Search Results

Search found 53991 results on 2160 pages for 'asp net 4'.

Page 765/2160 | < Previous Page | 761 762 763 764 765 766 767 768 769 770 771 772  | Next Page >

  • Enumerable Interleave Extension Method

    - by João Angelo
    A recent stackoverflow question, which I didn’t bookmark and now I’m unable to find, inspired me to implement an extension method for Enumerable that allows to insert a constant element between each pair of elements in a sequence. Kind of what String.Join does for strings, but maintaining an enumerable as the return value. Having done the single element part I got a bit carried away and ended up expanding it adding overloads to support interleaving elements of another sequence and support for a predicate to control when interleaving takes place. I have to confess that I did this for fun and now I can’t think of any real usage scenario, nonetheless, it may prove useful for someone. First a simple example: var target = new string[] { "(", ")", "(", ")" }; var result = target.Interleave(".", (f, s) => f == "("); // Prints: (.)(.) Console.WriteLine(String.Join(string.Empty, result)); And now the untested but documented implementation: using System; using System.Collections; using System.Collections.Generic; using System.Linq; public static class EnumerableExtensions { /// <summary> /// Iterates infinitely over a constant element. /// </summary> /// <typeparam name="T"> /// The type of element in the sequence. /// </typeparam> private class InfiniteSequence<T> : IEnumerable<T>, IEnumerator<T> { public InfiniteSequence(T element) { this.Element = element; } public T Element { get; private set; } public IEnumerator<T> GetEnumerator() { return this; } IEnumerator IEnumerable.GetEnumerator() { return this; } T IEnumerator<T>.Current { get { return this.Element; } } void IDisposable.Dispose() { } object IEnumerator.Current { get { return this.Element; } } bool IEnumerator.MoveNext() { return true; } void IEnumerator.Reset() { } } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence. /// </summary> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="element"> /// The element used to perform the interleave operation. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="element"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, T element) { if (target == null) throw new ArgumentNullException("target"); if (element == null) throw new ArgumentNullException("element"); return InterleaveInternal(target, new InfiniteSequence<T>(element), (f, s) => true); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence. /// </summary> /// <remarks> /// The interleave operation is interrupted as soon as the <paramref name="target"/> sequence is exhausted; If the number of <paramref name="elements"/> to be interleaved are not enough to completely interleave the <paramref name="target"/> sequence then the remainder of the sequence is returned without being interleaved. /// </remarks> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="elements"> /// The elements used to perform the interleave operation. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="elements"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, IEnumerable<T> elements) { if (target == null) throw new ArgumentNullException("target"); if (elements == null) throw new ArgumentNullException("elements"); return InterleaveInternal(target, elements, (f, s) => true); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence that satisfy <paramref name="predicate"/>. /// </summary> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="element"> /// The element used to perform the interleave operation. /// </param> /// <param name="predicate"> /// A predicate used to assert if interleaving should occur between two target elements. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> or <paramref name="predicate"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="element"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, T element, Func<T, T, bool> predicate) { if (target == null) throw new ArgumentNullException("target"); if (element == null) throw new ArgumentNullException("element"); if (predicate == null) throw new ArgumentNullException("predicate"); return InterleaveInternal(target, new InfiniteSequence<T>(element), predicate); } /// <summary> /// Interleaves the specified <paramref name="element"/> between each pair of elements in the <paramref name="target"/> sequence that satisfy <paramref name="predicate"/>. /// </summary> /// <remarks> /// The interleave operation is interrupted as soon as the <paramref name="target"/> sequence is exhausted; If the number of <paramref name="elements"/> to be interleaved are not enough to completely interleave the <paramref name="target"/> sequence then the remainder of the sequence is returned without being interleaved. /// </remarks> /// <typeparam name="T"> /// The type of elements in the sequence. /// </typeparam> /// <param name="target"> /// The target sequence to be interleaved. /// </param> /// <param name="elements"> /// The elements used to perform the interleave operation. /// </param> /// <param name="predicate"> /// A predicate used to assert if interleaving should occur between two target elements. /// </param> /// <exception cref="ArgumentNullException"> /// <paramref name="target"/> or <paramref name="element"/> or <paramref name="predicate"/> is a null reference. /// </exception> /// <returns> /// The <paramref name="target"/> sequence interleaved with the specified <paramref name="elements"/>. /// </returns> public static IEnumerable<T> Interleave<T>( this IEnumerable<T> target, IEnumerable<T> elements, Func<T, T, bool> predicate) { if (target == null) throw new ArgumentNullException("target"); if (elements == null) throw new ArgumentNullException("elements"); if (predicate == null) throw new ArgumentNullException("predicate"); return InterleaveInternal(target, elements, predicate); } private static IEnumerable<T> InterleaveInternal<T>( this IEnumerable<T> target, IEnumerable<T> elements, Func<T, T, bool> predicate) { var targetEnumerator = target.GetEnumerator(); if (targetEnumerator.MoveNext()) { var elementsEnumerator = elements.GetEnumerator(); while (true) { T first = targetEnumerator.Current; yield return first; if (!targetEnumerator.MoveNext()) yield break; T second = targetEnumerator.Current; bool interleave = true && predicate(first, second) && elementsEnumerator.MoveNext(); if (interleave) yield return elementsEnumerator.Current; } } } }

    Read the article

  • Default Parameters vs Method Overloading

    - by João Angelo
    With default parameters introduced in C# 4.0 one might be tempted to abandon the old approach of providing method overloads to simulate default parameters. However, you must take in consideration that both techniques are not interchangeable since they show different behaviors in certain scenarios. For me the most relevant difference is that default parameters are a compile time feature while method overloading is a runtime feature. To illustrate these concepts let’s take a look at a complete, although a bit long, example. What you need to retain from the example is that static method Foo uses method overloading while static method Bar uses C# 4.0 default parameters. static void CreateCallerAssembly(string name) { // Caller class - Invokes Example.Foo() and Example.Bar() string callerCode = String.Concat( "using System;", "public class Caller", "{", " public void Print()", " {", " Console.WriteLine(Example.Foo());", " Console.WriteLine(Example.Bar());", " }", "}"); var parameters = new CompilerParameters(new[] { "system.dll", "Common.dll" }, name); new CSharpCodeProvider().CompileAssemblyFromSource(parameters, callerCode); } static void Main() { // Example class - Foo uses overloading while Bar uses C# 4.0 default parameters string exampleCode = String.Concat( "using System;", "public class Example", "{{", " public static string Foo() {{ return Foo(\"{0}\"); }}", " public static string Foo(string key) {{ return \"FOO-\" + key; }}", " public static string Bar(string key = \"{0}\") {{ return \"BAR-\" + key; }}", "}}"); var compiler = new CSharpCodeProvider(); var parameters = new CompilerParameters(new[] { "system.dll" }, "Common.dll"); // Build Common.dll with default value of "V1" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V1")); // Caller1 built against Common.dll that uses a default of "V1" CreateCallerAssembly("Caller1.dll"); // Rebuild Common.dll with default value of "V2" compiler.CompileAssemblyFromSource(parameters, String.Format(exampleCode, "V2")); // Caller2 built against Common.dll that uses a default of "V2" CreateCallerAssembly("Caller2.dll"); dynamic caller1 = Assembly.LoadFrom("Caller1.dll").CreateInstance("Caller"); dynamic caller2 = Assembly.LoadFrom("Caller2.dll").CreateInstance("Caller"); Console.WriteLine("Caller1.dll:"); caller1.Print(); Console.WriteLine("Caller2.dll:"); caller2.Print(); } And if you run this code you will get the following output: // Caller1.dll: // FOO-V2 // BAR-V1 // Caller2.dll: // FOO-V2 // BAR-V2 You see that even though Caller1.dll runs against the current Common.dll assembly where method Bar defines a default value of “V2″ the output show us the default value defined at the time Caller1.dll compiled against the first version of Common.dll. This happens because the compiler will copy the current default value to each method call, much in the same way a constant value (const keyword) is copied to a calling assembly and changes to it’s value will only be reflected if you rebuild the calling assembly again. The use of default parameters is also discouraged by Microsoft in public API’s as stated in (CA1026: Default parameters should not be used) code analysis rule.

    Read the article

  • Which is more maintainable -- boolean assignment via if/else or boolean expression?

    - by Bret Walker
    Which would be considered more maintainable? if (a == b) c = true; else c = false; or c = (a == b); I've tried looking in Code Complete, but can't find an answer. I think the first is more readable (you can literally read it out loud), which I also think makes it more maintainable. The second one certainly makes more sense and reduces code, but I'm not sure it's as maintainable for C# developers (I'd expect to see this idiom more in, for example, Python).

    Read the article

  • what's the port number of mysql

    - by user28233
    I'm trying to connect mysql with vb.net, I've already downloaded the mysql connector-net. And installed it. But I don't know what is the port number , server address of mysql. Its needed in the connection string. Please help, Server=myServerAddress;Port=1234;Database=myDataBase;Uid=myUsername;Pwd=myPassword;

    Read the article

  • Should I create my own Assert class based on these reasons?

    - by Mike
    The main reason I don't like Debug.Assert is the fact that these assertions are disabled in Release. I know that there's a performance reason for that, but at least in my situation I believe the gains would outweigh the cost. (By the way, I'm guessing this is the situation in most cases). And yes, I know that you can use Trace.Assert instead. But even though that would work, I find the name Trace distracting, since I don't see this as tracing. The other reason to create my own class is laziness I guess, since I could write methods for the most usual cases like Assert.IsNotNull, Assert.Equals and so forth. The second part of my question has to do with using Environment.FailFast in this class. Would that be a good idea? I do like the ideas put forth in this document. That's pretty much where I got the idea from. One last point. Does creating a design like this imply having an untestable code path, as described in this answer by Eric Lippert on a different (but related) question?

    Read the article

  • ReSharper C# Live Template for Dependency Property and Property Change Routed Event Boilerplate Code

    - by Bart Read
    I don't know about you but it took me about 5 seconds to get royally fed up of typing the boilerplate code necessary for creating WPF (and Silverlight) dependency properties and, if you want them, their associated property change routed events. Being a ReSharper user, I wondered if there was any live template for doing this. It turns out there's nothing built in, but there are many examples of templates for creating dependency properties out there on the web, such as this excellent one from Roy...(read more)

    Read the article

  • TypeScript or JavaScript for noob web developer [closed]

    - by Phil Murray
    Following the recent release by Microsoft of TypeScript I was wondering if this is something that should be considered for a experienced WinForm and XAML developer looking to get into more web development. From reviewing a number of sites and videos online it appears that the type system for TypeScript makes more sense to me as a thick client developer than the dynamic type system in Javascript. I understand that Typescript compiles down to JavaScript but it appears that the learning curve is shallower due to the current tooling provided by Microsoft. What are your thoughts?

    Read the article

  • Context Sensitive History. Part 1 of 2

    A Desktop and Silverlight user action management system, with undo, redo, and repeat. Allowing actions to be monitored, and grouped according to a context (such as a UI control), executed sequentially or in parallel, and even to be rolled back on failure.

    Read the article

  • Are there well-known PowerShell coding conventions?

    - by Tahir Hassan
    Are there any well-defined conventions when programming in PowerShell? For example, in scripts which are to be maintained long-term, do we need to: Use the real cmdlet name or alias? Specify the cmdlet parameter name in full or only partially (dir -Recurse versus dir -r) When specifying string arguments for cmdlets do you enclose them in quotes (New-Object 'System.Int32' versus New-Object System.Int32 When writing functions and filters do you specify the types of parameters? Do you write cmdlets in the (official) correct case? For keywords like BEGIN...PROCESS...END do you write them in uppercase only? It seems that MSDN lack coding conventions document for PowerShell, while such document exist for example for C#.

    Read the article

  • Is there something better than a StringBuilder for big blocks of SQL in the code

    - by Eduardo Molteni
    I'm just tired of making a big SQL statement, test it, and then paste the SQL into the code and adding all the sqlstmt.append(" at the beginning and the ") at the end. It's 2011, isn't there a better way the handle a big chunk of strings inside code? Please: don't suggest stored procedures or ORMs. edit Found the answer using XML literals and CData. Thanks to all the people that actually tried to answer the question without questioning me for not using ORM, SPs and using VB edit 2 the question leave me thinking that languages could try to make a better effort for using inline SQL with color syntax, etc. It will be cheaper that developing Linq2SQL. Just something like: dim sql = <sql> SELECT * ... </sql>

    Read the article

  • ANTS Profiler Saves Me From A Sordid Fate

    A bit of string concatenation never hurt anybody, right? Think again. Carl Niedner has been designing software since 1983, and was shocked to find his latest and greatest creation suddenly plagued with long loading times. After trying ANTS Profiler, he discovered one tiny line of forgotten concept code was causing his pain.

    Read the article

  • Is defining every method/state per object in a series of UML diagrams representative of MDA in general?

    - by Max
    I am currently working on a project where we use a framework that combines code generation and ORM together with UML to develop software. Methods are added to UML classes and are generated into partial classes where "stuff happens". For example, an UML class "Content" could have the method DeleteFromFileSystem(void). Which could be implemented like this: public partial class Content { public void DeleteFromFileSystem() { File.Delete(...); } } All methods are designed like this. Everything happens in these gargantuan logic-bomb domain classes. Is this how MDA or DDD or similar usually is done? For now my impression of MDA/DDD (which this has been called by higherups) is that it severely stunts my productivity (everything must be done The Way) and that it hinders maintenance work since all logic are roped, entrenched, interspersed into the mentioned gargantuan bombs. Please refrain from interpreting this as a rant - I am merely curious if this is typical MDA or some sort of extreme MDA UPDATE Concerning the example above, in my opinion Content shouldn't handle deleting itself as such. What if we change from local storage to Amazon S3, in that case we would have to reimplement this functionality scattered over multiple places instead of one single interface which we can provide a second implementation for.

    Read the article

  • Unit Testing with NUnit and Moles Redux

    - by João Angelo
    Almost two years ago, when Moles was still being packaged alongside Pex, I wrote a post on how to run NUnit tests supporting moled types. A lot has changed since then and Moles is now being distributed independently of Pex, but maintaining support for integration with NUnit and other testing frameworks. For NUnit the support is provided by an addin class library (Microsoft.Moles.NUnit.dll) that you need to reference in your test project so that you can decorate yours tests with the MoledAttribute. The addin DLL must also be placed in the addins folder inside the NUnit installation directory. There is however a downside, since Moles and NUnit follow a different release cycle and the addin DLL must be built against a specific NUnit version, you may find that the release included with the latest version of Moles does not work with your version of NUnit. Fortunately the code for building the NUnit addin is supplied in the archive (moles.samples.zip) that you can found in the Documentation folder inside the Moles installation directory. By rebuilding the addin against your specific version of NUnit you are able to support any version. Also to note that in Moles 0.94.51023.0 the addin code did not support the use of TestCaseAttribute in your moled tests. However, if you need this support, you need to make just a couple of changes. Change the ITestDecorator.Decorate method in the MolesAddin class: Test ITestDecorator.Decorate(Test test, MemberInfo member) { SafeDebug.AssumeNotNull(test, "test"); SafeDebug.AssumeNotNull(member, "member"); bool isTestFixture = true; isTestFixture &= test.IsSuite; isTestFixture &= test.FixtureType != null; bool hasMoledAttribute = true; hasMoledAttribute &= !SafeArray.IsNullOrEmpty( member.GetCustomAttributes(typeof(MoledAttribute), false)); if (!isTestFixture && hasMoledAttribute) { return new MoledTest(test); } return test; } Change the Tests property in the MoledTest class: public override System.Collections.IList Tests { get { if (this.test.Tests == null) { return null; } var moled = new List<Test>(this.test.Tests.Count); foreach (var test in this.test.Tests) { moled.Add(new MoledTest((Test)test)); } return moled; } } Disclaimer: I only tested this implementation against NUnit 2.5.10.11092 version. Finally you just need to run the NUnit console runner through the Moles runner. A quick example follows: moles.runner.exe [Tests.dll] /r:nunit-console.exe /x86 /args:[NUnitArgument1] /args:[NUnitArgument2]

    Read the article

  • How to Create Features for Windows SharePoint Services 3.0

    To customise a SharePoint (WSS 3.0) site, you'll need to understand 'Features'. The 'Feature' framework has become the most important method of customising a SharePoint site, because it is now defined by a list of Features, a layout page and a master page. One templated site can be turned into another by toggling Features and maybe switching the layout page or master page. Charles Lee explains.

    Read the article

  • How to fix “Unit Test Runner failed to load test assembly”

    - by ybbest
    I encountered this issue a couple times during my recent project, every time I forgot what actually cause the issue. Therefore, I decide to write a quick blog post to make sure I can identify the issue quickly. Problem: Run unit test using a test runner and received a Unit Test Runner failed to load test assembly exception. Analysis: Basically, I have changed some code and start the test runner to run tests. The same dll have already been deployed to GAC. So the test runner actually tries to use the old version of the assembly thus could not load the assembly. Solution: Deploy the current version of dll to the GAC and re-run your test, it works like a charm.

    Read the article

  • RemoveAll Dictionary Extension Method

    - by João Angelo
    Removing from a dictionary all the elements where the keys satisfy a set of conditions is something I needed to do more than once so I implemented it as an extension method to the IDictionary<TKey, TValue> interface. Here’s the code: public static class DictionaryExtensions { /// <summary> /// Removes all the elements where the key match the conditions defined by the specified predicate. /// </summary> /// <typeparam name="TKey"> /// The type of the dictionary key. /// </typeparam> /// <typeparam name="TValue"> /// The type of the dictionary value. /// </typeparam> /// <param name="dictionary"> /// A dictionary from which to remove the matched keys. /// </param> /// <param name="match"> /// The <see cref="Predicate{T}"/> delegate that defines the conditions of the keys to remove. /// </param> /// <exception cref="ArgumentNullException"> /// dictionary is null /// <br />-or-<br /> /// match is null. /// </exception> /// <returns> /// The number of elements removed from the <see cref="IDictionary{TKey, TValue}"/>. /// </returns> public static int RemoveAll<TKey, TValue>( this IDictionary<TKey, TValue> dictionary, Predicate<TKey> match) { if (dictionary == null) throw new ArgumentNullException("dictionary"); if (match == null) throw new ArgumentNullException("match"); var keysToRemove = dictionary.Keys.Where(k => match(k)).ToList(); if (keysToRemove.Count == 0) return 0; foreach (var key in keysToRemove) { dictionary.Remove(key); } return keysToRemove.Count; } }

    Read the article

  • Profiling SharePoint with ANTS Performance Profiler 5.2

    Using ANTS Performance Profiler with SharePoint has, previously, been possible, but not easy. Version 5.2 of ANTS Performance Profiler changes all that, and Chris Allen has put together a straight-forward guide to profiling SharePoint, demonstrating just how much easier it has become.

    Read the article

  • WCF Keep Alive: Whether to disable keepAliveEnabled

    - by Lijo
    I have a WCF web service hosted in a load balanced environment. I do not need any WCF session related functionality in the service. QUESTION What are the scenarios in which performances will be best if keepAliveEnabled = false keepAliveEnabled = true Reference From Load Balancing By default, the BasicHttpBinding sends a connection HTTP header in messages with a Keep-Alive value, which enables clients to establish persistent connections to the services that support them. This configuration offers enhanced throughput because previously established connections can be reused to send subsequent messages to the same server. However, connection reuse may cause clients to become strongly associated to a specific server within the load-balanced farm, which reduces the effectiveness of round-robin load balancing. If this behavior is undesirable, HTTP Keep-Alive can be disabled on the server using the KeepAliveEnabled property with a CustomBinding or user-defined Binding.

    Read the article

  • Wikipedia A* pathfinding algorithm takes a lot of time

    - by Vee
    I've successfully implemented A* pathfinding in C# but it is very slow, and I don't understand why. I even tried not sorting the openNodes list but it's still the same. The map is 80x80, and there are 10-11 nodes. I took the pseudocode from here Wikipedia And this is my implementation: public static List<PGNode> Pathfind(PGMap mMap, PGNode mStart, PGNode mEnd) { mMap.ClearNodes(); mMap.GetTile(mStart.X, mStart.Y).Value = 0; mMap.GetTile(mEnd.X, mEnd.Y).Value = 0; List<PGNode> openNodes = new List<PGNode>(); List<PGNode> closedNodes = new List<PGNode>(); List<PGNode> solutionNodes = new List<PGNode>(); mStart.G = 0; mStart.H = GetManhattanHeuristic(mStart, mEnd); solutionNodes.Add(mStart); solutionNodes.Add(mEnd); openNodes.Add(mStart); // 1) Add the starting square (or node) to the open list. while (openNodes.Count > 0) // 2) Repeat the following: { openNodes.Sort((p1, p2) => p1.F.CompareTo(p2.F)); PGNode current = openNodes[0]; // a) We refer to this as the current square.) if (current == mEnd) { while (current != null) { solutionNodes.Add(current); current = current.Parent; } return solutionNodes; } openNodes.Remove(current); closedNodes.Add(current); // b) Switch it to the closed list. List<PGNode> neighborNodes = current.GetNeighborNodes(); double cost = 0; bool isCostBetter = false; for (int i = 0; i < neighborNodes.Count; i++) { PGNode neighbor = neighborNodes[i]; cost = current.G + 10; isCostBetter = false; if (neighbor.Passable == false || closedNodes.Contains(neighbor)) continue; // If it is not walkable or if it is on the closed list, ignore it. if (openNodes.Contains(neighbor) == false) { openNodes.Add(neighbor); // If it isn’t on the open list, add it to the open list. isCostBetter = true; } else if (cost < neighbor.G) { isCostBetter = true; } if (isCostBetter) { neighbor.Parent = current; // Make the current square the parent of this square. neighbor.G = cost; neighbor.H = GetManhattanHeuristic(current, neighbor); } } } return null; } Here's the heuristic I'm using: private static double GetManhattanHeuristic(PGNode mStart, PGNode mEnd) { return Math.Abs(mStart.X - mEnd.X) + Math.Abs(mStart.Y - mEnd.Y); } What am I doing wrong? It's an entire day I keep looking at the same code.

    Read the article

  • Writing custom Message Formatter for SOAP basicHttpBinding

    - by Lijo
    I have a WSDL published by our service development team. It is using SOAP and basicHttpBinding. I can add the service reference to the project using Add Service Reference option in Visual Studio. I need to develop the WCF client. I need to use custom Message Formatter (for mapping between Messages and CLR types). Can you please show how to write the custom Message Formatter (in C# )for the following wsdl? Note: I am planning to use custom Message Formatter due to an issue mentioned in http://stackoverflow.com/questions/12316884/header-namespace-mismatch-issue WSDL <definitions xmlns:import0="urn:thinktecture-com:demos:restaurantservice:data:v1" xmlns:import2="urn:thinktecture-com:demos:restaurantservice:messages:v1" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:import1="urn:thinktecture-com:demos:restaurantservice:headerdata:v1" xmlns:tns="urn:thinktecture-com:demos:restaurantservice:wsdl:v1" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" name="RestauarntService" targetNamespace="urn:thinktecture-com:demos:restaurantservice:wsdl:v1" xmlns="http://schemas.xmlsoap.org/wsdl/"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <types> <xsd:schema> <xsd:import schemaLocation="RestaurantData.xsd" namespace="urn:thinktecture-com:demos:restaurantservice:data:v1" /> <xsd:import schemaLocation="RestaurantHeaderData.xsd" namespace="urn:thinktecture-com:demos:restaurantservice:headerdata:v1" /> <xsd:import schemaLocation="RestaurantMessages.xsd" namespace="urn:thinktecture-com:demos:restaurantservice:messages:v1" /> </xsd:schema> </types> <message name="getRestaurantsIn"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <part name="parameters" element="import2:getRestaurants" /> </message> <message name="getRestaurantsOut"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <part name="parameters" element="import2:getRestaurantsResponse" /> </message> <message name="lijosCustomFaultMessage"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <part name="fault" element="import2:customFault" /> </message> <message name="userCredentialsIn"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <part name="parameters" element="import1:userCredentials" /> </message> <message name="addRestaurantIn"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <part name="parameters" element="import2:addRestaurant" /> </message> <message name="addRestaurantInHeader1"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <part name="parameters" element="import1:userCredentials" /> </message> <message name="customFaultIn"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <part name="parameters" element="import2:customFault" /> </message> <portType name="RestauarntServiceInterface"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <operation name="getRestaurants"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <input message="tns:getRestaurantsIn" /> <output message="tns:getRestaurantsOut" /> <fault name="lijosCustomFaultMessage" message="tns:lijosCustomFaultMessage" /> </operation> <operation name="userCredentials"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <input message="tns:userCredentialsIn" /> </operation> <operation name="addRestaurant"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <input message="tns:addRestaurantIn" /> </operation> <operation name="customFault"> <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" /> <input message="tns:customFaultIn" /> </operation> </portType> <binding name="BasicHttpBinding_RestauarntServiceInterface" type="tns:RestauarntServiceInterface"> <soap:binding transport="http://schemas.xmlsoap.org/soap/http" /> <operation name="getRestaurants"> <soap:operation soapAction="urn:thinktecture-com:demos:restaurantservice:wsdl:v1:getRestaurantsIn" style="document" /> <input> <soap:body use="literal" /> </input> <output> <soap:body use="literal" /> </output> <fault name="lijosCustomFaultMessage"> <soap:fault use="literal" name="lijosCustomFaultMessage" namespace="" /> </fault> </operation> <operation name="userCredentials"> <soap:operation soapAction="urn:thinktecture-com:demos:restaurantservice:wsdl:v1:userCredentialsIn" style="document" /> <input> <soap:body use="literal" /> </input> </operation> <operation name="addRestaurant"> <soap:operation soapAction="urn:thinktecture-com:demos:restaurantservice:wsdl:v1:addRestaurantIn" style="document" /> <input> <soap:body use="literal" /> <soap:header message="tns:addRestaurantInHeader1" part="parameters" use="literal" /> </input> </operation> <operation name="customFault"> <soap:operation soapAction="urn:thinktecture-com:demos:restaurantservice:wsdl:v1:customFaultIn" style="document" /> <input> <soap:body use="literal" /> </input> </operation> </binding> <service name="RestauarntServicePort"> <port name="RestauarntServicePort" binding="tns:BasicHttpBinding_RestauarntServiceInterface"> <soap:address location="http://localhost/RestauarntService" /> </port> </service> </definitions>?? RestaurantData.xsd <?xml version="1.0" encoding="utf-8" ?> <xs:schema id="RestaurantData" targetNamespace="urn:thinktecture-com:demos:restaurantservice:data:v1" elementFormDefault="qualified" xmlns="urn:thinktecture-com:demos:restaurantservice:data:v1" xmlns:mstns="urn:thinktecture-com:demos:restaurantservice:data:v1" xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:complexType name="restaurantInfo"> <xs:sequence> <xs:element name="restaurantID" type="xs:int" /> <xs:element name="name" type="xs:string" /> <xs:element name="address" type="xs:string" /> <xs:element name="city" type="xs:string" /> <xs:element name="state" type="xs:string" /> <xs:element name="zip" type="xs:string" /> <xs:element name="openFrom" type="xs:time" /> <xs:element name="openTo" type="xs:time" /> </xs:sequence> </xs:complexType> <xs:complexType name="restaurantsList"> <xs:sequence> <xs:element name="restaurant" type="restaurantInfo" maxOccurs="unbounded" minOccurs="0" /> </xs:sequence> </xs:complexType> <xs:complexType name="customFault"> <xs:sequence> <xs:element name="errorCode" type="xs:string"/> <xs:element name="message" type="xs:string"/> <xs:element maxOccurs="unbounded" minOccurs="0" name="messages" type="xs:string" /> </xs:sequence> </xs:complexType> </xs:schema> RestaurantHeaderData.xsd <?xml version="1.0" encoding="utf-8" ?> <xs:schema id="RestaurantHeaderData" targetNamespace="urn:thinktecture-com:demos:restaurantservice:headerdata:v1" elementFormDefault="qualified" xmlns="urn:thinktecture-com:demos:restaurantservice:headerdata:v1" xmlns:mstns="urn:thinktecture-com:demos:restaurantservice:headerdata:v1" xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:complexType name="credentials"> <xs:sequence> <xs:element name="username" type="xs:string" /> <xs:element name="password" type="xs:string" /> </xs:sequence> </xs:complexType> <xs:element name="userCredentials" type="credentials"> </xs:element> </xs:schema> ? RestaurantMessages.xsd <?xml version="1.0" encoding="utf-8" ?> <xs:schema id="RestaurantMessages" targetNamespace="urn:thinktecture-com:demos:restaurantservice:messages:v1" elementFormDefault="qualified" xmlns="urn:thinktecture-com:demos:restaurantservice:messages:v1" xmlns:mstns="urn:thinktecture-com:demos:restaurantservice:messages:v1" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:import="urn:thinktecture-com:demos:restaurantservice:data:v1"> <xs:import id="RestaurantData" schemaLocation="RestaurantData.xsd" namespace="urn:thinktecture-com:demos:restaurantservice:data:v1"> </xs:import> <xs:element name="getRestaurants"> <xs:complexType> <xs:sequence> <xs:element name="zip" type="xs:string" /> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="getRestaurantsResponse"> <xs:complexType> <xs:sequence> <xs:element name="restaurants" type="import:restaurantsList" /> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="addRestaurant"> <xs:complexType> <xs:sequence> <xs:element name="restaurant" type="import:restaurantInfo" /> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="customFault" type="import:customFault" /> </xs:schema>

    Read the article

  • WPF: How to get the bounds of a control in an automatic layout container, in the container coordinate space

    - by Bart Read
    Googling this the other day, I started to get the impression that this might be annoyingly tricky. You might wonder why this is necessary at all, given that WPF implements layout for you in most cases (except for containers such as Canvas), but trust me, if you're developing custom elements, at some point you're probably going to need it. If you're adding controls to a Canvas you can always use the attached Left, Right, etc., properties to get the bounds. Fortunately it's really no more difficult...(read more)

    Read the article

  • .NET Security Part 4

    - by Simon Cooper
    Finally, in this series, I am going to cover some of the security issues that can trip you up when using sandboxed appdomains. DISCLAIMER: I am not a security expert, and this is by no means an exhaustive list. If you actually are writing security-critical code, then get a proper security audit of your code by a professional. The examples below are just illustrations of the sort of things that can go wrong. 1. AppDomainSetup.ApplicationBase The most obvious one is the issue covered in the MSDN documentation on creating a sandbox, in step 3 – the sandboxed appdomain has the same ApplicationBase as the controlling appdomain. So let’s explore what happens when they are the same, and an exception is thrown. In the sandboxed assembly, Sandboxed.dll (IPlugin is an interface in a partially-trusted assembly, with a single MethodToDoThings on it): public class UntrustedPlugin : MarshalByRefObject, IPlugin { // implements IPlugin.MethodToDoThings() public void MethodToDoThings() { throw new EvilException(); } } [Serializable] internal class EvilException : Exception { public override string ToString() { // show we have read access to C:\Windows // read the first 5 directories Console.WriteLine("Pwned! Mwuahahah!"); foreach (var d in Directory.EnumerateDirectories(@"C:\Windows").Take(5)) { Console.WriteLine(d.FullName); } return base.ToString(); } } And in the controlling assembly: // what can possibly go wrong? AppDomainSetup appDomainSetup = new AppDomainSetup { ApplicationBase = AppDomain.CurrentDomain.SetupInformation.ApplicationBase } // only grant permissions to execute // and to read the application base, nothing else PermissionSet restrictedPerms = new PermissionSet(PermissionState.None); restrictedPerms.AddPermission( new SecurityPermission(SecurityPermissionFlag.Execution)); restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.Read, appDomainSetup.ApplicationBase); restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.pathDiscovery, appDomainSetup.ApplicationBase); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain("Sandbox", null, appDomainSetup, restrictedPerms); // execute UntrustedPlugin in the sandbox // don't crash the application if the sandbox throws an exception IPlugin o = (IPlugin)sandbox.CreateInstanceFromAndUnwrap("Sandboxed.dll", "UntrustedPlugin"); try { o.MethodToDoThings() } catch (Exception e) { Console.WriteLine(e.ToString()); } And the result? Oops. We’ve allowed a class that should be sandboxed to execute code with fully-trusted permissions! How did this happen? Well, the key is the exact meaning of the ApplicationBase property: The application base directory is where the assembly manager begins probing for assemblies. When EvilException is thrown, it propagates from the sandboxed appdomain into the controlling assembly’s appdomain (as it’s marked as Serializable). When the exception is deserialized, the CLR finds and loads the sandboxed dll into the fully-trusted appdomain. Since the controlling appdomain’s ApplicationBase directory contains the sandboxed assembly, the CLR finds and loads the assembly into a full-trust appdomain, and the evil code is executed. So the problem isn’t exactly that the sandboxed appdomain’s ApplicationBase is the same as the controlling appdomain’s, it’s that the sandboxed dll was in such a place that the controlling appdomain could find it as part of the standard assembly resolution mechanism. The sandbox then forced the assembly to load in the controlling appdomain by throwing a serializable exception that propagated outside the sandbox. The easiest fix for this is to keep the sandbox ApplicationBase well away from the ApplicationBase of the controlling appdomain, and don’t allow the sandbox permissions to access the controlling appdomain’s ApplicationBase directory. If you do this, then the sandboxed assembly can’t be accidentally loaded into the fully-trusted appdomain, and the code can’t be executed. If the plugin does try to induce the controlling appdomain to load an assembly it shouldn’t, a SerializationException will be thrown when it tries to load the assembly to deserialize the exception, and no damage will be done. 2. Loading the sandboxed dll into the application appdomain As an extension of the previous point, you shouldn’t directly reference types or methods in the sandboxed dll from your application code. That loads the assembly into the fully-trusted appdomain, and from there code in the assembly could be executed. Instead, pull out methods you want the sandboxed dll to have into an interface or class in a partially-trusted assembly you control, and execute methods via that instead (similar to the example above with the IPlugin interface). If you need to have a look at the assembly before executing it in the sandbox, either examine the assembly using reflection from within the sandbox, or load the assembly into the Reflection-only context in the application’s appdomain. The code in assemblies in the reflection-only context can’t be executed, it can only be reflected upon, thus protecting your appdomain from malicious code. 3. Incorrectly asserting permissions You should only assert permissions when you are absolutely sure they’re safe. For example, this method allows a caller read-access to any file they call this method with, including your documents, any network shares, the C:\Windows directory, etc: [SecuritySafeCritical] public static string GetFileText(string filePath) { new FileIOPermission(FileIOPermissionAccess.Read, filePath).Assert(); return File.ReadAllText(filePath); } Be careful when asserting permissions, and ensure you’re not providing a loophole sandboxed dlls can use to gain access to things they shouldn’t be able to. Conclusion Hopefully, that’s given you an idea of some of the ways it’s possible to get past the .NET security system. As I said before, this post is not exhaustive, and you certainly shouldn’t base any security-critical applications on the contents of this blog post. What this series should help with is understanding the possibilities of the security system, and what all the security attributes and classes mean and what they are used for, if you were to use the security system in the future.

    Read the article

  • Translate extrinsic rotations to intrinsic rotations ( Euler angles )

    - by MineMan287
    The problem I have is very frustrating: I am using the Jitter Physics library which gives Quaternion rotations, you can extract the extrinsic rotations but I need intrinsic rotations to rotate in OpenTK (There are other reasons as well so I don't want to make OpenTK use a Matrix) GL.Rotate(xr, 1, 0, 0) GL.Rotate(yr, 0, 1, 0) GL.Rotate(zr, 0, 0, 1) EDIT : Response to the first answer Like This? GL.Rotate(zr, 0, 0, 1) GL.Rotate(yr, 0, 1, 0) GL.Rotate(xr, 1, 0, 0) Or This? GL.Rotate(xr, 1, 0, 0) GL.Rotate(yr, 0, 1, 0) GL.Rotate(zr, 0, 0, 1) GL.Rotate(zr, 0, 0, 1) GL.Rotate(yr, 0, 1, 0) GL.Rotate(xr, 1, 0, 0) GL.Rotate(xr, 1, 0, 0) GL.Rotate(yr, 0, 1, 0) GL.Rotate(zr, 0, 0, 1) I'm confused, please give an example

    Read the article

  • Extended FindWindow

    - by João Angelo
    The Win32 API provides the FindWindow function that supports finding top-level windows by their class name and/or title. However, the title search does not work if you are trying to match partial text at the middle or the end of the full window title. You can however implement support for these extended search features by using another set of Win32 API like EnumWindows and GetWindowText. A possible implementation follows: using System; using System.Collections.Generic; using System.Linq; using System.Runtime.InteropServices; using System.Text; public class WindowInfo { private IntPtr handle; private string className; internal WindowInfo(IntPtr handle, string title) { if (handle == IntPtr.Zero) throw new ArgumentException("Invalid handle.", "handle"); this.Handle = handle; this.Title = title ?? string.Empty; } public string Title { get; private set; } public string ClassName { get { if (className == null) { className = GetWindowClassNameByHandle(this.Handle); } return className; } } public IntPtr Handle { get { if (!NativeMethods.IsWindow(this.handle)) throw new InvalidOperationException("The handle is no longer valid."); return this.handle; } private set { this.handle = value; } } public static WindowInfo[] EnumerateWindows() { var windows = new List<WindowInfo>(); NativeMethods.EnumWindowsProcessor processor = (hwnd, lParam) => { windows.Add(new WindowInfo(hwnd, GetWindowTextByHandle(hwnd))); return true; }; bool succeeded = NativeMethods.EnumWindows(processor, IntPtr.Zero); if (!succeeded) return new WindowInfo[] { }; return windows.ToArray(); } public static WindowInfo FindWindow(Predicate<WindowInfo> predicate) { WindowInfo target = null; NativeMethods.EnumWindowsProcessor processor = (hwnd, lParam) => { var current = new WindowInfo(hwnd, GetWindowTextByHandle(hwnd)); if (predicate(current)) { target = current; return false; } return true; }; NativeMethods.EnumWindows(processor, IntPtr.Zero); return target; } private static string GetWindowTextByHandle(IntPtr handle) { if (handle == IntPtr.Zero) throw new ArgumentException("Invalid handle.", "handle"); int length = NativeMethods.GetWindowTextLength(handle); if (length == 0) return string.Empty; var buffer = new StringBuilder(length + 1); NativeMethods.GetWindowText(handle, buffer, buffer.Capacity); return buffer.ToString(); } private static string GetWindowClassNameByHandle(IntPtr handle) { if (handle == IntPtr.Zero) throw new ArgumentException("Invalid handle.", "handle"); const int WindowClassNameMaxLength = 256; var buffer = new StringBuilder(WindowClassNameMaxLength); NativeMethods.GetClassName(handle, buffer, buffer.Capacity); return buffer.ToString(); } } internal class NativeMethods { public delegate bool EnumWindowsProcessor(IntPtr hwnd, IntPtr lParam); [DllImport("user32.dll")] [return: MarshalAs(UnmanagedType.Bool)] public static extern bool EnumWindows( EnumWindowsProcessor lpEnumFunc, IntPtr lParam); [DllImport("user32.dll", SetLastError = true, CharSet = CharSet.Auto)] public static extern int GetWindowText( IntPtr hWnd, StringBuilder lpString, int nMaxCount); [DllImport("user32.dll", SetLastError = true, CharSet = CharSet.Auto)] public static extern int GetWindowTextLength(IntPtr hWnd); [DllImport("user32.dll", SetLastError = true, CharSet = CharSet.Auto)] public static extern int GetClassName( IntPtr hWnd, StringBuilder lpClassName, int nMaxCount); [DllImport("user32.dll")] [return: MarshalAs(UnmanagedType.Bool)] public static extern bool IsWindow(IntPtr hWnd); } The access to the windows handle is preceded by a sanity check to assert if it’s still valid, but if you are dealing with windows out of your control then the window can be destroyed right after the check so it’s not guaranteed that you’ll get a valid handle. Finally, to wrap this up a usage, example: static void Main(string[] args) { var w = WindowInfo.FindWindow(wi => wi.Title.Contains("Test.docx")); if (w != null) { Console.Write(w.Title); } }

    Read the article

< Previous Page | 761 762 763 764 765 766 767 768 769 770 771 772  | Next Page >