Search Results

Search found 2113 results on 85 pages for 'encryption asymmetric'.

Page 80/85 | < Previous Page | 76 77 78 79 80 81 82 83 84 85  | Next Page >

  • Forcing an External Activation with Service Broker

    - by Davide Mauri
    In these last days I’ve been working quite a lot with Service Broker, a technology I’m really happy to work with, since it can give a lot of satisfaction. The scale-out solution one can easily build is simply astonishing. I’m helping a company to build a very scalable and – yet almost inexpensive – invoicing system that has to be able to scale out using commodity hardware. To offload the work from the main server to satellite “compute nodes” (yes, I’ve borrowed this term from PDW) we’re using Service Broker and the External Activator application available in the SQL Server Feature Pack. For those who are not used to work with SSB, the External Activation is a feature that allows you to intercept the arrival of a message in a queue right from your application code. http://msdn.microsoft.com/en-us/library/ms171617.aspx (Look for “Event-Based Activation”) In order to make life even more easier, Microsoft released the External Activation application that saves you even from writing even this code. http://blogs.msdn.com/b/sql_service_broker/archive/tags/external+activator/ The External Activator application can be configured to execute your own application so that each time a message – an invoice in my case – arrives in the target queue, the invoking application is executed and the invoice is calculated. The very nice feature of External Activator is that it can automatically execute as many configured application in order to process as many messages as your system can handle.  This also a lot of create a scale-out solution, leaving to the developer only a fraction of the problems that usually came with asynchronous programming. Developers are also shielded from Service Broker since everything can be encapsulated in Stored Procedures, so that – for them – developing such scale-out asynchronous solution is not much more complex than just executing a bunch of Stored Procedures. Now, if everything works correctly, you don’t have to bother of anything else. You put messages in the queue and your application, invoked by the External Activator, process them. But what happen if for some reason your application fails to process the messages. For examples, it crashes? The message is safe in the queue so you just need to process it again. But your application is invoked by the External Activator application, so now the question is, how do you wake up that app? Service Broker will engage the activation process only if certain conditions are met: http://msdn.microsoft.com/en-us/library/ms171601.aspx But how we can invoke the activation process manually, without having to wait for another message to arrive (the arrival of a new message is a condition that can fire the activation process)? The “trick” is to do manually with the activation process does: sending a system message to a queue in charge of handling External Activation messages: declare @conversationHandle uniqueidentifier; declare @n xml = N' <EVENT_INSTANCE>   <EventType>QUEUE_ACTIVATION</EventType>   <PostTime>' + CONVERT(CHAR(24),GETDATE(),126) + '</PostTime>   <SPID>' + CAST(@@SPID AS VARCHAR(9)) + '</SPID>   <ServerName>[your_server_name]</ServerName>   <LoginName>[your_login_name]</LoginName>   <UserName>[your_user_name]</UserName>   <DatabaseName>[your_database_name]</DatabaseName>   <SchemaName>[your_queue_schema_name]</SchemaName>   <ObjectName>[your_queue_name]</ObjectName>   <ObjectType>QUEUE</ObjectType> </EVENT_INSTANCE>' begin dialog conversation     @conversationHandle from service        [<your_initiator_service_name>] to service          '<your_event_notification_service>' on contract         [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification] with     encryption = off,     lifetime = 6000 ; send on conversation     @conversationHandle message type     [http://schemas.microsoft.com/SQL/Notifications/EventNotification] (@n) ;     end conversation @conversationHandle; That’s it! Put the code in a Stored Procedure and you can add to your application a button that says “Force Queue Processing” (or something similar) in order to start the activation process whenever you need it (which should not occur too frequently but it may happen). PS I know that the “fire-and-forget” (ending the conversation without waiting for an answer) technique is not a best practice, but in this case I don’t see how it can hurts so I decided to stay very close to the KISS principle []

    Read the article

  • Forcing an External Activation with Service Broker

    - by Davide Mauri
    In these last days I’ve been working quite a lot with Service Broker, a technology I’m really happy to work with, since it can give a lot of satisfaction. The scale-out solution one can easily build is simply astonishing. I’m helping a company to build a very scalable and – yet almost inexpensive – invoicing system that has to be able to scale out using commodity hardware. To offload the work from the main server to satellite “compute nodes” (yes, I’ve borrowed this term from PDW) we’re using Service Broker and the External Activator application available in the SQL Server Feature Pack. For those who are not used to work with SSB, the External Activation is a feature that allows you to intercept the arrival of a message in a queue right from your application code. http://msdn.microsoft.com/en-us/library/ms171617.aspx (Look for “Event-Based Activation”) In order to make life even more easier, Microsoft released the External Activation application that saves you even from writing even this code. http://blogs.msdn.com/b/sql_service_broker/archive/tags/external+activator/ The External Activator application can be configured to execute your own application so that each time a message – an invoice in my case – arrives in the target queue, the invoking application is executed and the invoice is calculated. The very nice feature of External Activator is that it can automatically execute as many configured application in order to process as many messages as your system can handle.  This also a lot of create a scale-out solution, leaving to the developer only a fraction of the problems that usually came with asynchronous programming. Developers are also shielded from Service Broker since everything can be encapsulated in Stored Procedures, so that – for them – developing such scale-out asynchronous solution is not much more complex than just executing a bunch of Stored Procedures. Now, if everything works correctly, you don’t have to bother of anything else. You put messages in the queue and your application, invoked by the External Activator, process them. But what happen if for some reason your application fails to process the messages. For examples, it crashes? The message is safe in the queue so you just need to process it again. But your application is invoked by the External Activator application, so now the question is, how do you wake up that app? Service Broker will engage the activation process only if certain conditions are met: http://msdn.microsoft.com/en-us/library/ms171601.aspx But how we can invoke the activation process manually, without having to wait for another message to arrive (the arrival of a new message is a condition that can fire the activation process)? The “trick” is to do manually with the activation process does: sending a system message to a queue in charge of handling External Activation messages: declare @conversationHandle uniqueidentifier; declare @n xml = N' <EVENT_INSTANCE>   <EventType>QUEUE_ACTIVATION</EventType>   <PostTime>' + CONVERT(CHAR(24),GETDATE(),126) + '</PostTime>   <SPID>' + CAST(@@SPID AS VARCHAR(9)) + '</SPID>   <ServerName>[your_server_name]</ServerName>   <LoginName>[your_login_name]</LoginName>   <UserName>[your_user_name]</UserName>   <DatabaseName>[your_database_name]</DatabaseName>   <SchemaName>[your_queue_schema_name]</SchemaName>   <ObjectName>[your_queue_name]</ObjectName>   <ObjectType>QUEUE</ObjectType> </EVENT_INSTANCE>' begin dialog conversation     @conversationHandle from service        [<your_initiator_service_name>] to service          '<your_event_notification_service>' on contract         [http://schemas.microsoft.com/SQL/Notifications/PostEventNotification] with     encryption = off,     lifetime = 6000 ; send on conversation     @conversationHandle message type     [http://schemas.microsoft.com/SQL/Notifications/EventNotification] (@n) ;     end conversation @conversationHandle; That’s it! Put the code in a Stored Procedure and you can add to your application a button that says “Force Queue Processing” (or something similar) in order to start the activation process whenever you need it (which should not occur too frequently but it may happen). PS I know that the “fire-and-forget” (ending the conversation without waiting for an answer) technique is not a best practice, but in this case I don’t see how it can hurts so I decided to stay very close to the KISS principle []

    Read the article

  • Oracle Delivers Latest Release of Oracle Enterprise Manager 12c

    - by Scott McNeil
    Richer Service Catalog for Database and Middleware as a Service; Enhanced Database and Middleware Management Help Drive Enterprise-Scale Private Cloud Adoption News Summary IT organizations are adopting private clouds as a stepping-stone to business-driven, self-service IT. Successful implementations hinge on the ability to efficiently deploy and manage cloud services at enterprise scale. Having a complete cloud management solution integrated with an enterprise-class technology stack is a fundamental requirement for IT. Oracle Enterprise Manager 12c Release 4 meets that requirement by helping businesses become more agile and responsive, while reducing cost, complexity, and risk. News Facts Oracle Enterprise Manager 12c Release 4, available today, lets organizations rapidly adopt Oracle-based, enterprise-scale private clouds. New capabilities provide advanced technology stack management, secure database administration, and enterprise service governance, enabling Oracle customers and partners to maximize database and application performance and drive innovation using self-service IT platforms. The enhancements have been driven by customers and the growing Oracle Enterprise Manager Ecosystem, comprised of more than 750 Oracle PartnerNetwork (OPN) Specialized partners. Oracle and its partners and customers have built over 140 plug-ins and connectors for Oracle Enterprise Manager. Watch the video highlights. Automation for Broader Cloud Services Oracle Enterprise Manager 12c Release 4 allows for a rapid enterprise-wide adoption of database, middleware and infrastructure services in the private cloud, driven by an enhanced API-enabled service catalog. The release features “push button” style provisioning of complete environments such as SOA and Oracle Active Data Guard, and fast data cloning that enables rapid deployment and testing of enterprise applications. Out-of-the-box capabilities to detect data and configuration vulnerabilities provide enhanced cloud service governance along with greater operational control through a flexible and extensible showback mechanism. Enhanced Database Management A new performance warehouse enables predictive database diagnostics and trend analysis and helps identify database problems before they occur. New enterprise data-governance capabilities enhance security by helping systematically discover and protect sensitive data. Step-by-step orchestration of upgrades with the ability to rollback changes enables faster adoption of Oracle Database 12c. Expanded Fusion Middleware Management A new consolidated view of Oracle Fusion Middleware 12c deployments with a guided management capability lets administrators apply best management practices to diverse middleware environments and identify performance issues quickly. A Java VM Diagnostics as a Service feature allows governed access to diagnostics data for IT workers across multiple disciplines for accelerated DevOps resolutions of defects and performance optimization. New automated provisioning for SOA lets middleware administrators perform mass SOA provisioning with ease. Superior Enterprise-Grade Management Private roles and preferred credentials have been added to Oracle Enterprise Manager to provide additional fine-grained security for organizations with complex access control requirements. A new security console provides a single point of control for managing the security of Oracle Enterprise Manager environments. Support for the latest industry standard SNMP v3 protocol, including encryption, enables more secure heterogeneous management. “Smart monitoring” adapts to observed environmental changes and adds self-management capabilities to help Oracle Enterprise Manager run at peak performance, while demanding less IT supervision. Supporting Quotes “Lawrence Livermore National Laboratory has a strong tradition of technology breakthroughs and leadership. As a member of Oracle’s Customer Advisory Board for Oracle Enterprise Manager, we have consistently provided feedback and guidance in the areas of enterprise-scale cloud, self-diagnosability, and secure administration for the product,” said Tim Frazier, CIO, NIF and Photon Sciences, Lawrence Livermore National Laboratory. “We intend to take advantage of the Release 4 features that support enterprise-scale availability and fine-grained security capabilities for private cloud deployments.” “IDC's most recent CloudTrack survey shows that most enterprises plan to adopt hybrid cloud architectures over the next three years,” said Mary Johnston Turner, Research Vice President, Enterprise System Management Software, IDC. “These organizations plan to deploy a wide range of workloads into cloud environments including mission critical database and middleware services that require high levels of fault tolerance and disaster recovery. Such capabilities were traditionally custom configured for each application but cloud offers the possibility to incorporate such properties within the service definition, enabling organizations to adopt cloud without compromise. With the latest release of Oracle Enterprise Manager 12c, Oracle is providing customers with an out-of-the-box experience for delivering highly-resilient cloud services for databases and applications.” “Since its inception, Oracle has been leading the way in innovative, scalable and high performance solutions for the enterprise. With this release of Oracle Enterprise Manager, we are extending this leadership by providing enterprise-scale capabilities for planning, delivering, and managing private clouds. We call this ‘zero-to-cloud – accelerated.’ These enhancements help our customers to expedite their adoption of cloud computing and prepares them for the next generation of self-service IT,” said Prakash Ramamurthy, senior vice president of Systems and Cloud Management at Oracle. Supporting Resources Oracle Enterprise Manager 12c Video: Cerner Delivers High Performance Private Cloud Video: BIAS Achieves Outstanding Results with Private Cloud Press Release Stay Connected: Twitter | Facebook | YouTube | Linkedin | Newsletter Download the Oracle Enterprise Manager 12c Mobile app

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • SQL SERVER – Beginning New Weekly Series – Memory Lane – #001

    - by pinaldave
    I am introducing a new series today.  This series is called “Memory Lane.”  From the last six years and 2,300 articles, there are fantastic articles I keep revisiting.  Sometimes when I read old blog posts I think I should have included something or added a bit more to the topic.  But for many articles, I still feel they are fantastic (even after six years) and could be read again and again. I have also found that after six years of blogging, readers will write to me and say “Pinal, why don’t you write about X, Y or Z.”  The answer is: I already did!  It is here on the blog, or in the comments, or possibly in one of my books.  The solution has always been there, it is simply a matter of finding it and presenting it again.  That is why I have created Memory Lane.  I will be listing the best articles from the same week of the past six years.  You will find plenty of reading material every Saturday from articles of SQLAuthority past. Here is the list of curetted articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2006 Query to Display Foreign Key Relationships and Name of the Constraint for Each Table in Database My blogging journey began with this blog post. As many of you know my journey began with creating a repository of my scripts. This was very first script which I had written to find out foreign key relationship and constraints. The same query was updated later on using the new SYS schema modification in SQL Server. Version 1: Using sys.schema Version 2: Using sys.schema and additional columns 2007 Milestone Posts – 1 Year (365 blogs) and 1 Million Views When I reached 1st week of Nov in 2007 SQLAuthority.com blog had around 365 blog posts and 1 Million Views. I was not obsessed with the statistics before but this was indeed an interesting moment for me as I was blogging for myself and did not realize that so many people are reading my blog. In year 2006 there were not many bloggers so blogging was new to me as well. I was learning it as I go. 2008 Stored Procedure WITH ENCRYPTION and Execution Plan If you have stored procedure and its code is encrypted when you execute it what will be displayed in the execution plan. There are two kinds of execution plans 1) Estimated and 2) Actual. It will be indeed interesting to know what is displayed in both the cases when Stored Procedure is encrypted. What is your guess? Now go ahead and click on here and figure out your answer. If the user is not able to login into SQL Server due to any error or issues there were two different blog post addresses the same issue here and here. 2009 It seems like Nov is the month of SQLPASS month. In 2009 on the same week I was in USA attending SQLPASS event. I had a fantastic experience attending the event. Here are the blog posts covering the subject Day 1, Day 2, Day 3, Day 4 2010 Finding the last backup time for all the databases This little script is very powerful and instantly gives details when was the last time your database backup performed. If you are reading this blog post – I say just go ahead and check if everything is alright on your server and you have all the necessary latest backup. It is better to be safe than sorrow. Version 1: Above script was improved to get more details about the database Version 2: This version of the script will include pretty much have all the backup related information in a single script. Do not miss to save it for future use. Are you a Database Administrator or a Database Developer? Three years ago I created a very small survey and the results which I have received are very interesting. The question was asking what is the profile of the visitor of that blog post and I noticed that DBA and Developers have balanced with little inclination towards Developers. Have you voted so far? If not, go ahead! 2011 New Book Released – SQL Server Interview Questions And Answers One year ago, on November 3, 2011 I published my book SQL Server Interview Questions and Answers.  The book has a lot of great reviews, and we have even received emails telling us this book was a life changer because it helped get them a great new job.  I don’t think anyone can get a job just from my book.  It was the individual who studied hard and took it seriously, and was determined to learn something new.  The book might have helped guide them and show them the topics to study, but they spent their own energy on it.  It was their own skills that helped them pass the exam. So, in this very first installment, I would like to thank the readers for accepting our book, for giving it great reviews and for using it and sharing it.  Our goal in writing this book was to help others, and it seems like we succeeded. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Getting a handle on mobile data

    - by Eric Jensen
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} written by Ashok Joshi The proliferation of mobile devices in the corporate world is both a blessing as well as a challenge.  Mobile devices improve productivity and the velocity of business for the end users; on the other hand, IT departments need to manage the corporate data and applications that run on these devices. Oracle Database Mobile Server (DMS for short) provides a simple and effective way to deal with the management challenge.  DMS supports data synchronization between a central Oracle database server and data on mobile devices.  It also provides authentication, encryption and application and device management.  Finally, DMS is a highly scalable solution that can be used to manage hundreds of thousands of devices.   Here’s a simplified outline of how such a solution might work. Each device runs local sync and mgmt agents that handle bidirectional data flow with an Oracle enterprise backend, run remote commands, and provide status to the management console. For example, mobile admins could monitor multiple networks of mobile devices, upgrade their software remotely, and even destroy the local database on a compromised device. DMS supports either Oracle Berkeley DB or SQLite for device-local storage, and runs on a wide variety of mobile platforms. The schema for the device-local database is pretty simple – it contains the name of the application that’s installed on the device as well as details such as product name, version number, time of last access etc. Each mobile user has an account on the monitoring system.  DMS supports authentication via the Oracle database authentication mechanisms or alternately, via an external authentication server such as Oracle Identity Management. DMS also provides the option of encrypting the data on disk as well as while it is being synchronized. Whenever a device connects with DMS, it sends the list of all local application changes to the server; the server updates the central repository with this information.  Synchronization can be triggered on-demand, whenever there’s a change on the device (e.g. new application installed or an existing application removed) or via a rule-based schedule (e.g. every Saturday). Synchronization is very fast and efficient, since only the changes are propagated.  This includes resume capability; should synchronization be interrupted for any reason, the next synchronization will resume where the previous synchronization was interrupted. If the device should be lost or stolen, DMS has the capability to remove the applications and/or data from the device. This ability to control access to sensitive data and applications is critical in the corporate environment. The central repository also allows the IT manager to track the kinds of applications that mobile users use and recommend patches and upgrades, while still allowing the mobile user full control over what applications s/he downloads and uses on the device.  This is useful since most devices are used for corporate as well as personal information. In certain restricted use scenarios, the IT manager can also control whether a certain application can be installed on a mobile device.  Should an unapproved application be installed, it can easily be removed the next time the device connects with the central server. Oracle Database mobile server provides a simple, effective and highly secure and scalable solution for managing the data and applications for the mobile workforce.

    Read the article

  • Interview with Geoff Bones, developer on SQL Storage Compress

    - by red(at)work
    How did you come to be working at Red Gate? I've been working at Red Gate for nine months; before that I had been at a multinational engineering company. A number of my colleagues had left to work at Red Gate and spoke very highly of it, but I was happy in my role and thought, 'It can't be that great there, surely? They'll be back!' Then one day I visited to catch up them over lunch in the Red Gate canteen. I was so impressed with what I found there, that, three days later, I'd applied for a role as a developer. And how did you get into software development? My first job out of university was working as a systems programmer on IBM mainframes. This was quite a while ago: there was a lot of assembler and loading programs from tape drives and that kind of stuff. I learned a lot about how computers work, and this stood me in good stead when I moved over the development in the 90s. What's the best thing about working as a developer at Red Gate? Where should I start? One of the great things as a developer at Red Gate is the useful feedback and close contact we have with the people who use our products, either directly at trade shows and other events or through information coming through the product managers. The company's whole ethos is built around assisting the user, and this is in big contrast to my previous development roles. We aim to produce tools that people really want to use, that they enjoy using, and, as a developer, this is a great thing to aim for and a great feeling when we get it right. At Red Gate we also try to cut out the things that distract and stop us doing our jobs. As a developer, this means that I can focus on the code and the product I'm working on, knowing that others are doing a first-class job of making sure that the builds are running smoothly and that I'm getting great feedback from the testers. We keep our process light and effective, as we want to produce great software more than we want to produce great audit trails. Tell us a bit about the products you are currently working on. You mean HyperBac? First let me explain a bit about what HyperBac is. At heart it's a compression and encryption technology, but with a few added features that open up a wealth of really exciting possibilities. Right now we have the HyperBac technology in just three products: SQL HyperBac, SQL Virtual Restore and SQL Storage Compress, but we're only starting to develop what it can do. My personal favourite is SQL Virtual Restore; for example, I love the way you can use it to run independent test databases that are all backed by a single compressed backup. I don't think the market yet realises the kind of things you do once you are using these products. On the other hand, the benefits of SQL Storage Compress are straightforward: run your databases but use only 20% of the disk space. Databases are getting larger and larger, and, as they do, so does your ROI. What's a typical day for you? My days are pretty varied. We have our daily team stand-up meeting and then sometimes I will work alone on a current issue, or I'll be pair programming with one of my colleagues. From time to time we give half a day up to future planning with the team, when we look at the long and short term aims for the product and working out the development priorities. I also get to go to conferences and events, which is unusual for a development role and gives me the chance to meet and talk to our customers directly. Have you noticed anything different about developing tools for DBAs rather than other IT kinds of user? It seems to me that DBAs are quite independent minded; they know exactly what the problem they are facing is, and often have a solution in mind before they begin to look for what's on the market. This means that they're likely to cherry-pick tools from a range of vendors, picking the ones that are the best fit for them and that disrupt their environments the least. When I've met with DBAs, I've often been very impressed at their ability to summarise their set up, the issues, the obstacles they face when implementing a tool and their plans for their environment. It's easier to develop products for this audience as they give such a detailed overview of their needs, and I feel I understand their problems.

    Read the article

  • Oracle GoldenGate 12c - Leading Enterprise Replication

    - by Doug Reid
    Oracle GoldenGate 12c released  on October 17th and includes several new cutting edge features that firmly establishes GoldenGate's leader position in the data replication space.   In fact, this release more than doubles the performance of data delivery, supports Oracle's new multitenant database feature,  it's more secure, has more options for high availability, and has made great strides to simplify the configuration and deployment of the product.     Read through the press release if you haven't already and do not miss the quote from Cern's Eva Dafonte Perez, regarding Oracle GoldenGate 12c "….performs five times faster compared to previous GoldenGate versions and simplifies the management of a multi-tier environment" There are a variety of new and improved features in the Oracle GoldenGate 12c.  Here are the highlights: Optimized for Oracle Database 12c -  GoldenGate 12c is custom tailored to the unique capabilities of Oracle database 12c and out of the box GoldenGate 12c supports multitenant (pluggable database (PDB)) and non-consolidated deployments of Oracle Database 12c.   The naming convention used by database 12c is now in three parts (PDB-name, schema-name, and object name).  We have made changes to the GoldenGate capture process to support the new naming convention and streamlined the whole process so a single GoldenGate capture process is being used at the container level rather than at each individual PDB.  By having the capture process at the container level resource usage and the number of processes are reduced. To view a conceptual architecture diagram click here. Integrated Delivery for the Oracle Database - Leveraging a lightweight streaming API built exclusively for Oracle GoldenGate 12c, this process distributes load, auto tunes the degree of parallelism, scales better, and delivers blinding rates of changed data delivery to the Oracle database.  One of the goals for Oracle GoldenGate 12c was to reduce IT costs by simplifying the configuration and reduce the time to manage complex infrastructures.  In previous versions of Oracle GoldenGate, customers would split transaction loads by grouping tables into multiple different delivery processes (click here to view the previous method). Each delivery process executed independently and without any interaction or knowledge of other delivery processes.  This setup was complicated to configure and time consuming as the developer needed in-depth knowledge of the source and target schemas and the transaction profile. With GoldenGate 12c and Integrated Delivery we have made it easier to configure and faster to deploy.  To view a conceptual architecture diagram of integrated delivery click here Coordinated Delivery for Non-Oracle Databases - Coordinated Delivery orchestrates high-speed apply processes and simplifies the configuration of GoldenGate for non-Oracle targets. In Oracle GoldenGate 12c a single delivery process is used with multiple threads (click here) and key events, such as primary key updates, event markers, DDL, etc, are coordinated between the various threads to insure that the transactions are applied in the same sequence as they were captured, all while delivery improved performance.  Replication Between On-Premises and Cloud-Based systems. - The trend for business to utilize both on-premises and cloud-based systems is rising and businesses need to replicate data back and forth.   GoldenGate 12c can be configured in a variety of ways to provide real-time replication when unrestricted or restricted (limited ports or HTTP tunneling) networks are between on-premises and cloud-based systems.    Expanded Heterogeneity - It wouldn't be a GoldenGate release without new and improved platform support.   Release 1 includes support for MySQL 5.6 and Sybase 15.7.   Upcoming in the next release GoldenGate, support will be expanded for MS SQL Server, DB2, and Teradata. Tighter Security - Oracle GoldenGate 12c is integrated with the Oracle wallet to shield usernames and passwords using strong encryption and aliases.   Customers accustomed to using the Oracle Wallet with other Oracle products will instantly be familiar with how to use this great new feature Expanded Oracle Application and Technology Support -   GoldenGate can be used along with Oracle Coherence to enable real-time changed data feeds to the Coherence cache using Toplink and the Oracle GoldenGate JMS adapter.     Plus,  Oracle Advanced Customer Services (ACS) now offers a low downtime E-Business Suite platform and database migrations using GoldenGate as the enabling technology.  Keep tuned for more blogs on the new features and the upcoming launch webcast where we will go into these new features in more detail.   In the mean time make sure to read through our white paper "Oracle GoldenGate 12c Release 1 New Features Overview"

    Read the article

  • Updating a database connection password using a script

    - by Tim Dexter
    An interesting customer requirement that I thought was worthy of sharing today. Thanks to James for the requirement and Bryan for the proposed solution and me for testing the solution and proving it works :0) A customers implementation of Sarbanes Oxley requires them to change all database account passwords every 90 days. This is scripted leveraging shell scripts today for most of their environments. But how can they manage the BI Publisher connections? Now, the customer is running 11g and therefore using weblogic on the middle tier, which is the first clue to Bryans proposed solution. To paraphrase and embellish Bryan's solution a little; why not use a JNDI connection from BIP to the database. Then employ the web logic scripting engine to make updates to the JNDI as needed? BIP is completely uninvolved and with a little 'timing' users will be completely unaware of the password updates i.e. change the password when reports are not being executed. Perfect! James immediately tracked down the WLST script that could be used here, http://middlewaremagic.com/weblogic/?p=4261 (thanks Ravish) Now it was just a case of testing the theory. Some steps: Create the JNDI connection in WLS Create the JNDI connection in BI Publisher pointing to the WLS connection Build new data models using or re-point data sources to use the JNDI connection. Create the WLST script to update the WLS JNDI password as needed. Test! Some details. Creating the JNDI connection in web logic is pretty straightforward. Log into hte console and look for Data Sources under the Services section of the home page and click it Click New >> Generic Datasource Give the connection a name. For the JNDI name, prefix it with 'jdbc/' so I have 'jdbc/localdb' - this name is important you'll need it on the BIP side. Select your db type - this will influence the drivers and information needed on the next page. Being a company man, Im using an Oracle db. Click Next Select the driver of choice, theres lots I know, you can read about them I just chose 'Oracle's Driver (Thin) for Instance connections; Versions 9.0.1 and later' Click Next >> Next Fill out the db name (SID), server, port, username to connect and password >> Next Test the config to ensure you can connect. >> Next Now you need to deploy the connection to your BI server, select it and click Next. You're done with the JNDI config. Creating the JNDI connection on the Publisher side is covered here. Just remember to the connection name you created in WLS e.g. 'jdbc/localdb' Not gonna tell you how to do this, go read the user guide :0) Suffice to say, it works. This requires a little reading around the subject to understand the scripting engine and how to execute scripts. Nicely covered here. However a bit of googlin' and I found an even easier way of running the script. ${ServerHome}/common/bin/wlst.sh updatepwd.py Where updatepwd.py is my script file, it can be in another directory. As part of the wlst.sh script your environment is set up for you so its very simple to execute. The nitty gritty: Need to take Ravish's script above and create a file with a .py extension. Its going to need some modification, as he explains on the web page, to make it work in your environment. I played around with it for a while but kept running into errors. The script as is, tries to loop through all of your connections and modify the user and passwords for each. Not quite what we are looking for. Remember our requirement is to just update the password for a given connection. I also found another issue with the script. WLS 10.x does not allow updates to passwords using clear type ie un-encrypted text while the server is in production mode. Its a bit much to set it back to developer mode bounce it, change the passwords and then bounce and then change back to production and bounce again. After lots of messing about I finally came up with the following: ############################################################################# # # Update password for JNDI connections # ############################################################################# print("*** Trying to Connect.... *****") connect('weblogic','welcome1','t3://localhost:7001') print("*** Connected *****") edit() startEdit() print ("*** Encrypt the password ***") en = encrypt('hr') print "Encrypted pwd: ", en print ("*** Changing pwd for LocalDB ***") dsName = 'LocalDB' print 'Changing Password for DataSource ', dsName cd('/JDBCSystemResources/'+dsName+'/JDBCResource/'+dsName+'/JDBCDriverParams/'+dsName) set('PasswordEncrypted',en) save() activate() Its pretty simple and you can expand on it to loop through the data sources and change each as needed. I have hardcoded the password into the file but you can pass it as a parameter as needed using the properties file method. Im not going to get into the detail of that here but its covered with an example here. Couple of points to note: 1. The change to the password requires a server bounce to get the changes picked up. You can add that to the shell script you will use to call the script above. 2. The script above needs to be run from the MW_HOME\user_projects\domains\bifoundation_domain directory to get the encryption libraries set correctly. My command to run the whole script was: d:\oracle\bi_mw\wlserver_10.3\common\bin\wlst.cmd updatepwd.py - where wlst.cmd is the scripting command line and updatepwd.py was my update password script above. I have not quite spoon fed everything you need to make it a robust script but at least you know you can do it and you can work out the rest I think :0)

    Read the article

  • Computer Networks UNISA - Chap 14 &ndash; Insuring Integrity &amp; Availability

    - by MarkPearl
    After reading this section you should be able to Identify the characteristics of a network that keep data safe from loss or damage Protect an enterprise-wide network from viruses Explain network and system level fault tolerance techniques Discuss issues related to network backup and recovery strategies Describe the components of a useful disaster recovery plan and the options for disaster contingencies What are integrity and availability? Integrity – the soundness of a networks programs, data, services, devices, and connections Availability – How consistently and reliably a file or system can be accessed by authorized personnel A number of phenomena can compromise both integrity and availability including… security breaches natural disasters malicious intruders power flaws human error users etc Although you cannot predict every type of vulnerability, you can take measures to guard against the most damaging events. The following are some guidelines… Allow only network administrators to create or modify NOS and application system users. Monitor the network for unauthorized access or changes Record authorized system changes in a change management system’ Install redundant components Perform regular health checks on the network Check system performance, error logs, and the system log book regularly Keep backups Implement and enforce security and disaster recovery policies These are just some of the basics… Malware Malware refers to any program or piece of code designed to intrude upon or harm a system or its resources. Types of Malware… Boot sector viruses Macro viruses File infector viruses Worms Trojan Horse Network Viruses Bots Malware characteristics Some common characteristics of Malware include… Encryption Stealth Polymorphism Time dependence Malware Protection There are various tools available to protect you from malware called anti-malware software. These monitor your system for indications that a program is performing potential malware operations. A number of techniques are used to detect malware including… Signature Scanning Integrity Checking Monitoring unexpected file changes or virus like behaviours It is important to decide where anti-malware tools will be installed and find a balance between performance and protection. There are several general purpose malware policies that can be implemented to protect your network including… Every compute in an organization should be equipped with malware detection and cleaning software that regularly runs Users should not be allowed to alter or disable the anti-malware software Users should know what to do in case the anti-malware program detects a malware virus Users should be prohibited from installing any unauthorized software on their systems System wide alerts should be issued to network users notifying them if a serious malware virus has been detected. Fault Tolerance Besides guarding against malware, another key factor in maintaining the availability and integrity of data is fault tolerance. Fault tolerance is the ability for a system to continue performing despite an unexpected hardware or software malfunction. Fault tolerance can be realized in varying degrees, the optimal level of fault tolerance for a system depends on how critical its services and files are to productivity. Generally the more fault tolerant the system, the more expensive it is. The following describe some of the areas that need to be considered for fault tolerance. Environment (Temperature and humidity) Power Topology and Connectivity Servers Storage Power Typical power flaws include Surges – a brief increase in voltage due to lightening strikes, solar flares or some idiot at City Power Noise – Fluctuation in voltage levels caused by other devices on the network or electromagnetic interference Brownout – A sag in voltage for just a moment Blackout – A complete power loss The are various alternate power sources to consider including UPS’s and Generators. UPS’s are found in two categories… Standby UPS – provides continuous power when mains goes down (brief period of switching over) Online UPS – is online all the time and the device receives power from the UPS all the time (the UPS is charged continuously) Servers There are various techniques for fault tolerance with servers. Server mirroring is an option where one device or component duplicates the activities of another. It is generally an expensive process. Clustering is a fault tolerance technique that links multiple servers together to appear as a single server. They share processing and storage responsibilities and if one unit in the cluster goes down, another unit can be brought in to replace it. Storage There are various techniques available including the following… RAID Arrays NAS (Storage (Network Attached Storage) SANs (Storage Area Networks) Data Backup A backup is a copy of data or program files created for archiving or safekeeping. Many different options for backups exist with various media including… These vary in cost and speed. Optical Media Tape Backup External Disk Drives Network Backups Backup Strategy After selecting the appropriate tool for performing your servers backup, devise a backup strategy to guide you through performing reliable backups that provide maximum data protection. Questions that should be answered include… What data must be backed up At what time of day or night will the backups occur How will you verify the accuracy of the backups Where and for how long will backup media be stored Who will take responsibility for ensuring that backups occurred How long will you save backups Where will backup and recovery documentation be stored Different backup methods provide varying levels of certainty and corresponding labour cost. There are also different ways to determine which files should be backed up including… Full backup – all data on all servers is copied to storage media Incremental backup – Only data that has changed since the last full or incremental backup is copied to a storage medium Differential backup – Only data that has changed since the last backup is coped to a storage medium Disaster Recovery Disaster recovery is the process of restoring your critical functionality and data after an enterprise wide outage has occurred. A disaster recovery plan is for extreme scenarios (i.e. fire, line fault, etc). A cold site is a place were the computers, devices, and connectivity necessary to rebuild a network exist but they are not appropriately configured. A warm site is a place where the computers, devices, and connectivity necessary to rebuild a network exists with some appropriately configured devices. A hot site is a place where the computers, devices, and connectivity necessary to rebuild a network exists and all are appropriately configured.

    Read the article

  • Encrypt images before uploading to Dropbox [migrated]

    - by Cherry
    I want to encrypt a file first before the file will be uploaded to the dropbox. So i have implement the encryption inside the uploading of the codes. However, there is an error after i integrate the codes together. Where did my mistake go wrong? Error at putFileOverwriteRequest and it says The method putFileOverwriteRequest(String, InputStream, long, ProgressListener) in the type DropboxAPI is not applicable for the arguments (String, FileOutputStream, long, new ProgressListener(){}) Another problem is that this FileOutputStream fis = new FileOutputStream(new File("dont know what to put in this field")); i do not know where to put the file so that after i read the file, it will call the path and then upload to the Dropbox. Anyone is kind to help me in this? As time is running out for me and i still cant solve the problem. Thank you in advance. The full code is as below. public class UploadPicture extends AsyncTask<Void, Long, Boolean> { private DropboxAPI<?> mApi; private String mPath; private File mFile; private long mFileLen; private UploadRequest mRequest; private Context mContext; private final ProgressDialog mDialog; private String mErrorMsg; public UploadPicture(Context context, DropboxAPI<?> api, String dropboxPath, File file) { // We set the context this way so we don't accidentally leak activities mContext = context.getApplicationContext(); mFileLen = file.length(); mApi = api; mPath = dropboxPath; mFile = file; mDialog = new ProgressDialog(context); mDialog.setMax(100); mDialog.setMessage("Uploading " + file.getName()); mDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL); mDialog.setProgress(0); mDialog.setButton("Cancel", new OnClickListener() { public void onClick(DialogInterface dialog, int which) { // This will cancel the putFile operation mRequest.abort(); } }); mDialog.show(); } @Override protected Boolean doInBackground(Void... params) { try { KeyGenerator keygen = KeyGenerator.getInstance("DES"); SecretKey key = keygen.generateKey(); //generate key //encrypt file here first byte[] plainData; byte[] encryptedData; Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); cipher.init(Cipher.ENCRYPT_MODE, key); //File f = new File(mFile); //read file FileInputStream in = new FileInputStream(mFile); //obtains input bytes from a file plainData = new byte[(int)mFile.length()]; in.read(plainData); //Read bytes of data into an array of bytes encryptedData = cipher.doFinal(plainData); //encrypt data FileOutputStream fis = new FileOutputStream(new File("dont know what to put in this field")); //upload to a path first then call the path so that it can be uploaded up to the dropbox //save encrypted file to dropbox // By creating a request, we get a handle to the putFile operation, // so we can cancel it later if we want to //FileInputStream fis = new FileInputStream(mFile); String path = mPath + mFile.getName(); mRequest = mApi.putFileOverwriteRequest(path, fis, mFile.length(), new ProgressListener() { @Override public long progressInterval() { // Update the progress bar every half-second or so return 500; } @Override public void onProgress(long bytes, long total) { publishProgress(bytes); } }); if (mRequest != null) { mRequest.upload(); return true; } } catch (DropboxUnlinkedException e) { // This session wasn't authenticated properly or user unlinked mErrorMsg = "This app wasn't authenticated properly."; } catch (DropboxFileSizeException e) { // File size too big to upload via the API mErrorMsg = "This file is too big to upload"; } catch (DropboxPartialFileException e) { // We canceled the operation mErrorMsg = "Upload canceled"; } catch (DropboxServerException e) { // Server-side exception. These are examples of what could happen, // but we don't do anything special with them here. if (e.error == DropboxServerException._401_UNAUTHORIZED) { // Unauthorized, so we should unlink them. You may want to // automatically log the user out in this case. } else if (e.error == DropboxServerException._403_FORBIDDEN) { // Not allowed to access this } else if (e.error == DropboxServerException._404_NOT_FOUND) { // path not found (or if it was the thumbnail, can't be // thumbnailed) } else if (e.error == DropboxServerException._507_INSUFFICIENT_STORAGE) { // user is over quota } else { // Something else } // This gets the Dropbox error, translated into the user's language mErrorMsg = e.body.userError; if (mErrorMsg == null) { mErrorMsg = e.body.error; } } catch (DropboxIOException e) { // Happens all the time, probably want to retry automatically. mErrorMsg = "Network error. Try again."; } catch (DropboxParseException e) { // Probably due to Dropbox server restarting, should retry mErrorMsg = "Dropbox error. Try again."; } catch (DropboxException e) { // Unknown error mErrorMsg = "Unknown error. Try again."; } catch (FileNotFoundException e) { } return false; } @Override protected void onProgressUpdate(Long... progress) { int percent = (int)(100.0*(double)progress[0]/mFileLen + 0.5); mDialog.setProgress(percent); } @Override protected void onPostExecute(Boolean result) { mDialog.dismiss(); if (result) { showToast("Image successfully uploaded"); } else { showToast(mErrorMsg); } } private void showToast(String msg) { Toast error = Toast.makeText(mContext, msg, Toast.LENGTH_LONG); error.show(); } }

    Read the article

  • Can't control connection bit rate using iwconfig with Atheros TL-WN821N (AR7010)

    - by Paul H
    I'm trying to reduce the connection bit rate on my Atheros TP-Link TL-WN821N v3 usb wifi adapter due to frequent instability issues (reported connection speed goes down to 1Mb/s and I have to physically reconnect the adapter to regain a connection). I know this is a common problem with this device, and I have tried everything I can think of to fix it, including using drivers from linux-backports; compiling and installing a custom firmware (following instructions on https://wiki.debian.org/ath9k_htc#fw-free) and (as a last resort) using ndiswrapper. When using ndiswrapper, the wifi adapter is stable and operates in g mode at 54Mb/s (whilst when using the default ath9k_htc module, the adapter connects in n mode and the bit rate fluctuates constantly). Unfortunately, with this setup I have to run my processor using only one core, since using SMP with ndiswrapper causes a kernel oops on my system. So I want to lock my bit rate to 54Mb/s (or less, if need be) for connection stability, using the ath9k_htc module. I've tried 'sudo iwconfig wlan0 rate 54M'; the command runs with no error but when I check the bit rate with 'sudo iwlist wlan0 bitrate' the command returns: wlan0 unknown bit-rate information. Current Bit Rate:78 Mb/s Any ideas? Here's some info (hopefully relevant) on my setup: Xubuntu (12.04.3) 64bit (kernel 3.2.0-55.85-generic) using Network Manager. My Router is from Virgin Media, the VMDG480. lshw -C network : *-network description: Wireless interface physical id: 1 bus info: usb@1:4 logical name: wlan0 serial: 74:ea:3a:8f:16:b6 capabilities: ethernet physical wireless configuration: broadcast=yes driver=ath9k_htc driverversion=3.2.0-55 firmware=1.3 ip=192.168.0.9 link=yes multicast=yes wireless=IEEE 802.11bgn lsusb -v: Bus 001 Device 003: ID 0cf3:7015 Atheros Communications, Inc. TP-Link TL-WN821N v3 802.11n [Atheros AR7010+AR9287] Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 255 Vendor Specific Class bDeviceSubClass 255 Vendor Specific Subclass bDeviceProtocol 255 Vendor Specific Protocol bMaxPacketSize0 64 idVendor 0x0cf3 Atheros Communications, Inc. idProduct 0x7015 TP-Link TL-WN821N v3 802.11n [Atheros AR7010+AR9287] bcdDevice 2.02 iManufacturer 16 ATHEROS iProduct 32 UB95 iSerial 48 12345 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 60 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0x80 (Bus Powered) MaxPower 500mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 6 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 0 bInterfaceProtocol 0 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x83 EP 3 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 1 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x04 EP 4 OUT bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 1 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x05 EP 5 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x06 EP 6 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 255 Vendor Specific Class bDeviceSubClass 255 Vendor Specific Subclass bDeviceProtocol 255 Vendor Specific Protocol bMaxPacketSize0 64 bNumConfigurations 1 Device Status: 0x0000 (Bus Powered) iwlist wlan0 scanning: wlan0 Scan completed : Cell 01 - Address: C4:3D:C7:3A:1F:5D Channel:1 Frequency:2.412 GHz (Channel 1) Quality=37/70 Signal level=-73 dBm Encryption key:on ESSID:"my essid" Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s 24 Mb/s; 36 Mb/s; 54 Mb/s Bit Rates:6 Mb/s; 9 Mb/s; 12 Mb/s; 48 Mb/s Mode:Master Extra:tsf=00000070cca77186 Extra: Last beacon: 5588ms ago IE: Unknown: 0007756E69636F726E IE: Unknown: 010882848B962430486C IE: Unknown: 030101 IE: Unknown: 2A0100 IE: Unknown: 2F0100 IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (2) : CCMP TKIP Authentication Suites (1) : PSK IE: Unknown: 32040C121860 IE: Unknown: 2D1AFC181BFFFF000000000000000000000000000000000000000000 IE: Unknown: 3D1601080400000000000000000000000000000000000000 IE: Unknown: DD7E0050F204104A0001101044000102103B00010310470010F99C335D7BAC57FB00137DFA79600220102100074E657467656172102300074E6574676561721024000631323334353610420007303030303030311054000800060050F20400011011000743473331303144100800022008103C0001011049000600372A000120 IE: Unknown: DD090010180203F02C0000 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (2) : CCMP TKIP Authentication Suites (1) : PSK IE: Unknown: DD180050F2020101800003A4000027A4000042435E0062322F00 iwconfig: lo no wireless extensions. wlan0 IEEE 802.11bgn ESSID:"my essid" Mode:Managed Frequency:2.412 GHz Access Point: C4:3D:C7:3A:1F:5D Bit Rate=78 Mb/s Tx-Power=20 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=36/70 Signal level=-74 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0,

    Read the article

  • Session Id in url and/or cookie? [closed]

    - by Jacco
    Most people advice against rewriting every (internal) url to include the sessionId (both GET and POST). The standard argument against it seems to be:   If an attacker gets hold of the sessionId, they can hijack the session.   With the sessionId in the url, it easily leaks to the attacker (by referer etc.) But what if you put the sessionId in both an (encrypted) cookie and the url. if the sessionId in either the cookie or the url is missing or if they do not match, decline the request. Let's pretend the website in question is free of xss holes, the cookie encryption is strong enough, etc. etc. Then what is the increased risk of rewriting every url to include the sessionId? UPDATE: @Casper That is a very good point. so up to now there are 2 reasons: bad for search engines / SEO if used in public part of the website can cause trouble when users post an url with a session Id on a forum, send it trough email or bookmark the page apart from the:   It increases the security risk, but it is not clear what the increased risk is. some background info: I've a website that offers blog-like service to travellers. I cannot be sure cookies work nor can I require cookies to work. Most computers in internet cafes are old and not (even close to) up-to-date. The user has no control over them and the connection can be very unreliable for some more 'off the beaten path' locations. Binding the session to an IP-address is not possible, some places use load-balancing proxies with multiple IP addresses. (and from China there is The Great Firewall). Upon receiving the first cookie back, I flag cookies as mandatory. However, if the cookie was flagged as mandatory but not there, I ask for their password once more, knowing their session from the url. (Also cookies have a 1 time token in them, but that's not the point of this question). UPDATE 2: The conclusion seems to be that there are no extra *security* issues when you expose you session id trough the URL while also keeping a copy of the session id in an encrypted cookie. Do not hesitate to add additional information about any possible security implications

    Read the article

  • How to use Bouncy Castle lightweight API with AES and PBE

    - by Adrian
    I have a block of ciphertext that was created using the JCE algorithim "PBEWithSHA256And256BitAES-CBC-BC". The provider is BouncyCastle. What I'd like to do it decrypt this ciphertext using the BouncyCastle lightweight API. I don't want to use JCE because that requires installing the Unlimited Strength Jurisdiction Policy Files. Documentation seems to be thin on the ground when it comes to using BC with PBE and AES. Here's what I have so far. The decryption code runs without exception but returns rubbish. The encryption code, String password = "qwerty"; String plainText = "hello world"; byte[] salt = generateSalt(); byte[] cipherText = encrypt(plainText, password.toCharArray(), salt); private static byte[] generateSalt() throws NoSuchAlgorithmException { byte salt[] = new byte[8]; SecureRandom saltGen = SecureRandom.getInstance("SHA1PRNG"); saltGen.nextBytes(salt); return salt; } private static byte[] encrypt(String plainText, char[] password, byte[] salt) throws NoSuchAlgorithmException, InvalidKeySpecException, NoSuchPaddingException, InvalidKeyException, InvalidAlgorithmParameterException, IllegalBlockSizeException, BadPaddingException { Security.addProvider(new BouncyCastleProvider()); PBEParameterSpec pbeParamSpec = new PBEParameterSpec(salt, 20); PBEKeySpec pbeKeySpec = new PBEKeySpec(password); SecretKeyFactory keyFac = SecretKeyFactory.getInstance("PBEWithSHA256And256BitAES-CBC-BC"); SecretKey pbeKey = keyFac.generateSecret(pbeKeySpec); Cipher encryptionCipher = Cipher.getInstance("PBEWithSHA256And256BitAES-CBC-BC"); encryptionCipher.init(Cipher.ENCRYPT_MODE, pbeKey, pbeParamSpec); return encryptionCipher.doFinal(plainText.getBytes()); } The decryption code, byte[] decryptedText = decrypt(cipherText, password.getBytes(), salt); private static byte[] decrypt(byte[] cipherText, byte[] password, byte[] salt) throws DataLengthException, IllegalStateException, InvalidCipherTextException, InvalidKeyException, NoSuchAlgorithmException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException { BlockCipher engine = new AESEngine(); CBCBlockCipher cipher = new CBCBlockCipher(engine); PKCS5S1ParametersGenerator keyGenerator = new PKCS5S1ParametersGenerator(new SHA256Digest()); keyGenerator.init(password, salt, 20); CipherParameters keyParams = keyGenerator.generateDerivedParameters(256); cipher.init(false, keyParams); byte[] decryptedBytes = new byte[cipherText.length]; int numBytesCopied = cipher.processBlock(cipherText, 0, decryptedBytes, 0); return decryptedBytes; }

    Read the article

  • C# file Decryption - Bad Data

    - by Jon
    Hi all, I am in the process of rewriting an old application. The old app stored data in a scoreboard file that was encrypted with the following code: private const String SSecretKey = @"?B?n?Mj?"; public DataTable GetScoreboardFromFile() { FileInfo f = new FileInfo(scoreBoardLocation); if (!f.Exists) { return setupNewScoreBoard(); } DESCryptoServiceProvider DES = new DESCryptoServiceProvider(); //A 64 bit key and IV is required for this provider. //Set secret key For DES algorithm. DES.Key = ASCIIEncoding.ASCII.GetBytes(SSecretKey); //Set initialization vector. DES.IV = ASCIIEncoding.ASCII.GetBytes(SSecretKey); //Create a file stream to read the encrypted file back. FileStream fsread = new FileStream(scoreBoardLocation, FileMode.Open, FileAccess.Read); //Create a DES decryptor from the DES instance. ICryptoTransform desdecrypt = DES.CreateDecryptor(); //Create crypto stream set to read and do a //DES decryption transform on incoming bytes. CryptoStream cryptostreamDecr = new CryptoStream(fsread, desdecrypt, CryptoStreamMode.Read); DataTable dTable = new DataTable("scoreboard"); dTable.ReadXml(new StreamReader(cryptostreamDecr)); cryptostreamDecr.Close(); fsread.Close(); return dTable; } This works fine. I have copied the code into my new app so that I can create a legacy loader and convert the data into the new format. The problem is I get a "Bad Data" error: System.Security.Cryptography.CryptographicException was unhandled Message="Bad Data.\r\n" Source="mscorlib" The error fires at this line: dTable.ReadXml(new StreamReader(cryptostreamDecr)); The encrypted file was created today on the same machine with the old code. I guess that maybe the encryption / decryption process uses the application name / file or something and therefore means I can not open it. Does anyone have an idea as to: A) Be able explain why this isn't working? B) Offer a solution that would allow me to be able to open files that were created with the legacy application and be able to convert them please? Thank you

    Read the article

  • python RSA implemention with PKCS1

    - by user307016
    I got the following code in javascript for RSA implementionhttp://www-cs-students.stanford.edu/~tjw/jsbn/: // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); if(m == null) return null; var c = this.doPublic(m); if(c == null) return null; var h = c.toString(16); if((h.length & 1) == 0) return h; else return "0" + h; } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s,n) { if(n < s.length + 11) { // TODO: fix for utf-8 alert("Message too long for RSA"); return null; } var ba = new Array(); var i = s.length - 1; while(i >= 0 && n > 0) { var c = s.charCodeAt(i--); if(c < 128) { // encode using utf-8 ba[--n] = c; } else if((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = new Array(); while(n > 2) { // random non-zero pad x[0] = 0; while(x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } In the snippets above, it seems that the pkcs1pad2 function is used for padding the message with some random bytes(maybe sth like 0|2|random|0 ) in front of the message. I'm using the python rsa package (http://stuvel.eu/rsa) for imitating the javascript result, i'm a newbie to python world and have no idea to traslate javascript algorithm code to the python code. Any help would be appreciated. Jiee

    Read the article

  • Help with OpenSSL request using Python

    - by Ldn
    Hi i'm creating a program that has to make a request and then obtain some info. For doing that the website had done some API that i will use. There is an how-to about these API but every example is made using PHP. But my app is done using Python so i need to convert the code. here is the how-to: The request string is sealed with OpenSSL. The steps for sealing are as follows: • Random 128-bit key is created. • Random key is used to RSA-RC4 symettrically encrypt the request string. • Random key is encrypted with the public key using OpenSSL RSA asymmetrical encryption. • The encrypted request and encrypted key are each base64 encoded and placed in the appropriate fields. In PHP a full request to our API can be accomplished like so: <?php // initial request. $request = array('object' => 'Link', 'action' => 'get', 'args' => array( 'app_id' => 303612602 ) ); // encode the request in JSON $request = json_encode($request); // when you receive your profile, you will be given a public key to seal your request in. $key_pem = "-----BEGIN PUBLIC KEY----- MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBALdu5C6d2sA1Lu71NNGBEbLD6DjwhFQO VLdFAJf2rOH63rG/L78lrQjwMLZOeHEHqjaiUwCr8NVTcVrebu6ylIECAwEAAQ== -----END PUBLIC KEY-----"; // load the public key $pkey = openssl_pkey_get_public($key_pem); // seal! $newrequest and $enc_keys are passed by reference. openssl_seal($request, $enc_request, $enc_keys, array($pkey)); // then wrap the request $wrapper = array( 'profile' => 'ProfileName', 'format' => 'RSA_RC4_Sealed', 'enc_key' => base64_encode($enc_keys[0]), 'request' => base64_encode($enc_request) ); // json encode the wrapper. urlencode it as well. $wrapper = urlencode(json_encode($wrapper)); // we can send the request wrapper via the cURL extension $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, 'http://api.site.com/'); curl_setopt($ch, CURLOPT_POST, 1); curl_setopt($ch, CURLOPT_POSTFIELDS, "request=$wrapper"); curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); $data = curl_exec($ch); curl_close($ch); ?> Of all of that, i was able to convert "$request" and i'v also made the JSON encode. This is my code: import urllib import urllib2 import json url = 'http://api.site.com/' array = {'app_id' : "303612602"} values = { "object" : "Link", "action": "get", "args" : array } data = urllib.urlencode(values) json_data = json.dumps(data) What stop me is the sealing with OpenSSL and the publi key (that obviously i have) Using PHP OpenSSL it's so easy, but in Python i don't really know how to use it Please, help me!

    Read the article

  • str is not callable error in python .

    - by mekasperasky
    import sys import md5 from TOSSIM import * from RadioCountMsg import * t = Tossim([]) #The Tossim object is defined here m = t.mac()#The mac layer is defined here , in which the communication takes place r = t.radio()#The radio communication link object is defined here , as the communication needs Rf frequency to transfer t.addChannel("RadioCountToLedsC", sys.stdout)# The various channels through which communication will take place t.addChannel("LedsC", sys.stdout) #The no of nodes that would be required in the simulation has to be entered here print("enter the no of nodes you want ") n=input() for i in range(0, n): m = t.getNode(i) m.bootAtTime((31 + t.ticksPerSecond() / 10) * i + 1) #The booting time is defined so that the time at which the node would be booted is given f = open("topo.txt", "r") #The topography is defined in topo.txt so that the RF frequencies of the transmission between nodes are are set lines = f.readlines() for line in lines: s = line.split() if (len(s) > 0): if (s[0] == "gain"): r.add(int(s[1]), int(s[2]), float(s[3])) #The topogrography is added to the radio object noise = open("meyer-heavy.txt", "r") #The noise model is defined for the nodes lines = noise.readlines() for line in lines: str = line.strip() if (str != ""): val = int(str) for i in range(0, 4): t.getNode(i).addNoiseTraceReading(val) for i in range (0, n): t.getNode(i).createNoiseModel() #The noise model is created for each node for i in range(0,n): t.runNextEvent() fk=open("key.txt","w") for i in range(0,n): if i ==0 : key=raw_input() fk.write(key) ak=key key=md5.new() key.update(str(ak)) ak=key.digest() fk.write(ak) fk.close() fk=open("key.txt","w") plaint=open("pt.txt") for i in range(0,n): msg = RadioCountMsg() msg.set_counter(7) pkt = t.newPacket()#A packet is defined according to a certain format print("enter message to be transported") ms=raw_input()#The message to be transported is taken as input #The RC5 encryption has to be done here plaint.write(ms) pkt.setData(msg.data) pkt.setType(msg.get_amType()) pkt.setDestination(i+1)#The destination to which the packet will be sent is set print "Delivering " + " to" ,i+1 pkt.deliver(i+1, t.time() + 3) fk.close() print "the key to be displayed" ki=raw_input() fk=open("key.txt") for i in range(0,n): if i==ki: ms=fk.readline() for i in range(0,n): msg=RadioCountMsg() msg.set_counter(7) pkt=t.newPacket() msg.data=ms pkt.setData(msg.data) pkt.setType(msg.get_amType()) pkt.setDestination(i+1) pkt.deliver(i+1,t.time()+3) #The key has to be broadcasted here so that the decryption can take place for i in range(0, n): t.runNextEvent(); this code gives me error here key.update(str(ak)) . when i run a similar code on the python terminal there is no such error but this code pops up an error . why so?

    Read the article

  • How can I turn a string of text into a BigInteger representation for use in an El Gamal cryptosystem

    - by angstrom91
    I'm playing with the El Gamal cryptosystem, and my goal is to be able to encipher and decipher long sequences of text. I have come up with a method that works for short sequences, but does not work for long sequences, and I cannot figure out why. El Gamal requires the plaintext to be an integer. I have turned my string into a byte[] using the .getBytes() method for Strings, and then created a BigInteger out of the byte[]. After encryption/decryption, I turn the BigInteger into a byte[] using the .toByteArray() method for BigIntegers, and then create a new String object from the byte[]. This works perfectly when i call ElGamalEncipher with strings up to 129 characters. With 130 or more characters, the output produced is garbled. Can someone suggest how to solve this issue? Is this an issue with my method of turning the string into a BigInteger? If so, is there a better way to turn my string of text into a BigInteger and back? Below is my encipher/decipher code. public static BigInteger[] ElGamalEncipher(String plaintext, BigInteger p, BigInteger g, BigInteger r) { // returns a BigInteger[] cipherText // cipherText[0] is c // cipherText[1] is d BigInteger[] cipherText = new BigInteger[2]; BigInteger pText = new BigInteger(plaintext.getBytes()); // 1: select a random integer k such that 1 <= k <= p-2 BigInteger k = new BigInteger(p.bitLength() - 2, sr); // 2: Compute c = g^k(mod p) BigInteger c = g.modPow(k, p); // 3: Compute d= P*r^k = P(g^a)^k(mod p) BigInteger d = pText.multiply(r.modPow(k, p)).mod(p); // C =(c,d) is the ciphertext cipherText[0] = c; cipherText[1] = d; return cipherText; } public static String ElGamalDecipher(BigInteger c, BigInteger d, BigInteger a, BigInteger p) { //returns the plaintext enciphered as (c,d) // 1: use the private key a to compute the least non-negative residue // of an inverse of (c^a)' (mod p) BigInteger z = c.modPow(a, p).modInverse(p); BigInteger P = z.multiply(d).mod(p); byte[] plainTextArray = P.toByteArray(); String output = null; try { output = new String(plainTextArray, "UTF8"); } catch (Exception e) { } return output; }

    Read the article

  • Speed Problem with Wireless Connectivity on Cisco 877w

    - by Carl Crawley
    Having a bit of a weird one with my local LAN setup. I recently installed a Cisco 877W router on my DSL2+ connection and all is working really well.. Upgraded the IOS to 12.4 and my wired clients are streaming connectivity superfast at 1.3mb/s. However, there seems to be an issue with my wireless clients - I can't seem to stream any data across the local wireless connection (LAN) and using the Internet, whilst responsive enough isn't really comparable with the wired connection speed. For example, all devices are connected to an 8 Port Gb switch on FE0 from the Router with a NAS disk and on my wired clients, I can transfer/stream etc absolutely fine - however, transferring a local 700Mb file on my local LAN estimates 7-8 hours to transfer :( The Wireless config is as follows : interface Dot11Radio0 description WIRELESS INTERFACE no ip address ! encryption mode ciphers tkip ! ssid [MySSID] ! speed basic-1.0 basic-2.0 basic-5.5 6.0 9.0 basic-11.0 channel 2462 station-role root rts threshold 2312 world-mode dot11d country GB indoor bridge-group 1 bridge-group 1 subscriber-loop-control bridge-group 1 spanning-disabled bridge-group 1 block-unknown-source no bridge-group 1 source-learning no bridge-group 1 unicast-flooding All devices are connected to the Gb Switch which is connected to FE0 with the following: Hardware is Fast Ethernet, address is 0021.a03e.6519 (bia 0021.a03e.6519) Description: Uplink to Switch MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full-duplex, 100Mb/s ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output never, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 14000 bits/sec, 19 packets/sec 5 minute output rate 167000 bits/sec, 23 packets/sec 177365 packets input, 52089562 bytes, 0 no buffer Received 919 broadcasts, 0 runts, 0 giants, 0 throttles 260 input errors, 260 CRC, 0 frame, 0 overrun, 0 ignored 0 input packets with dribble condition detected 156673 packets output, 106218222 bytes, 0 underruns 0 output errors, 0 collisions, 2 interface resets 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier 0 output buffer failures, 0 output buffers swapped out Not sure why I'm having problems on the wireless and I've reached the end of my Cisco knowledge... Thanks for any pointers! Carl

    Read the article

  • Cannot run public class in one .java from another

    - by DIOS
    I have created a basic program that takes whatever is input into two textfields and exports them to a file. I would now like to encrypt that file, and alredy have the encryptor. The problem is that I cannot call it. Here is my code for the encryptor: import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.*; import javax.crypto.Cipher; import javax.crypto.CipherInputStream; import javax.crypto.CipherOutputStream; import javax.crypto.spec.SecretKeySpec; public class FileEncryptor { private String algo; private File file; public FileEncryptor(String algo,String path) { this.algo=algo; //setting algo this.file=new File(path); //settong file } public void encrypt() throws Exception{ //opening streams FileInputStream fis =new FileInputStream(file); file=new File(file.getAbsolutePath()); FileOutputStream fos =new FileOutputStream(file); //generating key byte k[] = "HignDlPs".getBytes(); SecretKeySpec key = new SecretKeySpec(k,algo.split("/")[0]); //creating and initialising cipher and cipher streams Cipher encrypt = Cipher.getInstance(algo); encrypt.init(Cipher.ENCRYPT_MODE, key); CipherOutputStream cout=new CipherOutputStream(fos, encrypt); byte[] buf = new byte[1024]; int read; while((read=fis.read(buf))!=-1) //reading data cout.write(buf,0,read); //writing encrypted data //closing streams fis.close(); cout.flush(); cout.close(); } public static void main (String[] args)throws Exception { new FileEncryptor("DES/ECB/PKCS5Padding","C:\\Users\\*******\\Desktop\\newtext").encrypt();//encrypts the current file. } } Here is the section of my file creator that is failing to call this: FileWriter fWriter = null; BufferedWriter writer = null; try{ fWriter = new FileWriter("C:\\Users\\*******\\Desktop\\newtext"); writer = new BufferedWriter(fWriter); writer.write(Data); writer.close(); f.dispose(); FileEncryptor encr = new FileEncryptor(); //problem lies here. encr.encrypt //public void that does the encryption. new complete(); //different .java that is working fine.

    Read the article

  • Text Obfuscation using base64_encode()

    - by user271619
    I'm playing around with encrypt/decrypt coding in php. Interesting stuff! However, I'm coming across some issues involving what text gets encrypted into. Here's 2 functions that encrypt and decrypt a string. It uses an Encryption Key, which I set as something obscure. I actually got this from a php book. I modified it slightly, but not to change it's main goal. I created a small example below that anyone can test. But, I notice that some characters show up as the "encrypted" string. Characters like "=" and "+". Sometimes I pass this encrypted string via the url. Which may not quite make it to my receiving scripts. I'm guessing the browser does something to the string if certain characters are seen. I'm really only guessing. is there another function I can use to ensure the browser doesn't touch the string? or does anyone know enough php bas64_encode() to disallow certain characters from being used? I'm really not going to expect the latter as a possibility. But, I'm sure there's a work-around. enjoy the code, whomever needs it! define('ENCRYPTION_KEY', "sjjx6a"); function encrypt($string) { $result = ''; for($i=0; $i<strlen($string); $i++) { $char = substr($string, $i, 1); $keychar = substr(ENCRYPTION_KEY, ($i % strlen(ENCRYPTION_KEY))-1, 1); $char = chr(ord($char)+ord($keychar)); $result.=$char; } return base64_encode($result)."/".rand(); } function decrypt($string){ $exploded = explode("/",$string); $string = $exploded[0]; $result = ''; $string = base64_decode($string); for($i=0; $i<strlen($string); $i++) { $char = substr($string, $i, 1); $keychar = substr(ENCRYPTION_KEY, ($i % strlen(ENCRYPTION_KEY))-1, 1); $char = chr(ord($char)-ord($keychar)); $result.=$char; } return $result; } echo $encrypted = encrypt("reaplussign.jpg"); echo "<br>"; echo decrypt($encrypted);

    Read the article

  • base64-Encoding breaks smime-encrypted emaildata

    - by Streuner
    I'm using Mime::Lite to create and send E-Mails. Now I need to add support for S/Mime-encryption and finally could encrypt my E-Mail (the only Perllib I could install seems broken, so I'm using a systemcall and openssl smime), but when I try to create a mime-object with it, the E-Mail will be broken as soon as I set the Content-Transfer-Encoding to base64. To make it even more curious, it happens only if I set it via $myMessage->attr. If I'm using the constructor -new everything is fine, besides a little warning which I suppress by using MIME::Lite->quiet(1); Is it a bug or my fault? Here are the two ways how I create the mime-object. Setting the Content-Transfer-Encoding via construtor and suppress the warning: MIME::Lite->quiet(1); my $msgEncr = MIME::Lite->new(From =>'[email protected]', To => '[email protected]', Subject => 'SMIME Test', Data => $myEncryptedMessage, 'Content-Transfer-Encoding' => 'base64'); $msgEncr->attr('Content-Disposition' => 'attachment'); $msgEncr->attr('Content-Disposition.filename' => 'smime.p7m'); $msgEncr->attr('Content-Type' => 'application/x-pkcs7-mime'); $msgEncr->attr('Content-Type.smime-type' => 'enveloped-data'); $msgEncr->attr('Content-Type.name' => 'smime.p7m'); $msgEncr->send; MIME::Lite->quiet(0); Setting the Content-Transfer-Encoding via $myMessage->attr which breaks the encrypted Data, but won't cause a warning: my $msgEncr = MIME::Lite->new(From => '[email protected]', To => '[email protected]', Subject => 'SMIME Test', Data => $myEncryptedMessage); $msgEncr->attr('Content-Disposition' => 'attachment'); $msgEncr->attr('Content-Disposition.filename' => 'smime.p7m'); $msgEncr->attr('Content-Type' => 'application/x-pkcs7-mime'); $msgEncr->attr('Content-Type.smime-type' => 'enveloped-data'); $msgEncr->attr('Content-Type.name' => 'smime.p7m'); $msgEncr->attr('Content-Transfer-Encoding' => 'base64'); $msgEncr->send; I just don't get why my message is broken when I'm using the attribute-setter. Thanks in advance for your help! Besides that i'm unable to attach any file to this E-Mail without breaking the encrypted message again.

    Read the article

  • How do I create a safe local development environment?

    - by docgnome
    I'm currently doing web development with another developer on a centralized development server. In the past this has worked alright, as we have two separate projects we are working on and rarely conflict. Now, however, we are adding a third (possible) developer into the mix. This is clearly going to create problems with other developers changes affecting my work and vice versa. To solve this problem, I'm thinking the best solution would be to create a virtual machine to distribute between the developers for local use. The problem I have is when it comes to the database. Given that we all develop on laptops, simply keeping a local copy of the live data is plain stupid. I've considered sanitizing the data, but I can't really figure out how to replace the real data, with data that would be representative of what people actually enter with out repeating the same information over and over again, e.g. everyone's address becomes 123 Testing Lane, Test Town, WA, 99999 or something. Is this really something to be concerned about? Are there tools to help with this sort of thing? I'm using MySQL. Ideally, if I sanitized the db it should be done from a script that I can run regularly. If I do this I'd also need a way to reduce the size of the db itself. (I figure I could select all the records created after x and whack them and all the records in corresponding tables out so that isn't really a big deal.) The second solution I've thought of is to encrypt the hard drive of the vm, but I'm unsure of how practical this is in terms of speed and also in the event of a lost/stolen laptop. If I do this, should the vm hard drive file itself be encrypted or should it be encrypted in the vm? (I'm assuming the latter as it would be portable and doesn't require the devs to have any sort of encryption capability on their OS of choice.) The third is to create a copy of the database for each developer on our development server that they are then responsible to keep the schema in sync with the canonical db by means of migration scripts or what have you. This solution seems to be the simplest but doesn't really scale as more developers are added. How do you deal with this problem?

    Read the article

  • Teamviewer: cannot control monitor 1, but can control monitor 2

    - by DaveT
    I'm using the web client of Teamviewer from my work computer trying to control my home computer. I have 2 monitors on the remote desktop, but for some reason only have control on the second monitor. When I switch to the main monitor (monitor 1), I cannot do anything and cannot even move the cursor. But I have no issues when I switch over to the second monitor (monitor 2). I used to have no issues with either, but in the past couple of months this has been causing me issues. Anyone have a suggestion? Thanks!! Also... Here is the log from the Teamviewer session. Showing me switching back and forth between the monitors. (just in case this will help). I had to remove the links in order to post the log since I don't have enough reputation points, but they were just teamviewer login weblinks. =============================================================================== 21.08 16:00:41,176: Version: 9.0.15099 21.08 16:00:41,177: Sandbox: remote 21.08 16:00:41,177: SysLanguage: en 21.08 16:00:41,177: VarLanguage: en 21.08 16:00:41,177: Flash Player: PlugIn (WIN 14,0,0,179) 21.08 16:00:41,178: UseLanguage: en 21.08 16:00:41,178: UseLanguage: en 21.08 16:00:41,182: TeamViewer hasPassword: true 21.08 16:00:41,418: ExternalConnect id=910035824 21.08 16:00:41,419: CT connect 910035824 masterURL: , sandbox = remote 21.08 16:00:41,425: MC.requestRoute(910035824) 21.08 16:00:41,426: MC.sendMasterCommand text=F=RequestRoute2&ID1=777&Client=TV& ID2=910035824&SA_AccountID=26641022&SA_PasswordMD5HashBase64Encoded=& SA_SessionSecret=f7H6Z7SYfX5ahQ7SJq/r/K20PBYg9fOZhp+DKLhf5ts=&SA_SessionID=1558929948& V=9.0.15099&OS=Flash 21.08 16:00:41,426: MC wait for ping completion 21.08 16:00:42,064: PS.socket event: [Event type="connect" bubbles=false cancelable=false eventPhase=2] 21.08 16:00:42,182: PingThread: TCP-Ping ok 21.08 16:00:42,183: MC.socket mode = TCP, MasterURL: 21.08 16:00:42,183: MC.connect: 21.08 16:00:43,058: PS.socket event: [Event type="connect" bubbles=false cancelable=false eventPhase=2] 21.08 16:00:43,058: MC.connectHandler: [Event type="connect" bubbles=false cancelable=false eventPhase=2] 21.08 16:00:43,236: MC.requestRouteResponse: [email protected]_10800_128000_762319420_910035824_10000__1_0_16778176_128000_16778176: 128000;2147483647:1280000;4:640000_786297_786297 21.08 16:00:43,239: CT init socket: TCP 21.08 16:00:43,513: PS.socket event: [Event type="connect" bubbles=false cancelable=false eventPhase=2] 21.08 16:00:43,514: CT.connectHandler: [Event type="connect" bubbles=false cancelable=false eventPhase=2] 21.08 16:00:43,519: Browser name: Netscape 21.08 16:00:43,936: CMD_IDENTIFY id=910035824 ver=2.41 21.08 16:00:44,666: CMD_CONFIRMENCRYPTION: encryption confirmed 21.08 16:00:44,667: Started resendrequest timer 21.08 16:00:45,063: Remote Version: TV 009.000 21.08 16:00:45,501: start classic authentication 21.08 16:00:45,502: Login::SendRequestToConsole(): url= 21.08 16:00:45,828: start srp authentication 21.08 16:00:46,983: checkFirstPacket ok, m_LastReceivedPacketID =4 21.08 16:00:47,148: Login::SendRequestToConsole(): url= 21.08 16:00:47,478: start srp authentication 21.08 16:00:48,210: Login::SendRequestToConsole(): url= 21.08 16:00:48,485: checkFirstPacket ok, m_LastReceivedPacketID =7 21.08 16:00:48,780: TVCmdAuthenticate_Authenticated: 1 21.08 16:00:49,321: Connected to 910035824, name=NEWMAN, os=14, version=9.0.31064 21.08 16:00:49,329: ConnectionAccessSettings: RemoteControl: AllowedFileTransfer: AllowedControlRemoteTV: AllowedSwitchSides: DeniedAllowDisableRemoteInput: AllowedAllowVPN: AllowedAllowPartnerViewDesktop: Allowed 21.08 16:00:52,195: unexpected TVCommand.CommandType == 56 21.08 16:00:52,231: CW received display params: 1680x1050x8 monitors: 2 (active:0) 21.08 16:00:52,301: Caching active, version=2 21.08 16:03:47,158: CW received display params: 1680x1050x8 monitors: 2 (active:1) 21.08 16:04:24,447: CW received display params: 1680x1050x8 monitors: 2 (active:0) 21.08 16:04:40,609: CW received display params: 3360x1050x8 monitors: 2 (active:-1) 21.08 16:04:59,802: CW received display params: 1680x1050x8 monitors: 2 (active:1) 21.08 16:04:59,933: CW received display params: 1680x1050x8 monitors: 2 (active:1) 21.08 16:05:58,419: CW received display params: 1680x1050x8 monitors: 2 (active:0) 21.08 16:06:36,824: CW received display params: 1680x1050x8 monitors: 2 (active:1) 21.08 16:07:07,232: CW received display params: 1680x1050x8 monitors: 2 (active:0)

    Read the article

< Previous Page | 76 77 78 79 80 81 82 83 84 85  | Next Page >