new error for which you may not have a clue or understanding to what it means and neither the access/privilege to rectify it.    In this post we'll focus on one such error '6, 13906 - Auto-cancel reason not found'.   You get this error if you have not defined a Bill (Segment) Cancel Reason (Admin Menu, B, Bill Cancel Reason) code with System Default value of Turn off auto-cancel.   Consider a scenario when you are about to final bill an 'Account' for which the bill period's cut-off date you selected is falling on or after the Service Agreement's (SA) end/stop date (basically SA is Stopped with a date earlier than it was billed previously). And for the same 'Account' either: Bill segments exists that end after the SA's end date OR Non-closing bill segments exists that end on the SA's end date (OR closing bill segments that do not end on SA's end date or do not exist at all - remember closing/final bill segment is generated if the SA is in Stopped status).   CC&B detects such scenario and attempts to cancel all such violating bill segments automatically, but NOT if you are generating the bill Online. If online, the system assumes that you know what you are doing, and prompts you with error 2, 13716 - Bill segments that violate the SA (%1) End Date (%2) exist to take necessary action.   If in batch, system automatically cancels these kinds of bill segment(s).   Since this happens in the background, you have to define within the application which System Default Bill (Segment) cancellation reason code identified as Turn off auto-cancel, should be used by the process when it attempts to cancel any such violating bill segments (You already know that you cannot cancel a bill segment without giving a reason for cancellation).   So what exactly happens during batch billing?   Bill Segment generation routine at first determines billing eligibility of the service agreement being billed. One of the billing eligibility criteria is to check the SA's previous bill segments which have end dates greater than the current cut-off date/end date. Technically, the routine retrieves a count of such violating bill segments.     SELECT COUNT (*) FROM CI_BSEG WHERE SA_ID = :SA-ID AND BSEG_STAT_FLG = '50' -- Frozen AND END_DT IS NOT NULL AND (END_DT > '03-JUN-2010' -- Bill segment greater than SA's End Date OR OR (END_DT = '03-JUN-2010' AND CLOSING_BSEG_SW = 'N')) -- Non-closing bill segment ending on SA's end date   If the count is greater than zero, Bill segment generation routine executes another program to auto-cancel such bill segments. Auto-cancel program retrieves the 'Bill Cancel Reason' code which is identified as Turn off auto-cancel. Retrieved cancel reason code is then placed on the bill segments that are being cancelled automatically.   During this process if the routine fails to determine the bill cancel reason code having System Default Turn off auto-cancel because it was not been configured, you get a bill exception 6, 13906 - Auto-cancel reason not found.   Also note that duplicate or multiple System Default codes identified as Turn off auto-cancel are not allowed. CC&B would complain with an error 2, 54201.   Duplicate validation/check is also performed within Auto-cancel routine, if suppose for test purposes you executed a DML statement updating CI_BILL_CAN_RSN.BSCAN_SYS_DFLT_FLG with a value 'T'.

    Read the article

  • How frequently Googlebot fetch sitemaps? Is it depending on PageRank?

    - by JITHIN JOSE
    How much frequently Google fetches sitemaps? I am now working with a high traffic website normally have 30 new posts per minute but currently it provides sitemaps which links to new 100 posts (3 minutes). Is this method is enough? Is bots fetch sitemaps every 3 minutes? Did need to change sitemaps to list all 5M posts(indexed sitemaps)? How this change will effect on traffic and PageRank? Is Googlebot remove URLs that previously listed on sitemaps but not now?

    Read the article

  • Changing the action of a hyperlink in a Silverlight RichTextArea

    - by Marc Schluper
    The title of this post could also have been "Move over Hyperlink, here comes Actionlink" or "Creating interactive text in Silverlight." But alas, there can be only one. Hyperlinks are very useful. However, they are also limited because their action is fixed: browse to a URL. This may have been adequate at the start of the Internet, but nowadays, in web applications, the one thing we do not want to happen is a complete change of context. In applications we typically like a hyperlink selection to initiate an action that updates a part of the screen. For instance, if my application has a map displayed with some text next to it, the map would react to a selection of a hyperlink in the text, e.g. by zooming in on a location and displaying additional locational information in a popup. In this way, the text becomes interactive text. It is quite common that one company creates and maintains websites for many client companies. To keep maintenance cost low, it is important that the content of these websites can be updated by the client companies themselves, without the need to involve a software engineer. To accommodate this scenario, we want the author of the interactive text to configure all hyperlinks (without writing any code). In a Silverlight RichTextArea, the default action of a Hyperlink is the same as a traditional hyperlink, but it can be changed: if the Command property has a value then upon a click event this command is called with the value of the CommandParameter as parameter. How can we let the author of the text specify a command for each hyperlink in the text, and how can we let an application react properly to a hyperlink selection event? We are talking about any command here. Obviously, the application would recognize only a specific set of commands, with well defined parameters, but the approach we take here is generic in the sense that it pertains to the RichTextArea and any command. So what do we require? We wish that: As a text author, I can configure the action of a hyperlink in a (rich) text without writing code; As a text author, I can persist the action of a hyperlink with the text; As a reader of persisted text, I can click a hyperlink and the configured action will happen; As an application developer, I can configure a control to use my application specific commands. In an excellent introduction to the RichTextArea, John Papa shows (among other things) how to persist a text created using this control. To meet our requirements, we can create a subclass of RichTextArea that uses John's code and allows plugging in two command specific components: one to prompt for a command definition, and one to execute the command. Since both of these plugins are application specific, our RichTextArea subclass should not assume anything about them except their interface. public interface IDefineCommand { void Prompt(string content, // the link content Action<string, object> callback); // the method called to convey the link definition } public interface IPerformCommand : ICommand {} The IDefineCommand plugin receives the content of the link (the text visible to the reader) and displays some kind of control that allows the author to define the link. When that's done, this (possibly changed) content string is conveyed back to the RichTextArea, together with an object that defines the command to execute when the link is clicked by the reader of the published text. The IPerformCommand plugin simply implements System.Windows.Input.ICommand. Let's use MEF to load the proper plugins. In the example solution there is a project that contains rudimentary implementations of these. The IDefineCommand plugin simply prompts for a command string (cf. a command line or query string), and the IPerformCommand plugin displays a MessageBox showing this command string. An actual application using this extended RichTextArea would have its own set of commands, each having their own parameters, and hence would provide more user friendly application specific plugins. Nonetheless, in any case a command can be persisted as a string and hence the two interfaces defined above suffice. For a Visual Studio 2010 solution, see my article on The Code Project.

    Read the article

  • OWB 11gR2 - Find and Search Metadata in Designer

    - by David Allan
    Here are some tools and techniques for finding objects, specifically in the design repository. There are ways of navigating and collating objects that are useful for day to day development and build-time usage - this includes features out of the box and utilities constructed on top. There are a variety of techniques to navigate and find objects in the repository, the first 3 are out of the box, the 4th is an expert utility. Navigating by the tree, grouping by project and module - ok if you are aware of the exact module/folder that objects reside in. The structure panel is a useful way of finding parts of an object, especially when large rather than using the canvas. In large scale projects it helps to have accelerators (either find or collections below). Advanced find to search by name - 11gR2 included a find capability specifically for large scale projects. There were improvements in both the tree search and the object editors (including highlighting in mapping for example). So you can now do regular expression based search and quickly navigate to objects within a repository. Collections - logically organize your objects into virtual folders by shortcutting the actual objects. This is useful for a range of things since all the OWB services operate on collections too (export/import, validation, deployment). See the post here for new collection functionality in 11gR2. Reports for searching by type, updated on, updated by etc. Useful for activities such as periodic incremental actions (deploy all mappings changed in the past week). The report style view is useful since I can quickly see who changed what and when. You can see all the audit details for objects within each objects property inspector, but its useful to just get all objects changed today or example, all objects changed since my last build etc. This utility combines both UI extensions via experts and the public views on the repository. In the figure to the right you see the contextual option 'Object Search' which invokes the utility, you can see I have quite a number of modules within my project. Figure out all the potential objects which have been changed is not simple. The utility is an expert which provides this kind of search capability. The utility provides a report of the objects in the design repository which satisfy some filter criteria. The type of criteria includes; objects updated in the last n days optionally filter the objects updated by user filter the user by project and by type (table/mappings etc.) The search dialog appears with these options, you can multi-select the object types, so for example you can select TABLE and MAPPING. Its also possible to search across projects if need be. If you have multiple users using the repository you can define the OWB user name in the 'Updated by' property to restrict the report to just that user also. Finally there is a search name that will be used for some of the options such as building a collection - this name is used for the collection to be built. In the example I have done, I've just searched my project for all process flows and mappings that users have updated in the last 7 days. The results of the query are returned in a table containing the object names, types, full path and audit details. The columns are sort-able, you can sort the results by name, type, path etc. One of the cool things here, is that you can then perform operations on these objects - such as edit them, export single selection or entire results to MDL, create a collection from the results (now you have a saved set of references in the repository, you could do deploy/export etc.), create a deployment script from the results...or even add in your own ideas! You see from this that you can do bulk operations on sets of objects based on search results. So for example selecting the 'Build Collection' option creates a collection with all of the objects from my search, you can subsequently deploy/generate/maintain this collection of objects. Under the hood of the expert if just basic OMB commands from the product and the use of the public views on the design repository. You can see how easy it is to build up macro-like capabilities that will help you do day-to-day as well as build like tasks on sets of objects.

    Read the article

  • Popup Details for a Table Record

    - by shay.shmeltzer
    This one started as an OTN how-to question that seemed like something that should work automatically - turns out you need a couple of small tweaks to get it working. The idea is to have a table on a page showing multiple records, you can click any row in the table - and get a pop-up window that shows more data about that row. At first I thought I'll just need to drag the same view twice to the page - once as a table and then as a form in a pop-up. But then the Form didn't reflect the new row that got selected in the table - you'll always see the first row you selected. Adding a Partial Page Rendering between the table and the pop-up didn't do the trick either. Then I realized that the content delivery attribute of the pop-up was set to lazy, when I switched it to immediate - everything worked. Here is a little demo showing the whole development process: Note that the content delivery method attribute is also something you might want to check if you see your tables being refreshed too often when you scroll through records for example.

    Read the article

  • Routes for IIS Classic and Integrated Mode

    - by imran_ku07
         Introduction:             ASP.NET MVC Routing feature makes it very easy to provide clean URLs. You just need to configure routes in global.asax file to create an application with clean URLs. In most cases you define routes works in IIS 6, IIS 7 (or IIS 7.5) Classic and Integrated mode. But in some cases your routes may only works in IIS 7 Integrated mode, like in the case of using extension less URLs in IIS 6 without a wildcard extension map. So in this article I will show you how to create different routes which works in IIS 6 and IIS 7 Classic and Integrated mode.       Description:             Let's say that you need to create an application which must work both in Classic and Integrated mode. Also you have no control to setup a wildcard extension map in IIS. So you need to create two routes. One with extension less URL for Integrated mode and one with a URL with an extension for Classic Mode.   routes.MapRoute( "DefaultClassic", // Route name "{controller}.aspx/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults ); routes.MapRoute( "DefaultIntegrated", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults );               Now you have set up two routes, one for Integrated mode and one for Classic mode. Now you only need to ensure that Integrated mode route should only match if the application is running in Integrated mode and Classic mode route should only match if the application is running in Classic mode. For making this work you need to create two custom constraint for Integrated and Classic mode. So replace the above routes with these routes,     routes.MapRoute( "DefaultClassic", // Route name "{controller}.aspx/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional }, // Parameter defaults new { mode = new ClassicModeConstraint() }// Constraints ); routes.MapRoute( "DefaultIntegrated", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional }, // Parameter defaults new { mode = new IntegratedModeConstraint() }// Constraints );            The first route which is for Classic mode adds a ClassicModeConstraint and second route which is for Integrated mode adds a IntegratedModeConstraint. Next you need to add the implementation of these constraint classes.     public class ClassicModeConstraint : IRouteConstraint { public bool Match(HttpContextBase httpContext, Route route, string parameterName, RouteValueDictionary values, RouteDirection routeDirection) { return !HttpRuntime.UsingIntegratedPipeline; } } public class IntegratedModeConstraint : IRouteConstraint { public bool Match(HttpContextBase httpContext, Route route, string parameterName, RouteValueDictionary values, RouteDirection routeDirection) { return HttpRuntime.UsingIntegratedPipeline; } }             HttpRuntime.UsingIntegratedPipeline returns true if the application is running on Integrated mode; otherwise, it returns false. So routes for Integrated mode only matched when the application is running on Integrated mode and routes for Classic mode only matched when the application is not running on Integrated mode.       Summary:             During developing applications, sometimes developers are not sure that whether this application will be host on IIS 6 or IIS 7 (or IIS 7.5) Integrated mode or Classic mode. So it's a good idea to create separate routes for both Classic and Integrated mode so that your application will use extension less URLs where possible and use URLs with an extension where it is not possible to use extension less URLs. In this article I showed you how to create separate routes for IIS Integrated and Classic mode. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Anti-Forgery Request in ASP.NET MVC and AJAX

    - by Dixin
    Background To secure websites from cross-site request forgery (CSRF, or XSRF) attack, ASP.NET MVC provides an excellent mechanism: The server prints tokens to cookie and inside the form; When the form is submitted to server, token in cookie and token inside the form are sent by the HTTP request; Server validates the tokens. To print tokens to browser, just invoke HtmlHelper.AntiForgeryToken():<% using (Html.BeginForm()) { %> <%: this.Html.AntiForgeryToken(Constants.AntiForgeryTokenSalt)%> <%-- Other fields. --%> <input type="submit" value="Submit" /> <% } %> which writes to token to the form:<form action="..." method="post"> <input name="__RequestVerificationToken" type="hidden" value="J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP" /> <!-- Other fields. --> <input type="submit" value="Submit" /> </form> and the cookie: __RequestVerificationToken_Lw__=J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP When the above form is submitted, they are both sent to server. [ValidateAntiForgeryToken] attribute is used to specify the controllers or actions to validate them:[HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult Action(/* ... */) { // ... } This is very productive for form scenarios. But recently, when resolving security vulnerabilities for Web products, I encountered 2 problems: It is expected to add [ValidateAntiForgeryToken] to each controller, but actually I have to add it for each POST actions, which is a little crazy; After anti-forgery validation is turned on for server side, AJAX POST requests will consistently fail. Specify validation on controller (not on each action) Problem For the first problem, usually a controller contains actions for both HTTP GET and HTTP POST requests, and usually validations are expected for HTTP POST requests. So, if the [ValidateAntiForgeryToken] is declared on the controller, the HTTP GET requests become always invalid:[ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { [HttpGet] public ActionResult Index() // Index page cannot work at all. { // ... } [HttpPost] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] public ActionResult PostAction2(/* ... */) { // ... } // ... } If user sends a HTTP GET request from a link: http://Site/Some/Index, validation definitely fails, because no token is provided. So the result is, [ValidateAntiForgeryToken] attribute must be distributed to each HTTP POST action in the application:public class SomeController : Controller { [HttpGet] public ActionResult Index() // Works. { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction2(/* ... */) { // ... } // ... } Solution To avoid a large number of [ValidateAntiForgeryToken] attributes (one attribute for one HTTP POST action), I created a wrapper class of ValidateAntiForgeryTokenAttribute, where HTTP verbs can be specified:[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)] public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) : this(verbs, null) { } public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } public void OnAuthorization(AuthorizationContext filterContext) { string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } When this attribute is declared on controller, only HTTP requests with the specified verbs are validated:[ValidateAntiForgeryTokenWrapper(HttpVerbs.Post, Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { // Actions for HTTP GET requests are not affected. // Only HTTP POST requests are validated. } Now one single attribute on controller turns on validation for all HTTP POST actions. Submit token via AJAX Problem For AJAX scenarios, when request is sent by JavaScript instead of form:$.post(url, { productName: "Tofu", categoryId: 1 // Token is not posted. }, callback); This kind of AJAX POST requests will always be invalid, because server side code cannot see the token in the posted data. Solution The token must be printed to browser then submitted back to server. So first of all, HtmlHelper.AntiForgeryToken() must be called in the page where the AJAX POST will be sent. Then jQuery must find the printed token in the page, and post it:$.post(url, { productName: "Tofu", categoryId: 1, __RequestVerificationToken: getToken() // Token is posted. }, callback); To be reusable, this can be encapsulated in a tiny jQuery plugin:(function ($) { $.getAntiForgeryToken = function () { // HtmlHelper.AntiForgeryToken() must be invoked to print the token. return $("input[type='hidden'][name='__RequestVerificationToken']").val(); }; var addToken = function (data) { // Converts data if not already a string. if (data && typeof data !== "string") { data = $.param(data); } data = data ? data + "&" : ""; return data + "__RequestVerificationToken=" + encodeURIComponent($.getAntiForgeryToken()); }; $.postAntiForgery = function (url, data, callback, type) { return $.post(url, addToken(data), callback, type); }; $.ajaxAntiForgery = function (settings) { settings.data = addToken(settings.data); return $.ajax(settings); }; })(jQuery); Then in the application just replace $.post() invocation with $.postAntiForgery(), and replace $.ajax() instead of $.ajaxAntiForgery():$.postAntiForgery(url, { productName: "Tofu", categoryId: 1 }, callback); // Token is posted. This solution looks hard coded and stupid. If you have more elegant solution, please do tell me.

    Read the article

  • Simple Excel Export with EPPlus

    - by Jesse Taber
    Originally posted on: http://geekswithblogs.net/GruffCode/archive/2013/10/30/simple-excel-export-with-epplus.aspxAnyone I’ve ever met who works with an application that sits in front of a lot of data loves it when they can get that data exported to an Excel file for them to mess around with offline. As both developer and end user of a little website project that I’ve been working on, I found myself wanting to be able to get a bunch of the data that the application was collecting into an Excel file. The great thing about being both an end user and a developer on a project is that you can build the features that you really want! While putting this feature together I came across the fantastic EPPlus library. This library is certainly very well known and popular, but I was so impressed with it that I thought it was worth a quick blog post. This library is extremely powerful; it lets you create and manipulate Excel 2007/2010 spreadsheets in .NET code with a high degree of flexibility. My only gripe with the project is that they are not touting how insanely easy it is to build a basic Excel workbook from a simple data source. If I were running this project the approach I’m about to demonstrate in this post would be front and center on the landing page for the project because it shows how easy it really is to get started and serves as a good way to ease yourself in to some of the more advanced features. The website in question uses RavenDB, which means that we’re dealing with POCOs to model the data throughout all layers of the application. I love working like this so when it came time to figure out how to export some of this data to an Excel spreadsheet I wanted to find a way to take an IEnumerable<T> and just have it dumped to Excel with each item in the collection being modeled as a single row in the Excel worksheet. Consider the following class: public class Employee { public int Id { get; set; } public string Name { get; set; } public decimal HourlyRate { get; set; } public DateTime HireDate { get; set; } } Now let’s say we have a collection of these represented as an IEnumerable<Employee> and we want to be able to output it to an Excel file for offline querying/manipulation. As it turns out, this is dead simple to do with EPPlus. Have a look: public void ExportToExcel(IEnumerable<Employee> employees, FileInfo targetFile) { using (var excelFile = new ExcelPackage(targetFile)) { var worksheet = excelFile.Workbook.Worksheets.Add("Sheet1"); worksheet.Cells["A1"].LoadFromCollection(Collection: employees, PrintHeaders: true); excelFile.Save(); } } That’s it. Let’s break down what’s going on here: Create a ExcelPackage to model the workbook (Excel file). Note that the ‘targetFile’ value here is a FileInfo object representing the location on disk where I want the file to be saved. Create a worksheet within the workbook. Get a reference to the top-leftmost cell (addressed as A1) and invoke the ‘LoadFromCollection’ method, passing it our collection of Employee objects. Behind the scenes this is reflecting over the properties of the type provided and pulling out any public members to become columns in the resulting Excel output. The ‘PrintHeaders’ parameter tells EPPlus to grab the name of the property and put it in the first row. Save the Excel file All of the heavy lifting here is being done by the ‘LoadFromCollection’ method, and that’s a good thing. Now, this was really easy to do, but it has some limitations. Using this approach you get a very plain, un-styled Excel worksheet. The column widths are all set to the default. The number format for all cells is ‘General’ (which proves particularly interesting if you have a DateTime property in your data source). I’m a “no frills” guy, so I wasn’t bothered at all by trading off simplicity for style and formatting. That said, EPPlus has tons of samples that you can download that illustrate how to apply styles and formatting to cells and a ton of other advanced features that are way beyond the scope of this post.

    Read the article

  • How to Create an Easy Pixel Art Avatar in Photoshop or GIMP

    - by Eric Z Goodnight
    Boingboing.net has a cool set of meticulously drawn pixel art portraits for their key writers. If you’re a lover of pixel art, why not try and recreate a similar avatars for yourself with a few simple filters in either Photoshop or GIMP? How-To Geek has covered a few different ways to create pixel art from ordinary graphics, and this simple method is more simple pixel art, but using a different technique. Watch as we transform two ordinary photographs into blocky masterpieces, as well as compare the techniques used between Photoshop and the GIMP. Read on!  How to Create an Easy Pixel Art Avatar in Photoshop or GIMPInternet Explorer 9 Released: Here’s What You Need To KnowHTG Explains: How Does Email Work?

    Read the article

  • Does "diff" exist for images?

    - by moose
    You can compare two text files very easy with diff and even better with meld: If you use diff for images, you get an example like this: $ diff zivi-besch.tif zivildienst.tif Binary files zivi-besch.tif and zivildienst.tif differ Here is an example: Original from http://commons.wikimedia.org/wiki/File:Tux.svg Edited: I've added a white background to both images and applied GIMPs "Difference" filter to get this: It is a very simple method how a diff could work, but I can imagine much better (and more complicated) ones. Do you know a program which works for images like meld does for texts? (If a program existed that could give a percentage (0% the same image - 100% the same image) I would also be interested in it, but I am looking for one that gives me visual hints where differences are.)

    Read the article

  • Unable to create dynamic web application in IIS7 and above

    - by Dhwani
    Not able to view application in IIS after successfully calling below method: ServerManager serverMgr = new ServerManager(); Configuration config = serverMgr.GetApplicationHostConfiguration(); ConfigurationSection isapiCgiRestrictionSection = config.GetSection("system.webServer/security/isapiCgiRestriction"); ConfigurationElementCollection isapiCgiRestrictionCollection = isapiCgiRestrictionSection.GetCollection(); //ConfigurationElement addElement = isapiCgiRestrictionCollection.CreateElement("add"); //addElement["path"] = @"C:\Inetpub\wwwroot\"; //addElement["allowed"] = true; //addElement["groupId"] = @"ContosoGroup"; //addElement["description"] = @"Contoso Extension"; //isapiCgiRestrictionCollection.Add(addElement); //serverMgr.CommitChanges(); Site defaultSite = serverMgr.Sites["PharmaConnect"]; defaultSite.Applications.Add("/blogs3", @"C:\inetpub\wwwroot\blogs1"); serverMgr.CommitChanges(); I don't know how to create dynamically sub domain though c# code. We just tried to implement above. But unable to view application/virtual directory in iis. I have tried this, but didn't get success.

    Read the article

  • Partition Wise Joins

    - by jean-pierre.dijcks
    Some say they are the holy grail of parallel computing and PWJ is the basis for a shared nothing system and the only join method that is available on a shared nothing system (yes this is oversimplified!). The magic in Oracle is of course that is one of many ways to join data. And yes, this is the old flexibility vs. simplicity discussion all over, so I won't go there... the point is that what you must do in a shared nothing system, you can do in Oracle with the same speed and methods. The Theory A partition wise join is a join between (for simplicity) two tables that are partitioned on the same column with the same partitioning scheme. In shared nothing this is effectively hard partitioning locating data on a specific node / storage combo. In Oracle is is logical partitioning. If you now join the two tables on that partitioned column you can break up the join in smaller joins exactly along the partitions in the data. Since they are partitioned (grouped) into the same buckets, all values required to do the join live in the equivalent bucket on either sides. No need to talk to anyone else, no need to redistribute data to anyone else... in short, the optimal join method for parallel processing of two large data sets. PWJ's in Oracle Since we do not hard partition the data across nodes in Oracle we use the Partitioning option to the database to create the buckets, then set the Degree of Parallelism (or run Auto DOP - see here) and get our PWJs. The main questions always asked are: How many partitions should I create? What should my DOP be? In a shared nothing system the answer is of course, as many partitions as there are nodes which will be your DOP. In Oracle we do want you to look at the workload and concurrency, and once you know that to understand the following rules of thumb. Within Oracle we have more ways of joining of data, so it is important to understand some of the PWJ ideas and what it means if you have an uneven distribution across processes. Assume we have a simple scenario where we partition the data on a hash key resulting in 4 hash partitions (H1 -H4). We have 2 parallel processes that have been tasked with reading these partitions (P1 - P2). The work is evenly divided assuming the partitions are the same size and we can scan this in time t1 as shown below. Now assume that we have changed the system and have a 5th partition but still have our 2 workers P1 and P2. The time it takes is actually 50% more assuming the 5th partition has the same size as the original H1 - H4 partitions. In other words to scan these 5 partitions, the time t2 it takes is not 1/5th more expensive, it is a lot more expensive and some other join plans may now start to look exciting to the optimizer. Just to post the disclaimer, it is not as simple as I state it here, but you get the idea on how much more expensive this plan may now look... Based on this little example there are a few rules of thumb to follow to get the partition wise joins. First, choose a DOP that is a factor of two (2). So always choose something like 2, 4, 8, 16, 32 and so on... Second, choose a number of partitions that is larger or equal to 2* DOP. Third, make sure the number of partitions is divisible through 2 without orphans. This is also known as an even number... Fourth, choose a stable partition count strategy, which is typically hash, which can be a sub partitioning strategy rather than the main strategy (range - hash is a popular one). Fifth, make sure you do this on the join key between the two large tables you want to join (and this should be the obvious one...). Translating this into an example: DOP = 8 (determined based on concurrency or by using Auto DOP with a cap due to concurrency) says that the number of partitions >= 16. Number of hash (sub) partitions = 32, which gives each process four partitions to work on. This number is somewhat arbitrary and depends on your data and system. In this case my main reasoning is that if you get more room on the box you can easily move the DOP for the query to 16 without repartitioning... and of course it makes for no leftovers on the table... And yes, we recommend up-to-date statistics. And before you start complaining, do read this post on a cool way to do stats in 11.

    Read the article

  • Sublime text 2 syntax highlighter?

    - by BigSack
    I have coded my first custom syntax highlighter for sublime text 2, but i don't know how to install it. It is based on notepad++ highlighter found here https://70995658-a-62cb3a1a-s-sites.googlegroups.com/site/lohanplus/files/smali_npp.xml?attachauth=ANoY7criVTO9bDmIGrXwhZLQ_oagJzKKJTlbNDGRzMDVpFkO5i0N6hk_rWptvoQC1tBlNqcqFDD5NutD_2vHZx1J7hcRLyg1jruSjebHIeKdS9x0JCNrsRivgs6DWNhDSXSohkP1ZApXw0iQ0MgqcXjdp7CkJJ6pY_k5Orny9TfK8UWn_HKFsmPcpp967NMPtUnd--ad-BImtkEi-fox2tjs7zc5LabkDQ%3D%3D&attredirects=0&d=1 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>fileTypes</key> <array> <string>smali</string> </array> <dict> <key>Word1</key> <string>add-double add-double/2addr add-float add-float/2addr add-int add-int/2addr add-int/lit16 add-int/lit8 add-long add-long/2addr aget aget-boolean aget-byte aget-char aget-object aget-short aget-wide and-int and-int/2addr and-int/lit16 and-int/lit8 and-long and-long/2addr aput aput-boolean aput-byte aput-char aput-object aput-short aput-wide array-length check-cast cmp-long cmpg-double cmpg-float cmpl-double cmpl-float const const-class const-string const-string-jumbo const-wide const-wide/16 const-wide/32 const-wide/high16 const/16 const/4 const/high16 div-double div-double/2addr div-float div-float/2addr div-int div-int/2addr div-int/lit16 div-int/lit8 div-long div-long/2addr double-to-float double-to-int double-to-long execute-inline fill-array-data filled-new-array filled-new-array/range float-to-double float-to-int float-to-long goto goto/16 goto/32 if-eq if-eqz if-ge if-gez if-gt if-gtz if-le if-lez if-lt if-ltz if-ne if-nez iget iget-boolean iget-byte iget-char iget-object iget-object-quick iget-quick iget-short iget-wide iget-wide-quick instance-of int-to-byte int-to-char int-to-double int-to-float int-to-long int-to-short invoke-direct invoke-direct-empty invoke-direct/range invoke-interface invoke-interface/range invoke-static invoke-static/range invoke-super invoke-super-quick invoke-super-quick/range invoke-super/range invoke-virtual invoke-virtual-quick invoke-virtual-quick/range invoke-virtual/range iput iput-boolean iput-byte iput-char iput-object iput-object-quick iput-quick iput-short iput-wide iput-wide-quick long-to-double long-to-float long-to-int monitor-enter monitor-exit move move-exception move-object move-object/16 move-object/from16 move-result move-result-object move-result-wide move-wide move-wide/16 move-wide/from16 move/16 move/from16 mul-double mul-double/2addr mul-float mul-float/2addr mul-int mul-int/2addr mul-int/lit8 mul-int/lit16 mul-long mul-long/2addr neg-double neg-float neg-int neg-long new-array new-instance nop not-int not-long or-int or-int/2addr or-int/lit16 or-int/lit8 or-long or-long/2addr rem-double rem-double/2addr rem-float rem-float/2addr rem-int rem-int/2addr rem-int/lit16 rem-int/lit8 rem-long rem-long/2addr return return-object return-void return-wide rsub-int rsub-int/lit8 sget sget-boolean sget-byte sget-char sget-object sget-short sget-wide shl-int shl-int/2addr shl-int/lit8 shl-long shl-long/2addr shr-int shr-int/2addr shr-int/lit8 shr-long shr-long/2addr sparse-switch sput sput-boolean sput-byte sput-char sput-object sput-short sput-wide sub-double sub-double/2addr sub-float sub-float/2addr sub-int sub-int/2addr sub-int/lit16 sub-int/lit8 sub-long sub-long/2addr throw throw-verification-error ushr-int ushr-int/2addr ushr-int/lit8 ushr-long ushr-long/2addr xor-int xor-int/2addr xor-int/lit16 xor-int/lit8 xor-long xor-long/2addr</string> </dict> <dict> <key>Word2</key> <string>v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30</string> </dict> <dict> <key>Word3</key> <string>array-data .catch .catchall .class .end .end\ local .enum .epilogue .field .implements .line .local .locals .parameter .prologue .registers .restart .restart\ local .source .subannotation .super</string> </dict> <dict> <key>Word4</key> <string>abstract bridge constructor declared-synchronized enum final interface native private protected public static strictfp synchronized synthetic system transient varargs volatile</string> </dict> <dict> <key>Word4</key> <string>(&quot;0)&quot;0</string> </dict> <dict> <key>Word5</key> <string>.method .annotation .sparse-switch .packed-switch</string> </dict> <dict> <key>word6</key> <string>.end\ method .end\ annotation .end\ sparse-switch .end\ packed-switch</string> </dict> <dict> <key>word7</key> <string>&quot; ( ) , ; { } &gt;</string> </dict> <key>uuid</key> <string>27798CC6-6B1D-11D9-B8FA-000D93589AF6</string> </dict> </plist>

    Read the article

  • How to move a sprite automatically using a physicsHandler in Andengine?

    - by shailenTJ
    I use a DigitalOnScreenControl (knob with a four-directional arrow control) to move the entity and the entity which is bound to a physicsHandler. physicsHandler.setEntity(sprite); sprite.registerUpdateHandler(physicsHandler); From the DigitalOnScreenControl, I know which direction I want my sprite to move. Inside its overridden onControlChange function, I call a function animateSprite that checks which direction I chose. Based on the direction, I animate my sprite differently. PROBLEM: I want to automatically move the sprite to a specific location on the scene, say at coordinates (207, 305). My sprite is at (100, 305, which means it has to move down by 107 pixels. How do I tell the physicsHandler to move the sprite down by 107 pixels? My animateSprite method will take care of animating the sprite's downward motion. Thank you for your input!

    Read the article

  • How to Connect Your Android to Your PC’s Internet Connection Over USB

    - by Chris Hoffman
    People often “tether” their computers to their smartphones, sending their computer’s network traffic over the device’s cellular data connection. “Reverse tethering” is the opposite – tethering your Android smartphone or tablet to your PC to use your PC’s Internet connection. This method requires a rooted Android and a Windows PC, but it’s very easy to use. If your computer has Wi-Fi, it may be easier to create a Wi-Fi hotspot using a utility like Connectify instead. How to Make Your Laptop Choose a Wired Connection Instead of Wireless HTG Explains: What Is Two-Factor Authentication and Should I Be Using It? HTG Explains: What Is Windows RT and What Does It Mean To Me?

    Read the article

  • Objective C style nil in java?

    - by Usman Ismail
    Objective C has a concept of a nil object which would accept any method call with any parameters without complaining and silently return another nil. I have used something similar in Java using easymock and mockito for testing. Is there something similar for main line code? Is it even a good idea to have something like this? One use-case where I am considering using it is with optional metrics. We have codahale metrics counters on which we call mark() every time an event is generated. This is surrounded by an If/then to check for metrics enabled flag. I could just use a nil object as counter and silently accept the mark call if metrics are not enabled.

    Read the article

  • E_FAIL: An undetermined error occurred (-2147467259) when loading a cube texture

    - by Boreal
    I'm trying to implement a skybox into my engine, and I'm having some trouble loading the image as a cube map. Everything works (but it doesn't look right) if I don't load using an ImageLoadInformation struct in the ShaderResourceView.FromFile() method, but it breaks if I do. I need to, of course, because I need to tell SlimDX to load it as a cubemap. How can I fix this? Here is my new loading code after the "fix": public static void LoadCubeTexture(string filename) { ImageLoadInformation loadInfo = new ImageLoadInformation() { BindFlags = BindFlags.ShaderResource, CpuAccessFlags = CpuAccessFlags.None, Depth = 32, FilterFlags = FilterFlags.None, FirstMipLevel = 0, Format = SlimDX.DXGI.Format.B8G8R8A8_UNorm, Height = 512, MipFilterFlags = FilterFlags.Linear, MipLevels = 1, OptionFlags = ResourceOptionFlags.TextureCube, Usage = ResourceUsage.Default, Width = 512 }; textures.Add(filename, ShaderResourceView.FromFile(Graphics.device, "Resources/" + filename, loadInfo)); } Each of the faces of my cube texture are 512x512.

    Read the article

  • How-to filter table filter input to only allow numeric input

    - by frank.nimphius
    In a previous ADF Code Corner post, I explained how to change the table filter behavior by intercepting the query condition in a query filter. See sample #30 at http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html In this OTN Harvest post I explain how to prevent users from providing invalid character entries as table filter criteria to avoid problems upon re-querying the table. In the example shown next, only numeric values are allowed for a table column filter. To create a table that allows data filtering, drag a View Object – or a data collection of a Web Service or JPA business service – from the DataControls panel and drop it as a table. Choose the Enable Filtering option in the Edit Table Columns dialog so the table renders with the column filter boxes displayed. The table filter fields are created using implicit af:inputText components that need to be customized for you to apply a custom filter input component, or to change the input behavior. To change the input filter, so only a defined set of input keys is allowed, you need to change the default filter field with your own af:inputText field to which you apply an af:clientListener tag that filters user keyboard entries. For this, in the Oracle JDeveloper visual editor, select the column which filter you want to change and expand the column node in the Oracle JDeveloper Structure Window. Part of the column definition is the Column facet node. Expand the facets so you see the filter facet entry. The filter facet is grayed out as there is no custom facet defined. In a next step, open theComponent Palette (ctrl+shift+P) and drag an Input Text component onto the facet. This demarks the first part in the filter customization. To make the custom filter component work, you need to map the af:inputText component value property to the ADF filter criteria that is exposed in the Expression Builder. Open the Expression Builder for the filter input component value property by clicking the arrow icon to its right. In the Expression Builder expand the JSP Objects | vs | filterCriteria node to select the attribute name represented by the table column. The vs entry is the name of a variable that is defined on the table and that grants you access to the table attributes. Now that the filter works as before – though using a custom filter input component – you can add the af:clientListener tag to your custom filter component – af:inputText – to call out to JavaScript when users type in the column filter field Point the client filter method property to a JavaScript function that you reference or add through using the af:resource tag and set the type property value to keyDown. <af:document id="d1">     <af:resource type="javascript" source="/js/filterHandler.js"/> … The filter definition looks as shown below <af:inputText label="Label 1" id="it1"                         value="#{vs.filterCriteria.Employe        <af:clientListener method="suppressCharacterInput"                                     type="keyDown"/> </af:inputText> The JavaScript code that you can use to either filter character inputs or numeric inputs is shown below. Just store this code in an external JavaScript (.js) file and reference it from the af:resource tag. //Allow numbers, cursor control keys and delete keys function suppressCharacterInput(evt) {     var _keyCode = evt.getKeyCode();     var _filterField = evt.getCurrentTarget();     var _oldValue = _filterField.getValue();     if (!((_keyCode < 57) ||(_keyCode > 96 && _keyCode < 105))) {         _filterField.setValue(_oldValue);         evt.cancel();     } } //Allow characters, cursor control keys and delete keys function suppressNumericInput(evt) {  var _keyCode = evt.getKeyCode();  var _filterField = evt.getCurrentTarget();  var _oldValue = _filterField.getValue();  //check for numbers  if ((_keyCode < 57 && _keyCode > 47) ||      (_keyCode > 96 && _keyCode < 105)){     _filterField.setValue(_oldValue);     evt.cancel();   } } But what if browsers don't allow JavaScript ? Don't worry about this. If browsers would not support JavaScript then ADF Faces as a whole would not work and you had a different problem.

    Read the article

  • How to use Ajax : Hovermenu Extender in ASP.NET

    - by SAMIR BHOGAYTA
    // It is a simple method, Other properties set by you which you want Step 1. Take the control that the extender is targeting.When the mouse cursor is over this control,the hover menu popup will be displayed. Step 2. Take one panel to display when mouse is over the target control Step 3. Set the following properties: TargetControlID = "ID of the panel or control which display when mouse is over the target control" PopupControlID = "ID of the control that the extender is targeting" PopupPosition = Left (Default), Right, Top, Bottom, Center.

    Read the article

  • How do one improve him/her problem-solving ability ?

    - by gcc
    How can one improve him/her problem-solving ability? Every one says same thing "a real programmer knows how to handle real problem", but they forget how they learn this ability, or where (I know in school, no one gives us any ability, of course in my opinion). If you have any idea except above ones, feel free when you give your advice solve more problems do more exercises, write code, search google then write more ... For me, my question is like "Use complex/known library instead of using your own." In other words,t I want your presonal experience, book recommendation, web page on problem solving. Moreover, look your problem-solving method and give us your personal ability as if it is an algorithm

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Can't reboot netbook with any of the reboot parameters

    - by Delan Azabani
    I have a Sony VPCW218AG netbook that I've dual-booted with Ubuntu 10.10. Unlike the preinstalled Windows 7, Ubuntu will not reboot on this computer. Rebooting from Gnome, using the reboot command and SysRq+REISUB all don't work; they end hanging with a blank screen. I have read that Atom netbooks don't have a keyboard controller and therefore the default reboot method, kbd, won't work. I have actually tried all ten reboot= parameters listed here; none of them work. I have also tried disabling ACPI with noacpi acpi=off for each one; that didn't help either. Are there any other things I can try to fix the rebooting problem?

    Read the article

  • Entity Framework Code First: Get Entities From Local Cache or the Database

    - by Ricardo Peres
    Entity Framework Code First makes it very easy to access local (first level) cache: you just access the DbSet<T>.Local property. This way, no query is sent to the database, only performed in already loaded entities. If you want to first search local cache, then the database, if no entries are found, you can use this extension method: 1: public static class DbContextExtensions 2: { 3: public static IQueryable<T> LocalOrDatabase<T>(this DbContext context, Expression<Func<T, Boolean>> expression) where T : class 4: { 5: IEnumerable<T> localResults = context.Set<T>().Local.Where(expression.Compile()); 6:  7: if (localResults.Any() == true) 8: { 9: return (localResults.AsQueryable()); 10: } 11:  12: IQueryable<T> databaseResults = context.Set<T>().Where(expression); 13:  14: return (databaseResults); 15: } 16: }

    Read the article

  • Asynchrony in C# 5: Dataflow Async Logger Sample

    - by javarg
    Check out this (very simple) code examples for TPL Dataflow. Suppose you are developing an Async Logger to register application events to different sinks or log writers. The logger architecture would be as follow: Note how blocks can be composed to achieved desired behavior. The BufferBlock<T> is the pool of log entries to be process whereas linked ActionBlock<TInput> represent the log writers or sinks. The previous composition would allows only one ActionBlock to consume entries at a time. Implementation code would be something similar to (add reference to System.Threading.Tasks.Dataflow.dll in %User Documents%\Microsoft Visual Studio Async CTP\Documentation): TPL Dataflow Logger var bufferBlock = new BufferBlock<Tuple<LogLevel, string>>(); ActionBlock<Tuple<LogLevel, string>> infoLogger =     new ActionBlock<Tuple<LogLevel, string>>(         e => Console.WriteLine("Info: {0}", e.Item2)); ActionBlock<Tuple<LogLevel, string>> errorLogger =     new ActionBlock<Tuple<LogLevel, string>>(         e => Console.WriteLine("Error: {0}", e.Item2)); bufferBlock.LinkTo(infoLogger, e => (e.Item1 & LogLevel.Info) != LogLevel.None); bufferBlock.LinkTo(errorLogger, e => (e.Item1 & LogLevel.Error) != LogLevel.None); bufferBlock.Post(new Tuple<LogLevel, string>(LogLevel.Info, "info message")); bufferBlock.Post(new Tuple<LogLevel, string>(LogLevel.Error, "error message")); Note the filter applied to each link (in this case, the Logging Level selects the writer used). We can specify message filters using Predicate functions on each link. Now, the previous sample is useless for a Logger since Logging Level is not exclusive (thus, several writers could be used to process a single message). Let´s use a Broadcast<T> buffer instead of a BufferBlock<T>. Broadcast Logger var bufferBlock = new BroadcastBlock<Tuple<LogLevel, string>>(     e => new Tuple<LogLevel, string>(e.Item1, e.Item2)); ActionBlock<Tuple<LogLevel, string>> infoLogger =     new ActionBlock<Tuple<LogLevel, string>>(         e => Console.WriteLine("Info: {0}", e.Item2)); ActionBlock<Tuple<LogLevel, string>> errorLogger =     new ActionBlock<Tuple<LogLevel, string>>(         e => Console.WriteLine("Error: {0}", e.Item2)); ActionBlock<Tuple<LogLevel, string>> allLogger =     new ActionBlock<Tuple<LogLevel, string>>(     e => Console.WriteLine("All: {0}", e.Item2)); bufferBlock.LinkTo(infoLogger, e => (e.Item1 & LogLevel.Info) != LogLevel.None); bufferBlock.LinkTo(errorLogger, e => (e.Item1 & LogLevel.Error) != LogLevel.None); bufferBlock.LinkTo(allLogger, e => (e.Item1 & LogLevel.All) != LogLevel.None); bufferBlock.Post(new Tuple<LogLevel, string>(LogLevel.Info, "info message")); bufferBlock.Post(new Tuple<LogLevel, string>(LogLevel.Error, "error message")); As this block copies the message to all its outputs, we need to define the copy function in the block constructor. In this case we create a new Tuple, but you can always use the Identity function if passing the same reference to every output. Try both scenarios and compare the results.

    Read the article

< Previous Page | 654 655 656 657 658 659 660 661 662 663 664 665  | Next Page >