Search Results

Search found 70970 results on 2839 pages for 'asp net c session variable'.

Page 713/2839 | < Previous Page | 709 710 711 712 713 714 715 716 717 718 719 720  | Next Page >

  • Is it legal to take sealed .NET framework class source and extend it?

    - by Giedrius
    To be short, I'm giving very specific example, but I'm interested in general situation. There is a FtpWebRequest class in .NET framework and it is missing some of new FTP operations, like MFCT. It is ok in a sense that this operation is still in draft mode, but it is not ok in a sense, that FtpWebRequest is sealed and there's no other way (at least I don't see it) to extend it with this new operation. Easiest way to do it would be take FtpWebRequest class source from .NET reference sources and extend it, in such way will be kept all the consistence in naming, implementation, etc. Question is how much legal it is? I won't sell this class as a product, I can publish my changes on web - nothing to hide here. If it is not legal, can I take this class source from mono and include in native .net project? Did you had similar case and how you solved it? Update: as long as extension method is offered, I'm pasting source from .NET framework which should show that extension methods are not the solution. So there's a property Method, where you can pass FTP command: public override string Method { get { return m_MethodInfo.Method; } set { if (String.IsNullOrEmpty(value)) { throw new ArgumentException(SR.GetString(SR.net_ftp_invalid_method_name), "value"); } if (InUse) { throw new InvalidOperationException(SR.GetString(SR.net_reqsubmitted)); } try { m_MethodInfo = FtpMethodInfo.GetMethodInfo(value); } catch (ArgumentException) { throw new ArgumentException(SR.GetString(SR.net_ftp_unsupported_method), "value"); } } } As you can see there FtpMethodInfo.GetMethodInfo(value) call in setter, which basically validates value against internal enum static array. Update 2: Checked mono implementation and it is not exact replica of native code + it does not implement some of the things.

    Read the article

  • Recommendations for IPC between parent and child processes in .NET?

    - by Jeremy
    My .NET program needs to run an algorithm that makes heavy use of 3rd party libraries (32-bit), most of which are unmanaged code. I want to drive the CPU as hard as I can, so the code runs several threads in parallel to divide up the work. I find that running all these threads simultaneously results in temporary memory spikes, causing the process' virtual memory size to approach the 2 GB limit. This memory is released back pretty quickly, but occasionally if enough threads enter the wrong sections of code at once, the process crosses the "red line" and either the unmanaged code or the .NET code encounters an out of memory error. I can throttle back the number of threads but then my CPU usage is not as high as I would like. I am thinking of creating worker processes rather than worker threads to help avoid the out of memory errors, since doing so would give each thread of execution its own 2 GB of virtual address space (my box has lots of RAM). I am wondering what are the best/easiest methods to communicate the input and output between the processes in .NET? The file system is an obvious choice. I am used to shared memory, named pipes, and such from my UNIX background. Is there a Windows or .NET specific mechanism I should use?

    Read the article

  • Coding style in .NET: whether to refactor into new method or not?

    - by Dione
    Hi As you aware, in .NET code-behind style, we already use a lot of function to accommodate those _Click function, _SelectedIndexChanged function etc etc. In our team there are some developer that make a function in the middle of .NET function, for example: public void Button_Click(object sender, EventArgs e) {     some logic here..     some logic there..     DoSomething();     DoSomethingThere();     another logic here..     DoOtherSomething(); } private void DoSomething() { } private void DoSomethingThere() { } private void DoOtherSomething() { } public void DropDown_SelectedIndexChanged() { } public void OtherButton_Click() { } and the function listed above is only used once in that function and not used anywhere else in the page, or called from other part of the solution. They said it make the code more tidier by grouping them and extract them into additional sub-function. I can understand if the sub-function is use over and over again in the code, but if it is only use once, then I think it is not really a good idea to extract them into sub-function, as the code getting bigger and bigger, when you look into the page and trying to understand the logic or to debug by skimming through line by line, it will make you confused by jumping from main function to the sub-function then to main function and to sub-function again. I know this kind of grouping by method is better when you writing old ASP or Cold fusion style, but I am not sure if this kind of style is better for .NET or not. Question is: which is better when you developing .NET, is grouping similar logic into a sub-method better (although they only use once), or just put them together inside main function and add //explanation here on the start of the logic is better? Hope my question is clear enough. Thanks.

    Read the article

  • Silverlight 4 Released

    - by ScottGu
    The final release of Silverlight 4 is now available. What is in the Silverlight 4 Release Silverlight 4 contains a ton of new features and capabilities.  In particular we focused on three scenarios with this release: Further enhancing media support Building great business applications Enabling out of the browser experiences On Tuesday I gave a 60 minute keynote about Silverlight 4 which showed off many of the new features and capabilities now available.  You can watch my keynote to learn more about Silverlight 4 and see a ton of great demos of it in action. Also check out these three great posts by Tim Heuer that talk about the new features and provide a guide to the new Silverlight 4 capabilities: Silverlight 4 Beta – A Guide to the New Features Silverlight 4 RC – What was updated Silverlight 4 Released Also read David Anson’s great Silverlight 4 Toolkit post to learn more about the new controls and functionality also available within the Silverlight Toolkit release we also made available today.  Also visit this page to learn more about the new Pivot functionality in Silverlight 4 – which makes it really easy to visualize and interact with collections of images using Silverlight. Lastly – make sure to visit the www.silverlight.net web-site and visit the “Get Started” section to find free tutorials that you can use. Download and Install Silverlight 4 Tools for VS 2010 To develop Silverlight 4 applications you should first download and install Visual Studio 2010 or download and install the free Visual Web Developer 2010 Express edition. Then install the Silverlight Tools RC2 for Visual Studio 2010.  This setup includes the Silverlight 4 Developer Runtime, Silverlight 4 SDK, RIA Services, and VS 2010 tools support.  Once installed you can do File->New Project and choose Silverlight Application to create your first Silverlight 4 project.  You can then use the new WYSIWYG Silverlight designer in Visual Studio 2010 to design and build rich Silverlight 4 applications. Important: If you previously installed the Silverlight 4 Beta or RC build on your machine, please make sure to go into Add/Remove programs and uninstall the “Update for Visual Studio 2010 (KB976272)” package prior to installing the Silverlight Tools RC2 for Visual Studio 2010 setup.  Note that while Silverlight 4 is released, the “Silverlight 4 Tools for VS 2010” is currently in “RC2” mode (meaning we are going to keep an eye out for any remaining issues before finally calling it done).  We’ll update the tools to be “final” in a few weeks once we verify that no last minute issues/bugs remain. Download and Install Expression Blend 4 Release Candidate You can also download and install the Expression Blend 4 RC to create and design great Silverlight 4 applications.  Blend contains “Sketchflow” support – which makes it really easy to rapidly prototype ideas and applications.  To learn more about Sketchflow watch this 90 second video of it in action. Summary Today’s release is the fourth release of Silverlight that we’ve shipped in the last 2.5 years.  The team has done a great job of advancing it quickly and staying focused.  We think today’s Silverlight 4 release opens up a ton of new opportunities to build great solutions for both consumers and business scenarios.  We are looking forward to seeing what you build with it! Hope this helps, Scott

    Read the article

  • Handling WCF Service Paths in Silverlight 4 – Relative Path Support

    - by dwahlin
    If you’re building Silverlight applications that consume data then you’re probably making calls to Web Services. We’ve been successfully using WCF along with Silverlight for several client Line of Business (LOB) applications and passing a lot of data back and forth. Due to the pain involved with updating the ServiceReferences.ClientConfig file generated by a Silverlight service proxy (see Tim Heuer’s post on that subject to see different ways to deal with it) we’ve been using our own technique to figure out the service URL. Going that route makes it a peace of cake to switch between development, staging and production environments. To start, we have a ServiceProxyBase class that handles identifying the URL to use based on the XAP file’s location (this assumes that the service is in the same Web project that serves up the XAP file). The GetServiceUrlBase() method handles this work: public class ServiceProxyBase { public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrlBase = GetServiceUrlBase(); } } public string ServiceUrlBase { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrlBase() { if (!IsDesignTime) { string url = Application.Current.Host.Source.OriginalString; return url.Substring(0, url.IndexOf("/ClientBin", StringComparison.InvariantCultureIgnoreCase)); } return null; } } Silverlight 4 now supports relative paths to services which greatly simplifies things.  We changed the code above to the following: public class ServiceProxyBase { private const string ServiceUrlPath = "../Services/JobPlanService.svc"; public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrl = ServiceUrlPath; } } public string ServiceUrl { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrl() { if (!IsDesignTime) { return ServiceUrlPath; } return null; } } Our ServiceProxy class derives from ServiceProxyBase and handles creating the ABC’s (Address, Binding, Contract) needed for a WCF service call. Looking through the code (mainly the constructor) you’ll notice that the service URI is created by supplying the base path to the XAP file along with the relative path defined in ServiceProxyBase:   public class ServiceProxy : ServiceProxyBase, IServiceProxy { private const string CompletedEventargs = "CompletedEventArgs"; private const string Completed = "Completed"; private const string Async = "Async"; private readonly CustomBinding _Binding; private readonly EndpointAddress _EndPointAddress; private readonly Uri _ServiceUri; private readonly Type _ProxyType = typeof(JobPlanServiceClient); public ServiceProxy() { _ServiceUri = new Uri(Application.Current.Host.Source, ServiceUrl); var elements = new BindingElementCollection { new BinaryMessageEncodingBindingElement(), new HttpTransportBindingElement { MaxBufferSize = 2147483647, MaxReceivedMessageSize = 2147483647 } }; // order of entries in collection is significant: dumb _Binding = new CustomBinding(elements); _EndPointAddress = new EndpointAddress(_ServiceUri); } #region IServiceProxy Members /// <summary> /// Used to call a WCF service operation. /// </summary> /// <typeparam name="T">The type of EventArgs that will be returned by the service operation.</typeparam> /// <param name="callback">The method to call once the WCF call returns (the callback).</param> /// <param name="parameters">Any parameters that the service operation expects.</param> public void CallService<T>(EventHandler<T> callback, params object[] parameters) where T : EventArgs { try { var proxy = new JobPlanServiceClient(_Binding, _EndPointAddress); string action = typeof (T).Name.Replace(CompletedEventargs, String.Empty); _ProxyType.GetEvent(action + Completed).AddEventHandler(proxy, callback); _ProxyType.InvokeMember(action + Async, BindingFlags.InvokeMethod, null, proxy, parameters); } catch (Exception exp) { MessageBox.Show("Unable to use ServiceProxy.CallService to retrieve data: " + exp.Message); } } #endregion } The relative path support for calling services in Silverlight 4 definitely simplifies code and is yet another good reason to move from Silverlight 3 to Silverlight 4.   For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • Pluralsight Meet the Author Podcast on Structuring JavaScript Code

    - by dwahlin
    I had the opportunity to talk with Fritz Onion from Pluralsight about one of my recent courses titled Structuring JavaScript Code for one of their Meet the Author podcasts. We talked about why JavaScript patterns are important for building more re-useable and maintainable apps, pros and cons of different patterns, and how to go about picking a pattern as a project is started. The course provides a solid walk-through of converting what I call “Function Spaghetti Code” into more modular code that’s easier to maintain, more re-useable, and less susceptible to naming conflicts. Patterns covered in the course include the Prototype Pattern, Revealing Module Pattern, and Revealing Prototype Pattern along with several other tips and techniques that can be used. Meet the Author:  Dan Wahlin on Structuring JavaScript Code   The transcript from the podcast is shown below: [Fritz]  Hello, this is Fritz Onion with another Pluralsight author interview. Today we’re talking with Dan Wahlin about his new course, Structuring JavaScript Code. Hi, Dan, it’s good to have you with us today. [Dan]  Thanks for having me, Fritz. [Fritz]  So, Dan, your new course, which came out in December of 2011 called Structuring JavaScript Code, goes into several patterns of usage in JavaScript as well as ways of organizing your code and what struck me about it was all the different techniques you described for encapsulating your code. I was wondering if you could give us just a little insight into what your motivation was for creating this course and sort of why you decided to write it and record it. [Dan]  Sure. So, I got started with JavaScript back in the mid 90s. In fact, back in the days when browsers that most people haven’t heard of were out and we had JavaScript but it wasn’t great. I was on a project in the late 90s that was heavy, heavy JavaScript and we pretty much did what I call in the course function spaghetti code where you just have function after function, there’s no rhyme or reason to how those functions are structured, they just kind of flow and it’s a little bit hard to do maintenance on it, you really don’t get a lot of reuse as far as from an object perspective. And so coming from an object-oriented background in JAVA and C#, I wanted to put something together that highlighted kind of the new way if you will of writing JavaScript because most people start out just writing functions and there’s nothing with that, it works, but it’s definitely not a real reusable solution. So the course is really all about how to move from just kind of function after function after function to the world of more encapsulated code and more reusable and hopefully better maintenance in the process. [Fritz]  So I am sure a lot of people have had similar experiences with their JavaScript code and will be looking forward to seeing what types of patterns you’ve put forth. Now, a couple I noticed in your course one is you start off with the prototype pattern. Do you want to describe sort of what problem that solves and how you go about using it within JavaScript? [Dan]  Sure. So, the patterns that are covered such as the prototype pattern and the revealing module pattern just as two examples, you know, show these kind of three things that I harp on throughout the course of encapsulation, better maintenance, reuse, those types of things. The prototype pattern specifically though has a couple kind of pros over some of the other patterns and that is the ability to extend your code without touching source code and what I mean by that is let’s say you’re writing a library that you know either other teammates or other people just out there on the Internet in general are going to be using. With the prototype pattern, you can actually write your code in such a way that we’re leveraging the JavaScript property and by doing that now you can extend my code that I wrote without touching my source code script or you can even override my code and perform some new functionality. Again, without touching my code.  And so you get kind of the benefit of the almost like inheritance or overriding in object oriented languages with this prototype pattern and it makes it kind of attractive that way definitely from a maintenance standpoint because, you know, you don’t want to modify a script I wrote because I might roll out version 2 and now you’d have to track where you change things and it gets a little tricky. So with this you just override those pieces or extend them and get that functionality and that’s kind of some of the benefits that that pattern offers out of the box. [Fritz]  And then the revealing module pattern, how does that differ from the prototype pattern and what problem does that solve differently? [Dan]  Yeah, so the prototype pattern and there’s another one that’s kind of really closely lined with revealing module pattern called the revealing prototype pattern and it also uses the prototype key word but it’s very similar to the one you just asked about the revealing module pattern. [Fritz]  Okay. [Dan]  This is a really popular one out there. In fact, we did a project for Microsoft that was very, very heavy JavaScript. It was an HMTL5 jQuery type app and we use this pattern for most of the structure if you will for the JavaScript code and what it does in a nutshell is allows you to get that encapsulation so you have really a single function wrapper that wraps all your other child functions but it gives you the ability to do public versus private members and this is kind of a sort of debate out there on the web. Some people feel that all JavaScript code should just be directly accessible and others kind of like to be able to hide their, truly their private stuff and a lot of people do that. You just put an underscore in front of your field or your variable name or your function name and that kind of is the defacto way to say hey, this is private. With the revealing module pattern you can do the equivalent of what objective oriented languages do and actually have private members that you literally can’t get to as an external consumer of the JavaScript code and then you can expose only those members that you want to be public. Now, you don’t get the benefit though of the prototype feature, which is I can’t easily extend the revealing module pattern type code if you don’t like something I’m doing, chances are you’re probably going to have to tweak my code to fix that because we’re not leveraging prototyping but in situations where you’re writing apps that are very specific to a given target app, you know, it’s not a library, it’s not going to be used in other apps all over the place, it’s a pattern I actually like a lot, it’s very simple to get going and then if you do like that public/private feature, it’s available to you. [Fritz]  Yeah, that’s interesting. So it’s almost, you can either go private by convention just by using a standard naming convention or you can actually enforce it by using the prototype pattern. [Dan]  Yeah, that’s exactly right. [Fritz]  So one of the things that I know I run across in JavaScript and I’m curious to get your take on is we do have all these different techniques of encapsulation and each one is really quite different when you’re using closures versus simply, you know, referencing member variables and adding them to your objects that the syntax changes with each pattern and the usage changes. So what would you recommend for people starting out in a brand new JavaScript project? Should they all sort of decide beforehand on what patterns they’re going to stick to or do you change it based on what part of the library you’re working on? I know that’s one of the points of confusion in this space. [Dan]  Yeah, it’s a great question. In fact, I just had a company ask me about that. So which one do I pick and, of course, there’s not one answer fits all. [Fritz]  Right. [Dan]  So it really depends what you just said is absolutely in my opinion correct, which is I think as a, especially if you’re on a team or even if you’re just an individual a team of one, you should go through and pick out which pattern for this particular project you think is best. Now if it were me, here’s kind of the way I think of it. If I were writing a let’s say base library that several web apps are going to use or even one, but I know that there’s going to be some pieces that I’m not really sure on right now as I’m writing I and I know people might want to hook in that and have some better extension points, then I would look at either the prototype pattern or the revealing prototype. Now, really just a real quick summation between the two the revealing prototype also gives you that public/private stuff like the revealing module pattern does whereas the prototype pattern does not but both of the prototype patterns do give you the benefit of that extension or that hook capability. So, if I were writing a library that I need people to override things or I’m not even sure what I need them to override, I want them to have that option, I’d probably pick a prototype, one of the prototype patterns. If I’m writing some code that is very unique to the app and it’s kind of a one off for this app which is what I think a lot of people are kind of in that mode as writing custom apps for customers, then my personal preference is the revealing module pattern you could always go with the module pattern as well which is very close but I think the revealing module patterns a little bit cleaner and we go through that in the course and explain kind of the syntax there and the differences. [Fritz]  Great, that makes a lot of sense. [Fritz]  I appreciate you taking the time, Dan, and I hope everyone takes a chance to look at your course and sort of make these decisions for themselves in their next JavaScript project. Dan’s course is, Structuring JavaScript Code and it’s available now in the Pluralsight Library. So, thank you very much, Dan. [Dan]  Thanks for having me again.

    Read the article

  • A Few of My Favorite HTML5 and CSS3 Online Tools

    - by dwahlin
    I really enjoy coding up HTML5, CSS3, and JavaScript applications but there are some things that I’m better off writing with the help of a development tool. For example, CSS3 gradients aren’t exactly the most fun thing to write by hand and the same could be said for animations, transforms, or styles that require various vendor extensions. There are a lot of online tools that can simplify building HTML5/CSS3 sites and increase productivity in the process so I thought I’d put together a post on a few of my favorites tools. HTML5 Boilerplate HTML5 Boilerplate provides a great way to get started building HTML5 sites. It includes many best practices out of the box and even includes a few tricks that many people don’t even know about. The custom download option allows you to pick the features that you want to include in the files that’s generated. You can read more about it here.   Initializr Although HTML5 Boilerplate provides a great foundation for starting HTML5 sites, it focuses on providing a starting shell structure (namely an html page, JavaScript files, and a CSS stylesheet) and doesn’t include much in the way of page content to get started with. Initializer builds on HTML5 Boilerplate and provides an initial test page that can be tweaked to meet your needs. It also provides several different customization options to include/exclude features. CSS3 Maker CSS3 provides a lot of great features ranging from gradient support to rounded corners. Although many of the features are fairly straightforward there are some that are pretty involved such as gradients, animations, and really any styles that require custom vendor extensions to use across browsers. Sure, you can type everything by hand, but sites such as CSS3 Maker provide a visual way to generate CSS3 styles. CSS3, Please! CSS3, Please! is a code generation tool that can be used to generate cross-browser CSS3 styles quickly and easily. All of the main things you can do with CSS3 are available including a clever way to visually generate CSS3 transform styles.       Ultimate CSS Gradient Generator CSS3 Maker (above) has a gradient generator built-in but my favorite tool for creating CSS3 gradients is the Ultimate CSS Gradient Generator. If you’ve created gradients in tools like Photoshop then you’ll love what this tool has to offer especially since it makes it extremely straightforward to work with different gradient stops. @font-face Fonts Although @font-face has been available for awhile, I think fonts are cool and wanted to mention a site that provides a lot of font choices. When used correctly fonts can really enhance a page and when used incorrectly (think Comic Sans) they can absolutely ruin a page. Several sites exist that provide fonts that can be used with @font-face definitions in CSS style sheets. One of my favorites is Font Squirrel.   HTML5 & CSS3 Support and Tests Interested in knowing what HTML5 and CSS3 features a given browser supports? Want to know how various browsers stack up with each other as far as HTML5/CSS3 support. Look no further than the HTML5 & CSS3 Support page or the HTML5 Test page.   CSS3 Easing Animation Tool CSS3 animations aren’t widely supported across browsers right now (I’m not really using them at this point) but they do offer a lot of promise. Creating easings for animations can definitely be a challenge but they’re something that are critical for adding that “professional touch” to your animations. Fortunately you can use the Ceaser CSS Easing Animation Tool to simplify the process and handle animation easing with…...ease.   There are several other online tools that I like but these are some of the ones I find myself using the most. If you have any favorite online tools that simplify working with HTML5 or CSS3 let me know.     For more information about onsite or online training, mentoring and consulting solutions for HTML5, jQuery, .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • Using Lambdas for return values in Rhino.Mocks

    - by PSteele
    In a recent StackOverflow question, someone showed some sample code they’d like to be able to use.  The particular syntax they used isn’t supported by Rhino.Mocks, but it was an interesting idea that I thought could be easily implemented with an extension method. Background When stubbing a method return value, Rhino.Mocks supports the following syntax: dependency.Stub(s => s.GetSomething()).Return(new Order()); The method signature is generic and therefore you get compile-time type checking that the object you’re returning matches the return value defined by the “GetSomething” method. You could also have Rhino.Mocks execute arbitrary code using the “Do” method: dependency.Stub(s => s.GetSomething()).Do((Func<Order>) (() => new Order())); This requires the cast though.  It works, but isn’t as clean as the original poster wanted.  They showed a simple example of something they’d like to see: dependency.Stub(s => s.GetSomething()).Return(() => new Order()); Very clean, simple and no casting required.  While Rhino.Mocks doesn’t support this syntax, it’s easy to add it via an extension method. The Rhino.Mocks “Stub” method returns an IMethodOptions<T>.  We just need to accept a Func<T> and use that as the return value.  At first, this would seem straightforward: public static IMethodOptions<T> Return<T>(this IMethodOptions<T> opts, Func<T> factory) { opts.Return(factory()); return opts; } And this would work and would provide the syntax the user was looking for.  But the problem with this is that you loose the late-bound semantics of a lambda.  The Func<T> is executed immediately and stored as the return value.  At the point you’re setting up your mocks and stubs (the “Arrange” part of “Arrange, Act, Assert”), you may not want the lambda executing – you probably want it delayed until the method is actually executed and Rhino.Mocks plugs in your return value. So let’s make a few small tweaks: public static IMethodOptions<T> Return<T>(this IMethodOptions<T> opts, Func<T> factory) { opts.Return(default(T)); // required for Rhino.Mocks on non-void methods opts.WhenCalled(mi => mi.ReturnValue = factory()); return opts; } As you can see, we still need to set up some kind of return value or Rhino.Mocks will complain as soon as it intercepts a call to our stubbed method.  We use the “WhenCalled” method to set the return value equal to the execution of our lambda.  This gives us the delayed execution we’re looking for and a nice syntax for lambda-based return values in Rhino.Mocks. Technorati Tags: .NET,Rhino.Mocks,Mocking,Extension Methods

    Read the article

  • C#/.NET Little Wonders: The Timeout static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. When I started the “Little Wonders” series, I really wanted to pay homage to parts of the .NET Framework that are often small but can help in big ways.  The item I have to discuss today really is a very small item in the .NET BCL, but once again I feel it can help make the intention of code much clearer and thus is worthy of note. The Problem - Magic numbers aren’t very readable or maintainable In my first Little Wonders Post (Five Little Wonders That Make Code Better) I mention the TimeSpan factory methods which, I feel, really help the readability of constructed TimeSpan instances. Just to quickly recap that discussion, ask yourself what the TimeSpan specified in each case below is 1: // Five minutes? Five Seconds? 2: var fiveWhat1 = new TimeSpan(0, 0, 5); 3: var fiveWhat2 = new TimeSpan(0, 0, 5, 0); 4: var fiveWhat3 = new TimeSpan(0, 0, 5, 0, 0); You’d think they’d all be the same unit of time, right?  After all, most overloads tend to tack additional arguments on the end.  But this is not the case with TimeSpan, where the constructor forms are:     TimeSpan(int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds); Notice how in the 4 and 5 parameter version we suddenly have the parameter days slipping in front of hours?  This can make reading constructors like those above much harder.  Fortunately, there are TimeSpan factory methods to help make your intention crystal clear: 1: // Ah! Much clearer! 2: var fiveSeconds = TimeSpan.FromSeconds(5); These are great because they remove all ambiguity from the reader!  So in short, magic numbers in constructors and methods can be ambiguous, and anything we can do to clean up the intention of the developer will make the code much easier to read and maintain. Timeout – Readable identifiers for infinite timeout values In a similar way to TimeSpan, let’s consider specifying timeouts for some of .NET’s (or our own) many methods that allow you to specify timeout periods. For example, in the TPL Task class, there is a family of Wait() methods that can take TimeSpan or int for timeouts.  Typically, if you want to specify an infinite timeout, you’d just call the version that doesn’t take a timeout parameter at all: 1: myTask.Wait(); // infinite wait But there are versions that take the int or TimeSpan for timeout as well: 1: // Wait for 100 ms 2: myTask.Wait(100); 3:  4: // Wait for 5 seconds 5: myTask.Wait(TimeSpan.FromSeconds(5); Now, if we want to specify an infinite timeout to wait on the Task, we could pass –1 (or a TimeSpan set to –1 ms), which what the .NET BCL methods with timeouts use to represent an infinite timeout: 1: // Also infinite timeouts, but harder to read/maintain 2: myTask.Wait(-1); 3: myTask.Wait(TimeSpan.FromMilliseconds(-1)); However, these are not as readable or maintainable.  If you were writing this code, you might make the mistake of thinking 0 or int.MaxValue was an infinite timeout, and you’d be incorrect.  Also, reading the code above it isn’t as clear that –1 is infinite unless you happen to know that is the specified behavior. To make the code like this easier to read and maintain, there is a static class called Timeout in the System.Threading namespace which contains definition for infinite timeouts specified as both int and TimeSpan forms: Timeout.Infinite An integer constant with a value of –1 Timeout.InfiniteTimeSpan A static readonly TimeSpan which represents –1 ms (only available in .NET 4.5+) This makes our calls to Task.Wait() (or any other calls with timeouts) much more clear: 1: // intention to wait indefinitely is quite clear now 2: myTask.Wait(Timeout.Infinite); 3: myTask.Wait(Timeout.InfiniteTimeSpan); But wait, you may say, why would we care at all?  Why not use the version of Wait() that takes no arguments?  Good question!  When you’re directly calling the method with an infinite timeout that’s what you’d most likely do, but what if you are just passing along a timeout specified by a caller from higher up?  Or perhaps storing a timeout value from a configuration file, and want to default it to infinite? For example, perhaps you are designing a communications module and want to be able to shutdown gracefully, but if you can’t gracefully finish in a specified amount of time you want to force the connection closed.  You could create a Shutdown() method in your class, and take a TimeSpan or an int for the amount of time to wait for a clean shutdown – perhaps waiting for client to acknowledge – before terminating the connection.  So, assume we had a pub/sub system with a class to broadcast messages: 1: // Some class to broadcast messages to connected clients 2: public class Broadcaster 3: { 4: // ... 5:  6: // Shutdown connection to clients, wait for ack back from clients 7: // until all acks received or timeout, whichever happens first 8: public void Shutdown(int timeout) 9: { 10: // Kick off a task here to send shutdown request to clients and wait 11: // for the task to finish below for the specified time... 12:  13: if (!shutdownTask.Wait(timeout)) 14: { 15: // If Wait() returns false, we timed out and task 16: // did not join in time. 17: } 18: } 19: } We could even add an overload to allow us to use TimeSpan instead of int, to give our callers the flexibility to specify timeouts either way: 1: // overload to allow them to specify Timeout in TimeSpan, would 2: // just call the int version passing in the TotalMilliseconds... 3: public void Shutdown(TimeSpan timeout) 4: { 5: Shutdown(timeout.TotalMilliseconds); 6: } Notice in case of this class, we don’t assume the caller wants infinite timeouts, we choose to rely on them to tell us how long to wait.  So now, if they choose an infinite timeout, they could use the –1, which is more cryptic, or use Timeout class to make the intention clear: 1: // shutdown the broadcaster, waiting until all clients ack back 2: // without timing out. 3: myBroadcaster.Shutdown(Timeout.Infinite); We could even add a default argument using the int parameter version so that specifying no arguments to Shutdown() assumes an infinite timeout: 1: // Modified original Shutdown() method to add a default of 2: // Timeout.Infinite, works because Timeout.Infinite is a compile 3: // time constant. 4: public void Shutdown(int timeout = Timeout.Infinite) 5: { 6: // same code as before 7: } Note that you can’t default the ShutDown(TimeSpan) overload with Timeout.InfiniteTimeSpan since it is not a compile-time constant.  The only acceptable default for a TimeSpan parameter would be default(TimeSpan) which is zero milliseconds, which specified no wait, not infinite wait. Summary While Timeout.Infinite and Timeout.InfiniteTimeSpan are not earth-shattering classes in terms of functionality, they do give you very handy and readable constant values that you can use in your programs to help increase readability and maintainability when specifying infinite timeouts for various timeouts in the BCL and your own applications. Technorati Tags: C#,CSharp,.NET,Little Wonders,Timeout,Task

    Read the article

  • How To: Using spatial data with Entity Framework and Connector/Net

    - by GABMARTINEZ
    One of the new features introduced in Entity Framework 5.0 is the incorporation of some new types of data within an Entity Data Model: the spatial data types. These types allow us to perform operations on coordinates values in an easier way. There's no need to add stored routines or functions for every operation among these geometry types, now the user can have the alternative to put this logic on his application or keep it in the database. In the new 6.7.4 version there's also this new feature incorporated to Connector/Net library so our users can start exploring it and could provide us some feedback or comments about this new functionality. Through this tutorial on how to create a Code First Entity Model with a geometry column, we'll show an example on using Geometry types and some common operations when using geometry types inside an application. Requirements: - Connector/Net 6.7.4 - Entity Framework 5.0 version - .NET Framework 4.5 version - Basic understanding on Entity Framework and C# language. - An installed and running instance of MySQL Server 5.5.x or 5.6.10 version- Visual Studio 2012. Step One: Create a new Console Application  Inside Visual Studio select File->New Project menu option and select the Console Application template. Also make sure the .Net 4.5 version is selected so the new features for EF 5.0 will work with the application. Step Two: Add the Entity Framework Package For adding the Entity Framework Package there is more than one option: the package manager console or the Manage Nuget Packages option dialog. If you want to open the Package Manager Console, go to the Tools Menu -> Library Package Manager -> Package Manager Console. On the Package Manager Console Type:Install-Package EntityFrameworkThis will add the reference to the project of the latest released No alpha version of Entity Framework. Step Three: Adding Entity class and DBContext We'll add a simple class that represents a table entity to save some places and its location using a DBGeometry column that will be mapped to a Geometry type in MySQL. After that some operations can be performed using this data. public class MyPlace { [Key] public int Id { get; set; } public string name { get; set; } public DbGeometry location { get; set; } } public class JourneyDb : DbContext { public DbSet<MyPlace> MyPlaces { get; set; } }  Also make sure to add the connection string to the App.Config file as in the example: <?xml version="1.0" encoding="utf-8"?> <configuration>   <configSections>     <!-- For more information on Entity Framework configuration, visit http://go.microsoft.com/fwlink/?LinkID=237468 -->     <section name="entityFramework" type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework, Version=5.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" requirePermission="false" />   </configSections>   <startup>     <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />   </startup>   <connectionStrings>     <add name="JourneyDb" connectionString="server=localhost;userid=root;pwd=;database=journeydb" providerName="MySql.Data.MySqlClient"/>   </connectionStrings>   <entityFramework>     </entityFramework> </configuration> Note also that the <entityFramework> section is empty.Step Four: Adding some new records.On the Program.cs file add the following code for the Main method so the Database gets created and also some new data can be added to the new table. This code adds some records containing some determinate locations. After being added a distance function will be used to know how much distance has each location in reference to the Queens Village Station in New York. static void Main(string[] args)    {     using (JourneyDb cxt = new JourneyDb())      {        cxt.Database.Delete();        cxt.Database.Create();         cxt.MyPlaces.Add(new MyPlace()        {          name = "JFK INTERNATIONAL AIRPORT OF NEW YORK",          location = DbGeometry.FromText("POINT(40.644047 -73.782291)"),        });         cxt.MyPlaces.Add(new MyPlace()        {          name = "ALLEY POND PARK",          location = DbGeometry.FromText("POINT(40.745696 -73.742638)"),        });       cxt.MyPlaces.Add(new MyPlace()        {          name = "CUNNINGHAM PARK",          location = DbGeometry.FromText("POINT(40.735031 -73.768387)"),        });         cxt.MyPlaces.Add(new MyPlace()        {          name = "QUEENS VILLAGE STATION",          location = DbGeometry.FromText("POINT(40.717957 -73.736501)"),        });         cxt.SaveChanges();         var points = (from p in cxt.MyPlaces                      select new { p.name, p.location });        foreach (var item in points)       {         Console.WriteLine("Location " + item.name + " has a distance in Km from Queens Village Station " + DbGeometry.FromText("POINT(40.717957 -73.736501)").Distance(item.location) * 100);       }       Console.ReadKey();      }  }}Output : Location JFK INTERNATIONAL AIRPORT OF NEW YORK has a distance from Queens Village Station 8.69448802402959 Km. Location ALLEY POND PARK has a distance from Queens Village Station 2.84097675104912 Km. Location CUNNINGHAM PARK has a distance from Queens Village Station 3.61695793727275 Km. Location QUEENS VILLAGE STATION has a distance from Queens Village Station 0 Km. Conclusion:Adding spatial data to a table is easier than before when having Entity Framework 5.0. This new Entity Framework feature that handles spatial data columns within the Data layer has a lot of integrated functions and methods toease this type of tasks.Notes:This version of Connector/Net is just released as GA so is preatty much stable to be used on a ProductionEnvironment. Please send us your comments or questions using this blog or at the Forums where we keep answering any questions you have about Connector/Net and MySQL Server.A copy of this sample project can be downloaded here. This application does not include any library so you will haveto add them before running it. Happly MySQL/.Net Coding.

    Read the article

  • Authenticating your windows domain users in the cloud

    - by cibrax
    Moving to the cloud can represent a big challenge for many organizations when it comes to reusing existing infrastructure. For applications that drive existing business processes in the organization, reusing IT assets like active directory represent good part of that challenge. For example, a new web mobile application that sales representatives can use for interacting with an existing CRM system in the organization. In the case of Windows Azure, the Access Control Service (ACS) already provides some integration with ADFS through WS-Federation. That means any organization can create a new trust relationship between the STS running in the ACS and the STS running in ADFS. As the following image illustrates, the ADFS running in the organization should be somehow exposed out of network boundaries to talk to the ACS. This is usually accomplish through an ADFS proxy running in a DMZ. This is the official story for authenticating existing domain users with the ACS.  Getting an ADFS up and running in the organization, which talks to a proxy and also trust the ACS could represent a painful experience. It basically requires  advance knowledge of ADSF and exhaustive testing to get everything right.  However, if you want to get an infrastructure ready for authenticating your domain users in the cloud in a matter of minutes, you will probably want to take a look at the sample I wrote for talking to an existing Active Directory using a regular WCF service through the Service Bus Relay Binding. You can use the WCF ability for self hosting the authentication service within a any program running in the domain (a Windows service typically). The service will not require opening any port as it is opening an outbound connection to the cloud through the Relay Service. In addition, the service will be protected from being invoked by any unauthorized party with the ACS, which will act as a firewall between any client and the service. In that way, we can get a very safe solution up and running almost immediately. To make the solution even more convenient, I implemented an STS in the cloud that internally invokes the service running on premises for authenticating the users. Any existing web application in the cloud can just establish a trust relationship with this STS, and authenticate the users via WS-Federation passive profile with regular http calls, which makes this very attractive for web mobile for example. This is how the WCF service running on premises looks like, [ServiceBehavior(Namespace = "http://agilesight.com/active_directory/agent")] public class ProxyService : IAuthenticationService { IUserFinder userFinder; IUserAuthenticator userAuthenticator;   public ProxyService() : this(new UserFinder(), new UserAuthenticator()) { }   public ProxyService(IUserFinder userFinder, IUserAuthenticator userAuthenticator) { this.userFinder = userFinder; this.userAuthenticator = userAuthenticator; }   public AuthenticationResponse Authenticate(AuthenticationRequest request) { if (userAuthenticator.Authenticate(request.Username, request.Password)) { return new AuthenticationResponse { Result = true, Attributes = this.userFinder.GetAttributes(request.Username) }; }   return new AuthenticationResponse { Result = false }; } } Two external dependencies are used by this service for authenticating users (IUserAuthenticator) and for retrieving user attributes from the user’s directory (IUserFinder). The UserAuthenticator implementation is just a wrapper around the LogonUser Win Api. The UserFinder implementation relies on Directory Services in .NET for searching the user attributes in an existing directory service like Active Directory or the local user store. public UserAttribute[] GetAttributes(string username) { var attributes = new List<UserAttribute>();   var identity = UserPrincipal.FindByIdentity(new PrincipalContext(this.contextType, this.server, this.container), IdentityType.SamAccountName, username); if (identity != null) { var groups = identity.GetGroups(); foreach(var group in groups) { attributes.Add(new UserAttribute { Name = "Group", Value = group.Name }); } if(!string.IsNullOrEmpty(identity.DisplayName)) attributes.Add(new UserAttribute { Name = "DisplayName", Value = identity.DisplayName }); if(!string.IsNullOrEmpty(identity.EmailAddress)) attributes.Add(new UserAttribute { Name = "EmailAddress", Value = identity.EmailAddress }); }   return attributes.ToArray(); } As you can see, the code is simple and uses all the existing infrastructure in Azure to simplify a problem that looks very complex at first glance with ADFS. All the source code for this sample is available to download (or change) in this GitHub repository, https://github.com/AgileSight/ActiveDirectoryForCloud

    Read the article

  • PHP Using session variables in array(s)

    - by Chris
    Hello, My question is how do i put these session variables into a array? I have tried countless ways but none of them work. Not really sure what to put in a array and what no and how to adress them. Currently when i fill in the form the data gets displayed in a table. Next when i press the hyperlink that takes me back to the same form, i wish to enter data again. This data should be added in a new row in the same display table. Best Regards. The code below (pardon me that it is not english). <?php session_start(); ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-Strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <title>ExpoFormulier</title> <body> <?php if (!empty($_POST)) { $standnaam = $_POST["standnaam"]; $oppervlakte = $_POST["oppervlakte"]; //value in the form van checkboxes op 1 zetten! $verdieping = isset($_POST["verdieping"]) ? $_POST["verdieping"] : 0; $telefoon = isset($_POST["telefoon"]) ? $_POST["telefoon"] : 0; $netwerk = isset($_POST["netwerk"]) ? $_POST["netwerk"] : 0; if (is_numeric($oppervlakte)) { $_SESSION["standnaam"]=$standnaam; $_SESSION["oppervlakte"]=$oppervlakte; $_SESSION["verdieping"]=$verdieping; $_SESSION["telefoon"]=$telefoon; $_SESSION["netwerk"]=$netwerk; header("Location:ExpoOverzicht.php"); } else { echo "<h1>Foute gegevens, Opnieuw invullen a.u.b</h1>"; } } ?> <form action="<?php echo $_SERVER["PHP_SELF"]; ?>" method="post" id="form1"> <h1>Vul de gegevens in</h1> <table> <tr> <td>Standnaam:</td> <td><input type="text" name="standnaam" size="18"/></td> </tr> <tr> <td>Oppervlakte (in m^2):</td> <td><input type="text" name="oppervlakte" size="6"/></td> </tr> <tr> <td>Verdieping:</td> <td><input type="checkbox" name="verdieping" value="1"/></td> </tr> <tr> <td>Telefoon:</td> <td><input type="checkbox" name="telefoon" value="1"/></td> </tr> <tr> <td>Netwerk:</td> <td><input type="checkbox" name="netwerk" value="1"/></td> </tr> <tr> <td><input type="submit" name="verzenden" value="Verzenden"/></td> </tr> </table> </form> Second File: <?php session_start(); ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-Strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <title>ExpoOverzicht</title> <meta http-equiv="content-type" content="text/html; charset=utf-8" /> <link href="StyleSheetExpo.css" rel="stylesheet" type="text/css" /> </head> <body> <h1>Overzicht van de ingegeven standen in deze sessie</h1> <?php $standnaam = $_SESSION["standnaam"]; $oppervlakte = $_SESSION["oppervlakte"]; $verdieping = $_SESSION["verdieping"]; $telefoon = $_SESSION["telefoon"]; $netwerk = $_SESSION["netwerk"]; $result1 = 0; $result2 = 0; $result3 = 0; $prijsCom = 0; $prijsVerdieping = 0; for ($i=1; $i <= $oppervlakte; $i++) { if($i <= 10) { $tarief1 = 1 * 100; $result1 += $tarief1; } if($i > 10 && $i <= 30) { $tarief2 = 1 * 90; $result2 += $tarief2; } if($i > 30) { $tarief3 = 1 * 80; $result3 += $tarief3; } } $prijsOpp = $result1 + $result2 + $result3; if($verdieping == 1) { $prijsVerdieping = $oppervlakte * 120; } if(($telefoon == 1) || ($netwerk == 1)) { $prijsCom = 20; } if(($telefoon == 1) && ($netwerk == 1)) { $prijsCom = 30; } $totalePrijs = $prijsOpp + $prijsVerdieping + $prijsCom; echo "<table class=\"tableExpo\">"; echo "<th>Standnaam</th>"; echo "<th>Oppervlakte</th>"; echo "<th>Verdieping</th>"; echo "<th>Telefoon</th>"; echo "<th>Netwerk</th>"; echo "<th>Totale prijs</th>"; echo "<tr>"; echo "<td>".$standnaam."</td>"; echo "<td>".$oppervlakte."</td>"; echo "<td>".$verdieping."</td>"; echo "<td>".$telefoon."</td>"; echo "<td>".$netwerk."</td>"; echo "<td>".$totalePrijs."</td>"; echo "</tr>"; echo "</table>"; ?> <a href="ExpoFormulier.php">Terug naar het formulier</a> </body> </html> </body> </html>

    Read the article

  • php asp differences

    - by Syom
    i dont know asp at all, and i heard somewhere, that asp more strong than php, and the really serious programs(in web) are written in asp! it makes my angry, becouse i like php, and write all my sites with it. i don't know asp, so can somebody axplain me the main defferences of them. i want have somethink to say next time, when somebody tell such thing thanks in advance

    Read the article

  • Implementing yahoo contact api in vb.net?

    - by Abhisheks.net
    Hello everyone.. i have a application developed in asp.net and vb.net as server language, and from this app user can send invitation. so i want to import yahoo, gmail, hotmail and some other mailing system, i have been implemented this service for gmail and this is going very well but for yahoo i am unable . so please give me some example. thanks for any response

    Read the article

  • Best way of learning Python + GUI when coming from .NET

    - by Oscar Mederos
    I've been developing applications in C# / VB.NET for about 3-4 years (.NET Framework v2.0, 3.5, 4). I have also developed some command-line applications or scripts in C, and Python under Linux. Sometimes I need to develop my applications in another languages, like Python, but the problem thing is that lots of those applications require a GUI. Maybe not a too complex one, but it does require some windows with buttons, text boxes, list boxes,... What books/tips/tutorials do you suggest me to start working with that language and be able to deploy my deliverables not only in .NET? Note: Learning python is not the big deal here, because I already know the basic of it. I just want to focus on the GUI. Maybe this question should be on UI instead of here? If so, please, migrate it :)

    Read the article

  • West Palm Beach .Net User Group May 25th User Group Meeting Update

    - by Sam Abraham
    Just returned from the West Palm Beach .Net User Group Meeting featuring Shervin Shakibi who spoke to us about What’s New in Silverlight 4.0.  It was a great talk where the audience was fully engaged with Shervin as he spoke about and demonstrated the various new features of Silverlight 4.0. We enjoyed free pizza and soda as well as a free raffle with every attendee leaving home with a freebie.   For our June Meeting, Don Demsak, Microsoft MVP, will be speaking to us about WCF Data Services.  We will continue to have free pizza and a free raffle with great prizes, so hope to see you all there. Below are some photos from The West Palm Beach .Net User Group May 25th meeting with Shervin Shakibi. See you next Month for our June 22nd meeting, 6:30 PM at CompTec   Sam Abraham Site Director - West Palm Beach .Net User Group

    Read the article

  • Using Microsoft's Chart Controls In An ASP.NET Application: Serializing Chart Data

    In most usage scenarios, the data displayed in a Microsoft Chart control comes from some dynamic source, such as from a database query. The appearance of the chart can be modified dynamically, as well; past installments in this article series showed how to programmatically customize the axes, labels, and other appearance-related settings. However, it is possible to statically define the chart's data and appearance strictly through the control's declarative markup. One of the demos examined in the Getting Started article rendered a column chart with seven columns whose labels and values were defined statically in the <asp:Series> tag's <Points> collection. Given this functionality, it should come as no surprise that the Microsoft Chart Controls also support serialization. Serialization is the process of persisting the state of a control or an object to some other medium, such as to disk. Deserialization is the inverse process, and involves taking the persisted data and recreating the control or object. With just a few lines of code you can persist the appearance settings, the data, or both to a file on disk or to any stream. Likewise, it takes just a few lines of codes to reconstitute a chart from the persisted information. This article shows how to use the Microsoft Chart Control's serialization functionality by examining a demo application that allows users to create custom charts, specifying the data to plot and some appearance-related settings. The user can then save a "snapshot" of this chart, which persists its appearance and data to a record in a database. From another page, users can view these saved chart snapshots. Read on to learn more! Read More >

    Read the article

  • ASP.NET Connections Fall 2011 Slides and Code

    - by Stephen Walther
    Thanks everyone who came to my talks at ASP.NET Connections in Las Vegas!  There was a definite theme to my talks this year…taking advantage of JavaScript to build a rich presentation layer. I gave the following three talks: JsRender Templates – Originally, I was scheduled to give a talk on jQuery Templates.  However, jQuery Templates has been deprecated and JsRender is the new technology which replaces jQuery Templates. In the talk, I give plenty of code samples of using JsRender.  You can download the slides and code samples RIGHT HERE   HTML5 – In this talk, I focused on the features of HTML5 which are the most interesting to developers building database-driven Web applications. In particular, I discussed Web Sockets,  Web workers, Web Storage, Indexed DB, and the Offline Application Cache. All of these features are supported by Safari, Chrome, and Firefox today and they will be supported by Internet Explorer 10. You can download the slides and code samples RIGHT HERE   Ajax Control Toolkit – My company, Superexpert, is responsible for developing and maintaining the Ajax Control Toolkit. In this talk, I discuss all of the bug fixes and new features which the developers on the Superexpert team have added to the Ajax Control Toolkit over the previous six months. We also had a good discussion of the features which people want in future releases of the Ajax Control Toolkit. The slides and code samples for this talk can be downloaded RIGHT HERE   I had a great time in Las Vegas!  Good questions, friendly audience, and lots of opportunities for me to learn new things!      -- Stephen

    Read the article

  • Building a Store Locator ASP.NET Application Using Google Maps API (Part 3)

    Over the past two weeks I've showed how to build a store locator application using ASP.NET and the free Google Maps API and Google's geocoding service. Part 1 looked at creating the database to record the store locations. This database contains a table named Stores with columns capturing each store's address and latitude and longitude coordinates. Part 1 also showed how to use Google's geocoding service to translate a user-entered address into latitude and longitude coordinates, which could then be used to retrieve and display those stores within (roughly) a 15 mile area. At the end of Part 1, the results page listed the nearby stores in a grid. In Part 2 we used the Google Maps API to add an interactive map to the search results page, with each nearby store displayed on the map as a marker. The map added in Part 2 certainly improves the search results page, but the way the nearby stores are displayed on the map leaves a bit to be desired. For starters, each nearby store is displayed on the map using the same marker icon, namely a red pushpin. This makes it difficult to match up the nearby stores listed in the grid with those displayed on the map. Hovering the mouse over a marker on the map displays the store number in a tooltip, but ideally a user could click a marker to see more detailed information about the store, such as its address, phone number, a photo of the storefront, and so forth. This third and final installment shows how to enhance the map created in Part 2. Specifically, we'll see how to customize the marker icons displayed in the map to make it easier to identify which marker corresponds to which nearby store location. We'll also look at adding rich popup windows to each marker, which includes detailed store information and can be updated further to include pictures and other HTML content. Read on to learn more! Read More >

    Read the article

  • Using RIA DomainServices with ASP.NET and MVC 2

    - by Bobby Diaz
    Recently, I started working on a new ASP.NET MVC 2 project and I wanted to reuse the data access (LINQ to SQL) and business logic methods (WCF RIA Services) that had been developed for a previous project that used Silverlight for the front-end.  I figured that I would be able to instantiate the various DomainService classes from within my controller’s action methods, because after all, the code for those services didn’t look very complicated.  WRONG!  I didn’t realize at first that some of the functionality is handled automatically by the framework when the domain services are hosted as WCF services.  After some initial searching, I came across an invaluable post by Joe McBride, which described how to get RIA Service .svc files to work in an MVC 2 Web Application, and another by Brad Abrams.  Unfortunately, Brad’s solution was for an earlier preview release of RIA Services and no longer works with the version that I am running (PDC Preview). I have not tried the RC version of WCF RIA Services, so I am not sure if any of the issues I am having have been resolved, but I wanted to come up with a way to reuse the shared libraries so I wouldn’t have to write a non-RIA version that basically did the same thing.  The classes I came up with work with the scenarios I have encountered so far, but I wanted to go ahead and post the code in case someone else is having the same trouble I had.  Hopefully this will save you a few headaches! 1. Querying When I first tried to use a DomainService class to perform a query inside one of my controller’s action methods, I got an error stating that “This DomainService has not been initialized.”  To solve this issue, I created an extension method for all DomainServices that creates the required DomainServiceContext and passes it to the service’s Initialize() method.  Here is the code for the extension method; notice that I am creating a sort of mock HttpContext for those cases when the service is running outside of IIS, such as during unit testing!     public static class ServiceExtensions     {         /// <summary>         /// Initializes the domain service by creating a new <see cref="DomainServiceContext"/>         /// and calling the base DomainService.Initialize(DomainServiceContext) method.         /// </summary>         /// <typeparam name="TService">The type of the service.</typeparam>         /// <param name="service">The service.</param>         /// <returns></returns>         public static TService Initialize<TService>(this TService service)             where TService : DomainService         {             var context = CreateDomainServiceContext();             service.Initialize(context);             return service;         }           private static DomainServiceContext CreateDomainServiceContext()         {             var provider = new ServiceProvider(new HttpContextWrapper(GetHttpContext()));             return new DomainServiceContext(provider, DomainOperationType.Query);         }           private static HttpContext GetHttpContext()         {             var context = HttpContext.Current;   #if DEBUG             // create a mock HttpContext to use during unit testing...             if ( context == null )             {                 var writer = new StringWriter();                 var request = new SimpleWorkerRequest("/", "/",                     String.Empty, String.Empty, writer);                   context = new HttpContext(request)                 {                     User = new GenericPrincipal(new GenericIdentity("debug"), null)                 };             } #endif               return context;         }     }   With that in place, I can use it almost as normally as my first attempt, except with a call to Initialize():     public ActionResult Index()     {         var service = new NorthwindService().Initialize();         var customers = service.GetCustomers();           return View(customers);     } 2. Insert / Update / Delete Once I got the records showing up, I was trying to insert new records or update existing data when I ran into the next issue.  I say issue because I wasn’t getting any kind of error, which made it a little difficult to track down.  But once I realized that that the DataContext.SubmitChanges() method gets called automatically at the end of each domain service submit operation, I could start working on a way to mimic the behavior of a hosted domain service.  What I came up with, was a base class called LinqToSqlRepository<T> that basically sits between your implementation and the default LinqToSqlDomainService<T> class.     [EnableClientAccess()]     public class NorthwindService : LinqToSqlRepository<NorthwindDataContext>     {         public IQueryable<Customer> GetCustomers()         {             return this.DataContext.Customers;         }           public void InsertCustomer(Customer customer)         {             this.DataContext.Customers.InsertOnSubmit(customer);         }           public void UpdateCustomer(Customer currentCustomer)         {             this.DataContext.Customers.TryAttach(currentCustomer,                 this.ChangeSet.GetOriginal(currentCustomer));         }           public void DeleteCustomer(Customer customer)         {             this.DataContext.Customers.TryAttach(customer);             this.DataContext.Customers.DeleteOnSubmit(customer);         }     } Notice the new base class name (just change LinqToSqlDomainService to LinqToSqlRepository).  I also added a couple of DataContext (for Table<T>) extension methods called TryAttach that will check to see if the supplied entity is already attached before attempting to attach it, which would cause an error! 3. LinqToSqlRepository<T> Below is the code for the LinqToSqlRepository class.  The comments are pretty self explanatory, but be aware of the [IgnoreOperation] attributes on the generic repository methods, which ensures that they will be ignored by the code generator and not available in the Silverlight client application.     /// <summary>     /// Provides generic repository methods on top of the standard     /// <see cref="LinqToSqlDomainService&lt;TContext&gt;"/> functionality.     /// </summary>     /// <typeparam name="TContext">The type of the context.</typeparam>     public abstract class LinqToSqlRepository<TContext> : LinqToSqlDomainService<TContext>         where TContext : System.Data.Linq.DataContext, new()     {         /// <summary>         /// Retrieves an instance of an entity using it's unique identifier.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="keyValues">The key values.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual TEntity GetById<TEntity>(params object[] keyValues) where TEntity : class         {             var table = this.DataContext.GetTable<TEntity>();             var mapping = this.DataContext.Mapping.GetTable(typeof(TEntity));               var keys = mapping.RowType.IdentityMembers                 .Select((m, i) => m.Name + " = @" + i)                 .ToArray();               return table.Where(String.Join(" && ", keys), keyValues).FirstOrDefault();         }           /// <summary>         /// Creates a new query that can be executed to retrieve a collection         /// of entities from the <see cref="DataContext"/>.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <returns></returns>         [IgnoreOperation]         public virtual IQueryable<TEntity> GetEntityQuery<TEntity>() where TEntity : class         {             return this.DataContext.GetTable<TEntity>();         }           /// <summary>         /// Inserts the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Insert<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.InsertOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Insert);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity) where TEntity : class         {             return this.Update(entity, null);         }           /// <summary>         /// Updates the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <param name="original">The original.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Update<TEntity>(TEntity entity, TEntity original)             where TEntity : class         {             if ( original == null )             {                 original = GetOriginal(entity);             }               var table = this.DataContext.GetTable<TEntity>();             table.TryAttach(entity, original);               return this.Submit(entity, original, DomainOperation.Update);         }           /// <summary>         /// Deletes the specified entity.         /// </summary>         /// <typeparam name="TEntity">The type of the entity.</typeparam>         /// <param name="entity">The entity.</param>         /// <returns></returns>         [IgnoreOperation]         public virtual bool Delete<TEntity>(TEntity entity) where TEntity : class         {             //var table = this.DataContext.GetTable<TEntity>();             //table.TryAttach(entity);             //table.DeleteOnSubmit(entity);               return this.Submit(entity, null, DomainOperation.Delete);         }           protected virtual bool Submit(Object entity, Object original, DomainOperation operation)         {             var entry = new ChangeSetEntry(0, entity, original, operation);             var changes = new ChangeSet(new ChangeSetEntry[] { entry });             return base.Submit(changes);         }           private TEntity GetOriginal<TEntity>(TEntity entity) where TEntity : class         {             var context = CreateDataContext();             var table = context.GetTable<TEntity>();             return table.FirstOrDefault(e => e == entity);         }     } 4. Conclusion So there you have it, a fully functional Repository implementation for your RIA Domain Services that can be consumed by your ASP.NET and MVC applications.  I have uploaded the source code along with unit tests and a sample web application that queries the Customers table from inside a Controller, as well as a Silverlight usage example. As always, I welcome any comments or suggestions on the approach I have taken.  If there is enough interest, I plan on contacting Colin Blair or maybe even the man himself, Brad Abrams, to see if this is something worthy of inclusion in the WCF RIA Services Contrib project.  What do you think? Enjoy!

    Read the article

  • ASP.NET MVC localization DisplayNameAttribute alternatives: a good way

    - by Brian Schroer
    The ASP.NET MVC HTML helper methods like .LabelFor and .EditorFor use model metadata to autogenerate labels for model properties. By default it uses the property name for the label text, but if that’s not appropriate, you can use a DisplayName attribute to specify the desired label text: [DisplayName("Remember me?")] public bool RememberMe { get; set; } I’m working on a multi-language web site, so the labels need to be localized. I tried pointing the DisplayName attribute to a resource string: [DisplayName(MyResource.RememberMe)] public bool RememberMe { get; set; } …but that results in the compiler error "An attribute argument must be a constant expression, typeof expression or array creation expression of an attribute parameter type”. I got around this by creating a custom LocalizedDisplayNameAttribute class that inherits from DisplayNameAttribute: 1: public class LocalizedDisplayNameAttribute : DisplayNameAttribute 2: { 3: public LocalizedDisplayNameAttribute(string resourceKey) 4: { 5: ResourceKey = resourceKey; 6: } 7:   8: public override string DisplayName 9: { 10: get 11: { 12: string displayName = MyResource.ResourceManager.GetString(ResourceKey); 13:   14: return string.IsNullOrEmpty(displayName) 15: ? string.Format("[[{0}]]", ResourceKey) 16: : displayName; 17: } 18: } 19:   20: private string ResourceKey { get; set; } 21: } Instead of a display string, it takes a constructor argument of a resource key. The DisplayName method is overridden to get the display string from the resource file (line 12). If the key is not found, I return a formatted string containing the key (e.g. “[[RememberMe]]”) so I can tell by looking at my web pages which resource keys I haven’t defined yet (line 15). The usage of my custom attribute in the model looks like this: [LocalizedDisplayName("RememberMe")] public bool RememberMe { get; set; } That was my first attempt at localized display names, and it’s a technique that I still use in some cases, but in my next post I’ll talk about the method that I now prefer, a custom DataAnnotationsModelMetadataProvider class…

    Read the article

  • Optimize Images Using the ASP.NET Sprite and Image Optimization Framework

    The HTML markup of a web page includes the page's textual content, semantic and styling information, and, typically, several references to external resources. External resources are content that is part of web page, but are separate from the web page's markup - things like images, style sheets, script files, Flash videos, and so on. When a browser requests a web page it starts by downloading its HTML. Next, it scans the downloaded HTML for external resources and starts downloading those. A page with many external resources usually takes longer to completely load than a page with fewer external resources because there is an overhead associated with downloading each external resource. For starters, each external resource requires the browser to make an HTTP request to retrieve the resource. What's more, browsers have a limit as to how many HTTP requests they will make in parallel. For these reasons, a common technique for improving a page's load time is to consolidate external resources in a way to reduce the number of HTTP requests that must be made by the browser to load the page in its entirety. This article examines the free and open-source ASP.NET Sprite and Image Optimization Framework, which is a project developed by Microsoft for improving a web page's load time by consolidating images into a sprite or by using inline, base-64 encoded images. In a nutshell, this framework makes it easy to implement practices that will improve the load time for a web page that displays several images. Read on to learn more! Read More >

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Migrate ASP.Net web site from IIS6 to IIS7

    - by David.Chu.ca
    I have to migrate an ASP.Net web site from IIS6 to IIS7. I tried to copy the all files for a web site from IIS6 (c:\inetpub\wwwroot\MySite) to another box with Windows Server 2008 R2 where IIS7 is the default web server. However, the simply copy seems not working. Should I rebuild the web site for IIS7 or should I make changes on the new box with IIS7 such as web.config? Thanks for the comments. Further investigation I found that http handers seems caused exception: <!--httpHandlers> <add path="Reserved.ReportViewerWebControl.axd" verb="*" type="Microsoft.Reporting.WebForms.HttpHandler, Microsoft.ReportViewer.WebForms, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" validate="false"/> </httpHandlers--> After I comment out the above handler in web.config, the web page works fine. This is just my initial test. I am not sure if I should rebuild the web site from source codes or not. If so, do I need to specify for IIS7?

    Read the article

  • Are VB.NET to C# converters actually compilers?

    - by Rowan Freeman
    Whenever I see programs or scripts that convert between high-level programming languages they are always labelled as converters. "VB.NET to C# converter" on Google results in expected, useful hits. However "VB.NET to C# compiler" on Google results in things like comparisons between the C# and VB.NET compilers and other hits that are not quite what you'd be looking for. Webopedia defines Compiler as A program that translates source code into object code Eric Lipper in an answer to: "How do I create my own programming language and a compiler for it" suggests: One of the best ways to get started writing a compiler is by writing a high-level-language-to-high-level-language compiler. Is a converter really just a compiler? What separates the two?

    Read the article

< Previous Page | 709 710 711 712 713 714 715 716 717 718 719 720  | Next Page >