Search Results

Search found 9495 results on 380 pages for 'double pointer'.

Page 82/380 | < Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >

  • Grid collision - finding the location of an entity in each box

    - by Gregg1989
    I am trying to implement grid-based collision in a 2d game with moving circles. The canvas is 400x400 pixels. Below you can see the code for my Grid class. What I want it to do is check inside which box the entities are located and then run a collision check if there are 2 or more entities in the same box. Right now I do not know how to find the position of an entity in a specific box. I know there are many tutorials online, but I haven't been able to find an answer to my question, because they are either written in C/C++ or use the 2d array approach. Code snippets and other help is greatly appreciated. Thanks. public class Grid { ArrayList<ArrayList<Entity>> boxes = new ArrayList<>(); double boxSize = 40; double boxesAmount = 10; ... ... public void checkBoxLocation(ArrayList<Entity> entities) { for (int i = 0; i < entities.size(); i++) { // Get top left coordinates of each entity double entityLeft = entities.get(i).getLayoutX() - entities.get(i).getRadius(); double entityTop = entities.get(i).getLayoutY() + entities.get(i).getRadius(); // Divide coordinate by box size to find the approximate location of the entity for (int j = 0; j < boxesAmount; j++) { //Select each box if ((entityLeft / boxSize <= j + 0.7) && (entityLeft / boxSize >= j)) { if ((entityTop / boxSize <= j + 0.7) && (entityTop / boxSize >= j)) { holdingBoxes.get(j).add(entities.get(i)); System.out.println("Entity " + entities.get(i) + " added to box " + j); } } } } } }

    Read the article

  • Shared pointers causing weird behaviour

    - by Setzer22
    I have the following code in SFML 2.1 Class ResourceManager: shared_ptr<Sprite> ResourceManager::getSprite(string name) { shared_ptr<Texture> texture(new Texture); if(!texture->loadFromFile(resPath+spritesPath+name)) throw new NotSuchFileException(); shared_ptr<Sprite> sprite(new Sprite(*texture)); return sprite; } Main method: (I'll omit most of the irrelevant code shared_ptr<Sprite> sprite = ResourceManager::getSprite("sprite.png"); ... while(renderWindow.isOpen()) renderWindow.draw(*sprite); Oddly enough this makes my sprite render completely white, but if I do this instead: shared_ptr<Sprite> ResourceManager::getSprite(string name) { Texture* texture = new Texture; // <------- From shared pointer to pointer if(!texture->loadFromFile(resPath+spritesPath+name)) throw new NotSuchFileException(); shared_ptr<Sprite> sprite(new Sprite(*texture)); return sprite; } It works perfectly. So what's happening here? I assumed the shared pointer would work just as a pointer. Could it be that it's getting deleted? My main method is keeping a reference to it so I don't really understand what's going on here :S EDIT: I'm perfectly aware deleting the sprite won't delete the texture and this is generating a memory leak I'd have to handle, that's why I'm trying to use smart pointers on the first place...

    Read the article

  • Efficiency of iterators and alternatives? [migrated]

    - by user48037
    I have the following code for my game tiles: std::vector<GameObject_Tile*>::iterator it; for(int y = 0; y < GAME_TILES_Y; y++) { for(int x = 0; x < GAME_TILES_X; x++) { for (it = gameTiles[x][y].tiles.begin() ; it != gameTiles[x][y].tiles.end(); ++it) {}}} tiles is: struct Game_Tile { // More specific object types will be added here eventually vector<GameObject_Tile*> tiles; }; My problem is that if I change the vector to just be a single GameObject_Tile* instead and remove the iterator line in the loop I go from about 200fps to 450fps. Some context: The vector/pointer only contains one object in both scenarios. I will eventually need to store multiple, but for testing I just set it to a single pointer. The loop goes through 2,300 objects each frame and draws them. I would like to point out that if I remove the Draw (not seen int he example) method, I gain about 30 frames in both scenarios, the issue is the iteration. So I am wondering why having this as a vector being looped through by an iterator (to get at a single object) is costing me over 200 frames when compared to it being a single pointer? The 200+ frames faster code is: std::vector<GameObject_Tile*>::iterator it; for(int y = 0; y < GAME_TILES_Y; y++) { for(int x = 0; x < GAME_TILES_X; x++) { //gameTiles[x][y].tiles is used as a pointer here instead of using *it }} tiles is: struct Game_Tile { // More specific object types will be added here eventually GameObject_Tile* tiles; };

    Read the article

  • how to clear stack after stack overflow signal occur

    - by user353573
    In pthread, After reaching yellow zone in stack, signal handler stop the recursive function by making it return however, we can only continue to use extra area in yellow zone, how to clear the rubbish before the yellow zone in the thread stack ? (Copied from "answers"): #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <setjmp.h> #include <sys/mman.h> #include <unistd.h> #include <assert.h> #include <sys/resource.h> #define ALT_STACK_SIZE (64*1024) #define YELLOW_ZONE_PAGES (1) typedef struct { size_t stack_size; char* stack_pointer; char* red_zone_boundary; char* yellow_zone_boundary; sigjmp_buf return_point; size_t red_zone_size; } ThreadInfo; static pthread_key_t thread_info_key; static struct sigaction newAct, oldAct; bool gofromyellow = false; int call_times = 0; static void main_routine(){ // make it overflow if(gofromyellow == true) { printf("return from yellow zone, called %d times\n", call_times); return; } else { call_times = call_times + 1; main_routine(); gofromyellow = true; } } // red zone management static void stackoverflow_routine(){ fprintf(stderr, "stack overflow error.\n"); fflush(stderr); } // yellow zone management static void yellow_zone_hook(){ fprintf(stderr, "exceed yellow zone.\n"); fflush(stderr); } static int get_stack_info(void** stackaddr, size_t* stacksize){ int ret = -1; pthread_attr_t attr; pthread_attr_init(&attr); if(pthread_getattr_np(pthread_self(), &attr) == 0){ ret = pthread_attr_getstack(&attr, stackaddr, stacksize); } pthread_attr_destroy(&attr); return ret; } static int is_in_stack(const ThreadInfo* tinfo, char* pointer){ return (tinfo->stack_pointer <= pointer) && (pointer < tinfo->stack_pointer + tinfo->stack_size); } static int is_in_red_zone(const ThreadInfo* tinfo, char* pointer){ if(tinfo->red_zone_boundary){ return (tinfo->stack_pointer <= pointer) && (pointer < tinfo->red_zone_boundary); } } static int is_in_yellow_zone(const ThreadInfo* tinfo, char* pointer){ if(tinfo->yellow_zone_boundary){ return (tinfo->red_zone_boundary <= pointer) && (pointer < tinfo->yellow_zone_boundary); } } static void set_yellow_zone(ThreadInfo* tinfo){ int pagesize = sysconf(_SC_PAGE_SIZE); assert(pagesize > 0); tinfo->yellow_zone_boundary = tinfo->red_zone_boundary + pagesize * YELLOW_ZONE_PAGES; mprotect(tinfo->red_zone_boundary, pagesize * YELLOW_ZONE_PAGES, PROT_NONE); } static void reset_yellow_zone(ThreadInfo* tinfo){ size_t pagesize = tinfo->yellow_zone_boundary - tinfo->red_zone_boundary; if(mmap(tinfo->red_zone_boundary, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0) == 0){ perror("mmap failed"), exit(1); } mprotect(tinfo->red_zone_boundary, pagesize, PROT_READ | PROT_WRITE); tinfo->yellow_zone_boundary = 0; } static void signal_handler(int sig, siginfo_t* sig_info, void* sig_data){ if(sig == SIGSEGV){ ThreadInfo* tinfo = (ThreadInfo*) pthread_getspecific(thread_info_key); char* fault_address = (char*) sig_info->si_addr; if(is_in_stack(tinfo, fault_address)){ if(is_in_red_zone(tinfo, fault_address)){ siglongjmp(tinfo->return_point, 1); }else if(is_in_yellow_zone(tinfo, fault_address)){ reset_yellow_zone(tinfo); yellow_zone_hook(); gofromyellow = true; return; } else { //inside stack not related overflow SEGV happen } } } } static void register_application_info(){ pthread_key_create(&thread_info_key, NULL); sigemptyset(&newAct.sa_mask); sigaddset(&newAct.sa_mask, SIGSEGV); newAct.sa_sigaction = signal_handler; newAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK; sigaction(SIGSEGV, &newAct, &oldAct); } static void register_thread_info(ThreadInfo* tinfo){ stack_t ss; pthread_setspecific(thread_info_key, tinfo); get_stack_info((void**)&tinfo->stack_pointer, &tinfo->stack_size); printf("stack size %d mb\n", tinfo->stack_size/1024/1024 ); tinfo->red_zone_boundary = tinfo->stack_pointer + tinfo->red_zone_size; set_yellow_zone(tinfo); ss.ss_sp = (char*)malloc(ALT_STACK_SIZE); ss.ss_size = ALT_STACK_SIZE; ss.ss_flags = 0; sigaltstack(&ss, NULL); } static void* thread_routine(void* p){ ThreadInfo* tinfo = (ThreadInfo*)p; register_thread_info(tinfo); if(sigsetjmp(tinfo->return_point, 1) == 0){ main_routine(); } else { stackoverflow_routine(); } free(tinfo); printf("after tinfo, end thread\n"); return 0; } int main(int argc, char** argv){ register_application_info(); if( argc == 2 ){ int stacksize = atoi(argv[1]); pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 1024 * 1024 * stacksize); { pthread_t pid0; ThreadInfo* tinfo = (ThreadInfo*)calloc(1, sizeof(ThreadInfo)); pthread_attr_getguardsize(&attr, &tinfo->red_zone_size); pthread_create(&pid0, &attr, thread_routine, tinfo); pthread_join(pid0, NULL); } } else { printf("Usage: %s stacksize(mb)\n", argv[0]); } return 0; } C language in linux, ubuntu

    Read the article

  • Why isn't my bundle getting passed?

    - by NickTFried
    I'm trying to pass a bundle of two values from a started class to my landnav app, but according to the debug nothing is getting passed, does anyone have any ideas why? package edu.elon.cs.mobile; import android.app.Activity; import android.content.Intent; import android.os.Bundle; import android.view.View; import android.view.View.OnClickListener; import android.widget.Button; import android.widget.EditText; public class PointEntry extends Activity{ private Button calc; private EditText longi; private EditText lati; private double longid; private double latd; public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.pointentry); calc = (Button) findViewById(R.id.coorCalcButton); calc.setOnClickListener(landNavButtonListener); longi = (EditText) findViewById(R.id.longitudeedit); lati = (EditText) findViewById(R.id.latitudeedit); } private void startLandNav() { Intent intent = new Intent(this, LandNav.class); startActivityForResult(intent, 0); } private OnClickListener landNavButtonListener = new OnClickListener() { @Override public void onClick(View arg0) { Bundle bundle = new Bundle(); bundle.putDouble("longKey", longid); bundle.putDouble("latKey", latd); longid = Double.parseDouble(longi.getText().toString()); latd = Double.parseDouble(lati.getText().toString()); startLandNav(); } }; } This is the class that is suppose to take the second point package edu.elon.cs.mobile; import com.google.android.maps.GeoPoint; import com.google.android.maps.MapActivity; import com.google.android.maps.MapController; import com.google.android.maps.MapView; import com.google.android.maps.MyLocationOverlay; import com.google.android.maps.Overlay; import android.content.Context; import android.graphics.drawable.Drawable; import android.hardware.Sensor; import android.hardware.SensorEvent; import android.hardware.SensorEventListener; import android.hardware.SensorManager; import android.location.Location; import android.location.LocationManager; import android.os.Bundle; import android.util.Log; import android.widget.EditText; import android.widget.TextView; public class LandNav extends MapActivity{ private MapView map; private MapController mc; private GeoPoint myPos; private SensorManager sensorMgr; private TextView azimuthView; private double longitudeFinal; private double latitudeFinal; double startTime; double newTime; double elapseTime; private MyLocationOverlay me; private Drawable marker; private GeoPoint finalPos; private SitesOverlay myOverlays; public LandNav(){ startTime = System.currentTimeMillis(); } public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.landnav); Bundle bundle = this.getIntent().getExtras(); if(bundle != null){ longitudeFinal = bundle.getDouble("longKey"); latitudeFinal = bundle.getDouble("latKey"); } azimuthView = (TextView) findViewById(R.id.azimuthView); map = (MapView) findViewById(R.id.map); mc = map.getController(); sensorMgr = (SensorManager) getSystemService(Context.SENSOR_SERVICE); LocationManager lm = (LocationManager)getSystemService(Context.LOCATION_SERVICE); Location location = lm.getLastKnownLocation(LocationManager.GPS_PROVIDER); int longitude = (int)(location.getLongitude() * 1E6); int latitude = (int)(location.getLatitude() * 1E6); finalPos = new GeoPoint((int)(latitudeFinal*1E6), (int)(longitudeFinal*1E6)); myPos = new GeoPoint(latitude, longitude); map.setSatellite(true); map.setBuiltInZoomControls(true); mc.setZoom(16); mc.setCenter(myPos); marker = getResources().getDrawable(R.drawable.greenmarker); marker.setBounds(0,0, marker.getIntrinsicWidth(), marker.getIntrinsicHeight()); me = new MyLocationOverlay(this, map); myOverlays = new SitesOverlay(marker, myPos, finalPos); map.getOverlays().add(myOverlays); } @Override protected boolean isRouteDisplayed() { return false; } @Override protected void onResume() { super.onResume(); sensorMgr.registerListener(sensorListener, sensorMgr.getDefaultSensor(Sensor.TYPE_ORIENTATION), SensorManager.SENSOR_DELAY_UI); me.enableCompass(); me.enableMyLocation(); //me.onLocationChanged(location) } protected void onPause(){ super.onPause(); me.disableCompass(); me.disableMyLocation(); } @Override protected void onStop() { super.onStop(); sensorMgr.unregisterListener(sensorListener); } private SensorEventListener sensorListener = new SensorEventListener() { @Override public void onAccuracyChanged(Sensor arg0, int arg1) { // TODO Auto-generated method stub } private boolean reset = true; @Override public void onSensorChanged(SensorEvent event) { newTime = System.currentTimeMillis(); elapseTime = newTime - startTime; if (event.sensor.getType() == Sensor.TYPE_ORIENTATION && elapseTime > 400) { azimuthView.setText(Integer.toString((int) event.values[0])); startTime = newTime; } } }; }

    Read the article

  • How should I change my Graph structure (very slow insertion)?

    - by Nazgulled
    Hi, This program I'm doing is about a social network, which means there are users and their profiles. The profiles structure is UserProfile. Now, there are various possible Graph implementations and I don't think I'm using the best one. I have a Graph structure and inside, there's a pointer to a linked list of type Vertex. Each Vertex element has a value, a pointer to the next Vertex and a pointer to a linked list of type Edge. Each Edge element has a value (so I can define weights and whatever it's needed), a pointer to the next Edge and a pointer to the Vertex owner. I have a 2 sample files with data to process (in CSV style) and insert into the Graph. The first one is the user data (one user per line); the second one is the user relations (for the graph). The first file is quickly inserted into the graph cause I always insert at the head and there's like ~18000 users. The second file takes ages but I still insert the edges at the head. The file has about ~520000 lines of user relations and takes between 13-15mins to insert into the Graph. I made a quick test and reading the data is pretty quickly, instantaneously really. The problem is in the insertion. This problem exists because I have a Graph implemented with linked lists for the vertices. Every time I need to insert a relation, I need to lookup for 2 vertices, so I can link them together. This is the problem... Doing this for ~520000 relations, takes a while. How should I solve this? Solution 1) Some people recommended me to implement the Graph (the vertices part) as an array instead of a linked list. This way I have direct access to every vertex and the insertion is probably going to drop considerably. But, I don't like the idea of allocating an array with [18000] elements. How practically is this? My sample data has ~18000, but what if I need much less or much more? The linked list approach has that flexibility, I can have whatever size I want as long as there's memory for it. But the array doesn't, how am I going to handle such situation? What are your suggestions? Using linked lists is good for space complexity but bad for time complexity. And using an array is good for time complexity but bad for space complexity. Any thoughts about this solution? Solution 2) This project also demands that I have some sort of data structures that allows quick lookup based on a name index and an ID index. For this I decided to use Hash Tables. My tables are implemented with separate chaining as collision resolution and when a load factor of 0.70 is reach, I normally recreate the table. I base the next table size on this http://planetmath.org/encyclopedia/GoodHashTablePrimes.html. Currently, both Hash Tables hold a pointer to the UserProfile instead of duplication the user profile itself. That would be stupid, changing data would require 3 changes and it's really dumb to do it that way. So I just save the pointer to the UserProfile. The same user profile pointer is also saved as value in each Graph Vertex. So, I have 3 data structures, one Graph and two Hash Tables and every single one of them point to the same exact UserProfile. The Graph structure will serve the purpose of finding the shortest path and stuff like that while the Hash Tables serve as quick index by name and ID. What I'm thinking to solve my Graph problem is to, instead of having the Hash Tables value point to the UserProfile, I point it to the corresponding Vertex. It's still a pointer, no more and no less space is used, I just change what I point to. Like this, I can easily and quickly lookup for each Vertex I need and link them together. This will insert the ~520000 relations pretty quickly. I thought of this solution because I already have the Hash Tables and I need to have them, then, why not take advantage of them for indexing the Graph vertices instead of the user profile? It's basically the same thing, I can still access the UserProfile pretty quickly, just go to the Vertex and then to the UserProfile. But, do you see any cons on this second solution against the first one? Or only pros that overpower the pros and cons on the first solution? Other Solution) If you have any other solution, I'm all ears. But please explain the pros and cons of that solution over the previous 2. I really don't have much time to be wasting with this right now, I need to move on with this project, so, if I'm doing to do such a change, I need to understand exactly what to change and if that's really the way to go. Hopefully no one fell asleep reading this and closed the browser, sorry for the big testament. But I really need to decide what to do about this and I really need to make a change. P.S: When answering my proposed solutions, please enumerate them as I did so I know exactly what are you talking about and don't confuse my self more than I already am.

    Read the article

  • OpenGL loading functions error [on hold]

    - by Ghilliedrone
    I'm new to OpenGL, and I bought a book on it for beginners. I finished writing the sample code for making a context/window. I get an error on this line at the part PFNWGLCREATECONTEXTATTRIBSARBPROC, saying "Error: expected a ')'": typedef HGLRC(APIENTRYP PFNWGLCREATECONTEXTATTRIBSARBPROC)(HDC, HGLRC, const int*); Replacing it or adding a ")" makes it error, but the error disappears when I use the OpenGL headers included in the books CD, which are OpenGL 3.0. I would like a way to make this work with the newest gl.h/wglext.h and without libraries. Here's the rest of the class if it's needed: #include <ctime> #include <windows.h> #include <iostream> #include <gl\GL.h> #include <gl\wglext.h> #include "Example.h" #include "GLWindow.h" typedef HGLRC(APIENTRYP PFNWGLCREATECONTEXTATTRIBSARBPROC)(HDC, HGLRC, const int*); PFNWGLCREATECONTEXTATTRIBSARBPROC wglCreateContextAttribsARB = NULL; bool GLWindow::create(int width, int height, int bpp, bool fullscreen) { DWORD dwExStyle; //Window Extended Style DWORD dwStyle; //Window Style m_isFullscreen = fullscreen;//Store the fullscreen flag m_windowRect.left = 0L; m_windowRect.right = (long)width; m_windowRect.top = 0L; m_windowRect.bottom = (long)height;//Set bottom to height // fill out the window class structure m_windowClass.cbSize = sizeof(WNDCLASSEX); m_windowClass.style = CS_HREDRAW | CS_VREDRAW; m_windowClass.lpfnWndProc = GLWindow::StaticWndProc; //We set our static method as the event handler m_windowClass.cbClsExtra = 0; m_windowClass.cbWndExtra = 0; m_windowClass.hInstance = m_hinstance; m_windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION); // default icon m_windowClass.hCursor = LoadCursor(NULL, IDC_ARROW); // default arrow m_windowClass.hbrBackground = NULL; // don't need background m_windowClass.lpszMenuName = NULL; // no menu m_windowClass.lpszClassName = (LPCWSTR)"GLClass"; m_windowClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // windows logo small icon if (!RegisterClassEx(&m_windowClass)) { MessageBox(NULL, (LPCWSTR)"Failed to register window class", NULL, MB_OK); return false; } if (m_isFullscreen)//If we are fullscreen, we need to change the display { DEVMODE dmScreenSettings; //Device mode memset(&dmScreenSettings, 0, sizeof(dmScreenSettings)); dmScreenSettings.dmSize = sizeof(dmScreenSettings); dmScreenSettings.dmPelsWidth = width; //Screen width dmScreenSettings.dmPelsHeight = height; //Screen height dmScreenSettings.dmBitsPerPel = bpp; //Bits per pixel dmScreenSettings.dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT; if (ChangeDisplaySettings(&dmScreenSettings, CDS_FULLSCREEN) != DISP_CHANGE_SUCCESSFUL) { MessageBox(NULL, (LPCWSTR)"Display mode failed", NULL, MB_OK); m_isFullscreen = false; } } if (m_isFullscreen) //Is it fullscreen? { dwExStyle = WS_EX_APPWINDOW; //Window Extended Style dwStyle = WS_POPUP; //Windows Style ShowCursor(false); //Hide mouse pointer } else { dwExStyle = WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; //Window Exteneded Style dwStyle = WS_OVERLAPPEDWINDOW; //Windows Style } AdjustWindowRectEx(&m_windowRect, dwStyle, false, dwExStyle); //Adjust window to true requested size //Class registered, so now create window m_hwnd = CreateWindowEx(NULL, //Extended Style (LPCWSTR)"GLClass", //Class name (LPCWSTR)"Chapter 2", //App name dwStyle | WS_CLIPCHILDREN | WS_CLIPSIBLINGS, 0, 0, //x, y coordinates m_windowRect.right - m_windowRect.left, m_windowRect.bottom - m_windowRect.top, //Width and height NULL, //Handle to parent NULL, //Handle to menu m_hinstance, //Application instance this); //Pass a pointer to the GLWindow here //Check if window creation failed, hwnd would equal NULL if (!m_hwnd) { return 0; } m_hdc = GetDC(m_hwnd); ShowWindow(m_hwnd, SW_SHOW); UpdateWindow(m_hwnd); m_lastTime = GetTickCount() / 1000.0f; return true; } LRESULT CALLBACK GLWindow::StaticWndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { GLWindow* window = nullptr; //If this is the create message if (uMsg == WM_CREATE) { //Get the pointer we stored during create window = (GLWindow*)((LPCREATESTRUCT)lParam)->lpCreateParams; //Associate the window pointer with the hwnd for the other events to access SetWindowLongPtr(hWnd, GWL_USERDATA, (LONG_PTR)window); } else { //If this is not a creation event, then we should have stored a pointer to the window window = (GLWindow*)GetWindowLongPtr(hWnd, GWL_USERDATA); if (!window) { //Do the default event handling return DefWindowProc(hWnd, uMsg, wParam, lParam); } } //Call our window's member WndProc(allows us to access member variables) return window->WndProc(hWnd, uMsg, wParam, lParam); } LRESULT GLWindow::WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CREATE: { m_hdc = GetDC(hWnd); setupPixelFormat(); //Set the version that we want, in this case 3.0 int attribs[] = { WGL_CONTEXT_MAJOR_VERSION_ARB, 3, WGL_CONTEXT_MINOR_VERSION_ARB, 0, 0}; //Create temporary context so we can get a pointer to the function HGLRC tmpContext = wglCreateContext(m_hdc); //Make the context current wglMakeCurrent(m_hdc, tmpContext); //Get the function pointer wglCreateContextAttribsARB = (PFNWGLCREATECONTEXTATTRIBSARBPROC)wglGetProcAddress("wglCreateContextAttribsARB"); //If this is NULL then OpenGl 3.0 is not supported if (!wglCreateContextAttribsARB) { MessageBox(NULL, (LPCWSTR)"OpenGL 3.0 is not supported", (LPCWSTR)"An error occured", MB_ICONERROR | MB_OK); DestroyWindow(hWnd); return 0; } //Create an OpenGL 3.0 context using the new function m_hglrc = wglCreateContextAttribsARB(m_hdc, 0, attribs); //Delete the temporary context wglDeleteContext(tmpContext); //Make the GL3 context current wglMakeCurrent(m_hdc, m_hglrc); m_isRunning = true; } break; case WM_DESTROY: //Window destroy case WM_CLOSE: //Windows is closing wglMakeCurrent(m_hdc, NULL); wglDeleteContext(m_hglrc); m_isRunning = false; //Stop the main loop PostQuitMessage(0); break; case WM_SIZE: { int height = HIWORD(lParam); //Get height and width int width = LOWORD(lParam); getAttachedExample()->onResize(width, height); //Call the example's resize method } break; case WM_KEYDOWN: if (wParam == VK_ESCAPE) //If the escape key was pressed { DestroyWindow(m_hwnd); } break; default: break; } return DefWindowProc(hWnd, uMsg, wParam, lParam); } void GLWindow::processEvents() { MSG msg; //While there are messages in the queue, store them in msg while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { //Process the messages TranslateMessage(&msg); DispatchMessage(&msg); } } Here is the header: #pragma once #include <ctime> #include <windows.h> class Example;//Declare our example class class GLWindow { public: GLWindow(HINSTANCE hInstance); //default constructor bool create(int width, int height, int bpp, bool fullscreen); void destroy(); void processEvents(); void attachExample(Example* example); bool isRunning(); //Is the window running? void swapBuffers() { SwapBuffers(m_hdc); } static LRESULT CALLBACK StaticWndProc(HWND wnd, UINT msg, WPARAM wParam, LPARAM lParam); LRESULT CALLBACK WndProc(HWND wnd, UINT msg, WPARAM wParam, LPARAM lParam); float getElapsedSeconds(); private: Example* m_example; //A link to the example program bool m_isRunning; //Is the window still running? bool m_isFullscreen; HWND m_hwnd; //Window handle HGLRC m_hglrc; //Rendering context HDC m_hdc; //Device context RECT m_windowRect; //Window bounds HINSTANCE m_hinstance; //Application instance WNDCLASSEX m_windowClass; void setupPixelFormat(void); Example* getAttachedExample() { return m_example; } float m_lastTime; };

    Read the article

  • C++: Calling class functions within a switch

    - by user1446002
    i've been trying to study for my finals by practicing classes and inheritance, this is what I've come up with so far for inheritance and such however I'm unsure how to fix the error occuring below. #include<iostream> #include<iomanip> #include<cmath> #include<string.h> using namespace std; //BASE CLASS DEFINITION class hero { protected: string name; string mainAttr; int xp; double hp; double mana; double armour; int range; double attkDmg; bool attkType; public: void dumpData(); void getName(); void getMainAttr(); void getAttkData(); void setAttkData(string); void setBasics(string, string, double, double, double); void levelUp(); }; //CLASS FUNCTIONS void hero::dumpData() { cout << "Name: " << name << endl; cout << "Main Attribute: " << mainAttr << endl; cout << "XP: " << xp << endl; cout << "HP: " << hp << endl; cout << "Mana: " << mana << endl; cout << "Armour: " << armour << endl; cout << "Attack Range: " << range << endl; cout << "Attack Damage: " << attkDmg << endl; cout << "Attack Type: " << attkType << endl << endl; } void hero::getName() { cout << "Name: " << name << endl; } void hero::getMainAttr() { cout << "Main Attribute: " << mainAttr << endl; } void hero::getAttkData() { cout << "Attack Range: " << range << endl; cout << "Attack Damage: " << attkDmg << endl; cout << "Attack Type: " << attkType << endl; } void hero::setAttkData(string attr) { int choice = 0; if (attr == "Strength") { choice = 1; } if (attr == "Agility") { choice = 2; } if (attr == "Intelligence") { choice = 3; } switch (choice) { case 1: range = 128; attkDmg = 80.0; attkType = 0; break; case 2: range = 350; attkDmg = 60.0; attkType = 0; break; case 3: range = 600; attkDmg = 35.0; attkType = 1; break; default: break; } } void hero::setBasics(string heroName, string attribute, double health, double mp, double armourVal) { name = heroName; mainAttr = attribute; hp = health; mana = mp; armour = armourVal; } void hero::levelUp() { xp = 0; hp = hp + (hp * 0.1); mana = mana + (mana * 0.1); armour = armour + ((armour*0.1) + 1); attkDmg = attkDmg + (attkDmg * 0.05); } //INHERITED CLASS DEFINITION class neutHero : protected hero { protected: string drops; int xpGain; public: int giveXP(int); void dropItems(); }; //INHERITED CLASS FUNCTIONS int neutHero::giveXP(int exp) { xp += exp; } void neutHero::dropItems() { cout << name << " has dropped the following items: " << endl; cout << drops << endl; } /* END OF OO! */ //FUNCTION PROTOTYPES void dispMenu(); int main() { int exit=0, choice=0, mainAttrChoice=0, heroCreated=0; double health, mp, armourVal; string heroName, attribute; do { dispMenu(); cin >> choice; switch (choice) { case 1: system("cls"); cout << "Please enter your hero name: "; cin >> heroName; cout << "\nPlease enter your primary attribute\n"; cout << "1. Strength\n" << "2. Agility\n" << "3. Intelligence\n"; cin >> mainAttrChoice; switch (mainAttrChoice) { case 1: attribute = "Strength"; health = 750; mp = 150; armourVal = 2; break; case 2: attribute = "Agility"; health = 550; mp = 200; armourVal = 6; break; case 3: attribute = "Intelligence"; health = 450; mp = 450; armourVal = 1; break; default: cout << "Choice invalid, please try again."; exit = 1; break; hero player; player.setBasics(heroName, attribute, health, mp, armourVal); player.setAttkData(attribute); heroCreated=1; system("cls"); cout << "Your hero has been created!\n\n"; player.dumpData(); system("pause"); break; } case 2: system("cls"); if (heroCreated == 1) { cout << "Your hero has been detailed below.\n\n"; **player.dumpData(); //ERROR OCCURS HERE !** system("pause"); } else { cout << "You have not created a hero please exit this prompt " "and press 1 on the menu to create a hero."; } break; case 3: system("cls"); cout << "Still Under Development"; system("pause"); break; case 4: system("cls"); exit = 1; break; default: cout << "Your command has not been recognised, please try again.\n"; system("pause"); break; } } while (exit != 1); system("pause"); return 0; } void dispMenu() { system("cls"); cout << "1. Create New Hero\n" "2. View Current Hero\n" "3. Fight Stuff\n" "4. Exit\n\n" "Enter your choice: "; } However upon compilation I get the following errors: 220 `player' undeclared (first use this function) Unsure exactly how to fix it as I've only recently started using OO approach. The error has a comment next to it above and is in case 2 in the main. Cheers guys.

    Read the article

  • C# 4.0: Dynamic Programming

    - by Paulo Morgado
    The major feature of C# 4.0 is dynamic programming. Not just dynamic typing, but dynamic in broader sense, which means talking to anything that is not statically typed to be a .NET object. Dynamic Language Runtime The Dynamic Language Runtime (DLR) is piece of technology that unifies dynamic programming on the .NET platform, the same way the Common Language Runtime (CLR) has been a common platform for statically typed languages. The CLR always had dynamic capabilities. You could always use reflection, but its main goal was never to be a dynamic programming environment and there were some features missing. The DLR is built on top of the CLR and adds those missing features to the .NET platform. The Dynamic Language Runtime is the core infrastructure that consists of: Expression Trees The same expression trees used in LINQ, now improved to support statements. Dynamic Dispatch Dispatches invocations to the appropriate binder. Call Site Caching For improved efficiency. Dynamic languages and languages with dynamic capabilities are built on top of the DLR. IronPython and IronRuby were already built on top of the DLR, and now, the support for using the DLR is being added to C# and Visual Basic. Other languages built on top of the CLR are expected to also use the DLR in the future. Underneath the DLR there are binders that talk to a variety of different technologies: .NET Binder Allows to talk to .NET objects. JavaScript Binder Allows to talk to JavaScript in SilverLight. IronPython Binder Allows to talk to IronPython. IronRuby Binder Allows to talk to IronRuby. COM Binder Allows to talk to COM. Whit all these binders it is possible to have a single programming experience to talk to all these environments that are not statically typed .NET objects. The dynamic Static Type Let’s take this traditional statically typed code: Calculator calculator = GetCalculator(); int sum = calculator.Sum(10, 20); Because the variable that receives the return value of the GetCalulator method is statically typed to be of type Calculator and, because the Calculator type has an Add method that receives two integers and returns an integer, it is possible to call that Sum method and assign its return value to a variable statically typed as integer. Now lets suppose the calculator was not a statically typed .NET class, but, instead, a COM object or some .NET code we don’t know he type of. All of the sudden it gets very painful to call the Add method: object calculator = GetCalculator(); Type calculatorType = calculator.GetType(); object res = calculatorType.InvokeMember("Add", BindingFlags.InvokeMethod, null, calculator, new object[] { 10, 20 }); int sum = Convert.ToInt32(res); And what if the calculator was a JavaScript object? ScriptObject calculator = GetCalculator(); object res = calculator.Invoke("Add", 10, 20); int sum = Convert.ToInt32(res); For each dynamic domain we have a different programming experience and that makes it very hard to unify the code. With C# 4.0 it becomes possible to write code this way: dynamic calculator = GetCalculator(); int sum = calculator.Add(10, 20); You simply declare a variable who’s static type is dynamic. dynamic is a pseudo-keyword (like var) that indicates to the compiler that operations on the calculator object will be done dynamically. The way you should look at dynamic is that it’s just like object (System.Object) with dynamic semantics associated. Anything can be assigned to a dynamic. dynamic x = 1; dynamic y = "Hello"; dynamic z = new List<int> { 1, 2, 3 }; At run-time, all object will have a type. In the above example x is of type System.Int32. When one or more operands in an operation are typed dynamic, member selection is deferred to run-time instead of compile-time. Then the run-time type is substituted in all variables and normal overload resolution is done, just like it would happen at compile-time. The result of any dynamic operation is always dynamic and, when a dynamic object is assigned to something else, a dynamic conversion will occur. Code Resolution Method double x = 1.75; double y = Math.Abs(x); compile-time double Abs(double x) dynamic x = 1.75; dynamic y = Math.Abs(x); run-time double Abs(double x) dynamic x = 2; dynamic y = Math.Abs(x); run-time int Abs(int x) The above code will always be strongly typed. The difference is that, in the first case the method resolution is done at compile-time, and the others it’s done ate run-time. IDynamicMetaObjectObject The DLR is pre-wired to know .NET objects, COM objects and so forth but any dynamic language can implement their own objects or you can implement your own objects in C# through the implementation of the IDynamicMetaObjectProvider interface. When an object implements IDynamicMetaObjectProvider, it can participate in the resolution of how method calls and property access is done. The .NET Framework already provides two implementations of IDynamicMetaObjectProvider: DynamicObject : IDynamicMetaObjectProvider The DynamicObject class enables you to define which operations can be performed on dynamic objects and how to perform those operations. For example, you can define what happens when you try to get or set an object property, call a method, or perform standard mathematical operations such as addition and multiplication. ExpandoObject : IDynamicMetaObjectProvider The ExpandoObject class enables you to add and delete members of its instances at run time and also to set and get values of these members. This class supports dynamic binding, which enables you to use standard syntax like sampleObject.sampleMember, instead of more complex syntax like sampleObject.GetAttribute("sampleMember").

    Read the article

  • Mouse not working after upgrade

    - by Gaz
    After upgrade from 12.4 to 13.4 my usb mouse does not respond. Unlike similar posts my keyboard works (Alt + Tab, num loc etc) which means I can enter password and still log into desktop but still with no mouse support. I have tried other usb and PS2 mice (Logitech and Microsoft mouse) that are working on other Systems with no success. When running "xsetpointer -1 | grep Pointer" in terminal window as per post USB Mouse not recognized it shows no mouse installed. When the mouse is plugged in the light under mouse illuminates so their is power to mouse. In KDE by using the keyboard I was able to turn on "Move pointer with keyboard (using num pad)" from the "Mouse - KDE Control Module" which allowed me to move the mouse pointer using the keyboard. Without complete reinstall how do I get mouse working again?

    Read the article

  • C++ Pointers: Number of levels of Indirection

    - by A B
    In a C++ program that doesn't contain legacy C code, is there a guideline regarding the maximum number of levels of indirection that should be used in the source code? I know that in C (as opposed to C++), some programmers have used pointers to pointers for a multiple dimension array, but for the case of arrays, there are data structures in C++ that can be used to avoid the pointers to pointers. Are users who still create pointers to pointers (or more than this) trying to use pointers to pointers only for performance ETC. reasons? I have tried NOT to use any more than a pointer to a pointer, only in the case that a pointer needed modification; does anyone have any other official or unofficial guidelines or rules regarding the number of levels of indirection?

    Read the article

  • Frameskipping in Android gameloop causing choppy sprites (Open GL ES 2.0)

    - by user22241
    I have written a simple 2d platform game for Android and am wondering how one deals with frame-skipping? Are there any alternatives? Let me explain further. So, my game loop allows for the rendering to be skipped if game updates and rendering do not fit into my fixed time-slice (16.667ms). This allows my game to run at identically perceived speeds on different devices. And this works great, things do run at the same speed. However, when the gameloop skips a render call for even one frame, the sprite glitches. And thinking about it, why wouldn't it? You're seeing a sprite move say, an average of 10 pixels every 1.6 seconds, then suddenly, there is a pause of 3.2ms, and the sprite then appears to jump 20 pixels. When this happens 3 or 4 times in close succession, the result is very ugly and not something I want in my game. Therfore, my question is how does one deal with these 'pauses' and 'jumps' - I've read every article on game loops I can find (see below) and my loops are even based off of code from these articles. The articles specifically mention frame skipping but they don't make any reference to how to deal with visual glitches that result from it. I've attempted various game-loops. My loop must have a mechanism in-place to allow rendering to be skipped to keep game-speed constant across multiple devices (or alternative, if one exists) I've tried interpolation but this doesn't eliminate this specific problem (although it looks like it may mitigate the issue slightly as when it eventually draws the sprite it 'moves it back' between the old and current positions so the 'jump' isn't so big. I've also tried a form of extrapolation which does seem to keep things smooth considerably, but I find it to be next to completely useless because it plays havoc with my collision detection (even when drawing with a 'display only' coordinate - see extrapolation-breaks-collision-detection) I've tried a loop that uses Thread.sleep when drawing / updating completes with time left over, no frame skipping in this one, again fairly smooth, but runs differently on different devices so no good. And I've tried spawning my own, third thread for logic updates, but this, was extremely messy to deal with and the performance really wasn't good. (upon reading tons of forums, most people seem to agree a 2 thread loops ( so UI and GL threads) is safer / easier). Now if I remove frame skipping, then all seems to run nice and smooth, with or without inter/extrapolation. However, this isn't an option because the game then runs at different speeds on different devices as it falls behind from not being able to render fast enough. I'm running logic at 60 Ticks per second and rendering as fast as I can. I've read, as far as I can see every article out there, I've tried the loops from My Secret Garden and Fix your timestep. I've also read: Against the grain deWITTERS Game Loop Plus various other articles on Game-loops. A lot of the others are derived from the above articles or just copied word for word. These are all great, but they don't touch on the issues I'm experiencing. I really have tried everything I can think of over the course of a year to eliminate these glitches to no avail, so any and all help would be appreciated. A couple of examples of my game loops (Code follows): From My Secret Room public void onDrawFrame(GL10 gl) { //Rre-set loop back to 0 to start counting again loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip) { SceneManager.getInstance().getCurrentScene().updateLogic(); nextGameTick += skipTicks; timeCorrection += (1000d / ticksPerSecond) % 1; nextGameTick += timeCorrection; timeCorrection %= 1; loops++; } extrapolation = (float)(System.currentTimeMillis() + skipTicks - nextGameTick) / (float)skipTicks; render(extrapolation); } And from Fix your timestep double t = 0.0; double dt2 = 0.01; double currentTime = System.currentTimeMillis()*0.001; double accumulator = 0.0; double newTime; double frameTime; @Override public void onDrawFrame(GL10 gl) { newTime = System.currentTimeMillis()*0.001; frameTime = newTime - currentTime; if ( frameTime > (dt*5)) //Allow 5 'skips' frameTime = (dt*5); currentTime = newTime; accumulator += frameTime; while ( accumulator >= dt ) { SceneManager.getInstance().getCurrentScene().updateLogic(); previousState = currentState; accumulator -= dt; } interpolation = (float) (accumulator / dt); render(interpolation); }

    Read the article

  • Am I allowed to display a small image on top of a Google Maps Static Api map?

    - by Fábio Santos
    I am the webmaster to my company's website. I was asked to make the Google Map on this page smaller, but the interactive map doesn't work well at all at 300x200. I was asked to place a screenshot there but since that seems to be a violation of Google's terms I decided to use the Static Maps API. As you can see, on the page, I have a custom pointer icon. I don't want to lose it, so I intend to use HTML and CSS to place the pointer over the map, thus replacing the original pointer on the client side. Am I allowed to do that?

    Read the article

  • Extreme Optimization – Numerical Algorithm Support

    - by JoshReuben
    Function Delegates Many calculations involve the repeated evaluation of one or more user-supplied functions eg Numerical integration. The EO MathLib provides delegate types for common function signatures and the FunctionFactory class can generate new delegates from existing ones. RealFunction delegate - takes one Double parameter – can encapsulate most of the static methods of the System.Math class, as well as the classes in the Extreme.Mathematics.SpecialFunctions namespace: var sin = new RealFunction(Math.Sin); var result = sin(1); BivariateRealFunction delegate - takes two Double parameters: var atan2 = new BivariateRealFunction (Math.Atan2); var result = atan2(1, 2); TrivariateRealFunction delegate – represents a function takes three Double arguments ParameterizedRealFunction delegate - represents a function taking one Integer and one Double argument that returns a real number. The Pow method implements such a function, but the arguments need order re-arrangement: static double Power(int exponent, double x) { return ElementaryFunctions.Pow(x, exponent); } ... var power = new ParameterizedRealFunction(Power); var result = power(6, 3.2); A ComplexFunction delegate - represents a function that takes an Extreme.Mathematics.DoubleComplex argument and also returns a complex number. MultivariateRealFunction delegate - represents a function that takes an Extreme.Mathematics.LinearAlgebra.Vector argument and returns a real number. MultivariateVectorFunction delegate - represents a function that takes a Vector argument and returns a Vector. FastMultivariateVectorFunction delegate - represents a function that takes an input Vector argument and an output Matrix argument – avoiding object construction  The FunctionFactory class RealFromBivariateRealFunction and RealFromParameterizedRealFunction helper methods - transform BivariateRealFunction or a ParameterizedRealFunction into a RealFunction delegate by fixing one of the arguments, and treating this as a new function of a single argument. var tenthPower = FunctionFactory.RealFromParameterizedRealFunction(power, 10); var result = tenthPower(x); Note: There is no direct way to do this programmatically in C# - in F# you have partial value functions where you supply a subset of the arguments (as a travelling closure) that the function expects. When you omit arguments, F# generates a new function that holds onto/remembers the arguments you passed in and "waits" for the other parameters to be supplied. let sumVals x y = x + y     let sumX = sumVals 10     // Note: no 2nd param supplied.     // sumX is a new function generated from partially applied sumVals.     // ie "sumX is a partial application of sumVals." let sum = sumX 20     // Invokes sumX, passing in expected int (parameter y from original)  val sumVals : int -> int -> int val sumX : (int -> int) val sum : int = 30 RealFunctionsToVectorFunction and RealFunctionsToFastVectorFunction helper methods - combines an array of delegates returning a real number or a vector into vector or matrix functions. The resulting vector function returns a vector whose components are the function values of the delegates in the array. var funcVector = FunctionFactory.RealFunctionsToVectorFunction(     new MultivariateRealFunction(myFunc1),     new MultivariateRealFunction(myFunc2));  The IterativeAlgorithm<T> abstract base class Iterative algorithms are common in numerical computing - a method is executed repeatedly until a certain condition is reached, approximating the result of a calculation with increasing accuracy until a certain threshold is reached. If the desired accuracy is achieved, the algorithm is said to converge. This base class is derived by many classes in the Extreme.Mathematics.EquationSolvers and Extreme.Mathematics.Optimization namespaces, as well as the ManagedIterativeAlgorithm class which contains a driver method that manages the iteration process.  The ConvergenceTest abstract base class This class is used to specify algorithm Termination , convergence and results - calculates an estimate for the error, and signals termination of the algorithm when the error is below a specified tolerance. Termination Criteria - specify the success condition as the difference between some quantity and its actual value is within a certain tolerance – 2 ways: absolute error - difference between the result and the actual value. relative error is the difference between the result and the actual value relative to the size of the result. Tolerance property - specify trade-off between accuracy and execution time. The lower the tolerance, the longer it will take for the algorithm to obtain a result within that tolerance. Most algorithms in the EO NumLib have a default value of MachineConstants.SqrtEpsilon - gives slightly less than 8 digits of accuracy. ConvergenceCriterion property - specify under what condition the algorithm is assumed to converge. Using the ConvergenceCriterion enum: WithinAbsoluteTolerance / WithinRelativeTolerance / WithinAnyTolerance / NumberOfIterations Active property - selectively ignore certain convergence tests Error property - returns the estimated error after a run MaxIterations / MaxEvaluations properties - Other Termination Criteria - If the algorithm cannot achieve the desired accuracy, the algorithm still has to end – according to an absolute boundary. Status property - indicates how the algorithm terminated - the AlgorithmStatus enum values:NoResult / Busy / Converged (ended normally - The desired accuracy has been achieved) / IterationLimitExceeded / EvaluationLimitExceeded / RoundOffError / BadFunction / Divergent / ConvergedToFalseSolution. After the iteration terminates, the Status should be inspected to verify that the algorithm terminated normally. Alternatively, you can set the ThrowExceptionOnFailure to true. Result property - returns the result of the algorithm. This property contains the best available estimate, even if the desired accuracy was not obtained. IterationsNeeded / EvaluationsNeeded properties - returns the number of iterations required to obtain the result, number of function evaluations.  Concrete Types of Convergence Test classes SimpleConvergenceTest class - test if a value is close to zero or very small compared to another value. VectorConvergenceTest class - test convergence of vectors. This class has two additional properties. The Norm property specifies which norm is to be used when calculating the size of the vector - the VectorConvergenceNorm enum values: EuclidianNorm / Maximum / SumOfAbsoluteValues. The ErrorMeasure property specifies how the error is to be measured – VectorConvergenceErrorMeasure enum values: Norm / Componentwise ConvergenceTestCollection class - represent a combination of tests. The Quantifier property is a ConvergenceTestQuantifier enum that specifies how the tests in the collection are to be combined: Any / All  The AlgorithmHelper Class inherits from IterativeAlgorithm<T> and exposes two methods for convergence testing. IsValueWithinTolerance<T> method - determines whether a value is close to another value to within an algorithm's requested tolerance. IsIntervalWithinTolerance<T> method - determines whether an interval is within an algorithm's requested tolerance.

    Read the article

  • glColor3f Setting colour

    - by Aaron
    This draws a white vertical line from 640 to 768 at x512: glDisable(GL_TEXTURE_2D); glBegin(GL_LINES); glColor3f((double)R/255,(double)G/255,(double)B/255); glVertex3f(SX, -SPosY, 0); // origin of the line glVertex3f(SX, -EPosY, 0); // ending point of the line glEnd(); glEnable(GL_TEXTURE_2D); This works, but after having a problem where it wouldn't draw it white (Or to any colour passed) I discovered that disabling GL_TEXTURE_2D Before drawing the line, and the re-enabling it afterwards for other things, fixed it. I want to know, is this a normal step a programmer might take? Or is it highly inefficient? I don't want to be causing any slow downs due to a mistake =) Thanks

    Read the article

  • About insertion sort and especially why it's said that copy is much faster than swap?

    - by Software Engeneering Learner
    From Lafore's "Data Structures and Algorithms in Java": (about insertion sort (which uses copy + shift instead of swap (used in bubble and selection sort))) However, a copy isn’t as time-consuming as a swap, so for random data this algo- rithm runs twice as fast as the bubble sort and faster than the selectionsort. Also author doesn't mention how time consuming shift is. From my POV copy is the simplest pointer assignment operation. While swap is 3x pointer assignment operations. Which doesn't take much time. Also shift of N elemtns is Nx pointer assignment operations. Please correct me if I'm wrong. Please explain, why what author says is true? I don't understand.

    Read the article

  • 10.10 - Error compiling kernel in iw_ndis.c

    - by chris
    I just wanted to compile a kernel (as described here), but I got this error: ubuntu/ndiswrapper/iw_ndis.c:1966: error: unknown field ‘num_private’ specified in initializer ubuntu/ndiswrapper/iw_ndis.c:1966: warning: initialization makes pointer from integer without a cast ubuntu/ndiswrapper/iw_ndis.c:1967: error: unknown field ‘num_private_args’ specified in initializer ubuntu/ndiswrapper/iw_ndis.c:1967: warning: excess elements in struct initializer ubuntu/ndiswrapper/iw_ndis.c:1967: warning: (near initialization for ‘ndis_handler_def’) ubuntu/ndiswrapper/iw_ndis.c:1970: error: unknown field ‘private’ specified in initializer ubuntu/ndiswrapper/iw_ndis.c:1970: warning: initialization makes integer from pointer without a cast ubuntu/ndiswrapper/iw_ndis.c:1970: error: initializer element is not computable at load time ubuntu/ndiswrapper/iw_ndis.c:1970: error: (near initialization for ‘ndis_handler_def.num_standard’) ubuntu/ndiswrapper/iw_ndis.c:1971: error: unknown field ‘private_args’ specified in initializer ubuntu/ndiswrapper/iw_ndis.c:1971: warning: initialization from incompatible pointer type Can anyone tell me what it means? Googling just came up with a result here on this site, where there was no answer, so maybe now someone knows.

    Read the article

  • Set vertex position

    - by user1806687
    Can anyone tell me how to set the positions of model vertices? I want to be able to change the position of some of the vertices of a Model. Is there any way to make that happen? And make the changed visible at that moment. EDIT: Well, the thing is,I have a model, a cube, that is made up of four "thin" cubes(top,bottom,left side, right side), so I get this cube with "hole" in the middle. And I want to scale it on Y axis. If I do Scale(0,2,0) it will scale the whole object meaning, it will double the Y size of left and right side, but also double the size of the top and bottom cube, which I do not want. Same for X axis I want to double the size of top and bottom cubes but not the left and right one. Hope you can help

    Read the article

  • Free libraries to work with Excel

    - by Danil Gholtsman
    I got some excel files, I need to read data from it and upload data to some database (I need to use firebird, but whatever). Right now I use <QAxObject> from Qt and code look like QAxObject* excel = new QAxObject("Excel.Application"); //pointer to excel //excel->setProperty("Visible", false); QAxObject* workbooks = excel->querySubObject("WorkBooks"); //get pointer to booklist workbooks->dynamicCall("Open (const QString&)", QString("C:\\databases\\test.xls")); //opening file, getting pointer to booklist QAxObject* workbook = excel->querySubObject("ActiveWorkBook"); QAxObject* worksheets = workbook->querySubObject("WorkSheets"); etc. The problem is that this way on users PC there must be installed Excel. Is there exists some free C++ libraries to work with *.xls, *.xlsx files without Excel installed?

    Read the article

  • Is it relevant to warn about truncating real constants to 32 bits?

    - by zneak
    I'm toying around with LLVM and looking at what it would take to make yet another strongly-typed language, and now that I'm around the syntax, I've noticed that it seems to be a pet peeve of strongly typed language to warn people that their constants won't fit inside a float: // both in Java and C# float foo = 3.2; // error: implicitly truncating a double into a float // or something along these lines Why doesn't this work in Java and C#? I know it's easy to add the f after the 3.2, but is it really doing anything useful? Must I really be that aware that I'm using single-precision reals instead of double-precision reals? Maybe I'm just missing something (which, basically, is why I'm asking). Note that float foo = [const] is not the same thing as float foo = [double variable], where requiring the cast seems normal to me.

    Read the article

  • Dependency Properties Made Easy

    ok so I found that for some reason I thought I did a post on this before and I couldn't find it. So I thought I would make a new post as simple as possible. Here is a simple dp:public readonly DependencyProperty ResistanceProperty = DependencyProperty.Register("Resistance", typeof(double), typeof(AnimatingPanelBase), null);public double Resistance{get{return (double)GetValue(ResistanceProperty);}set{SetValue(ResistanceProperty, value);}}Nice and simple right? why bother you ask, well the biggest...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Using Oracle Proxy Authentication with JPA (eclipselink-Style)

    - by olaf.heimburger
    Security is a very intriguing topic. You will find it everywhere and you need to implement it everywhere. Yes, you need. Unfortunately, one can easily forget it while implementing the last mile. The Last Mile In a multi-tier application it is a common practice to use connection pools between the business layer and the database layer. Connection pools are quite useful to speed database connection creation and to split the load. Another very common practice is to use a specific, often called technical, user to connect to the database. This user has authentication and authorization rules that apply to all application users. Imagine you've put every effort to define roles for different types of users that use your application. These roles are necessary to differentiate between normal users, premium users, and administrators (I bet you will find or already have more roles in your application). While these user roles are pretty well used within your application, once the flow of execution enters the database everything is gone. Each and every user just has one role and is the same database user. Issues? What Issues? As long as things go well, this is not a real issue. However, things do not go well all the time. Once your application becomes famous performance decreases in certain situations or, more importantly, current and upcoming regulations and laws require that your application must be able to apply different security measures on a per user role basis at every stage of your application. If you only have a bunch of users with the same name and role you are not able to find the application usage profile that causes the performance issue, or which user has accessed data that he/she is not allowed to. Another thread to your role concept is that databases tend to be used by different applications and tools. These tools can be developer tools like SQL*Plus, SQL Developer, etc. or end user applications like BI Publisher, Oracle Forms and so on. These tools have no idea of your applications role concept and access the database the way they think is appropriate. A big oversight for your perfect role model and a big nightmare for your Chief Security Officer. Speaking of the CSO, brings up another issue: Password management. Once your technical user account is compromised, every user is able to do things that he/she is not expected to do from the design of your application. Counter Measures In the Oracle world a common counter measure is to use Virtual Private Database (VPD). This restricts the values a database user can see to the allowed minimum. However, it doesn't help in regard of a connection pool user, because this one is still not the real user. Oracle Proxy Authentication Another feature of the Oracle database is Proxy Authentication. First introduced with version 9i it is a quite useful feature for nearly every situation. The main idea behind Proxy Authentication is, to create a crippled database user who has only connect rights. Even if this user is compromised the risks are well understood and fairly limited. This user can be used in every situation in which you need to connect to the database, no matter which tool or application (see above) you use.The proxy user is perfect for multi-tier connection pools. CREATE USER app_user IDENTIFIED BY abcd1234; GRANT CREATE SESSION TO app_user; But what if you need to access real data? Well, this is the primary use case, isn't it? Now is the time to bring the application's role concept into play. You define database roles that define the grants for your identified user groups. Once you have these groups you grant access through the proxy user with the application role to the specific user. CREATE ROLE app_role_a; GRANT app_role_a TO scott; ALTER USER scott GRANT CONNECT THROUGH app_user WITH ROLE app_role_a; Now, hr has permission to connect to the database through the proxy user. Through the role you can restrict the hr's rights the are needed for the application only. If hr connects to the database directly all assigned role and permissions apply. Testing the Setup To test the setup you can use SQL*Plus and connect to your database: $ sqlplus app_user[hr]/abcd1234 Java Persistence API The Java Persistence API (JPA) is a fairly easy means to build applications that retrieve data from the database and put it into Java objects. You use plain old Java objects (POJOs) and mixin some Java annotations that define how the attributes of the object are used for storing data from the database into the Java object. Here is a sample for objects from the HR sample schema EMPLOYEES table. When using Java annotations you only specify what can not be deduced from the code. If your Java class name is Employee but the table name is EMPLOYEES, you need to specify the table name, otherwise it will fail. package demo.proxy.ejb; import java.io.Serializable; import java.sql.Timestamp; import java.util.List; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.Id; import javax.persistence.JoinColumn; import javax.persistence.ManyToOne; import javax.persistence.NamedQueries; import javax.persistence.NamedQuery; import javax.persistence.OneToMany; import javax.persistence.Table; @Entity @NamedQueries({ @NamedQuery(name = "Employee.findAll", query = "select o from Employee o") }) @Table(name = "EMPLOYEES") public class Employee implements Serializable { @Column(name="COMMISSION_PCT") private Double commissionPct; @Column(name="DEPARTMENT_ID") private Long departmentId; @Column(nullable = false, unique = true, length = 25) private String email; @Id @Column(name="EMPLOYEE_ID", nullable = false) private Long employeeId; @Column(name="FIRST_NAME", length = 20) private String firstName; @Column(name="HIRE_DATE", nullable = false) private Timestamp hireDate; @Column(name="JOB_ID", nullable = false, length = 10) private String jobId; @Column(name="LAST_NAME", nullable = false, length = 25) private String lastName; @Column(name="PHONE_NUMBER", length = 20) private String phoneNumber; private Double salary; @ManyToOne @JoinColumn(name = "MANAGER_ID") private Employee employee; @OneToMany(mappedBy = "employee") private List employeeList; public Employee() { } public Employee(Double commissionPct, Long departmentId, String email, Long employeeId, String firstName, Timestamp hireDate, String jobId, String lastName, Employee employee, String phoneNumber, Double salary) { this.commissionPct = commissionPct; this.departmentId = departmentId; this.email = email; this.employeeId = employeeId; this.firstName = firstName; this.hireDate = hireDate; this.jobId = jobId; this.lastName = lastName; this.employee = employee; this.phoneNumber = phoneNumber; this.salary = salary; } public Double getCommissionPct() { return commissionPct; } public void setCommissionPct(Double commissionPct) { this.commissionPct = commissionPct; } public Long getDepartmentId() { return departmentId; } public void setDepartmentId(Long departmentId) { this.departmentId = departmentId; } public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } public Long getEmployeeId() { return employeeId; } public void setEmployeeId(Long employeeId) { this.employeeId = employeeId; } public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public Timestamp getHireDate() { return hireDate; } public void setHireDate(Timestamp hireDate) { this.hireDate = hireDate; } public String getJobId() { return jobId; } public void setJobId(String jobId) { this.jobId = jobId; } public String getLastName() { return lastName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getPhoneNumber() { return phoneNumber; } public void setPhoneNumber(String phoneNumber) { this.phoneNumber = phoneNumber; } public Double getSalary() { return salary; } public void setSalary(Double salary) { this.salary = salary; } public Employee getEmployee() { return employee; } public void setEmployee(Employee employee) { this.employee = employee; } public List getEmployeeList() { return employeeList; } public void setEmployeeList(List employeeList) { this.employeeList = employeeList; } public Employee addEmployee(Employee employee) { getEmployeeList().add(employee); employee.setEmployee(this); return employee; } public Employee removeEmployee(Employee employee) { getEmployeeList().remove(employee); employee.setEmployee(null); return employee; } } JPA could be used in standalone applications and Java EE containers. In both worlds you normally create a Facade to retrieve or store the values of the Entities to or from the database. The Facade does this via an EntityManager which will be injected by the Java EE container. Here is sample Facade Session Bean for a Java EE container. package demo.proxy.ejb; import java.util.HashMap; import java.util.List; import javax.ejb.Local; import javax.ejb.Remote; import javax.ejb.Stateless; import javax.persistence.EntityManager; import javax.persistence.PersistenceContext; import javax.persistence.Query; import javax.interceptor.AroundInvoke; import javax.interceptor.InvocationContext; import oracle.jdbc.driver.OracleConnection; import org.eclipse.persistence.config.EntityManagerProperties; import org.eclipse.persistence.internal.jpa.EntityManagerImpl; @Stateless(name = "DataFacade", mappedName = "ProxyUser-TestEJB-DataFacade") @Remote @Local public class DataFacadeBean implements DataFacade, DataFacadeLocal { @PersistenceContext(unitName = "TestEJB") private EntityManager em; private String username; public Object queryByRange(String jpqlStmt, int firstResult, int maxResults) { // setSessionUser(); Query query = em.createQuery(jpqlStmt); if (firstResult 0) { query = query.setFirstResult(firstResult); } if (maxResults 0) { query = query.setMaxResults(maxResults); } return query.getResultList(); } public Employee persistEmployee(Employee employee) { // setSessionUser(); em.persist(employee); return employee; } public Employee mergeEmployee(Employee employee) { // setSessionUser(); return em.merge(employee); } public void removeEmployee(Employee employee) { // setSessionUser(); employee = em.find(Employee.class, employee.getEmployeeId()); em.remove(employee); } /** select o from Employee o */ public List getEmployeeFindAll() { Query q = em.createNamedQuery("Employee.findAll"); return q.getResultList(); } Putting Both Together To use Proxy Authentication with JPA and within a Java EE container you have to take care of the additional requirements: Use an OCI JDBC driver Provide the user name that connects through the proxy user Use an OCI JDBC driver To use the OCI JDBC driver you need to set up your JDBC data source file to use the correct JDBC URL. hr jdbc:oracle:oci8:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost)(PORT=1521))(CONNECT_DATA=(SID=XE))) oracle.jdbc.OracleDriver user app_user 62C32F70E98297522AD97E15439FAC0E SQL SELECT 1 FROM DUAL jdbc/hrDS Application Additionally you need to make sure that the version of the shared libraries of the OCI driver match the version of the JDBC driver in your Java EE container or Java application and are within your PATH (on Windows) or LD_LIBRARY_PATH (on most Unix-based systems). Installing the Oracle Database Instance Client software works perfectly. Provide the user name that connects through the proxy user This part needs some modification of your application software and session facade. Session Facade Changes In the Session Facade we must ensure that every call that goes through the EntityManager must be prepared correctly and uniquely assigned to this session. The second is really important, as the EntityManager works with a connection pool and can not guarantee that we set the proxy user on the connection that will be used for the database activities. To avoid changing every method call of the Session Facade we provide a method to set the username of the user that connects through the proxy user. This method needs to be called by the Facade client bfore doing anything else. public void setUsername(String name) { username = name; } Next we provide a means to instruct the TopLink EntityManager Delegate to use Oracle Proxy Authentication. (I love small helper methods to hide the nitty-gritty details and avoid repeating myself.) private void setSessionUser() { setSessionUser(username); } private void setSessionUser(String user) { if (user != null && !user.isEmpty()) { EntityManagerImpl emDelegate = ((EntityManagerImpl)em.getDelegate()); emDelegate.setProperty(EntityManagerProperties.ORACLE_PROXY_TYPE, OracleConnection.PROXYTYPE_USER_NAME); emDelegate.setProperty(OracleConnection.PROXY_USER_NAME, user); emDelegate.setProperty(EntityManagerProperties.EXCLUSIVE_CONNECTION_MODE, "Always"); } } The final step is use the EJB 3.0 AroundInvoke interceptor. This interceptor will be called around every method invocation. We therefore check whether the Facade methods will be called or not. If so, we set the user for proxy authentication and the normal method flow continues. @AroundInvoke public Object proxyInterceptor(InvocationContext invocationCtx) throws Exception { if (invocationCtx.getTarget() instanceof DataFacadeBean) { setSessionUser(); } return invocationCtx.proceed(); } Benefits Using Oracle Proxy Authentification has a number of additional benefits appart from implementing the role model of your application: Fine grained access control for temporary users of the account, without compromising the original password. Enabling database auditing and logging. Better identification of performance bottlenecks. References Effective Oracle Database 10g Security by Design, David Knox TopLink Developer's Guide, Chapter 98

    Read the article

  • WPF / C#: Transforming coordinates from an image control to the image source

    - by Gabriel
    I'm trying to learn WPF, so here's a simple question, I hope: I have a window that contains an Image element bound to a separate data object with user-configurable Stretch property <Image Name="imageCtrl" Source="{Binding MyImage}" Stretch="{Binding ImageStretch}" /> When the user moves the mouse over the image, I would like to determine the coordinates of the mouse with respect to the original image (before stretching/cropping that occurs when it is displayed in the control), and then do something with those coordinates (update the image). I know I can add an event-handler to the MouseMove event over the Image control, but I'm not sure how best to transform the coordinates: void imageCtrl_MouseMove(object sender, MouseEventArgs e) { Point locationInControl = e.GetPosition(imageCtrl); Point locationInImage = ??? updateImage(locationInImage); } Now I know I could compare the size of Source to the ActualSize of the control, and then switch on imageCtrl.Stretch to compute the scalars and offsets on X and Y, and do the transform myself. But WPF has all the information already, and this seems like functionality that might be built-in to the WPF libraries somewhere. So I'm wondering: is there a short and sweet solution? Or do I need to write this myself? EDIT I'm appending my current, not-so-short-and-sweet solution. Its not that bad, but I'd be somewhat suprised if WPF didn't provide this functionality automatically: Point ImgControlCoordsToPixelCoords(Point locInCtrl, double imgCtrlActualWidth, double imgCtrlActualHeight) { if (ImageStretch == Stretch.None) return locInCtrl; Size renderSize = new Size(imgCtrlActualWidth, imgCtrlActualHeight); Size sourceSize = bitmap.Size; double xZoom = renderSize.Width / sourceSize.Width; double yZoom = renderSize.Height / sourceSize.Height; if (ImageStretch == Stretch.Fill) return new Point(locInCtrl.X / xZoom, locInCtrl.Y / yZoom); double zoom; if (ImageStretch == Stretch.Uniform) zoom = Math.Min(xZoom, yZoom); else // (imageCtrl.Stretch == Stretch.UniformToFill) zoom = Math.Max(xZoom, yZoom); return new Point(locInCtrl.X / zoom, locInCtrl.Y / zoom); }

    Read the article

  • Silverlight 4 WriteableBitmap ScaleTransform Exception but was working in v3

    - by Imran
    I am getting the following exception for code that used to work in silverlight 3 but has stopped working since upgrading to silverlight 4: System.AccessViolationException was unhandled Message=Attempted to read or write protected memory. This is often an indication that other memory is corrupt. namespace SilverlightApplication1 { public partial class MainPage : UserControl { public MainPage() { InitializeComponent(); } private void button1_Click(object sender, RoutedEventArgs e) { var OpenFileDialog = new OpenFileDialog(); OpenFileDialog.Filter = "*.jpg|*.jpg"; if (OpenFileDialog.ShowDialog() == true) { var file = OpenFileDialog.Files.ToArray()[0]; ScaleStreamAsBitmap(file.OpenRead(), 200); } } public static WriteableBitmap ScaleStreamAsBitmap(Stream file, int maxEdgeLength) { file.Position = 0; var src = new BitmapImage(); var uiElement = new System.Windows.Controls.Image(); WriteableBitmap b = null; var t = new ScaleTransform(); src.SetSource(file); uiElement.Source = src; //force render uiElement.Effect = new DropShadowEffect() { ShadowDepth = 0, BlurRadius = 0 }; ; //calc scale double scaleX = 1; double scaleY = 1; if (src.PixelWidth > maxEdgeLength) scaleX = ((double)maxEdgeLength) / src.PixelWidth; if (src.PixelHeight > maxEdgeLength) scaleY = ((double)maxEdgeLength) / src.PixelHeight; double scale = Math.Min(scaleX, scaleY); t.ScaleX = scale; t.ScaleY = scale; b = new WriteableBitmap(uiElement, t); return b; } } } Thanks

    Read the article

  • Dynamic Colorbox galleries using Ajax

    - by Gobitron
    Hi, I am new to jQuery / AJAX. I have a page that uses colorbox to display photo galleries. The page displays only one image from each gallery. When clicked, a colorbox opens up with all of the photos from that gallery. These inner photo references (for all photos from all galleries) are hidden on the page in an invisible div. The page is a PHP generated page. The galleries/photos are being populated via Picasa. All of the above works fine, but instead of loading all of the images from all galleries on page load (via PHP), I'd like to load only the requested gallery into the colorbox via AJAX. So far, I have a test page which can insert the proper links into a div on the page, but the Colorbox won't pick up on these links. This is where I need help. How can I get Colorbox to recognize the links generated by my AJAX call? The colorbox scripts sit in the header: <script type="text/javascript" src="libs/js/jquery.colorbox.js"></script> <script type="text/javascript"> //Writing out the ColorBox command for each album $(document).ready(function(){ <?php $setnum = 0; foreach ($albumIds as $albumId){ echo "\t\t\t$(\"a[rel='set" . $setnum . "']\").colorbox({maxWidth:\"640px\", maxHeight:\"480px\"});\n"; $setnum++; } ?> }); </script> Here is my get JSON code located in the body section of the page: $.getJSON("myserv.php",formContent, function(json){ var photos = json.data.items; var numpics = json.data.items.length; var pointer = 1; while (pointer < numpics){ var stuffineed = photos[pointer].media.image.url; $("#ajaxBox").append("<a href='" + stuffineed + "' rel='set" + pointer +"'>" + photos[pointer].media.image.url + "</a><br />"); pointer++; } }); //End json Again, I can get the AJAX to populate the div correctly, but the colorbox script isn't picking up these images. Any help would be greatly appreciated.

    Read the article

< Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >