Search Results

Search found 871 results on 35 pages for 'lowe simon'.

Page 8/35 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • How to follow object on CatmullRomSplines at constant speed (e.g. train and train carriage)?

    - by Simon
    I have a CatmullRomSpline, and using the very good example at https://github.com/libgdx/libgdx/wiki/Path-interface-%26-Splines I have my object moving at an even pace over the spline. Using a simple train and carriage example, I now want to have the carriage follow the train at the same speed as the train (not jolting along as it does with my code below). This leads into my main questions: How can I make the carriage have the same constant speed as the train and make it non jerky (it has something to do with the derivative I think, I don't understand how that part works)? Why do I need to divide by the line length to convert to metres per second, and is that correct? It wasn't done in the linked examples? I have used the example I linked to above, and modified for my specific example: private void process(CatmullRomSpline catmullRomSpline) { // Render path with precision of 1000 points renderPath(catmullRomSpline, 1000); float length = catmullRomSpline.approxLength(catmullRomSpline.spanCount * 1000); // Render the "train" Vector2 trainDerivative = new Vector2(); Vector2 trainLocation = new Vector2(); catmullRomSpline.derivativeAt(trainDerivative, current); // For some reason need to divide by length to convert from pixel speed to metres per second but I do not // really understand why I need it, it wasn't done in the examples??????? current += (Gdx.graphics.getDeltaTime() * speed / length) / trainDerivative.len(); catmullRomSpline.valueAt(trainLocation, current); renderCircleAtLocation(trainLocation); if (current >= 1) { current -= 1; } // Render the "carriage" Vector2 carriageLocation = new Vector2(); float carriagePercentageCovered = (((current * length) - 1f) / length); // I would like it to follow at 1 metre behind carriagePercentageCovered = Math.max(carriagePercentageCovered, 0); catmullRomSpline.valueAt(carriageLocation, carriagePercentageCovered); renderCircleAtLocation(carriageLocation); } private void renderPath(CatmullRomSpline catmullRomSpline, int k) { // catMulPoints would normally be cached when initialising, but for sake of example... Vector2[] catMulPoints = new Vector2[k]; for (int i = 0; i < k; ++i) { catMulPoints[i] = new Vector2(); catmullRomSpline.valueAt(catMulPoints[i], ((float) i) / ((float) k - 1)); } SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Line); SHAPE_RENDERER.setColor(Color.NAVY); for (int i = 0; i < k - 1; ++i) { SHAPE_RENDERER.line((Vector2) catMulPoints[i], (Vector2) catMulPoints[i + 1]); } SHAPE_RENDERER.end(); } private void renderCircleAtLocation(Vector2 location) { SHAPE_RENDERER.begin(ShapeRenderer.ShapeType.Filled); SHAPE_RENDERER.setColor(Color.YELLOW); SHAPE_RENDERER.circle(location.x, location.y, .5f); SHAPE_RENDERER.end(); } To create a decent sized CatmullRomSpline for testing this out: Vector2[] controlPoints = makeControlPointsArray(); CatmullRomSpline myCatmull = new CatmullRomSpline(controlPoints, false); .... private Vector2[] makeControlPointsArray() { Vector2[] pointsArray = new Vector2[78]; pointsArray[0] = new Vector2(1.681817f, 10.379999f); pointsArray[1] = new Vector2(2.045455f, 10.379999f); pointsArray[2] = new Vector2(2.663636f, 10.479999f); pointsArray[3] = new Vector2(3.027272f, 10.700000f); pointsArray[4] = new Vector2(3.663636f, 10.939999f); pointsArray[5] = new Vector2(4.245455f, 10.899999f); pointsArray[6] = new Vector2(4.736363f, 10.720000f); pointsArray[7] = new Vector2(4.754545f, 10.339999f); pointsArray[8] = new Vector2(4.518181f, 9.860000f); pointsArray[9] = new Vector2(3.790908f, 9.340000f); pointsArray[10] = new Vector2(3.172727f, 8.739999f); pointsArray[11] = new Vector2(3.300000f, 8.340000f); pointsArray[12] = new Vector2(3.700000f, 8.159999f); pointsArray[13] = new Vector2(4.227272f, 8.520000f); pointsArray[14] = new Vector2(4.681818f, 8.819999f); pointsArray[15] = new Vector2(5.081817f, 9.200000f); pointsArray[16] = new Vector2(5.463636f, 9.460000f); pointsArray[17] = new Vector2(5.972727f, 9.300000f); pointsArray[18] = new Vector2(6.063636f, 8.780000f); pointsArray[19] = new Vector2(6.027272f, 8.259999f); pointsArray[20] = new Vector2(5.700000f, 7.739999f); pointsArray[21] = new Vector2(5.300000f, 7.440000f); pointsArray[22] = new Vector2(4.645454f, 7.179999f); pointsArray[23] = new Vector2(4.136363f, 6.940000f); pointsArray[24] = new Vector2(3.427272f, 6.720000f); pointsArray[25] = new Vector2(2.572727f, 6.559999f); pointsArray[26] = new Vector2(1.900000f, 7.100000f); pointsArray[27] = new Vector2(2.336362f, 7.440000f); pointsArray[28] = new Vector2(2.590908f, 7.940000f); pointsArray[29] = new Vector2(2.318181f, 8.500000f); pointsArray[30] = new Vector2(1.663636f, 8.599999f); pointsArray[31] = new Vector2(1.209090f, 8.299999f); pointsArray[32] = new Vector2(1.118181f, 7.700000f); pointsArray[33] = new Vector2(1.045455f, 6.880000f); pointsArray[34] = new Vector2(1.154545f, 6.100000f); pointsArray[35] = new Vector2(1.281817f, 5.580000f); pointsArray[36] = new Vector2(1.700000f, 5.320000f); pointsArray[37] = new Vector2(2.190908f, 5.199999f); pointsArray[38] = new Vector2(2.900000f, 5.100000f); pointsArray[39] = new Vector2(3.700000f, 5.100000f); pointsArray[40] = new Vector2(4.372727f, 5.220000f); pointsArray[41] = new Vector2(4.827272f, 5.220000f); pointsArray[42] = new Vector2(5.463636f, 5.160000f); pointsArray[43] = new Vector2(5.554545f, 4.700000f); pointsArray[44] = new Vector2(5.245453f, 4.340000f); pointsArray[45] = new Vector2(4.445455f, 4.280000f); pointsArray[46] = new Vector2(3.609091f, 4.260000f); pointsArray[47] = new Vector2(2.718181f, 4.160000f); pointsArray[48] = new Vector2(1.990908f, 4.140000f); pointsArray[49] = new Vector2(1.427272f, 3.980000f); pointsArray[50] = new Vector2(1.609090f, 3.580000f); pointsArray[51] = new Vector2(2.136363f, 3.440000f); pointsArray[52] = new Vector2(3.227272f, 3.280000f); pointsArray[53] = new Vector2(3.972727f, 3.340000f); pointsArray[54] = new Vector2(5.027272f, 3.360000f); pointsArray[55] = new Vector2(5.718181f, 3.460000f); pointsArray[56] = new Vector2(6.100000f, 4.240000f); pointsArray[57] = new Vector2(6.209091f, 4.500000f); pointsArray[58] = new Vector2(6.118181f, 5.320000f); pointsArray[59] = new Vector2(5.772727f, 5.920000f); pointsArray[60] = new Vector2(4.881817f, 6.140000f); pointsArray[61] = new Vector2(5.318181f, 6.580000f); pointsArray[62] = new Vector2(6.263636f, 7.020000f); pointsArray[63] = new Vector2(6.645453f, 7.420000f); pointsArray[64] = new Vector2(6.681817f, 8.179999f); pointsArray[65] = new Vector2(6.627272f, 9.080000f); pointsArray[66] = new Vector2(6.572727f, 9.699999f); pointsArray[67] = new Vector2(6.263636f, 10.820000f); pointsArray[68] = new Vector2(5.754546f, 11.479999f); pointsArray[69] = new Vector2(4.536363f, 11.599998f); pointsArray[70] = new Vector2(3.572727f, 11.700000f); pointsArray[71] = new Vector2(2.809090f, 11.660000f); pointsArray[72] = new Vector2(1.445455f, 11.559999f); pointsArray[73] = new Vector2(0.936363f, 11.280000f); pointsArray[74] = new Vector2(0.754545f, 10.879999f); pointsArray[75] = new Vector2(0.700000f, 9.939999f); pointsArray[76] = new Vector2(0.918181f, 9.620000f); pointsArray[77] = new Vector2(1.463636f, 9.600000f); return pointsArray; } Disclaimer: My math is very rusty, so please explain in lay mans terms....

    Read the article

  • Oh no! My padding's invalid!

    - by Simon Cooper
    Recently, I've been doing some work involving cryptography, and encountered the standard .NET CryptographicException: 'Padding is invalid and cannot be removed.' Searching on StackOverflow produces 57 questions concerning this exception; it's a very common problem encountered. So I decided to have a closer look. To test this, I created a simple project that decrypts and encrypts a byte array: // create some random data byte[] data = new byte[100]; new Random().NextBytes(data); // use the Rijndael symmetric algorithm RijndaelManaged rij = new RijndaelManaged(); byte[] encrypted; // encrypt the data using a CryptoStream using (var encryptor = rij.CreateEncryptor()) using (MemoryStream encryptedStream = new MemoryStream()) using (CryptoStream crypto = new CryptoStream( encryptedStream, encryptor, CryptoStreamMode.Write)) { crypto.Write(data, 0, data.Length); encrypted = encryptedStream.ToArray(); } byte[] decrypted; // and decrypt it again using (var decryptor = rij.CreateDecryptor()) using (CryptoStream crypto = new CryptoStream( new MemoryStream(encrypted), decryptor, CryptoStreamMode.Read)) { byte[] decrypted = new byte[data.Length]; crypto.Read(decrypted, 0, decrypted.Length); } Sure enough, I got exactly the same CryptographicException when trying to decrypt the data even in this simple example. Well, I'm obviously missing something, if I can't even get this single method right! What does the exception message actually mean? What am I missing? Well, after playing around a bit, I discovered the problem was fixed by changing the encryption step to this: // encrypt the data using a CryptoStream using (var encryptor = rij.CreateEncryptor()) using (MemoryStream encryptedStream = new MemoryStream()) { using (CryptoStream crypto = new CryptoStream( encryptedStream, encryptor, CryptoStreamMode.Write)) { crypto.Write(data, 0, data.Length); } encrypted = encryptedStream.ToArray(); } Aaaah, so that's what the problem was. The CryptoStream wasn't flushing all it's data to the MemoryStream before it was being read, and closing the stream causes it to flush everything to the backing stream. But why does this cause an error in padding? Cryptographic padding All symmetric encryption algorithms (of which Rijndael is one) operates on fixed block sizes. For Rijndael, the default block size is 16 bytes. This means the input needs to be a multiple of 16 bytes long. If it isn't, then the input is padded to 16 bytes using one of the padding modes. This is only done to the final block of data to be encrypted. CryptoStream has a special method to flush this final block of data - FlushFinalBlock. Calling Stream.Flush() does not flush the final block, as you might expect. Only by closing the stream or explicitly calling FlushFinalBlock is the final block, with any padding, encrypted and written to the backing stream. Without this call, the encrypted data is 16 bytes shorter than it should be. If this final block wasn't written, then the decryption gets to the final 16 bytes of the encrypted data and tries to decrypt it as the final block with padding. The end bytes don't match the padding scheme it's been told to use, therefore it throws an exception stating what is wrong - what the decryptor expects to be padding actually isn't, and so can't be removed from the stream. So, as well as closing the stream before reading the result, an alternative fix to my encryption code is the following: // encrypt the data using a CryptoStream using (var encryptor = rij.CreateEncryptor()) using (MemoryStream encryptedStream = new MemoryStream()) using (CryptoStream crypto = new CryptoStream( encryptedStream, encryptor, CryptoStreamMode.Write)) { crypto.Write(data, 0, data.Length); // explicitly flush the final block of data crypto.FlushFinalBlock(); encrypted = encryptedStream.ToArray(); } Conclusion So, if your padding is invalid, make sure that you close or call FlushFinalBlock on any CryptoStream performing encryption before you access the encrypted data. Flush isn't enough. Only then will the final block be present in the encrypted data, allowing it to be decrypted successfully.

    Read the article

  • How would I balance a multiplayer competitive game

    - by Simon
    I'm looking at my first foray into developing a game, and would love to know whether you guys have any thoughts on game balancing on limited multiplayer games. The game I have in mind involves a neutral player that has to achieve a goal, with two supporting "deity" players who are one of 'good' and 'evil' - One of the deity players would try to help the player achieve their goal, while the other would try to thwart them. Any thoughts or pointers on how I can ensure the deities are balanced? If you want me to expand, I will, just didn't want to give away too much of the game play before I finish it.

    Read the article

  • Dual Boot Ubuntu and Windows 7: BOOTMGR is missing when I tried to boot in Windows

    - by Simon Polak
    So, I don't know what exactly how I managed to delete the MBR record on windows partition. But let me explain what I did next, I ran the ubuntu boot repair tool and now Windows is not even listed in my grub loader. So I went and booted with windows cd and choose repair. Then I ran ubuntu boot repair again via live cd. Here is the log http://paste.ubuntu.com/1426181/. Still no luck. Looks like osprobe can't detect windows on my /dev/sda2 partition. Any clues ? Here is how my partitions look like: Disk /dev/sda: 500.1 GB, 500107862016 bytes 255 heads, 63 sectors/track, 60801 cylinders, total 976773168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x525400d1 Device Boot Start End Blocks Id System /dev/sda1 * 2048 206847 102400 7 HPFS/NTFS/exFAT /dev/sda2 206848 509620669 254706911 7 HPFS/NTFS/exFAT /dev/sda3 509622270 976773119 233575425 5 Extended /dev/sda5 509622272 957757439 224067584 83 Linux /dev/sda6 957759488 976773119 9506816 82 Linux swap / Solaris

    Read the article

  • Mp3s synced on Ubuntu One not showing up under artist or album

    - by Simon
    I have synced approximately 10GB of music with U1 over the last 48 hours. Nearly everything appears OK: the songs are tagged correctly, I can queue and play them. However, with the exception of a few that I uploaded first, all of them don't appear under Artist or Album and I can't use the search to find them. I can only find them under Song. Am I just being impatient and U1 just needs time to index these mp3s, or is something wrong?

    Read the article

  • Inside the DLR – Invoking methods

    - by Simon Cooper
    So, we’ve looked at how a dynamic call is represented in a compiled assembly, and how the dynamic lookup is performed at runtime. The last piece of the puzzle is how the resolved method gets invoked, and that is the subject of this post. Invoking methods As discussed in my previous posts, doing a full lookup and bind at runtime each and every single time the callsite gets invoked would be far too slow to be usable. The results obtained from the callsite binder must to be cached, along with a series of conditions to determine whether the cached result can be reused. So, firstly, how are the conditions represented? These conditions can be anything; they are determined entirely by the semantics of the language the binder is representing. The binder has to be able to return arbitary code that is then executed to determine whether the conditions apply or not. Fortunately, .NET 4 has a neat way of representing arbitary code that can be easily combined with other code – expression trees. All the callsite binder has to return is an expression (called a ‘restriction’) that evaluates to a boolean, returning true when the restriction passes (indicating the corresponding method invocation can be used) and false when it does’t. If the bind result is also represented in an expression tree, these can be combined easily like so: if ([restriction is true]) { [invoke cached method] } Take my example from my previous post: public class ClassA { public static void TestDynamic() { CallDynamic(new ClassA(), 10); CallDynamic(new ClassA(), "foo"); } public static void CallDynamic(dynamic d, object o) { d.Method(o); } public void Method(int i) {} public void Method(string s) {} } When the Method(int) method is first bound, along with an expression representing the result of the bind lookup, the C# binder will return the restrictions under which that bind can be reused. In this case, it can be reused if the types of the parameters are the same: if (thisArg.GetType() == typeof(ClassA) && arg1.GetType() == typeof(int)) { thisClassA.Method(i); } Caching callsite results So, now, it’s up to the callsite to link these expressions returned from the binder together in such a way that it can determine which one from the many it has cached it should use. This caching logic is all located in the System.Dynamic.UpdateDelegates class. It’ll help if you’ve got this type open in a decompiler to have a look yourself. For each callsite, there are 3 layers of caching involved: The last method invoked on the callsite. All methods that have ever been invoked on the callsite. All methods that have ever been invoked on any callsite of the same type. We’ll cover each of these layers in order Level 1 cache: the last method called on the callsite When a CallSite<T> object is first instantiated, the Target delegate field (containing the delegate that is called when the callsite is invoked) is set to one of the UpdateAndExecute generic methods in UpdateDelegates, corresponding to the number of parameters to the callsite, and the existance of any return value. These methods contain most of the caching, invoke, and binding logic for the callsite. The first time this method is invoked, the UpdateAndExecute method finds there aren’t any entries in the caches to reuse, and invokes the binder to resolve a new method. Once the callsite has the result from the binder, along with any restrictions, it stitches some extra expressions in, and replaces the Target field in the callsite with a compiled expression tree similar to this (in this example I’m assuming there’s no return value): if ([restriction is true]) { [invoke cached method] return; } if (callSite._match) { _match = false; return; } else { UpdateAndExecute(callSite, arg0, arg1, ...); } Woah. What’s going on here? Well, this resulting expression tree is actually the first level of caching. The Target field in the callsite, which contains the delegate to call when the callsite is invoked, is set to the above code compiled from the expression tree into IL, and then into native code by the JIT. This code checks whether the restrictions of the last method that was invoked on the callsite (the ‘primary’ method) match, and if so, executes that method straight away. This means that, the next time the callsite is invoked, the first code that executes is the restriction check, executing as native code! This makes this restriction check on the primary cached delegate very fast. But what if the restrictions don’t match? In that case, the second part of the stitched expression tree is executed. What this section should be doing is calling back into the UpdateAndExecute method again to resolve a new method. But it’s slightly more complicated than that. To understand why, we need to understand the second and third level caches. Level 2 cache: all methods that have ever been invoked on the callsite When a binder has returned the result of a lookup, as well as updating the Target field with a compiled expression tree, stitched together as above, the callsite puts the same compiled expression tree in an internal list of delegates, called the rules list. This list acts as the level 2 cache. Why use the same delegate? Stitching together expression trees is an expensive operation. You don’t want to do it every time the callsite is invoked. Ideally, you would create one expression tree from the binder’s result, compile it, and then use the resulting delegate everywhere in the callsite. But, if the same delegate is used to invoke the callsite in the first place, and in the caches, that means each delegate needs two modes of operation. An ‘invoke’ mode, for when the delegate is set as the value of the Target field, and a ‘match’ mode, used when UpdateAndExecute is searching for a method in the callsite’s cache. Only in the invoke mode would the delegate call back into UpdateAndExecute. In match mode, it would simply return without doing anything. This mode is controlled by the _match field in CallSite<T>. The first time the callsite is invoked, _match is false, and so the Target delegate is called in invoke mode. Then, if the initial restriction check fails, the Target delegate calls back into UpdateAndExecute. This method sets _match to true, then calls all the cached delegates in the rules list in match mode to try and find one that passes its restrictions, and invokes it. However, there needs to be some way for each cached delegate to inform UpdateAndExecute whether it passed its restrictions or not. To do this, as you can see above, it simply re-uses _match, and sets it to false if it did not pass the restrictions. This allows the code within each UpdateAndExecute method to check for cache matches like so: foreach (T cachedDelegate in Rules) { callSite._match = true; cachedDelegate(); // sets _match to false if restrictions do not pass if (callSite._match) { // passed restrictions, and the cached method was invoked // set this delegate as the primary target to invoke next time callSite.Target = cachedDelegate; return; } // no luck, try the next one... } Level 3 cache: all methods that have ever been invoked on any callsite with the same signature The reason for this cache should be clear – if a method has been invoked through a callsite in one place, then it is likely to be invoked on other callsites in the codebase with the same signature. Rather than living in the callsite, the ‘global’ cache for callsite delegates lives in the CallSiteBinder class, in the Cache field. This is a dictionary, typed on the callsite delegate signature, providing a RuleCache<T> instance for each delegate signature. This is accessed in the same way as the level 2 callsite cache, by the UpdateAndExecute methods. When a method is matched in the global cache, it is copied into the callsite and Target cache before being executed. Putting it all together So, how does this all fit together? Like so (I’ve omitted some implementation & performance details): That, in essence, is how the DLR performs its dynamic calls nearly as fast as statically compiled IL code. Extensive use of expression trees, compiled to IL and then into native code. Multiple levels of caching, the first of which executes immediately when the dynamic callsite is invoked. And a clever re-use of compiled expression trees that can be used in completely different contexts without being recompiled. All in all, a very fast and very clever reflection caching mechanism.

    Read the article

  • 2D management game [on hold]

    - by Simon Bull
    Very newbie question but I have a game idea in mind. It will be 2d and data centric, like football manager. However I am struggling to find a platform that would suit. I am an experienced line of business developer so am happy to write code, but I would like a platform that does some of the leg work for me so was avoiding OpenGL. I would also like to be able deploy to iOS, android, windows and OS X. What are the options? To be more clear, the game is not a normal platform or shooter type game, so game maker is likely to be way too basic and unity seems a little over the top (though I am not sure if the GUI options would fit?). The majority of the game is more like business screens just displaying data and having buttons to click. Are there options for this type of game (May help to look at football manager)?

    Read the article

  • How to check that I have recovered from Penguin 2.0?

    - by Simon Walker
    I have 3 year old website which has been hit by Penguin 2.0 in May. The website traffic dropped almost 30%. I have been working hard from last 2.5 months on the website and my website's traffic recovered in last week of August. In fact, I am receiving more traffic then ever. When I look at the stats, I find my website's search engine visibility has been improved. It is now appearing for more search queries. My website's impressions have also increased. What I am worried about is that my website is nowhere in top 5 pages for keywords having high competition and carrying the highest search volume. They are few in number but important. Should I consider my current situation as recovery or it's just the partial recovery? If it is only partial, then how come traffic is more then it was before penguin 2.0?

    Read the article

  • Why enumerator structs are a really bad idea (redux)

    - by Simon Cooper
    My previous blog post went into some detail as to why calling MoveNext on a BCL generic collection enumerator didn't quite do what you thought it would. This post covers the Reset method. To recap, here's the simple wrapper around a linked list enumerator struct from my previous post (minus the readonly on the enumerator variable): sealed class EnumeratorWrapper : IEnumerator<int> { private LinkedList<int>.Enumerator m_Enumerator; public EnumeratorWrapper(LinkedList<int> linkedList) { m_Enumerator = linkedList.GetEnumerator(); } public int Current { get { return m_Enumerator.Current; } } object System.Collections.IEnumerator.Current { get { return Current; } } public bool MoveNext() { return m_Enumerator.MoveNext(); } public void Reset() { ((System.Collections.IEnumerator)m_Enumerator).Reset(); } public void Dispose() { m_Enumerator.Dispose(); } } If you have a look at the Reset method, you'll notice I'm having to cast to IEnumerator to be able to call Reset on m_Enumerator. This is because the implementation of LinkedList<int>.Enumerator.Reset, and indeed of all the other Reset methods on the BCL generic collection enumerators, is an explicit interface implementation. However, IEnumerator is a reference type. LinkedList<int>.Enumerator is a value type. That means, in order to call the reset method at all, the enumerator has to be boxed. And the IL confirms this: .method public hidebysig newslot virtual final instance void Reset() cil managed { .maxstack 8 L_0000: nop L_0001: ldarg.0 L_0002: ldfld valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator<int32> EnumeratorWrapper::m_Enumerator L_0007: box [System]System.Collections.Generic.LinkedList`1/Enumerator<int32> L_000c: callvirt instance void [mscorlib]System.Collections.IEnumerator::Reset() L_0011: nop L_0012: ret } On line 0007, we're doing a box operation, which copies the enumerator to a reference object on the heap, then on line 000c calling Reset on this boxed object. So m_Enumerator in the wrapper class is not modified by the call the Reset. And this is the only way to call the Reset method on this variable (without using reflection). Therefore, the only way that the collection enumerator struct can be used safely is to store them as a boxed IEnumerator<T>, and not use them as value types at all.

    Read the article

  • Reach Local Proxy Page - Duplicate content?

    - by Simon Bennett
    We have a client who has instructed Reach Local to manage their paid SEO work etc. RL have created a proxy version of the page at http://example-px.rtrk.co.uk which mirrors the existing site completely. Would I be correct in assuming that this would count as duplicate content and one or both of the sites would be penalized because of this? And would the addition of a rel="canonical" meta-tag on the proxy site assist with this? Many thanks in advance.

    Read the article

  • Frequent GUI pauses in Ubuntu 13.04 / Unity / Intel HD4000

    - by Simon
    I'm experiencing very frequent (and regular) GUI pauses on my system. Every 30 seconds (pretty much exactly) the GUI will freeze for maybe .25 to .5 seconds. The mouse stops moving, keys stop echoing and a stopwatch timer briefly pauses. I'm using the Intel Graphics driver available from: https://download.01.org/gfx/ubuntu/13.04/main I've looked in a few places and tried a few things for a solution: I've checked cron and anacron for scheduled processes. I've disabled background processes (eg mysql, postgres, apache) not that these were doing anything anyway I've checked the following posts and tried the suggestions there: Unity GUI pauses/freezes for less than a few seconds How to go about troubleshooting frequent system pauses I've watched the system using top and System Monitor and there are no spikes (or even blips) of cpu usage when the pauses occur. There are no obvious error messages in dmesg or syslog There is loads of free RAM (8GB+) and no swap usage If it helps it's a ZooStorm i5 laptop with a HD4000 GPU, 16GB Ram and an SSD. Any help / suggestions would be very gratefully received.

    Read the article

  • Weird system freeze. Nothing works keyboard/mouse/reset button - Ubuntu 12.04 64bits [closed]

    - by Simon
    I have fresh PC: i5 3570K with Intel 4000 onboard ASrock Z77 Extreme4-m 8GG RAM - Adata 1333Mhz... 1TB Seagate drive 7200rpm I've also fresh systems - Ubuntu/Win7 and today there was something strange. Ubuntu twice just freezed. Everything stopped, even keyboard and mouse wasn't responding. Even RESET button didn't work. Right now memtest is running, but I'd like to know, where else can i look for cause. Can it be software fault if even reset isn't working? Only long reset pressing rebooted PC... I'm a bit confused. Or should I test components - CPU, motherboard, disk. Which logs in Ubuntu should I check to diagnose cause? EHm I had few adventures with this PC already. Shipped motherboard was broken (ASrock Z68 Extreme3) and had old bios, so I had to contact with reseller, replace it and at the end decided on Z77, but everything took 3 weeks, so I have bad feelings... Edit: Both freezes were during editing something in gedit (it can be coincidence) and after few updates today - when memtest is end I'll check what was updated

    Read the article

  • Know your Data Lineage

    - by Simon Elliston Ball
    An academic paper without the footnotes isn’t an academic paper. Journalists wouldn’t base a news article on facts that they can’t verify. So why would anyone publish reports without being able to say where the data has come from and be confident of its quality, in other words, without knowing its lineage. (sometimes referred to as ‘provenance’ or ‘pedigree’) The number and variety of data sources, both traditional and new, increases inexorably. Data comes clean or dirty, processed or raw, unimpeachable or entirely fabricated. On its journey to our report, from its source, the data can travel through a network of interconnected pipes, passing through numerous distinct systems, each managed by different people. At each point along the pipeline, it can be changed, filtered, aggregated and combined. When the data finally emerges, how can we be sure that it is right? How can we be certain that no part of the data collection was based on incorrect assumptions, that key data points haven’t been left out, or that the sources are good? Even when we’re using data science to give us an approximate or probable answer, we cannot have any confidence in the results without confidence in the data from which it came. You need to know what has been done to your data, where it came from, and who is responsible for each stage of the analysis. This information represents your data lineage; it is your stack-trace. If you’re an analyst, suspicious of a number, it tells you why the number is there and how it got there. If you’re a developer, working on a pipeline, it provides the context you need to track down the bug. If you’re a manager, or an auditor, it lets you know the right things are being done. Lineage tracking is part of good data governance. Most audit and lineage systems require you to buy into their whole structure. If you are using Hadoop for your data storage and processing, then tools like Falcon allow you to track lineage, as long as you are using Falcon to write and run the pipeline. It can mean learning a new way of running your jobs (or using some sort of proxy), and even a distinct way of writing your queries. Other Hadoop tools provide a lot of operational and audit information, spread throughout the many logs produced by Hive, Sqoop, MapReduce and all the various moving parts that make up the eco-system. To get a full picture of what’s going on in your Hadoop system you need to capture both Falcon lineage and the data-exhaust of other tools that Falcon can’t orchestrate. However, the problem is bigger even that that. Often, Hadoop is just one piece in a larger processing workflow. The next step of the challenge is how you bind together the lineage metadata describing what happened before and after Hadoop, where ‘after’ could be  a data analysis environment like R, an application, or even directly into an end-user tool such as Tableau or Excel. One possibility is to push as much as you can of your key analytics into Hadoop, but would you give up the power, and familiarity of your existing tools in return for a reliable way of tracking lineage? Lineage and auditing should work consistently, automatically and quietly, allowing users to access their data with any tool they require to use. The real solution, therefore, is to create a consistent method by which to bring lineage data from these data various disparate sources into the data analysis platform that you use, rather than being forced to use the tool that manages the pipeline for the lineage and a different tool for the data analysis. The key is to keep your logs, keep your audit data, from every source, bring them together and use the data analysis tools to trace the paths from raw data to the answer that data analysis provides.

    Read the article

  • Best way to cache apt downloads on a LAN?

    - by Ken Simon
    I have multiple Ubuntu machines at home and a pretty slow internet connection, and sometimes multiple machines need to be updated at once (especially during new Ubuntu releases.) Is there a way where only one of my machines needs to download the packages, and the other machines can use the first machine to get the debs? Does it involve setting up my own local mirror? Or a proxy server? Or can it be made simpler?

    Read the article

  • SEO on an existing platform

    - by Simon
    I'm given the task to increase user visits and conversions on for a recruitment website. Conversions would be interested job seekers submitting their CV. The manager would first like to increase the organic search results and optimize the website before starting with targeted campaigns. The problem is, they are using a proprietary recruitment software platform which I can barely add changes to. For example, the url's all look like dynamic url's without any semantic meaning and the markup is almost completely build automatically by that platform. I'm also confident that the lack of submitted CV's is due to a bad user experience of the website (no incentives or clear CTA to register) Besides optimizing the static texts and page titles, is there anything I can do? Thanks

    Read the article

  • Searching for an online shop accessible via API

    - by Simon A. Eugster
    I need an online shop with a custom interface (customizing items with Ajax, with a preview included). Writing it myself does not make too much sense (implementing all the payment options etc.), so I would like to use an existing online shop (OpenSource). I would like to build my own UI which, for example, tells the shop to add an item to its cart -- i.e. without using the online shop's native UI. More precisely, it should be an online gallery where the user can directly order an image if he likes it. The final checkout/payment page can be native again. Is there a shop system that supports this? Or is it still faster to write it on my own? Or are there better options?

    Read the article

  • High resolution graphical representation of the Earth's surface

    - by Simon
    I've got a library, which I inherited, which presents a zoomable representation of the Earth. It's a Mercator projection and is constructed from triangles, the properties of which are stored in binary files. The surface is built up, for any given view port, by drawing these triangles in an overlapping fashion to produce the image. The definition of each triangle is the lat/long of the vertices. It looks OK at low values of zoom but looks progressively more ragged as the user zooms in. The view ports are primarily referenced though a rectangle of lat/long co-ordinates. I'd like to replace it with a better quality approach. The problem is, I don't know where to begin researching the options as I am not familiar either with the projections needed nor the graphics techniques used to render them. For example, I imagine that I could acquire high resolution images, say Mercator projections although I'm open to anything, break them into tiles and somehow wrap them onto a graphical representation of a sphere. I'm not asking for "how do I", more where should I begin to understand what might be involved and the techniques I will need to learn. I am most grateful for any "Earth rendering 101" pointers folks might have.

    Read the article

  • Easter eggs as IP protection in software

    - by Simon
    I work in embedded software, and for some reason, management wants to hide an Easter egg as means of IP protection. They call it a watermark, and since our software interact with the video preview feed (the image displayed on a screen before you take a photo), they want me to implement a trigger which will react to some unusual video input (a video konami code like dark - bright - dark - bright - whatever). When this trigger fires, something strange happens (which is outside of the normal behavior of the software). The goal is to check whether our software is included in a device. Does it sound like a good idea? I have many argument against this move: What if the konami code is too sensitive and user triggers it? Does this kind of watermark have any legal value? What if this "feature" is discovered by the client? The performance penalty should be very small, since the soft run on small devices. I am the one developping this trigger. If things go wrong, what is my responsibility? What is your opinion about this method? I can't find a link, but I remember seeing an answer on this site suggesting that putting Easter eggs for protection purpose was a good idea. Has anyone tried it with good results?

    Read the article

  • Developing Schema Compare for Oracle (Part 6): 9i Query Performance

    - by Simon Cooper
    All throughout the EAP and beta versions of Schema Compare for Oracle, our main request was support for Oracle 9i. After releasing version 1.0 with support for 10g and 11g, our next step was then to get version 1.1 of SCfO out with support for 9i. However, there were some significant problems that we had to overcome first. This post will concentrate on query execution time. When we first tested SCfO on a 9i server, after accounting for various changes to the data dictionary, we found that database registration was taking a long time. And I mean a looooooong time. The same database that on 10g or 11g would take a couple of minutes to register would be taking upwards of 30 mins on 9i. Obviously, this is not ideal, so a poke around the query execution plans was required. As an example, let's take the table population query - the one that reads ALL_TABLES and joins it with a few other dictionary views to get us back our list of tables. On 10g, this query takes 5.6 seconds. On 9i, it takes 89.47 seconds. The difference in execution plan is even more dramatic - here's the (edited) execution plan on 10g: -------------------------------------------------------------------------------| Id | Operation | Name | Bytes | Cost |-------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 108K| 939 || 1 | SORT ORDER BY | | 108K| 939 || 2 | NESTED LOOPS OUTER | | 108K| 938 ||* 3 | HASH JOIN RIGHT OUTER | | 103K| 762 || 4 | VIEW | ALL_EXTERNAL_LOCATIONS | 2058 | 3 ||* 20 | HASH JOIN RIGHT OUTER | | 73472 | 759 || 21 | VIEW | ALL_EXTERNAL_TABLES | 2097 | 3 ||* 34 | HASH JOIN RIGHT OUTER | | 39920 | 755 || 35 | VIEW | ALL_MVIEWS | 51 | 7 || 58 | NESTED LOOPS OUTER | | 39104 | 748 || 59 | VIEW | ALL_TABLES | 6704 | 668 || 89 | VIEW PUSHED PREDICATE | ALL_TAB_COMMENTS | 2025 | 5 || 106 | VIEW | ALL_PART_TABLES | 277 | 11 |------------------------------------------------------------------------------- And the same query on 9i: -------------------------------------------------------------------------------| Id | Operation | Name | Bytes | Cost |-------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 16P| 55G|| 1 | SORT ORDER BY | | 16P| 55G|| 2 | NESTED LOOPS OUTER | | 16P| 862M|| 3 | NESTED LOOPS OUTER | | 5251G| 992K|| 4 | NESTED LOOPS OUTER | | 4243M| 2578 || 5 | NESTED LOOPS OUTER | | 2669K| 1440 ||* 6 | HASH JOIN OUTER | | 398K| 302 || 7 | VIEW | ALL_TABLES | 342K| 276 || 29 | VIEW | ALL_MVIEWS | 51 | 20 ||* 50 | VIEW PUSHED PREDICATE | ALL_TAB_COMMENTS | 2043 | ||* 66 | VIEW PUSHED PREDICATE | ALL_EXTERNAL_TABLES | 1777K| ||* 80 | VIEW PUSHED PREDICATE | ALL_EXTERNAL_LOCATIONS | 1744K| ||* 96 | VIEW | ALL_PART_TABLES | 852K| |------------------------------------------------------------------------------- Have a look at the cost column. 10g's overall query cost is 939, and 9i is 55,000,000,000 (or more precisely, 55,496,472,769). It's also having to process far more data. What on earth could be causing this huge difference in query cost? After trawling through the '10g New Features' documentation, we found item 1.9.2.21. Before 10g, Oracle advised that you do not collect statistics on data dictionary objects. From 10g, it advised that you do collect statistics on the data dictionary; for our queries, Oracle therefore knows what sort of data is in the dictionary tables, and so can generate an efficient execution plan. On 9i, no statistics are present on the system tables, so Oracle has to use the Rule Based Optimizer, which turns most LEFT JOINs into nested loops. If we force 9i to use hash joins, like 10g, we get a much better plan: -------------------------------------------------------------------------------| Id | Operation | Name | Bytes | Cost |-------------------------------------------------------------------------------| 0 | SELECT STATEMENT | | 7587K| 3704 || 1 | SORT ORDER BY | | 7587K| 3704 ||* 2 | HASH JOIN OUTER | | 7587K| 822 ||* 3 | HASH JOIN OUTER | | 5262K| 616 ||* 4 | HASH JOIN OUTER | | 2980K| 465 ||* 5 | HASH JOIN OUTER | | 710K| 432 ||* 6 | HASH JOIN OUTER | | 398K| 302 || 7 | VIEW | ALL_TABLES | 342K| 276 || 29 | VIEW | ALL_MVIEWS | 51 | 20 || 50 | VIEW | ALL_PART_TABLES | 852K| 104 || 78 | VIEW | ALL_TAB_COMMENTS | 2043 | 14 || 93 | VIEW | ALL_EXTERNAL_LOCATIONS | 1744K| 31 || 106 | VIEW | ALL_EXTERNAL_TABLES | 1777K| 28 |------------------------------------------------------------------------------- That's much more like it. This drops the execution time down to 24 seconds. Not as good as 10g, but still an improvement. There are still several problems with this, however. 10g introduced a new join method - a right outer hash join (used in the first execution plan). The 9i query optimizer doesn't have this option available, so forcing a hash join means it has to hash the ALL_TABLES table, and furthermore re-hash it for every hash join in the execution plan; this could be thousands and thousands of rows. And although forcing hash joins somewhat alleviates this problem on our test systems, there's no guarantee that this will improve the execution time on customers' systems; it may even increase the time it takes (say, if all their tables are partitioned, or they've got a lot of materialized views). Ideally, we would want a solution that provides a speedup whatever the input. To try and get some ideas, we asked some oracle performance specialists to see if they had any ideas or tips. Their recommendation was to add a hidden hook into the product that allowed users to specify their own query hints, or even rewrite the queries entirely. However, we would prefer not to take that approach; as well as a lot of new infrastructure & a rewrite of the population code, it would have meant that any users of 9i would have to spend some time optimizing it to get it working on their system before they could use the product. Another approach was needed. All our population queries have a very specific pattern - a base table provides most of the information we need (ALL_TABLES for tables, or ALL_TAB_COLS for columns) and we do a left join to extra subsidiary tables that fill in gaps (for instance, ALL_PART_TABLES for partition information). All the left joins use the same set of columns to join on (typically the object owner & name), so we could re-use the hash information for each join, rather than re-hashing the same columns for every join. To allow us to do this, along with various other performance improvements that could be done for the specific query pattern we were using, we read all the tables individually and do a hash join on the client. Fortunately, this 'pure' algorithmic problem is the kind that can be very well optimized for expected real-world situations; as well as storing row data we're not using in the hash key on disk, we use very specific memory-efficient data structures to store all the information we need. This allows us to achieve a database population time that is as fast as on 10g, and even (in some situations) slightly faster, and a memory overhead of roughly 150 bytes per row of data in the result set (for schemas with 10,000 tables in that means an extra 1.4MB memory being used during population). Next: fun with the 9i dictionary views.

    Read the article

  • Compiling on the desktop!! no?

    - by simon
    so I have compile my first program today, with the help of the "askubuntu's members"..... thanks so much!!! ;) this is what I have compiled : https://github.com/treeder/logitech_unifier But now, I have some question: 1- I have compiled my file on the desktop I have though it was easier first, but I never though it would create a file on my desktop...... so what do you guys do with the file created by the compilation? I don't think I need it anymore.... so do I delete it? or do I keep it? Is there a folder I should specificaly use for compiling? thanks for answering those newbies question.

    Read the article

  • Subterranean IL: Exception handling 2

    - by Simon Cooper
    Control flow in and around exception handlers is tightly controlled, due to the various ways the handler blocks can be executed. To start off with, I'll describe what SEH does when an exception is thrown. Handling exceptions When an exception is thrown, the CLR stops program execution at the throw statement and searches up the call stack looking for an appropriate handler; catch clauses are analyzed, and filter blocks are executed (I'll be looking at filter blocks in a later post). Then, when an appropriate catch or filter handler is found, the stack is unwound to that handler, executing successive finally and fault handlers in their own stack contexts along the way, and program execution continues at the start of the catch handler. Because catch, fault, finally and filter blocks can be executed essentially out of the blue by the SEH mechanism, without any reference to preceding instructions, you can't use arbitary branches in and out of exception handler blocks. Instead, you need to use specific instructions for control flow out of handler blocks: leave, endfinally/endfault, and endfilter. Exception handler control flow try blocks You cannot branch into or out of a try block or its handler using normal control flow instructions. The only way of entering a try block is by either falling through from preceding instructions, or by branching to the first instruction in the block. Once you are inside a try block, you can only leave it by throwing an exception or using the leave <label> instruction to jump to somewhere outside the block and its handler. The leave instructions signals the CLR to execute any finally handlers around the block. Most importantly, you cannot fall out of the block, and you cannot use a ret to return from the containing method (unlike in C#); you have to use leave to branch to a ret elsewhere in the method. As a side effect, leave empties the stack. catch blocks The only way of entering a catch block is if it is run by the SEH. At the start of the block execution, the thrown exception will be the only thing on the stack. The only way of leaving a catch block is to use throw, rethrow, or leave, in a similar way to try blocks. However, one thing you can do is use a leave to branch back to an arbitary place in the handler's try block! In other words, you can do this: .try { // ... newobj instance void [mscorlib]System.Exception::.ctor() throw MidTry: // ... leave.s RestOfMethod } catch [mscorlib]System.Exception { // ... leave.s MidTry } RestOfMethod: // ... As far as I know, this mechanism is not exposed in C# or VB. finally/fault blocks The only way of entering a finally or fault block is via the SEH, either as the result of a leave instruction in the corresponding try block, or as part of handling an exception. The only way to leave a finally or fault block is to use endfinally or endfault (both compile to the same binary representation), which continues execution after the finally/fault block, or, if the block was executed as part of handling an exception, signals that the SEH can continue walking the stack. filter blocks I'll be covering filters in a separate blog posts. They're quite different to the others, and have their own special semantics. Phew! Complicated stuff, but it's important to know if you're writing or outputting exception handlers in IL. Dealing with the C# compiler is probably best saved for the next post.

    Read the article

  • in memory datastore in haskell

    - by Simon
    I want to implement an in memory datastore for a web service in Haskell. I want to run transactions in the stm monad. When I google hash table steam Haskell I only get this: Data. BTree. HashTable. STM. The module name and complexities suggest that this is implemented as a tree. I would think that an array would be more efficient for mutable hash tables. Is there a reason to avoid using an array for an STM hashtable? Do I gain anything with this stem hash table or should I just use a steam ref to an IntMap?

    Read the article

  • Getting graduates up to speed?

    - by Simon
    This question got me thinking about how comapnies deal with newly-hired graduated. Do experienced programmers expect CS graduates to write clean code (by clean I mean code easily understandable by others — maybe that is too much to expect?) Or do significant portion of graduates at your place (if any) just end up testing and fixing small bugs on existing applications? And, even if they do bug fixes, do you end up spending double the amount of time just checking they did not end up breaking anything and creating new bugs? How do you deal with such scenarios when pair programming and code reviews are not available options (for reasons such as personal deadlines), and also what techniques did you find to get fresh graduate up to speed? Some suggestions would be great.

    Read the article

  • Application development : method to manage backgound process

    - by Simon Dubois
    I am developing an application with different behavior depending on the arguments : - "-config" starts a Gtk window to change options, start and close the daemon. - "-daemon" starts a background process that does something every X minutes. I already know how to use fork/system/exec etc... But I would like to know the main logic of such application to : - restart or refresh the daemon when configuration change. - keep only one instance of the daemon. I have red that killing the daemon to restart it is not a clean way to do. How other applications do ? (ubuntuone, weather forecast, rss feed working with notification area) Thanks for your help. PS : I don't want to create a system-wide daemon, just a user application with a background process.

    Read the article

  • Best Resources for learning SQL? [closed]

    - by Simon
    Possible Duplicate: Good Books and videos for absolute beginner to SQL I have landed a role as a product engineer for a web based product. A big part of the product is allowing its users the ability to create queries with SQL to pull in business information from their back end databases. I know the very basics of SQL and need to spend some time getting a better grasp on SQL. I have the tutorial from w3schools on my ToDo list, but was hoping to get some answers that point me to good resources for learning SQL. I have no preference - I can buy a book (SQL For Dummies?), or online resources, online videos, audio, etc.

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >