Search Results

Search found 21004 results on 841 pages for 'assembly load'.

Page 835/841 | < Previous Page | 831 832 833 834 835 836 837 838 839 840 841  | Next Page >

  • cannot access localhost using ip

    - by Robert
    I have done a small web development project using eclipse. It runs well when I try running it on browser with url localhost:8080/myproject/home.html. But if I want to access it on another machine (laptop, mobile, etc. using the same wifi) it is not possible; it is not able to connect. After Googling for a while found out that I have to use the IP address instead of 'localhost'. So I tried 10.0.0.4:8080/myproject/home.html, but still does not work. In fact i am unable to open that url on the same machine (where localhost:8080/myproject/home.html works fine). I also added a new Inbound rule in control panel firewall settings, allowing access to all ports for protocol TCP. Still have problem in running application with the url 10.0.0.4:8080/myproject/home.html (both on same machine as well as laptop and mobile). FYI i am using Eclipse Indigo, Apache tomcat 6.0 and server.xml file contents is as below: <?xml version="1.0" encoding="UTF-8"?> <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --><!-- Note: A "Server" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/server.html --><Server port="8005" shutdown="SHUTDOWN"> <!--APR library loader. Documentation at /docs/apr.html --> <Listener SSLEngine="on" className="org.apache.catalina.core.AprLifecycleListener"/> <!--Initialize Jasper prior to webapps are loaded. Documentation at /docs/jasper-howto.html --> <Listener className="org.apache.catalina.core.JasperListener"/> <!-- Prevent memory leaks due to use of particular java/javax APIs--> <Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener"/> <!-- JMX Support for the Tomcat server. Documentation at /docs/non-existent.html --> <Listener className="org.apache.catalina.mbeans.ServerLifecycleListener"/> <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener"/> <!-- Global JNDI resources Documentation at /docs/jndi-resources-howto.html --> <GlobalNamingResources> <!-- Editable user database that can also be used by UserDatabaseRealm to authenticate users --> <Resource auth="Container" description="User database that can be updated and saved" factory="org.apache.catalina.users.MemoryUserDatabaseFactory" name="UserDatabase" pathname="conf/tomcat-users.xml" type="org.apache.catalina.UserDatabase"/> </GlobalNamingResources> <!-- A "Service" is a collection of one or more "Connectors" that share a single "Container" Note: A "Service" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/service.html --> <Service name="Catalina"> <!--The connectors can use a shared executor, you can define one or more named thread pools--> <!-- <Executor name="tomcatThreadPool" namePrefix="catalina-exec-" maxThreads="150" minSpareThreads="4"/> --> <!-- A "Connector" represents an endpoint by which requests are received and responses are returned. Documentation at : Java HTTP Connector: /docs/config/http.html (blocking & non-blocking) Java AJP Connector: /docs/config/ajp.html APR (HTTP/AJP) Connector: /docs/apr.html Define a non-SSL HTTP/1.1 Connector on port 8080 --> <Connector port="8080" protocol="HTTP/1.1" address="10.0.0.4" connectionTimeout="20000" redirectPort="8443" /> <!-- A "Connector" using the shared thread pool--> <!-- <Connector executor="tomcatThreadPool" port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- Define a SSL HTTP/1.1 Connector on port 8443 This connector uses the JSSE configuration, when using APR, the connector should be using the OpenSSL style configuration described in the APR documentation --> <!-- <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" /> --> <!-- Define an AJP 1.3 Connector on port 8009 --> <Connector port="8009" protocol="AJP/1.3" redirectPort="8443"/> <!-- An Engine represents the entry point (within Catalina) that processes every request. The Engine implementation for Tomcat stand alone analyzes the HTTP headers included with the request, and passes them on to the appropriate Host (virtual host). Documentation at /docs/config/engine.html --> <!-- You should set jvmRoute to support load-balancing via AJP ie : <Engine name="Catalina" defaultHost="localhost" jvmRoute="jvm1"> --> <Engine defaultHost="localhost" name="Catalina"> <!--For clustering, please take a look at documentation at: /docs/cluster-howto.html (simple how to) /docs/config/cluster.html (reference documentation) --> <!-- <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"/> --> <!-- The request dumper valve dumps useful debugging information about the request and response data received and sent by Tomcat. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.RequestDumperValve"/> --> <!-- This Realm uses the UserDatabase configured in the global JNDI resources under the key "UserDatabase". Any edits that are performed against this UserDatabase are immediately available for use by the Realm. --> <Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase"/> <!-- Define the default virtual host Note: XML Schema validation will not work with Xerces 2.2. --> <Host appBase="webapps" autoDeploy="true" name="localhost" unpackWARs="true" xmlNamespaceAware="false" xmlValidation="false"> <!-- SingleSignOn valve, share authentication between web applications Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.authenticator.SingleSignOn" /> --> <!-- Access log processes all example. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs" prefix="localhost_access_log." suffix=".txt" pattern="common" resolveHosts="false"/> --> <Context docBase="myproject" path="/myproject" reloadable="true" source="org.eclipse.jst.jee.server:myproject"/></Host> </Engine> </Service> </Server>

    Read the article

  • Backing up my data causes my server to crash using Symantec Backup Exec 12, or How I Came to Loathe Irony

    - by Kyle Noland
    I have a Dell PowerEdge 2850 running Windows Server 2003. It is the primary file server for one of my clients. I have another server also running Windows Server 2003 that acts as the core media server for Symantec Backup Exec 12. I recently upgraded from Backup Exec 11d to 12. This upgrade was necessary because we also just upgraded from Exchange 2003 to Exchange 2007. After the upgrade I had to push-install the new version 12 Backup Exec Remote Agents to each of the servers I am backing up (about 6 total). 5 of my servers are doing just fine, faithfully completing backups every night. My file server routinely crashes. Observations: When the server crashes, it does not blue screen, it just locks up completely. Even the mouse is unresponsive. If you leave the server locked up long enough, it will eventually reboot itself and hang on the Windows splash screen. There is absolutely zero useful Event Viewer evidence of a problem. The logs go from routine logging to an Unexplained Shutdown Event the next morning when I have to hard reset the server to get it to boot. 90% of the time the server does not boot cleanly, it hangs on the Windows splash screen. I don't have any light to shed here. When the server hangs all I can do is hard reset it and try again. Even after a successful boot and chkdsk /r operation, if you reboot the machine, you have a 90% chance it won't back up again cleanly. The back story: This server started crashing during nightly backups about a month ago. I tried everything I could think of to troubleshoot the problem and eventually had to give up because I could not keep coming to the office at 4 AM to try to get the server back online. One Friday I got lucky and the server stayed up for its entire full backup. I took this opportunity to restore the full backup to a temporary server I set up and switched all my users to the temporary. Then I reloaded the ailing file server. I kept all my users on the temporary file server for about 3 weeks. I installed the same Backup Exec Remote Agent and Trend Micro A/V client on the temporary server that I was using on the regular file server. During this time, I had absolutely no problems backing up the temporary server. I tested the reloaded file server extensively. I rebooted the server once an hour every day for 3 weeks trying to make it fail. It never did. I felt confident that the reload was the answer to my problems. I moved all of the data from the temporary server back to the regular server. I got 3 nightly backups out of it before it locked up again and started the familiar failure to boot cleanly behavior. This weekend I decided to monitor the file server through the entire backup job. I RDPd into the file server and also into the server running Backup Exec. On the file server I opened the Task Manager so I could view the processes and watch CPU and memory usage. Everything was running smoothly for about 60GB worth of backup. Then I noticed that the byte count of the backup job in Backup Exec had stopped progressing. I looked back over at my RDP session into the file server, and I was getting real time updates about CPU and memory usage still - both nearly 0%, which is unusual. Backups usually hover around 40% usage for the duration of the backup job. Let me reiterate this point: The screen was refreshing and I was getting real time Task Manager updates - until I clicked on the Start menu. The screen went black and the server locked up. In truth, I think the server had already locked up, the video card just hadn't figured it out yet. I went back into my bag of trick: driving to the office and hard reseting the server over and over again when it hangs up at the Windows splash screen. I did this for 2 hours without getting a successful boot. I started panicking because I did not have a decent backup to use to get everything back onto the working temporary file server. Once I exhausted everything I knew to do, I took a deep breath, booted to the Windows Server 2003 CD and performed a repair installation of Windows. The server came back up fine, with all of my data intact. I can now reboot the server at will and it will come back up cleanly. The problem is that I'm afraid as soon as I try to back that data up again I will back at square one. So let me sum things up: Here is what I've done so far to troubleshoot this server: Deleted and recreated the RAID 5 sets. Initialized the drives. Reloaded the server with a fresh Server 2003 install. Confirmed with Dell that I have installed the latest, Dell approved BIOS and NIC drivers. Uninstalled / reinstalled the Backup Exec Remote Agent. Uninstalled the Trend Micro A/V client. Configured the server not to reboot itself after a blue screen so I can see any stop error. I used to think the server was blue screening, but since I enabled this setting I now know that the server just completely locks up. Run chkdsk /r from the Windows Recovery Console. Several errors were found and corrected, but did not help my problem. Help confirm or deny the following assumptions: There are two problems at work here. Why the server is locking up in the first place, and why the server won't boot cleanly after a lockup. This is ultimately a software problem. The server works fine and can be rebooted cleanly all day long - until the first lockup - following a fresh OS load or even a Repair installation. This is not a problem with Backup Exec in general. All of my other servers back up just fine. For the record, all of the other servers run Server 2003, and some of them house more data than the file server in question here. Any help is appreciated. The irony is almost too much to bear. Backing up my data is what is jeopardizing it.

    Read the article

  • "Can't Connect to Server" from 2nd virtual host on VPS

    - by chaoskreator
    I'm using Debian 7 Wheezy and Apache 2.2.22, and I'm setting up Virtual Hosts for a number of websites on my VPS. I've successfully configured the VirtualHost directives for one of the sites, but the second one continually gives "Problem Loading Page" in Firefox. I've run configtest and it has verified all my syntax is correct, and I've checked all the permissions. Everything on the 2nd domain is pretty much copy/pasted from the first, so I'm not sure what the issue is, as there are no entries into /var/log/apache2/error.log other than where I have reloaded the configurations: /# cat /var/log/apache2/error.log [Thu May 29 01:19:00 2014] [notice] Graceful restart requested, doing restart [Thu May 29 01:19:00 2014] [info] Init: Seeding PRNG with 656 bytes of entropy [Thu May 29 01:19:00 2014] [info] Init: Generating temporary RSA private keys (512/1024 bits) [Thu May 29 01:19:00 2014] [info] Init: Generating temporary DH parameters (512/1024 bits) [Thu May 29 01:19:00 2014] [debug] ssl_scache_shmcb.c(253): shmcb_init allocated 512000 bytes of shared memory [Thu May 29 01:19:00 2014] [debug] ssl_scache_shmcb.c(272): for 511920 bytes (512000 including header), recommending 32 subcaches, 133 indexes each [Thu May 29 01:19:00 2014] [debug] ssl_scache_shmcb.c(306): shmcb_init_memory choices follow [Thu May 29 01:19:00 2014] [debug] ssl_scache_shmcb.c(308): subcache_num = 32 [Thu May 29 01:19:00 2014] [debug] ssl_scache_shmcb.c(310): subcache_size = 15992 [Thu May 29 01:19:00 2014] [debug] ssl_scache_shmcb.c(312): subcache_data_offset = 3208 [Thu May 29 01:19:00 2014] [debug] ssl_scache_shmcb.c(314): subcache_data_size = 12784 [Thu May 29 01:19:00 2014] [debug] ssl_scache_shmcb.c(316): index_num = 133 [Thu May 29 01:19:00 2014] [info] Shared memory session cache initialised [Thu May 29 01:19:00 2014] [info] Init: Initializing (virtual) servers for SSL [Thu May 29 01:19:00 2014] [info] mod_ssl/2.2.22 compiled against Server: Apache/2.2.22, Library: OpenSSL/1.0.1e [Thu May 29 01:19:00 2014] [notice] Apache/2.2.22 (Debian) PHP/5.4.4-14+deb7u9 mod_ssl/2.2.22 OpenSSL/1.0.1e mod_perl/2.0.7 Perl/v5.14.2 configured -- resuming normal operations [Thu May 29 01:19:00 2014] [info] Server built: Mar 4 2013 22:05:16 [Thu May 29 01:19:00 2014] [debug] prefork.c(1023): AcceptMutex: sysvsem (default: sysvsem) I've ensured to enable each vhost with a2ensite {sitename.conf} with no errors there, either. Below are the contents of the configuration files... /etc/apache2/apache2.conf # Global configuration # LockFile ${APACHE_LOCK_DIR}/accept.lock PidFile ${APACHE_PID_FILE} Timeout 300 KeepAlive On MaxKeepAliveRequests 100 KeepAliveTimeout 5 ## ## Server-Pool Size Regulation (MPM specific) ## # prefork MPM # StartServers: number of server processes to start # MinSpareServers: minimum number of server processes which are kept spare # MaxSpareServers: maximum number of server processes which are kept spare # MaxClients: maximum number of server processes allowed to start # MaxRequestsPerChild: maximum number of requests a server process serves <IfModule mpm_prefork_module> StartServers 5 MinSpareServers 5 MaxSpareServers 10 MaxClients 150 MaxRequestsPerChild 0 </IfModule> # worker MPM # StartServers: initial number of server processes to start # MinSpareThreads: minimum number of worker threads which are kept spare # MaxSpareThreads: maximum number of worker threads which are kept spare # ThreadLimit: ThreadsPerChild can be changed to this maximum value during a # graceful restart. ThreadLimit can only be changed by stopping # and starting Apache. # ThreadsPerChild: constant number of worker threads in each server process # MaxClients: maximum number of simultaneous client connections # MaxRequestsPerChild: maximum number of requests a server process serves <IfModule mpm_worker_module> StartServers 2 MinSpareThreads 25 MaxSpareThreads 75 ThreadLimit 64 ThreadsPerChild 25 MaxClients 150 MaxRequestsPerChild 0 </IfModule> # event MPM # StartServers: initial number of server processes to start # MinSpareThreads: minimum number of worker threads which are kept spare # MaxSpareThreads: maximum number of worker threads which are kept spare # ThreadsPerChild: constant number of worker threads in each server process # MaxClients: maximum number of simultaneous client connections # MaxRequestsPerChild: maximum number of requests a server process serves <IfModule mpm_event_module> StartServers 2 MinSpareThreads 25 MaxSpareThreads 75 ThreadLimit 64 ThreadsPerChild 25 MaxClients 150 MaxRequestsPerChild 0 </IfModule> # These need to be set in /etc/apache2/envvars User ${APACHE_RUN_USER} Group ${APACHE_RUN_GROUP} # # AccessFileName: The name of the file to look for in each directory # for additional configuration directives. See also the AllowOverride # directive. # AccessFileName .htaccess # # The following lines prevent .htaccess and .htpasswd files from being # viewed by Web clients. # <Files ~ "^\.ht"> Order allow,deny Deny from all Satisfy all </Files> DefaultType None HostnameLookups Off ErrorLog ${APACHE_LOG_DIR}/error.log LogLevel debug # Include module configuration: Include mods-enabled/*.load Include mods-enabled/*.conf # Include list of ports to listen on and which to use for name based vhosts Include ports.conf # # The following directives define some format nicknames for use with # a CustomLog directive (see below). # If you are behind a reverse proxy, you might want to change %h into %{X-Forwarded-For}i # # LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" vhost_combined LogFormat "%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" combined LogFormat "%h %l %u %t \"%r\" %>s %O" common LogFormat "%{Referer}i -> %U" referer LogFormat "%{User-agent}i" agent <Directory "/var/www"> Order allow,deny Allow from all Require all granted </Directory> # Include generic snippets of statements Include conf.d/ # Include the virtual host configurations: Include sites-enabled/*.conf NameVirtualHost *:80 /etc/apache2/sites-available/site1.net.conf <VirtualHost *:80> ServerName site1.net ServerAlias site1.net *.site1.net DocumentRoot "/var/www/site1" ErrorLog "/var/www/site1/logs/error.log" CustomLog "/var/www/site1/logs/access.log" vhost_combined <Directory "/var/www/site1"> Options None AllowOverride All Order allow,deny Allow from all Satisfy Any </Directory> </VirtualHost> /etc/apache2/sites-available/site2.com.conf <VirtualHost *:80> ServerName site2.com ServerAlias site2.com *.site2.com DocumentRoot "/var/www/site2" ErrorLog "/var/www/site2/logs/error.log" CustomLog "/var/www/site2/logs/access.log" vhost_combined <Directory "/var/www/site2"> Options None AllowOverride All Order allow,deny Allow from all Satisfy Any </Directory> </VirtualHost> I've also tried setting NameVirtualHost like: Listen 80 NameVirtualHost 23.88.121.82:80 NameVirtualHost 127.0.0.1:80 and the VirtualHost Directives: <VirtualHost 23.88.121.82:80> ... </VirtualHost> for both sites, but that causes the first site to fail, as well. I'm wondering if I need to set up individual IPs for each site, possibly? I have 2 more IPv4 and 3 IPv6 addresses available, if that would make a difference. Also, in the grand scheme of things, I will need to enable SSL for the first site. I've been reading that I'll need to basically just mimic the directives for listening on port 80, only on port 443, and make sure mod_ssl is enabled? EDIT: I just ran apache2 -t to test the config files that way, and got the error: apache2: bad user name ${APACHE_RUN_USER}. However, apachectl configtest returns Syntax OK. There are no other mentions of errors with the mutex anywhere else, however. I was pretty sure if there was an error with the user apache was supposed to run under, the server wouldn't start at all... EDIT 2: Restarting apache fixed the bad user name error.

    Read the article

  • nginx + apache subdomain redirection fault

    - by webwolf
    i really need your advice folks since i'm experiencing some troubles with nginx & apache2 subdomains configs first of all, there's a site (say, site.com) and two subdomains (links.site.com and shop.site.com) whose files are physically located at the same level of FS hierarchy as the site.com itself my hoster has configured both apache and nginx by my request, but it still doesn't work as it used to both of subdomains point to the main page of site.com for some unknown and implicit (for me) reason :( my assumption is that's happen because site.com record is placed first in both configs?!.. please help me solve this out! every opinion would be appreciated =) nginx.conf: server { listen 95.169.187.234:80; server_name site.com www.site.com ; access_log /home/www/site.com/logs/nginx.access.log main; location ~* ^.+\.(jpeg|jpg|gif|png|ico|css|zip|tgz|gz|rar|bz2|doc|xls|exe|pdf|ppt|txt|tar|mid|midi|wav|bmp|rtf|js|swf|avi|mp3|mpg|mpeg|asf|vmw)$ { expires 30d; root /home/www/site.com/www; } #error_page 404 /404.html; # redirect server error pages to the static page /50x.html # error_page 500 502 503 504 /50x.html; location = /50x.html { root html; } # deny access to .htaccess files, if Apache's document root # concurs with nginx's one # location ~ /\.ht { deny all; } location / { set $referer $http_referer; proxy_pass http://127.0.0.1:8080/; proxy_redirect off; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Referer $referer; proxy_set_header Host $host; client_max_body_size 10m; client_body_buffer_size 64k; proxy_connect_timeout 90; proxy_send_timeout 90; proxy_read_timeout 90; proxy_buffer_size 4k; proxy_buffers 4 32k; proxy_busy_buffers_size 64k; proxy_temp_file_write_size 64k; } } server { listen 95.169.187.234:80; server_name links.site.com www.links.site.com ; access_log /home/www/links.site.com/logs/nginx.access.log main; location ~* ^.+\.(jpeg|jpg|gif|png|ico|css|zip|tgz|gz|rar|bz2|doc|xls|exe|pdf|ppt|txt|tar|mid|midi|wav|bmp|rtf|js|swf|avi|mp3|mpg|mpeg|asf|vmw)$ { expires 30d; root /home/www/links.site.com/www; } #error_page 404 /404.html; # redirect server error pages to the static page /50x.html # error_page 500 502 503 504 /50x.html; location = /50x.html { root html; } # deny access to .htaccess files, if Apache's document root # concurs with nginx's one # location ~ /\.ht { deny all; } location / { set $referer $http_referer; proxy_pass http://127.0.0.1:8080/; proxy_redirect off; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Referer $referer; proxy_set_header Host $host; client_max_body_size 10m; client_body_buffer_size 64k; proxy_connect_timeout 90; proxy_send_timeout 90; proxy_read_timeout 90; proxy_buffer_size 4k; proxy_buffers 4 32k; proxy_busy_buffers_size 64k; proxy_temp_file_write_size 64k; } } server { listen 95.169.187.234:80; server_name shop.site.com www.shop.site.com ; access_log /home/www/shop.site.com/logs/nginx.access.log main; location ~* ^.+\.(jpeg|jpg|gif|png|ico|css|zip|tgz|gz|rar|bz2|doc|xls|exe|pdf|ppt|txt|tar|mid|midi|wav|bmp|rtf|js|swf|avi|mp3|mpg|mpeg|asf|vmw)$ { expires 30d; root /home/www/shop.site.com/www; } #error_page 404 /404.html; # redirect server error pages to the static page /50x.html # error_page 500 502 503 504 /50x.html; location = /50x.html { root html; } # deny access to .htaccess files, if Apache's document root # concurs with nginx's one # location ~ /\.ht { deny all; } location / { set $referer $http_referer; proxy_pass http://127.0.0.1:8080/; proxy_redirect off; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Referer $referer; proxy_set_header Host $host; client_max_body_size 10m; client_body_buffer_size 64k; proxy_connect_timeout 90; proxy_send_timeout 90; proxy_read_timeout 90; proxy_buffer_size 4k; proxy_buffers 4 32k; proxy_busy_buffers_size 64k; proxy_temp_file_write_size 64k; } } httpd.conf: # ServerRoot "/usr/local/apache2" PidFile /var/run/httpd.pid Timeout 300 KeepAlive On MaxKeepAliveRequests 100 KeepAliveTimeout 15 Listen 127.0.0.1:8080 NameVirtualHost 127.0.0.1:8080 ... #Listen *:80 NameVirtualHost *:80 ServerName www.site.com ServerAlias site.com UseCanonicalName Off CustomLog /home/www/site.com/logs/custom_log combined ErrorLog /home/www/site.com/logs/error_log DocumentRoot /home/www/site.com/www AllowOverride All Options +FollowSymLinks Options -MultiViews Options -Indexes Options Includes Order allow,deny Allow from all DirectoryIndex index.html index.htm index.php ServerName www.links.site.com ServerAlias links.site.com UseCanonicalName Off CustomLog /home/www/links.site.com/logs/custom_log combined ErrorLog /home/www/links.site.com/logs/error_log DocumentRoot /home/www/links.site.com/www AllowOverride All Options +FollowSymLinks Options -MultiViews Options -Indexes Options Includes Order allow,deny Allow from all DirectoryIndex index.html index.htm index.php ServerName www.shop.site.com ServerAlias shop.site.com UseCanonicalName Off CustomLog /home/www/shop.site.com/logs/custom_log combined ErrorLog /home/www/shop.site.com/logs/error_log DocumentRoot /home/www/shop.site.com/www AllowOverride All Options +FollowSymLinks Options -MultiViews Options -Indexes Options Includes Order allow,deny Allow from all DirectoryIndex index.html index.htm index.php # if DSO load module first: LoadModule rpaf_module modules/mod_rpaf-2.0.so RPAFenable On RPAFsethostname On RPAFproxy_ips 127.0.0.1 RPAFheader X-Forwarded-For Include conf/virthost/*.conf

    Read the article

  • E-Business Suite Technology Sessions at OpenWorld 2012

    - by Max Arderius
    Oracle OpenWorld 2012 is almost here! We're looking forward to updating you on our products, strategy, and roadmaps. This year, the E-Business Suite Applications Technology Group (ATG) will participate in 25 speaker sessions, two Meet the Experts round-table discussions, five demoground booths and seven Special Interest Group meetings as guest speakers. We hope to see you at our sessions.  Please join us to hear the latest news and connect with senior ATG development staff. Here's a downloadable listing of all Applications Technology Group-related sessions with times and locations: FOCUS ON Oracle E-Business Suite - Applications Tools and Technology (PDF) General Sessions GEN8474 - Oracle E-Business Suite - Strategy, Update, and RoadmapCliff Godwin, SVP, Oracle Monday, Oct 1, 12:15 PM - 1:15 PM - Moscone West 2002/2004 In this session, hear Oracle E-Business Suite General Manager Cliff Godwin deliver an update on the Oracle E-Business Suite product line. This session covers the value delivered by the current release of Oracle E-Business Suite, the momentum, and how Oracle E-Business Suite applications integrate into Oracle’s overall applications strategy. You’ll come away with an understanding of the value Oracle E-Business Suite applications deliver now and will deliver in the future. GEN9173 - Optimize and Extend Oracle Applications - The Path to Oracle Fusion ApplicationsNadia Bendjedou, Oracle; Corre Curtice, Bhavish Madurai (CSC) Tuesday, Oct 2, 10:15 AM - 11:15 AM - Moscone West 3002/3004 One of the main objectives of this session is to help organizations build their IT roadmap for the next five years and be aligned with the Oracle Applications strategy in general and the Oracle Fusion Applications strategy in particular. Come hear about some of the common sense, practical steps you can take to optimize the performance of your Oracle Applications today and prepare your path to Oracle Fusion Applications for when your organization is ready to embrace them. Each step you take in adopting Oracle Fusion technology gets you partway to Oracle Fusion Applications. Conference Sessions CON9024 - Oracle E-Business Suite Technology: Latest Features and Roadmap Lisa Parekh, Oracle Monday, Oct 1, 10:45 AM - 11:45 AM - Moscone West 2016 This Oracle development session provides a comprehensive overview of Oracle’s product strategy for Oracle E-Business Suite technology, the capabilities and associated business benefits of recent releases, and a review of capabilities on the product roadmap. This is the cornerstone session for the Oracle E-Business Suite technology stack. Come hear about the latest new usability enhancements of the user interface; systems administration and configuration management tools; security-related updates; and tools and options for extending, customizing, and integrating Oracle E-Business Suite with other applications. CON9021 - Oracle E-Business Suite Future Directions: Deployment and System AdministrationMax Arderius, Oracle Monday, Oct 1, 3:15 PM - 4:15 PM - Moscone West 2016  What’s coming in the next major version of Oracle E-Business Suite 12? This Oracle Development session covers the latest technology stack, including the use of Oracle WebLogic Server (Oracle Fusion Middleware 11g) and Oracle Database 11g Release 2 (11.2). Topics include an architectural overview of the latest updates, installation and upgrade options, new configuration options, and new tools for hot cloning and automated “lights-out” cloning. Come learn how online patching (based on the Oracle Database 11g Release 2 Edition-Based Redefinition feature) will reduce your database patching downtimes to however long it takes to bounce your database server. CON9017 - Desktop Integration in Oracle E-Business Suite 12.1 Padmaprabodh Ambale, Gustavo Jimenez, Oracle Monday, Oct 1, 4:45 PM - 5:45 PM - Moscone West 2016 This presentation covers the latest functional enhancements in Oracle Web Applications Desktop Integrator and Oracle Report Manager, enhanced Microsoft Office support, and greater support for building custom desktop integration solutions. The session also presents tips and tricks for upgrading from Oracle Applications Desktop Integrator to Oracle Web Applications Desktop Integrator and Oracle Report Manager. CON9023 - Oracle E-Business Suite Technology Certification Primer and Roadmap Steven Chan, Oracle Tuesday, Oct 2, 10:15 AM - 11:15 AM - Moscone West 2016  Is your Oracle E-Business Suite technology stack up to date? Are you taking advantage of all the latest options and capabilities? This Oracle development session summarizes the latest certifications and roadmap for the Oracle E-Business Suite technology stack, including elements such as database releases and options, Java, Oracle Forms, Oracle Containers for J2EE, desktop operating systems, browsers, JRE releases, development and Web authoring tools, user authentication and management, business intelligence, Oracle Application Management Packs, security options, clouds, Oracle VM, and virtualization. The session also covers the most commonly asked questions about tech stack component support dates and upgrade implications. CON9028 - Minimizing Oracle E-Business Suite Maintenance DowntimesSantiago Bastidas, Elke Phelps, Oracle Tuesday, Oct 2, 11:45 AM - 12:45 PM - Moscone West 2016 This Oracle development session features a survey of the best techniques sysadmins can use to minimize patching downtimes. It starts with an architectural-level review of Oracle E-Business Suite fundamentals and then moves to a practical view of the various tools and approaches for downtimes. Topics include patching shortcuts, merging patches, distributing worker processes across multiple servers, running ADPatch in noninteractive mode, staged APPL_TOPs, shared file systems, deferring systemwide database tasks, avoiding resource bottlenecks, and more. An added bonus: hear about the upcoming Oracle E-Business Suite 12 online patching capabilities based on the groundbreaking Oracle Database 11g Release 2 Edition-Based Redefinition feature. CON9116 - Extending the Use of Oracle E-Business Suite with the Oracle Endeca PlatformOsama Elkady, Muhannad Obeidat, Oracle Tuesday, Oct 2, 11:45 AM - 12:45 PM - Moscone West 2018 The Oracle Endeca platform includes a leading unstructured data correlation and analytics engine, together with a best-in class catalog search and guided navigation solution, to improve the productivity of all types of users in your enterprise. This development session focuses on the details behind the Oracle Endeca platform’s integration into Oracle E-Business Suite. It demonstrates how easily you can extend the use of the Oracle Endeca platform into other areas of Oracle E-Business Suite and how you can bring in your own data and build new Oracle Endeca applications for Oracle E-Business Suite. CON9005 - Oracle E-Business Suite Integration Best PracticesVeshaal Singh, Oracle, Jeffrey Hand, Zebra Technologies Tuesday, Oct 2, 1:15 PM - 2:15 PM - Moscone West 2018 Oracle is investing across applications and technologies to make the application integration experience easier for customers. Today Oracle has certified Oracle E-Business Suite on Oracle Fusion Middleware 11g and provides a comprehensive set of integration technologies. Learn about Oracle’s integration offering across data- and process-centric integrations. These technologies can be used to address various application integration challenges and styles. In this session, you will get an understanding of how, when, and where you can leverage Oracle’s integration technologies to connect end-to-end business processes across your enterprise, including your Oracle Applications portfolio.  CON9026 - Latest Oracle E-Business Suite 12.1 User Interface and Usability EnhancementsPadmaprabodh Ambale, Oracle Tuesday, Oct 2, 1:15 PM - 2:15 PM - Moscone West 2016 This Oracle development session details the latest UI enhancements to Oracle Application Framework in Oracle E-Business Suite 12.1. Developers will get a detailed look at new features to enhance usability, offer more capabilities for personalization and extensions, and support the development and use of dashboards and Web services. Topics include new rich UI capabilities such as new home page features, Navigator and Favorites pull-down menus, REST interface, embedded widgets for analytics content, Oracle Application Development Framework (Oracle ADF) task flows, third-party widgets, a look-ahead list of values, inline attachments, pop-ups, personalization and extensibility enhancements, business layer extensions, Oracle ADF integration, and mobile devices. CON8805 - Planning Your Oracle E-Business Suite Upgrade from 11i to Release 12.1 and BeyondAnne Carlson, Oracle Tuesday, Oct 2, 5:00 PM - 6:00 PM - Moscone West 3002/3004 Attend this session to hear the latest Oracle E-Business Suite 12.1 upgrade planning tips from Oracle’s support, consulting, development, and IT organizations. You’ll get specific cross-product advice on how to understand the factors that affect your project’s duration, decide on your project’s scope, develop a robust testing strategy, leverage Oracle Support resources, and more. In a nutshell, this session tells you things you need to know before embarking upon your Release 12.1 upgrade project. CON9053 - Advanced Management of Oracle E-Business Suite with Oracle Enterprise ManagerAngelo Rosado, Oracle Tuesday, Oct 2, 5:00 PM - 6:00 PM - Moscone West 2016 The task of managing and monitoring Oracle E-Business Suite environments can be very challenging. Oracle Enterprise Manager is the only product on the market that is designed to monitor and manage all the different technologies that constitute Oracle E-Business Suite applications, including end user, midtier, configuration, host, and database management—to name just a few. Customers that have implemented Oracle Enterprise Manager have experienced dramatic improvements in system visibility and diagnostic capability as well as administrator productivity. The purpose of this session is to highlight the key features and benefits of Oracle Enterprise Manager and Oracle Application Management Suite for Oracle E-Business Suite. CON8809 - Oracle E-Business Suite 12.1 Upgrade Best Practices: Technical InsightIsam Alyousfi, Udayan Parvate, Oracle Wednesday, Oct 3, 10:15 AM - 11:15 AM - Moscone West 3011 This session is ideal for organizations thinking about upgrading to Oracle E-Business Suite 12.1. It covers the fundamentals of upgrading to Release 12.1, including the technology stack components and supported upgrade paths. Hear from Oracle Development about the set of best practices for patching in general and executing the Release 12.1 technical upgrade, with special considerations for minimizing your downtime. Also get to know about relatively recent upgrade resources. CON9032 - Upgrading Your Customizations of Oracle E-Business Suite 12.1Sara Woodhull, Oracle Wednesday, Oct 3, 10:15 AM - 11:15 AM - Moscone West 2016 Have you personalized Oracle Forms or Oracle Application Framework screens in Oracle E-Business Suite? Have you used mod_plsql in Release 11i? Have you extended or customized your Release 11i environment with other tools? The technical options for upgrading these customizations as part of your Oracle E-Business Suite Release 12.1 upgrade can be bewildering. Come to this Oracle development session to learn about selecting the best upgrade approach for your existing customizations. The session will help you understand customization scenarios and use cases, tools, and technologies to ensure that your Oracle E-Business Suite Release 12.1 environment fits your users’ needs closely and that any future customizations will be easy to upgrade. CON9259 - Oracle E-Business Suite Internationalization and Multilingual FeaturesMaher Al-Nubani, Oracle Wednesday, Oct 3, 10:15 AM - 11:15 AM - Moscone West 2018 Oracle E-Business Suite supports more countries, languages, and regions than ever. Come to this Oracle development session to get an overview of internationalization features and capabilities and see new Release 12 features such as calendar support for Hijra and Thai, new group separators, lightweight multilingual support (MLS) setup, new character sets such as AL32UTF, newly supported languages, Mac certifications, Oracle iSetup support for moving MLS setups, new file export options for Unicode, new MLS number spelling options, and more. CON7188 - Mobile Apps for Oracle E-Business Suite with Oracle ADF Mobile and Oracle SOA SuiteSrikant Subramaniam, Joe Huang, Veshaal Singh, Oracle Wednesday, Oct 3, 10:15 AM - 11:15 AM - Moscone West 3001 Follow your mobile customers, employees, and partners with Oracle Fusion Middleware. See how native iPhone and iPad applications can easily be built for Oracle E-Business Suite with the new Oracle ADF Mobile and Oracle SOA Suite. Using Oracle ADF Mobile, developers can quickly develop native applications for Apple iOS and other mobile platforms. The Oracle SOA Suite/Oracle ADF Mobile combination can execute business transactions on Oracle E-Business Suite. This session includes a demo in which a mobile user approves a business transaction in Oracle E-Business Suite and a demo of the tools used to build a native on-device solution. These concepts for mobile applications also apply to other Oracle applications.CON9029 - Oracle E-Business Suite Directions: Slashing Downtimes with Online PatchingKevin Hudson, Oracle Wednesday, Oct 3, 11:45 AM - 12:45 PM - Moscone West 2016 Oracle E-Business Suite will soon include online patching (based on the Oracle Database 11g Release 2 Edition-Based Redefinition feature), which will reduce your database patching downtimes to however long it takes to bounce your database server. This Oracle development session details how online patching works, with special attention to what’s happening at a database object level when database patches are applied to an Oracle E-Business Suite environment that’s still running. Come learn about the operational and system management implications for minimizing maintenance downtimes when applying database patches with this new technology and the related impact on customizations you might have built on top of Oracle E-Business Suite. CON8806 - Upgrading to Oracle E-Business Suite 12.1: Technical and Functional PanelAndrew Katz, Komori America Corporation; Sandra Vucinic, VLAD Group, Inc. ;Srini Chavali, Cummins Inc.; Amrita Mehrok, Nadia Bendjedou, Anne Carlson Oracle Wednesday, Oct 3, 1:15 PM - 2:15 PM - Moscone West 2018 In this panel discussion, Oracle experts, customers, and partners share their experiences in upgrading to the latest release of Oracle E-Business Suite, Release 12.1. The panelists cover aspects of a typical Release 12 upgrade, technical (upgrading the technical infrastructure) as well as functional (upgrading to the new financial infrastructure). Hear directly from the experts who either develop the product or support, implement, or upgrade it, and find out how to apply their lessons learned to your organization. CON9027 - Personalize and Extend Oracle E-Business Suite Applications with Rich MashupsGustavo Jimenez, Padmaprabodh Ambale, Oracle Wednesday, Oct 3, 1:15 PM - 2:15 PM - Moscone West 2016 This session covers the use of several Oracle Fusion Middleware technologies to personalize and extend your existing Oracle E-Business Suite applications. The Oracle Fusion Middleware technologies covered include Oracle Application Development Framework (Oracle ADF), Oracle WebCenter, Oracle Endeca applications, and Oracle Business Intelligence Enterprise Edition with Oracle E-Business Suite Oracle Application Framework applications. CON9036 - Advanced Oracle E-Business Suite Architectures: Maximum Availability, Security, and MoreElke Phelps, Oracle Wednesday, Oct 3, 3:30 PM - 4:30 PM - Moscone West 2016 This session includes architecture diagrams and configuration instructions for building a maximum availability architecture (MAA) that will help you design a disaster recovery solution that fits the needs of your business. Database and application high-availability features it describes include Oracle Data Guard, Oracle Real Application Clusters (Oracle RAC), Oracle Active Data Guard, load-balancing Web and forms services, parallel concurrent processing, and the use of Oracle Exalogic and Oracle Exadata to provide a highly available environment. The session also covers the latest updates to systems management tools, AutoConfig, cloud computing, virtualization, and Oracle WebLogic Server and provides sneak previews of upcoming functionality. CON9047 - Efficiently Scaling Oracle E-Business Suite on Oracle Exadata and Oracle ExalogicIsam Alyousfi, Nishit Rao, Oracle Wednesday, Oct 3, 5:00 PM - 6:00 PM - Moscone West 2016 Oracle Exadata and Oracle Exalogic are designed from the ground up with optimizations in software and hardware to deliver superfast performance for mission-critical applications such as Oracle E-Business Suite. Oracle E-Business Suite applications run three to eight times as fast on the Oracle Exadata/Oracle Exalogic platform in standard benchmark tests. Besides performance, customers benefit from simplified support, enhanced manageability, and the ability to consolidate multiple Oracle E-Business Suite instances. Attend this session to understand best practices for Oracle E-Business Suite deployment on Oracle Exalogic and Oracle Exadata through customer case studies. Learn how adopting the Exa* platform increases efficiency, simplifies scaling, and boosts performance for peak loads. CON8716 - Web Services and SOA Integration Options for Oracle E-Business SuiteRekha Ayothi, Veshaal Singh, Oracle Thursday, Oct 4, 11:15 AM - 12:15 PM - Moscone West 2016 This Oracle development session provides a deep dive into a subset of the Web services and SOA-related integration options available to Oracle E-Business Suite systems integrators. It offers a technical look at Oracle E-Business Suite Integrated SOA Gateway, Oracle SOA Suite, Oracle Application Adapters for Data Integration for Oracle E-Business Suite, and other Web services options for integrating Oracle E-Business Suite with other applications. Systems integrators and developers will get an overview of the latest integration capabilities and technologies available out of the box with Oracle E-Business Suite and possibly a sneak preview of upcoming functionality and features. CON9030 - Recommendations for Oracle E-Business Suite Performance TuningIsam Alyousfi, Samer Barakat, Oracle Thursday, Oct 4, 11:15 AM - 12:15 PM - Moscone West 2018 Need to squeeze more performance out of your existing servers? This packed Oracle development session summarizes practical tips and lessons learned from performance-tuning and benchmarking the world’s largest Oracle E-Business Suite environments. Apps sysadmins will learn concrete tips and techniques for identifying and resolving performance bottlenecks on all layers, with special attention to application- and database-tier servers. Learn about tuning Oracle Forms, Oracle Concurrent Manager, Apache, and Oracle Discoverer. Track down memory leaks and other issues at the Java and JVM layers. The session also covers Oracle E-Business Suite product-level tuning, including Oracle Workflow, Oracle Order Management, Oracle Payroll, and other modules. CON3429 - Using Oracle ADF with Oracle E-Business Suite: The Full Integration ViewSiva Puthurkattil, Lake County; Juan Camilo Ruiz, Sara Woodhull, Oracle Thursday, Oct 4, 11:15 AM - 12:15 PM - Moscone West 3003 Oracle E-Business Suite delivers functionality for handling the core business of your organization. However, user requirements and new technologies are driving an emerging need to implement new types of user interfaces for these applications. This session provides an overview of how to use Oracle Application Development Framework (Oracle ADF) to deliver cutting-edge Web 2.0 and mobile rich user interfaces that front existing Oracle E-Business Suite processes, and it also explores all the existing types of integration between the two worlds. CON9020 - Integrating Oracle E-Business Suite with Oracle Identity Management SolutionsSunil Ghosh, Elke Phelps, Oracle Thursday, Oct 4, 12:45 PM - 1:45 PM - Moscone West 2016 Need to integrate Oracle E-Business Suite with Microsoft Windows Kerberos, Active Directory, CA Netegrity SiteMinder, or other third-party authentication systems? Want to understand your options when Oracle Premier Support for Oracle Single Sign-On ends in December 2011? This Oracle Development session covers the latest certified integrations with Oracle Access Manager 11g and Oracle Internet Directory 11g, which can be used individually or as bridges for integrating with third-party authentication solutions. The session presents an architectural overview of how Oracle Access Manager, its WebGate and AccessGate components, and Oracle Internet Directory work together, with implications for Oracle Discoverer, Oracle Portal, and other Oracle Fusion identity management products. CON9019 - Troubleshooting, Diagnosing, and Optimizing Oracle E-Business Suite TechnologyGustavo Jimenez, Oracle Thursday, Oct 4, 2:15 PM - 3:15 PM - Moscone West 2016 This session covers how you can proactively diagnose Oracle E-Business Suite applications, including extensions built with Oracle Fusion Middleware technologies such as Oracle Application Development Framework (Oracle ADF) and Oracle WebCenter to catch potential issues in the middle tier before they become more serious. Topics include debugging, logging infrastructure, warning signs, performance tuning, information required when logging service requests, general JVM optimization, and an overall picture of all the moving parts that make it possible for Oracle E-Business Suite to isolate and fix problems. Also learn how Oracle Diagnostics Framework will help prevent downtime caused by failures. CON9031 - The Top 10 Things You Can Do to Secure Your Oracle E-Business Suite InstanceEric Bing, Erik Graversen, Oracle Thursday, Oct 4, 2:15 PM - 3:15 PM - Moscone West 2018 Learn the top 10 things you can do to secure your applications and your sensitive data. This Oracle development session for system administrators and security professionals explores some of the most important and overlooked things you can do to secure your Oracle E-Business Suite instance. It also covers data masking and other mechanisms for protecting sensitive data. Special Interest Groups (SIG) Some of our most senior staff have been invited to participate on the following SIG meetings as guest speakers: SIG10525 - OAUG - Archive & Purge SIGBrian Bent - Pre-Sales Engineer, TierData, Inc. Sunday, Sep 30, 10:30 AM - 12:00 PM - Moscone West 3011 The Archive and Purge SIG is an organization in which users can share their experiences and solicit functional and technical advice on archiving and purging data in Oracle E-Business Suite. This session provides an opportunity for users to network and share best practices, tips, and tricks. Guest: Oracle E-Business Suite Database Performance, Archive & Purging - Q&A SessionIsam Alyousfi, Senior Director, Applications Performance, Oracle SIG10547 - OAUG - Oracle E-Business (EBS) Applications Technology SIGSrini Chavali - IT Director, Cummins Inc Sunday, Sep 30, 10:30 AM - 12:00 PM - Moscone West 3018 The general purpose of the EBS Applications Technology SIG is to inform and educate its members about current and future components of the tech stack as they relate to Oracle E-Business Suite. Attend this meeting for networking and education and to share best practices. Guest: Oracle E-Business Suite Technology Certification Roadmap - Presentation and Q&ASteven Chan, Sr. Director, Applications Technology Group, Oracle SIG10559 - OAUG - User Management SIGSusan Behn - VP of Oracle Delivery, Infosemantics, Inc. Sunday, Sep 30, 10:30 AM - 12:00 PM - Moscone West 3024 The E-Business Suite User Management SIG focuses on the components of user management that enable Oracle E-Business Suite users to define administrative functions and manage users’ access to functions and data based on roles within an organization—rather than the user’s individual identity—which is referred to as role-based access control (RBAC). This meeting includes an introduction to Oracle User Management that covers the Oracle User Management building blocks and presents an example of creating a security policy.Guest: Security and User Management - Q&A SessionEric Bing, Sr. Director, EBS Security, OracleSara Woodhull, Principal Product Manager, Applications Technology Group, Oracle SIG10515 - OAUG – Upgrade SIGBarbara Matthews - Consultant, On Call DBASandra Vucinic, VLAD Group, Inc. Sunday, Sep 30, 12:00 PM - 2:00 PM - Moscone West 3009 This Upgrade SIG session starts with a business meeting and then features a Q&A panel discussion on Oracle E-Business Suite upgrade topics. The session• Reviews Upgrade SIG goals and objectives• Provides answers, during the Q&A session, to questions related to Oracle E-Business Suite upgrades• Shares “real world” experiences, tips, and techniques for Oracle E-Business Suite upgrades to Release 12.1. Guest: Oracle E-Business Suite Upgrade - Q&A SessionAnne Carlson - Sr. Director, Oracle E-Business Suite Product Strategy, OracleUdayan Parvate - Director, EBS Release Engineering, OracleSuzana Ferrari, Sr. Principal Consultant, OracleIsam Alyousfi, Sr. Director, Applications Performance, Oracle SIG10552 - OAUG - Oracle E-Business Suite SIGDonna Rosentrater - Manager, Global Sourcing & Procurement Systems, TJX Sunday, Sep 30, 12:15 PM - 1:45 PM - Moscone West 3020 The E-Business Suite SIG, affiliated with OAUG, supports Oracle E-Business Suite users through networking, education, and sharing of best practices. This SIG meeting will feature a general discussion of Oracle E-Business Suite product strategies in Release 12 and migration to Oracle Fusion Applications. Guest: Oracle E-Business Suite - Q&A SessionJeanne Lowell, Vice President, EBS Product Strategy, OracleNadia Bendjedou, Sr. Director, Product Strategy, Oracle SIG10556 - OAUG - SysAdmin SIGRandy Giefer - Sr Systems and Security Architect, Solution Beacon, LLC Sunday, Sep 30, 12:15 PM - 1:45 PM - Moscone West 3022 The SysAdmin SIG provides a forum in which OAUG members and participants can share updates, tips, and successful practices relating to system administration in an Oracle applications environment. The SysAdmin SIG strives to enable system administrators to become more effective and efficient in their jobs by providing them with access to people and information that can increase their system administration knowledge and experience. Attend this meeting to network, share best practices, and benefit from educational content. Guest: Oracle E-Business Suite 12.2 Online Patching- Presentation and Q&AKevin Hudson, Sr. Director, Applications Technology Group, Oracle SIG10553 - OAUG - Database SIGMichael Brown - Senior DBA, COLIBRI LTD LC Sunday, Sep 30, 2:00 PM - 3:15 PM - Moscone West 3020 The OAUG Database SIG provides an opportunity for applications database administrators to learn from and share their experiences with supporting the various Oracle applications environments. This session will include a brief business meeting followed by a short presentation. It will end with an open discussion among the attendees about items of interest to those present. Guest: Oracle E-Business Suite Database Performance - Presentation and Q&AIsam Alyousfi, Sr. Director, Applications Performance, Oracle Meet the Experts We're planning two round-table discussions where you can review your questions with senior E-Business Suite ATG staff: MTE9648 - Meet the Experts for Oracle E-Business Suite: Planning Your Upgrade Jeanne Lowell - VP, EBS Product Strategy, Oracle John Abraham - Sr. Principal Product Manager, Oracle Nadia Bendjedou - Sr. Director - Product Strategy, Oracle Anne Carlson - Sr. Director, Applications Technology Group, Oracle Udayan Parvate - Director, EBS Release Engineering, Oracle Isam Alyousfi, Sr. Director, Applications Performance, Oracle Monday, Oct 1, 3:15 PM - 4:15 PM - Moscone West 2001A Don’t miss this Oracle Applications Meet the Experts session with experts who specialize in Oracle E-Business Suite upgrade best practices. This is the place where attendees can have informal and semistructured but open one-on-one discussions with Strategy and Development regarding Oracle Applications strategy and your specific business and IT strategy. The experts will be available to discuss the value of the latest releases and share insights into the best path for your enterprise, so come ready with your questions. Space is limited, so make sure you register. MTE9649 - Meet the Oracle E-Business Suite Tools and Technology Experts Lisa Parekh - Vice President, Technology Integration, Oracle Steven Chan - Sr. Director, Oracle Elke Phelps - Sr. Principal Product Manager, Applications Technology Group, Oracle Max Arderius - Manager, Applications Technology Group, Oracle Tuesday, Oct 2, 1:15 PM - 2:15 PM - Moscone West 2001A Don’t miss this Oracle Applications Meet the Experts session with experts who specialize in Oracle E-Business Suite technology. This is the place where attendees can have informal and semistructured but open one-on-one discussions with Strategy and Development regarding Oracle Applications strategy and your specific business and IT strategy. The experts will be available to discuss the value of the latest releases and share insights into the best path for your enterprise, so come ready with your questions. Space is limited, so make sure you register. Demos We have five booths in the exhibition demogrounds this year, where you can try ATG technologies firsthand and get your questions answered. Please stop by and meet our staff at the following locations: Advanced Architecture and Technology Stack for Oracle E-Business Suite (W-067) New User Productivity Capabilities in Oracle E-Business Suite (W-065) End-to-End Management of Oracle E-Business Suite (W-063) Oracle E-Business Suite 12.1 Technical Upgrade Best Practices (W-066) SOA-Based Integration for Oracle E-Business Suite (W-064)

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Guidance: A Branching strategy for Scrum Teams

    - by Martin Hinshelwood
    Having a good branching strategy will save your bacon, or at least your code. Be careful when deviating from your branching strategy because if you do, you may be worse off than when you started! This is one possible branching strategy for Scrum teams and I will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even assess your Scrum knowledge by having a go at the Scrum Open Assessment. You can also read SSW’s Rules to Better Scrum using TFS which have been developed during our own Scrum implementations. Acknowledgements Bill Heys – Bill offered some good feedback on this post and helped soften the language. Note: Bill is a VS ALM Ranger and co-wrote the Branching Guidance for TFS 2010 Willy-Peter Schaub – Willy-Peter is an ex Visual Studio ALM MVP turned blue badge and has been involved in most of the guidance including the Branching Guidance for TFS 2010 Chris Birmele – Chris wrote some of the early TFS Branching and Merging Guidance. Dr Paul Neumeyer, Ph.D Parallel Processes, ScrumMaster and SSW Solution Architect – Paul wanted to have feature branches coming from the release branch as well. We agreed that this is really a spin-off that needs own project, backlog, budget and Team. Scenario: A product is developed RTM 1.0 is released and gets great sales.  Extra features are demanded but the new version will have double to price to pay to recover costs, work is approved by the guys with budget and a few sprints later RTM 2.0 is released.  Sales a very low due to the pricing strategy. There are lots of clients on RTM 1.0 calling out for patches. As I keep getting Reverse Integration and Forward Integration mixed up and Bill keeps slapping my wrists I thought I should have a reminder: You still seemed to use reverse and/or forward integration in the wrong context. I would recommend reviewing your document at the end to ensure that it agrees with the common understanding of these terms merge (forward integration) from parent to child (same direction as the branch), and merge  (reverse integration) from child to parent (the reverse direction of the branch). - one of my many slaps on the wrist from Bill Heys.   As I mentioned previously we are using a single feature branching strategy in our current project. The single biggest mistake developers make is developing against the “Main” or “Trunk” line. This ultimately leads to messy code as things are added and never finished. Your only alternative is to NEVER check in unless your code is 100%, but this does not work in practice, even with a single developer. Your ADD will kick in and your half-finished code will be finished enough to pass the build and the tests. You do use builds don’t you? Sadly, this is a very common scenario and I have had people argue that branching merely adds complexity. Then again I have seen the other side of the universe ... branching  structures from he... We should somehow convince everyone that there is a happy between no-branching and too-much-branching. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   A key benefit of branching for development is to isolate changes from the stable Main branch. Branching adds sanity more than it adds complexity. We do try to stress in our guidance that it is important to justify a branch, by doing a cost benefit analysis. The primary cost is the effort to do merges and resolve conflicts. A key benefit is that you have a stable code base in Main and accept changes into Main only after they pass quality gates, etc. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft The second biggest mistake developers make is branching anything other than the WHOLE “Main” line. If you branch parts of your code and not others it gets out of sync and can make integration a nightmare. You should have your Source, Assets, Build scripts deployment scripts and dependencies inside the “Main” folder and branch the whole thing. Some departments within MSFT even go as far as to add the environments used to develop the product in there as well; although I would not recommend that unless you have a massive SQL cluster to house your source code. We tried the “add environment” back in South-Africa and while it was “phenomenal”, especially when having to switch between environments, the disk storage and processing requirements killed us. We opted for virtualization to skin this cat of keeping a ready-to-go environment handy. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   I think people often think that you should have separate branches for separate environments (e.g. Dev, Test, Integration Test, QA, etc.). I prefer to think of deploying to environments (such as from Main to QA) rather than branching for QA). - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   You can read about SSW’s Rules to better Source Control for some additional information on what Source Control to use and how to use it. There are also a number of branching Anti-Patterns that should be avoided at all costs: You know you are on the wrong track if you experience one or more of the following symptoms in your development environment: Merge Paranoia—avoiding merging at all cost, usually because of a fear of the consequences. Merge Mania—spending too much time merging software assets instead of developing them. Big Bang Merge—deferring branch merging to the end of the development effort and attempting to merge all branches simultaneously. Never-Ending Merge—continuous merging activity because there is always more to merge. Wrong-Way Merge—merging a software asset version with an earlier version. Branch Mania—creating many branches for no apparent reason. Cascading Branches—branching but never merging back to the main line. Mysterious Branches—branching for no apparent reason. Temporary Branches—branching for changing reasons, so the branch becomes a permanent temporary workspace. Volatile Branches—branching with unstable software assets shared by other branches or merged into another branch. Note   Branches are volatile most of the time while they exist as independent branches. That is the point of having them. The difference is that you should not share or merge branches while they are in an unstable state. Development Freeze—stopping all development activities while branching, merging, and building new base lines. Berlin Wall—using branches to divide the development team members, instead of dividing the work they are performing. -Branching and Merging Primer by Chris Birmele - Developer Tools Technical Specialist at Microsoft Pty Ltd in Australia   In fact, this can result in a merge exercise no-one wants to be involved in, merging hundreds of thousands of change sets and trying to get a consolidated build. Again, we need to find a happy medium. - Willy-Peter Schaub on Merge Paranoia Merge conflicts are generally the result of making changes to the same file in both the target and source branch. If you create merge conflicts, you will eventually need to resolve them. Often the resolution is manual. Merging more frequently allows you to resolve these conflicts close to when they happen, making the resolution clearer. Waiting weeks or months to resolve them, the Big Bang approach, means you are more likely to resolve conflicts incorrectly. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Main line, this is where your stable code lives and where any build has known entities, always passes and has a happy test that passes as well? Many development projects consist of, a single “Main” line of source and artifacts. This is good; at least there is source control . There are however a couple of issues that need to be considered. What happens if: you and your team are working on a new set of features and the customer wants a change to his current version? you are working on two features and the customer decides to abandon one of them? you have two teams working on different feature sets and their changes start interfering with each other? I just use labels instead of branches? That's a lot of “what if’s”, but there is a simple way of preventing this. Branching… In TFS, labels are not immutable. This does not mean they are not useful. But labels do not provide a very good development isolation mechanism. Branching allows separate code sets to evolve separately (e.g. Current with hotfixes, and vNext with new development). I don’t see how labels work here. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Creating a single feature branch means you can isolate the development work on that branch.   Its standard practice for large projects with lots of developers to use Feature branching and you can check the Branching Guidance for the latest recommendations from the Visual Studio ALM Rangers for other methods. In the diagram above you can see my recommendation for branching when using Scrum development with TFS 2010. It consists of a single Sprint branch to contain all the changes for the current sprint. The main branch has the permissions changes so contributors to the project can only Branch and Merge with “Main”. This will prevent accidental check-ins or checkouts of the “Main” line that would contaminate the code. The developers continue to develop on sprint one until the completion of the sprint. Note: In the real world, starting a new Greenfield project, this process starts at Sprint 2 as at the start of Sprint 1 you would have artifacts in version control and no need for isolation.   Figure: Once the sprint is complete the Sprint 1 code can then be merged back into the Main line. There are always good practices to follow, and one is to always do a Forward Integration from Main into Sprint 1 before you do a Reverse Integration from Sprint 1 back into Main. In this case it may seem superfluous, but this builds good muscle memory into your developer’s work ethic and means that no bad habits are learned that would interfere with additional Scrum Teams being added to the Product. The process of completing your sprint development: The Team completes their work according to their definition of done. Merge from “Main” into “Sprint1” (Forward Integration) Stabilize your code with any changes coming from other Scrum Teams working on the same product. If you have one Scrum Team this should be quick, but there may have been bug fixes in the Release branches. (we will talk about release branches later) Merge from “Sprint1” into “Main” to commit your changes. (Reverse Integration) Check-in Delete the Sprint1 branch Note: The Sprint 1 branch is no longer required as its useful life has been concluded. Check-in Done But you are not yet done with the Sprint. The goal in Scrum is to have a “potentially shippable product” at the end of every Sprint, and we do not have that yet, we only have finished code.   Figure: With Sprint 1 merged you can create a Release branch and run your final packaging and testing In 99% of all projects I have been involved in or watched, a “shippable product” only happens towards the end of the overall lifecycle, especially when sprints are short. The in-between releases are great demonstration releases, but not shippable. Perhaps it comes from my 80’s brain washing that we only ship when we reach the agreed quality and business feature bar. - Willy-Peter Schaub, VS ALM Ranger, Microsoft Although you should have been testing and packaging your code all the way through your Sprint 1 development, preferably using an automated process, you still need to test and package with stable unchanging code. This is where you do what at SSW we call a “Test Please”. This is first an internal test of the product to make sure it meets the needs of the customer and you generally use a resource external to your Team. Then a “Test Please” is conducted with the Product Owner to make sure he is happy with the output. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: If you find a deviation from the expected result you fix it on the Release branch. If during your final testing or your “Test Please” you find there are issues or bugs then you should fix them on the release branch. If you can’t fix them within the time box of your Sprint, then you will need to create a Bug and put it onto the backlog for prioritization by the Product owner. Make sure you leave plenty of time between your merge from the development branch to find and fix any problems that are uncovered. This process is commonly called Stabilization and should always be conducted once you have completed all of your User Stories and integrated all of your branches. Even once you have stabilized and released, you should not delete the release branch as you would with the Sprint branch. It has a usefulness for servicing that may extend well beyond the limited life you expect of it. Note: Don't get forced by the business into adding features into a Release branch instead that indicates the unspoken requirement is that they are asking for a product spin-off. In this case you can create a new Team Project and branch from the required Release branch to create a new Main branch for that product. And you create a whole new backlog to work from.   Figure: When the Team decides it is happy with the product you can create a RTM branch. Once you have fixed all the bugs you can, and added any you can’t to the Product Backlog, and you Team is happy with the result you can create a Release. This would consist of doing the final Build and Packaging it up ready for your Sprint Review meeting. You would then create a read-only branch that represents the code you “shipped”. This is really an Audit trail branch that is optional, but is good practice. You could use a Label, but Labels are not Auditable and if a dispute was raised by the customer you can produce a verifiable version of the source code for an independent party to check. Rare I know, but you do not want to be at the wrong end of a legal battle. Like the Release branch the RTM branch should never be deleted, or only deleted according to your companies legal policy, which in the UK is usually 7 years.   Figure: If you have made any changes in the Release you will need to merge back up to Main in order to finalise the changes. Nothing is really ever done until it is in Main. The same rules apply when merging any fixes in the Release branch back into Main and you should do a reverse merge before a forward merge, again for the muscle memory more than necessity at this stage. Your Sprint is now nearly complete, and you can have a Sprint Review meeting knowing that you have made every effort and taken every precaution to protect your customer’s investment. Note: In order to really achieve protection for both you and your client you would add Automated Builds, Automated Tests, Automated Acceptance tests, Acceptance test tracking, Unit Tests, Load tests, Web test and all the other good engineering practices that help produce reliable software.     Figure: After the Sprint Planning meeting the process begins again. Where the Sprint Review and Retrospective meetings mark the end of the Sprint, the Sprint Planning meeting marks the beginning. After you have completed your Sprint Planning and you know what you are trying to achieve in Sprint 2 you can create your new Branch to develop in. How do we handle a bug(s) in production that can’t wait? Although in Scrum the only work done should be on the backlog there should be a little buffer added to the Sprint Planning for contingencies. One of these contingencies is a bug in the current release that can’t wait for the Sprint to finish. But how do you handle that? Willy-Peter Schaub asked an excellent question on the release activities: In reality Sprint 2 starts when sprint 1 ends + weekend. Should we not cater for a possible parallelism between Sprint 2 and the release activities of sprint 1? It would introduce FI’s from main to sprint 2, I guess. Your “Figure: Merging print 2 back into Main.” covers, what I tend to believe to be reality in most cases. - Willy-Peter Schaub, VS ALM Ranger, Microsoft I agree, and if you have a single Scrum team then your resources are limited. The Scrum Team is responsible for packaging and release, so at least one run at stabilization, package and release should be included in the Sprint time box. If more are needed on the current production release during the Sprint 2 time box then resource needs to be pulled from Sprint 2. The Product Owner and the Team have four choices (in order of disruption/cost): Backlog: Add the bug to the backlog and fix it in the next Sprint Buffer Time: Use any buffer time included in the current Sprint to fix the bug quickly Make time: Remove a Story from the current Sprint that is of equal value to the time lost fixing the bug(s) and releasing. Note: The Team must agree that it can still meet the Sprint Goal. Cancel Sprint: Cancel the sprint and concentrate all resource on fixing the bug(s) Note: This can be a very costly if the current sprint has already had a lot of work completed as it will be lost. The choice will depend on the complexity and severity of the bug(s) and both the Product Owner and the Team need to agree. In this case we will go with option #2 or #3 as they are uncomplicated but severe bugs. Figure: Real world issue where a bug needs fixed in the current release. If the bug(s) is urgent enough then then your only option is to fix it in place. You can edit the release branch to find and fix the bug, hopefully creating a test so it can’t happen again. Follow the prior process and conduct an internal and customer “Test Please” before releasing. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: After you have fixed the bug you need to ship again. You then need to again create an RTM branch to hold the version of the code you released in escrow.   Figure: Main is now out of sync with your Release. We now need to get these new changes back up into the Main branch. Do a reverse and then forward merge again to get the new code into Main. But what about the branch, are developers not working on Sprint 2? Does Sprint 2 now have changes that are not in Main and Main now have changes that are not in Sprint 2? Well, yes… and this is part of the hit you take doing branching. But would this scenario even have been possible without branching?   Figure: Getting the changes in Main into Sprint 2 is very important. The Team now needs to do a Forward Integration merge into their Sprint and resolve any conflicts that occur. Maybe the bug has already been fixed in Sprint 2, maybe the bug no longer exists! This needs to be identified and resolved by the developers before they continue to get further out of Sync with Main. Note: Avoid the “Big bang merge” at all costs.   Figure: Merging Sprint 2 back into Main, the Forward Integration, and R0 terminates. Sprint 2 now merges (Reverse Integration) back into Main following the procedures we have already established.   Figure: The logical conclusion. This then allows the creation of the next release. By now you should be getting the big picture and hopefully you learned something useful from this post. I know I have enjoyed writing it as I find these exploratory posts coupled with real world experience really help harden my understanding.  Branching is a tool; it is not a silver bullet. Don’t over use it, and avoid “Anti-Patterns” where possible. Although the diagram above looks complicated I hope showing you how it is formed simplifies it as much as possible.   Technorati Tags: Branching,Scrum,VS ALM,TFS 2010,VS2010

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Node.js Adventure - Host Node.js on Windows Azure Worker Role

    - by Shaun
    In my previous post I demonstrated about how to develop and deploy a Node.js application on Windows Azure Web Site (a.k.a. WAWS). WAWS is a new feature in Windows Azure platform. Since it’s low-cost, and it provides IIS and IISNode components so that we can host our Node.js application though Git, FTP and WebMatrix without any configuration and component installation. But sometimes we need to use the Windows Azure Cloud Service (a.k.a. WACS) and host our Node.js on worker role. Below are some benefits of using worker role. - WAWS leverages IIS and IISNode to host Node.js application, which runs in x86 WOW mode. It reduces the performance comparing with x64 in some cases. - WACS worker role does not need IIS, hence there’s no restriction of IIS, such as 8000 concurrent requests limitation. - WACS provides more flexibility and controls to the developers. For example, we can RDP to the virtual machines of our worker role instances. - WACS provides the service configuration features which can be changed when the role is running. - WACS provides more scaling capability than WAWS. In WAWS we can have at most 3 reserved instances per web site while in WACS we can have up to 20 instances in a subscription. - Since when using WACS worker role we starts the node by ourselves in a process, we can control the input, output and error stream. We can also control the version of Node.js.   Run Node.js in Worker Role Node.js can be started by just having its execution file. This means in Windows Azure, we can have a worker role with the “node.exe” and the Node.js source files, then start it in Run method of the worker role entry class. Let’s create a new windows azure project in Visual Studio and add a new worker role. Since we need our worker role execute the “node.exe” with our application code we need to add the “node.exe” into our project. Right click on the worker role project and add an existing item. By default the Node.js will be installed in the “Program Files\nodejs” folder so we can navigate there and add the “node.exe”. Then we need to create the entry code of Node.js. In WAWS the entry file must be named “server.js”, which is because it’s hosted by IIS and IISNode and IISNode only accept “server.js”. But here as we control everything we can choose any files as the entry code. For example, I created a new JavaScript file named “index.js” in project root. Since we created a C# Windows Azure project we cannot create a JavaScript file from the context menu “Add new item”. We have to create a text file, and then rename it to JavaScript extension. After we added these two files we should set their “Copy to Output Directory” property to “Copy Always”, or “Copy if Newer”. Otherwise they will not be involved in the package when deployed. Let’s paste a very simple Node.js code in the “index.js” as below. As you can see I created a web server listening at port 12345. 1: var http = require("http"); 2: var port = 12345; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then we need to start “node.exe” with this file when our worker role was started. This can be done in its Run method. I found the Node.js and entry JavaScript file name, and then create a new process to run it. Our worker role will wait for the process to be exited. If everything is OK once our web server was opened the process will be there listening for incoming requests, and should not be terminated. The code in worker role would be like this. 1: public override void Run() 2: { 3: // This is a sample worker implementation. Replace with your logic. 4: Trace.WriteLine("NodejsHost entry point called", "Information"); 5:  6: // retrieve the node.exe and entry node.js source code file name. 7: var node = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot\node.exe"); 8: var js = "index.js"; 9:  10: // prepare the process starting of node.exe 11: var info = new ProcessStartInfo(node, js) 12: { 13: CreateNoWindow = false, 14: ErrorDialog = true, 15: WindowStyle = ProcessWindowStyle.Normal, 16: UseShellExecute = false, 17: WorkingDirectory = Environment.ExpandEnvironmentVariables(@"%RoleRoot%\approot") 18: }; 19: Trace.WriteLine(string.Format("{0} {1}", node, js), "Information"); 20:  21: // start the node.exe with entry code and wait for exit 22: var process = Process.Start(info); 23: process.WaitForExit(); 24: } Then we can run it locally. In the computer emulator UI the worker role started and it executed the Node.js, then Node.js windows appeared. Open the browser to verify the website hosted by our worker role. Next let’s deploy it to azure. But we need some additional steps. First, we need to create an input endpoint. By default there’s no endpoint defined in a worker role. So we will open the role property window in Visual Studio, create a new input TCP endpoint to the port we want our website to use. In this case I will use 80. Even though we created a web server we should add a TCP endpoint of the worker role, since Node.js always listen on TCP instead of HTTP. And then changed the “index.js”, let our web server listen on 80. 1: var http = require("http"); 2: var port = 80; 3:  4: http.createServer(function (req, res) { 5: res.writeHead(200, { "Content-Type": "text/plain" }); 6: res.end("Hello World\n"); 7: }).listen(port); 8:  9: console.log("Server running at port %d", port); Then publish it to Windows Azure. And then in browser we can see our Node.js website was running on WACS worker role. We may encounter an error if we tried to run our Node.js website on 80 port at local emulator. This is because the compute emulator registered 80 and map the 80 endpoint to 81. But our Node.js cannot detect this operation. So when it tried to listen on 80 it will failed since 80 have been used.   Use NPM Modules When we are using WAWS to host Node.js, we can simply install modules we need, and then just publish or upload all files to WAWS. But if we are using WACS worker role, we have to do some extra steps to make the modules work. Assuming that we plan to use “express” in our application. Firstly of all we should download and install this module through NPM command. But after the install finished, they are just in the disk but not included in the worker role project. If we deploy the worker role right now the module will not be packaged and uploaded to azure. Hence we need to add them to the project. On solution explorer window click the “Show all files” button, select the “node_modules” folder and in the context menu select “Include In Project”. But that not enough. We also need to make all files in this module to “Copy always” or “Copy if newer”, so that they can be uploaded to azure with the “node.exe” and “index.js”. This is painful step since there might be many files in a module. So I created a small tool which can update a C# project file, make its all items as “Copy always”. The code is very simple. 1: static void Main(string[] args) 2: { 3: if (args.Length < 1) 4: { 5: Console.WriteLine("Usage: copyallalways [project file]"); 6: return; 7: } 8:  9: var proj = args[0]; 10: File.Copy(proj, string.Format("{0}.bak", proj)); 11:  12: var xml = new XmlDocument(); 13: xml.Load(proj); 14: var nsManager = new XmlNamespaceManager(xml.NameTable); 15: nsManager.AddNamespace("pf", "http://schemas.microsoft.com/developer/msbuild/2003"); 16:  17: // add the output setting to copy always 18: var contentNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:Content", nsManager); 19: UpdateNodes(contentNodes, xml, nsManager); 20: var noneNodes = xml.SelectNodes("//pf:Project/pf:ItemGroup/pf:None", nsManager); 21: UpdateNodes(noneNodes, xml, nsManager); 22: xml.Save(proj); 23:  24: // remove the namespace attributes 25: var content = xml.InnerXml.Replace("<CopyToOutputDirectory xmlns=\"\">", "<CopyToOutputDirectory>"); 26: xml.LoadXml(content); 27: xml.Save(proj); 28: } 29:  30: static void UpdateNodes(XmlNodeList nodes, XmlDocument xml, XmlNamespaceManager nsManager) 31: { 32: foreach (XmlNode node in nodes) 33: { 34: var copyToOutputDirectoryNode = node.SelectSingleNode("pf:CopyToOutputDirectory", nsManager); 35: if (copyToOutputDirectoryNode == null) 36: { 37: var n = xml.CreateNode(XmlNodeType.Element, "CopyToOutputDirectory", null); 38: n.InnerText = "Always"; 39: node.AppendChild(n); 40: } 41: else 42: { 43: if (string.Compare(copyToOutputDirectoryNode.InnerText, "Always", true) != 0) 44: { 45: copyToOutputDirectoryNode.InnerText = "Always"; 46: } 47: } 48: } 49: } Please be careful when use this tool. I created only for demo so do not use it directly in a production environment. Unload the worker role project, execute this tool with the worker role project file name as the command line argument, it will set all items as “Copy always”. Then reload this worker role project. Now let’s change the “index.js” to use express. 1: var express = require("express"); 2: var app = express(); 3:  4: var port = 80; 5:  6: app.configure(function () { 7: }); 8:  9: app.get("/", function (req, res) { 10: res.send("Hello Node.js!"); 11: }); 12:  13: app.get("/User/:id", function (req, res) { 14: var id = req.params.id; 15: res.json({ 16: "id": id, 17: "name": "user " + id, 18: "company": "IGT" 19: }); 20: }); 21:  22: app.listen(port); Finally let’s publish it and have a look in browser.   Use Windows Azure SQL Database We can use Windows Azure SQL Database (a.k.a. WACD) from Node.js as well on worker role hosting. Since we can control the version of Node.js, here we can use x64 version of “node-sqlserver” now. This is better than if we host Node.js on WAWS since it only support x86. Just install the “node-sqlserver” module from NPM, copy the “sqlserver.node” from “Build\Release” folder to “Lib” folder. Include them in worker role project and run my tool to make them to “Copy always”. Finally update the “index.js” to use WASD. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:{SERVER NAME}.database.windows.net,1433;Database={DATABASE NAME};Uid={LOGIN}@{SERVER NAME};Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Publish to azure and now we can see our Node.js is working with WASD through x64 version “node-sqlserver”.   Summary In this post I demonstrated how to host our Node.js in Windows Azure Cloud Service worker role. By using worker role we can control the version of Node.js, as well as the entry code. And it’s possible to do some pre jobs before the Node.js application started. It also removed the IIS and IISNode limitation. I personally recommended to use worker role as our Node.js hosting. But there are some problem if you use the approach I mentioned here. The first one is, we need to set all JavaScript files and module files as “Copy always” or “Copy if newer” manually. The second one is, in this way we cannot retrieve the cloud service configuration information. For example, we defined the endpoint in worker role property but we also specified the listening port in Node.js hardcoded. It should be changed that our Node.js can retrieve the endpoint. But I can tell you it won’t be working here. In the next post I will describe another way to execute the “node.exe” and Node.js application, so that we can get the cloud service configuration in Node.js. I will also demonstrate how to use Windows Azure Storage from Node.js by using the Windows Azure Node.js SDK.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

  • Metro: Using Templates

    - by Stephen.Walther
    The goal of this blog post is to describe how templates work in the WinJS library. In particular, you learn how to use a template to display both a single item and an array of items. You also learn how to load a template from an external file. Why use Templates? Imagine that you want to display a list of products in a page. The following code is bad: var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productsHTML = ""; for (var i = 0; i < products.length; i++) { productsHTML += "<h1>Product Details</h1>" + "<div>Product Name: " + products[i].name + "</div>" + "<div>Product Price: " + products[i].price + "</div>"; } document.getElementById("productContainer").innerHTML = productsHTML; In the code above, an array of products is displayed by creating a for..next loop which loops through each element in the array. A string which represents a list of products is built through concatenation. The code above is a designer’s nightmare. You cannot modify the appearance of the list of products without modifying the JavaScript code. A much better approach is to use a template like this: <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> A template is simply a fragment of HTML that contains placeholders. Instead of displaying a list of products by concatenating together a string, you can render a template for each product. Creating a Simple Template Let’s start by using a template to render a single product. The following HTML page contains a template and a placeholder for rendering the template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> In the page above, the template is defined in a DIV element with the id productTemplate. The contents of the productTemplate are not displayed when the page is opened in the browser. The contents of a template are automatically hidden when you convert the productTemplate into a template in your JavaScript code. Notice that the template uses data-win-bind attributes to display the product name and price properties. You can use both data-win-bind and data-win-bindsource attributes within a template. To learn more about these attributes, see my earlier blog post on WinJS data binding: http://stephenwalther.com/blog/archive/2012/02/26/windows-web-applications-declarative-data-binding.aspx The page above also includes a DIV element named productContainer. The rendered template is added to this element. Here’s the code for the default.js script which creates and renders the template: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000 }; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); productTemplate.render(product, document.getElementById("productContainer")); } }; app.start(); })(); In the code above, a single product object is created with the following line of code: var product = { name: "Tesla", price: 80000 }; Next, the productTemplate element from the page is converted into an actual WinJS template with the following line of code: var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); The template is rendered to the templateContainer element with the following line of code: productTemplate.render(product, document.getElementById("productContainer")); The result of this work is that the product details are displayed: Notice that you do not need to call WinJS.Binding.processAll(). The Template render() method takes care of the binding for you. Displaying an Array in a Template If you want to display an array of products using a template then you simply need to create a for..next loop and iterate through the array calling the Template render() method for each element. (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); After each product in the array is rendered with the template, the result is appended to the productContainer element. No changes need to be made to the HTML page discussed in the previous section to display an array of products instead of a single product. The same product template can be used in both scenarios. Rendering an HTML TABLE with a Template When using the WinJS library, you create a template by creating an HTML element in your page. One drawback to this approach of creating templates is that your templates are part of your HTML page. In order for your HTML page to validate, the HTML within your templates must also validate. This means, for example, that you cannot enclose a single HTML table row within a template. The following HTML is invalid because you cannot place a TR element directly within the body of an HTML document:   <!-- Product Template --> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> This template won’t validate because, in a valid HTML5 document, a TR element must appear within a THEAD or TBODY element. Instead, you must create the entire TABLE element in the template. The following HTML page illustrates how you can create a template which contains a TR element: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> <!-- Place where Product Template is Rendered --> <table> <thead> <tr> <th>Name</th><th>Price</th> </tr> </thead> <tbody id="productContainer"> </tbody> </table> </body> </html>   In the HTML page above, the product template includes TABLE and TBODY elements: <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> We discard these elements when we render the template. The only reason that we include the TABLE and THEAD elements in the template is to make the HTML page validate as valid HTML5 markup. Notice that the productContainer (the target of the template) in the page above is a TBODY element. We want to add the rows rendered by the template to the TBODY element in the page. The productTemplate is rendered in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); } } }; app.start(); })(); When the product template is rendered, the TR element is extracted from the rendered template by using the WinJS.Utilities.query() method. Next, only the TR element is added to the productContainer: productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); I discuss the WinJS.Utilities.query() method in depth in a previous blog entry: http://stephenwalther.com/blog/archive/2012/02/23/windows-web-applications-query-selectors.aspx When everything gets rendered, the products are displayed in an HTML table: You can see the actual HTML rendered by looking at the Visual Studio DOM Explorer window:   Loading an External Template Instead of embedding a template in an HTML page, you can place your template in an external HTML file. It makes sense to create a template in an external file when you need to use the same template in multiple pages. For example, you might need to use the same product template in multiple pages in your application. The following HTML page does not contain a template. It only contains a container that will act as a target for the rendered template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> The template is contained in a separate file located at the path /templates/productTemplate.html:   Here’s the contents of the productTemplate.html file: <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> Notice that the template file only contains the template and not the standard opening and closing HTML elements. It is an HTML fragment. If you prefer, you can include all of the standard opening and closing HTML elements in your external template – these elements get stripped away automatically: <html> <head><title>product template</title></head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> Either approach – using a fragment or using a full HTML document  — works fine. Finally, the following default.js file loads the external template, renders the template for each product, and appends the result to the product container: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(null, { href: "/templates/productTemplate.html" }); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); The path to the external template is passed to the constructor for the Template class as one of the options: var productTemplate = new WinJS.Binding.Template(null, {href:"/templates/productTemplate.html"}); When a template is contained in a page then you use the first parameter of the WinJS.Binding.Template constructor to represent the template – instead of null, you pass the element which contains the template. When a template is located in an external file, you pass the href for the file as part of the second parameter for the WinJS.Binding.Template constructor. Summary The goal of this blog entry was to describe how you can use WinJS templates to render either a single item or an array of items to a page. We also explored two advanced topics. You learned how to render an HTML table by extracting the TR element from a template. You also learned how to place a template in an external file.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Using TPL and PLINQ to raise performance of feed aggregator

    - by DigiMortal
    In this posting I will show you how to use Task Parallel Library (TPL) and PLINQ features to boost performance of simple RSS-feed aggregator. I will use here only very basic .NET classes that almost every developer starts from when learning parallel programming. Of course, we will also measure how every optimization affects performance of feed aggregator. Feed aggregator Our feed aggregator works as follows: Load list of blogs Download RSS-feed Parse feed XML Add new posts to database Our feed aggregator is run by task scheduler after every 15 minutes by example. We will start our journey with serial implementation of feed aggregator. Second step is to use task parallelism and parallelize feeds downloading and parsing. And our last step is to use data parallelism to parallelize database operations. We will use Stopwatch class to measure how much time it takes for aggregator to download and insert all posts from all registered blogs. After every run we empty posts table in database. Serial aggregation Before doing parallel stuff let’s take a look at serial implementation of feed aggregator. All tasks happen one after other. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();           for (var index = 0; index <blogs.Count; index++)         {              ImportFeed(blogs[index]);         }     }       private void ImportFeed(BlogDto blog)     {         if(blog == null)             return;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                 }       private void ImportRssFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = RssFeed.Create(uri);           foreach (var item in feed.Channel.Items)         {             SaveRssFeedItem(item, blog.Id, blog.CreatedById);         }     }       private void ImportAtomFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           foreach (var item in feed.Entries)         {             SaveAtomFeedEntry(item, blog.Id, blog.CreatedById);         }     } } Serial implementation of feed aggregator downloads and inserts all posts with 25.46 seconds. Task parallelism Task parallelism means that separate tasks are run in parallel. You can find out more about task parallelism from MSDN page Task Parallelism (Task Parallel Library) and Wikipedia page Task parallelism. Although finding parts of code that can run safely in parallel without synchronization issues is not easy task we are lucky this time. Feeds import and parsing is perfect candidate for parallel tasks. We can safely parallelize feeds import because importing tasks doesn’t share any resources and therefore they don’t also need any synchronization. After getting the list of blogs we iterate through the collection and start new TPL task for each blog feed aggregation. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();                var tasks = new Task[blogs.Count];           for (var index = 0; index <blogs.Count; index++)         {             tasks[index] = new Task(ImportFeed, blogs[index]);             tasks[index].Start();         }           Task.WaitAll(tasks);     }       private void ImportFeed(object blogObject)     {         if(blogObject == null)             return;         var blog = (BlogDto)blogObject;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                }       private void ImportRssFeed(BlogDto blog)     {          var uri = new Uri(blog.RssUrl);          var feed = RssFeed.Create(uri);           foreach (var item in feed.Channel.Items)          {              SaveRssFeedItem(item, blog.Id, blog.CreatedById);          }     }     private void ImportAtomFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           foreach (var item in feed.Entries)         {             SaveAtomFeedEntry(item, blog.Id, blog.CreatedById);         }     } } You should notice first signs of the power of TPL. We made only minor changes to our code to parallelize blog feeds aggregating. On my machine this modification gives some performance boost – time is now 17.57 seconds. Data parallelism There is one more way how to parallelize activities. Previous section introduced task or operation based parallelism, this section introduces data based parallelism. By MSDN page Data Parallelism (Task Parallel Library) data parallelism refers to scenario in which the same operation is performed concurrently on elements in a source collection or array. In our code we have independent collections we can process in parallel – imported feed entries. As checking for feed entry existence and inserting it if it is missing from database doesn’t affect other entries the imported feed entries collection is ideal candidate for parallelization. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();                var tasks = new Task[blogs.Count];           for (var index = 0; index <blogs.Count; index++)         {             tasks[index] = new Task(ImportFeed, blogs[index]);             tasks[index].Start();         }           Task.WaitAll(tasks);     }       private void ImportFeed(object blogObject)     {         if(blogObject == null)             return;         var blog = (BlogDto)blogObject;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                }       private void ImportRssFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = RssFeed.Create(uri);           feed.Channel.Items.AsParallel().ForAll(a =>         {             SaveRssFeedItem(a, blog.Id, blog.CreatedById);         });      }        private void ImportAtomFeed(BlogDto blog)      {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           feed.Entries.AsParallel().ForAll(a =>         {              SaveAtomFeedEntry(a, blog.Id, blog.CreatedById);         });      } } We did small change again and as the result we parallelized checking and saving of feed items. This change was data centric as we applied same operation to all elements in collection. On my machine I got better performance again. Time is now 11.22 seconds. Results Let’s visualize our measurement results (numbers are given in seconds). As we can see then with task parallelism feed aggregation takes about 25% less time than in original case. When adding data parallelism to task parallelism our aggregation takes about 2.3 times less time than in original case. More about TPL and PLINQ Adding parallelism to your application can be very challenging task. You have to carefully find out parts of your code where you can safely go to parallel processing and even then you have to measure the effects of parallel processing to find out if parallel code performs better. If you are not careful then troubles you will face later are worse than ones you have seen before (imagine error that occurs by average only once per 10000 code runs). Parallel programming is something that is hard to ignore. Effective programs are able to use multiple cores of processors. Using TPL you can also set degree of parallelism so your application doesn’t use all computing cores and leaves one or more of them free for host system and other processes. And there are many more things in TPL that make it easier for you to start and go on with parallel programming. In next major version all .NET languages will have built-in support for parallel programming. There will be also new language constructs that support parallel programming. Currently you can download Visual Studio Async to get some idea about what is coming. Conclusion Parallel programming is very challenging but good tools offered by Visual Studio and .NET Framework make it way easier for us. In this posting we started with feed aggregator that imports feed items on serial mode. With two steps we parallelized feed importing and entries inserting gaining 2.3 times raise in performance. Although this number is specific to my test environment it shows clearly that parallel programming may raise the performance of your application significantly.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Installed Ubuntu 14.04LTS

    - by user291729
    On my laptop which came pre-installed with Windows 8.1. Felt I needed to see the competition for myself to establish which was a better OS. So I followed the channels to dual boot. All seemed fine and I accessed Ubuntu with no issues after selecting this from the menu to select the OS. I should add that the boot method was changed to legacy. However, since using Ubuntu, I no longer have the ability to select the OS. The laptop simply logs straight into Ubuntu. I therefore attempted to access the recovery options, only it appears the Windows 8 bootloader has somehow been corrupted as I am now told to use the Windows 8 recovery disc (which, as this was pre-installed - I do not have). Left with no other alternative, I have scoured these forums without success, and so I am hoping someone in the know (or who has experienced similar) can help. I have tried boot repair again without success. On rebooting I am only presented with a basic splash screen asking me to select Ubuntu, Memtest, Windows 8 Recovery or Windows 8 Bootloader (The bootloaders again require I insert the disc). I have tried Code: cat /boot/grub/grub.cfg df -h sudo fdisk -l cat /proc/partitions # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi if [ "${next_entry}" ] ; then set default="${next_entry}" set next_entry= save_env next_entry set boot_once=true else set default="0" fi if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=800x600 load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_GB insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ] ; then set timeout=-1 else if [ x$feature_timeout_style = xy ] ; then set timeout_style=menu set timeout=20 # Fallback normal timeout code in case the timeout_style feature is # unavailable. else set timeout=20 fi fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video gfxmode $linux_gfx_mode insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi linux /boot/vmlinuz-3.13.0-29-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro vga=789 quiet quiet splash $vt_handoff initrd /boot/initrd.img-3.13.0-29-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { menuentry 'Ubuntu, with Linux 3.13.0-29-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.13.0-29-generic-advanced-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video gfxmode $linux_gfx_mode insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi echo 'Loading Linux 3.13.0-29-generic ...' linux /boot/vmlinuz-3.13.0-29-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro vga=789 quiet quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.13.0-29-generic } menuentry 'Ubuntu, with Linux 3.13.0-29-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.13.0-29-generic-recovery-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi echo 'Loading Linux 3.13.0-29-generic ...' linux /boot/vmlinuz-3.13.0-29-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro recovery nomodeset vga=789 quiet echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.13.0-29-generic } menuentry 'Ubuntu, with Linux 3.13.0-24-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.13.0-24-generic-advanced-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video gfxmode $linux_gfx_mode insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi echo 'Loading Linux 3.13.0-24-generic ...' linux /boot/vmlinuz-3.13.0-24-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro vga=789 quiet quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.13.0-24-generic } menuentry 'Ubuntu, with Linux 3.13.0-24-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.13.0-24-generic-recovery-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi echo 'Loading Linux 3.13.0-24-generic ...' linux /boot/vmlinuz-3.13.0-24-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro recovery nomodeset vga=789 quiet echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.13.0-24-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry 'Memory test (memtest86+)' { insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi knetbsd /boot/memtest86+.elf } menuentry 'Memory test (memtest86+, serial console 115200)' { insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry 'Windows Recovery Environment (loader) (on /dev/sda2)' --class windows --class os $menuentry_id_option 'osprober-chain-7A6A69D66A698FA5' { insmod part_gpt insmod ntfs set root='hd0,gpt2' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt2 --hint-efi=hd0,gpt2 --hint-baremetal=ahci0,gpt2 7A6A69D66A698FA5 else search --no-floppy --fs-uuid --set=root 7A6A69D66A698FA5 fi drivemap -s (hd0) ${root} chainloader +1 } menuentry 'Windows 8 (loader) (on /dev/sda3)' --class windows --class os $menuentry_id_option 'osprober-chain-8C88-80F7' { insmod part_gpt insmod fat set root='hd0,gpt3' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt3 --hint-efi=hd0,gpt3 --hint-baremetal=ahci0,gpt3 8C88-80F7 else search --no-floppy --fs-uuid --set=root 8C88-80F7 fi drivemap -s (hd0) ${root} chainloader +1 } set timeout_style=menu if [ "${timeout}" = 0 ]; then set timeout=10 fi ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi if [ "${next_entry}" ] ; then set default="${next_entry}" set next_entry= save_env next_entry set boot_once=true else set default="0" fi if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=800x600 load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_GB insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ] ; then set timeout=-1 else if [ x$feature_timeout_style = xy ] ; then set timeout_style=menu set timeout=20 # Fallback normal timeout code in case the timeout_style feature is # unavailable. else set timeout=20 fi fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video gfxmode $linux_gfx_mode insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi linux /boot/vmlinuz-3.13.0-29-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro vga=789 quiet quiet splash $vt_handoff initrd /boot/initrd.img-3.13.0-29-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { menuentry 'Ubuntu, with Linux 3.13.0-29-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.13.0-29-generic-advanced-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video gfxmode $linux_gfx_mode insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi echo 'Loading Linux 3.13.0-29-generic ...' linux /boot/vmlinuz-3.13.0-29-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro vga=789 quiet quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.13.0-29-generic } menuentry 'Ubuntu, with Linux 3.13.0-29-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.13.0-29-generic-recovery-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi echo 'Loading Linux 3.13.0-29-generic ...' linux /boot/vmlinuz-3.13.0-29-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro recovery nomodeset vga=789 quiet echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.13.0-29-generic } menuentry 'Ubuntu, with Linux 3.13.0-24-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.13.0-24-generic-advanced-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video gfxmode $linux_gfx_mode insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi echo 'Loading Linux 3.13.0-24-generic ...' linux /boot/vmlinuz-3.13.0-24-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro vga=789 quiet quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.13.0-24-generic } menuentry 'Ubuntu, with Linux 3.13.0-24-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.13.0-24-generic-recovery-d2f10f36-e3bb-4d83-a9b8-5d456fc454ad' { recordfail load_video insmod gzio insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi echo 'Loading Linux 3.13.0-24-generic ...' linux /boot/vmlinuz-3.13.0-24-generic root=UUID=d2f10f36-e3bb-4d83-a9b8-5d456fc454ad ro recovery nomodeset vga=789 quiet echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.13.0-24-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry 'Memory test (memtest86+)' { insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi knetbsd /boot/memtest86+.elf } menuentry 'Memory test (memtest86+, serial console 115200)' { insmod part_gpt insmod ext2 set root='hd0,gpt9' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt9 --hint-efi=hd0,gpt9 --hint-baremetal=ahci0,gpt9 d2f10f36-e3bb-4d83-a9b8-5d456fc454ad else search --no-floppy --fs-uuid --set=root d2f10f36-e3bb-4d83-a9b8-5d456fc454ad fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry 'Windows Recovery Environment (loader) (on /dev/sda2)' --class windows --class os $menuentry_id_option 'osprober-chain-7A6A69D66A698FA5' { insmod part_gpt insmod ntfs set root='hd0,gpt2' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt2 --hint-efi=hd0,gpt2 --hint-baremetal=ahci0,gpt2 7A6A69D66A698FA5 else search --no-floppy --fs-uuid --set=root 7A6A69D66A698FA5 fi drivemap -s (hd0) ${root} chainloader +1 } menuentry 'Windows 8 (loader) (on /dev/sda3)' --class windows --class os $menuentry_id_option 'osprober-chain-8C88-80F7' { insmod part_gpt insmod fat set root='hd0,gpt3' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt3 --hint-efi=hd0,gpt3 --hint-baremetal=ahci0,gpt3 8C88-80F7 else search --no-floppy --fs-uuid --set=root 8C88-80F7 fi drivemap -s (hd0) ${root} chainloader +1 } set timeout_style=menu if [ "${timeout}" = 0 ]; then set timeout=10 fi ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### john@john-SVE1713Y1EB:~$ ^C john@john-SVE1713Y1EB:~$ ^C john@john-SVE1713Y1EB:~$ df -h Filesystem Size Used Avail Use% Mounted on /dev/sda9 84G 7.1G 73G 9% / none 4.0K 0 4.0K 0% /sys/fs/cgroup udev 3.9G 4.0K 3.9G 1% /dev tmpfs 794M 1.4M 793M 1% /run none 5.0M 0 5.0M 0% /run/lock none 3.9G 80K 3.9G 1% /run/shm none 100M 52K 100M 1% /run/user /dev/sdc1 7.5G 2.2G 5.4G 29% /media/john/DYLANMUSIC /dev/sr0 964M 964M 0 100% /media/john/Ubuntu 14.04 LTS amd64 /dev/sdb1 1.9T 892G 972G 48% /media/john/Storage Main WARNING: GPT (GUID Partition Table) detected on '/dev/sda'! The util fdisk doesn't support GPT. Use GNU Parted. Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x4e2ccf75 Device Boot Start End Blocks Id System /dev/sda1 1 1953525167 976762583+ ee GPT Partition 1 does not start on physical sector boundary. Disk /dev/sdc: 8011 MB, 8011120640 bytes 41 heads, 41 sectors/track, 9307 cylinders, total 15646720 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xc3072e18 Device Boot Start End Blocks Id System /dev/sdc1 8064 15646719 7819328 b W95 FAT32 Disk /dev/sdb: 2000.4 GB, 2000398934016 bytes 255 heads, 63 sectors/track, 243201 cylinders, total 3907029168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xc7d968ff Device Boot Start End Blocks Id System /dev/sdb1 64 3907029119 1953514528 7 HPFS/NTFS/exFAT major minor #blocks name 8 0 976762584 sda 8 1 266240 sda1 8 2 1509376 sda2 8 3 266240 sda3 8 4 131072 sda4 8 5 841012780 sda5 8 6 358400 sda6 8 7 35376128 sda7 8 8 1024 sda8 8 9 89501696 sda9 8 10 8337408 sda10 11 0 987136 sr0 8 32 7823360 sdc 8 33 7819328 sdc1 8 16 1953514584 sdb 8 17 1953514528 sdb1 I am no expert on this and I'm at a loss as how to correct this without having to re-format everything and reinstall Windows 8. However, if I'm to try using Ubuntu again then there is the risk this problem may come back. Again, I did not do anything manually - the installer did everything (with the exception of changing the boot to Legacy to allow the booting of another bootloader). LiveCD works but doesn't give me the options that I've seen here and as mentioned earlier, only boot recovery only gives me the options as mentioned earlier. Also this fails to load via USB (possibly because HDD comes before USB in the boot order?). Being used to a Windows environment, the Ubuntu (and Linux) environment is a dive at a less than comfortable depth at present (but one I fully intend to get to grips with - especially the commands being more common via Terminal). I very much appreciate the help with this guys.

    Read the article

  • Issue 15: Oracle Exadata Marketing Campaigns

    - by rituchhibber
         PARTNER FOCUS Oracle ExadataMarketing Campaign Steve McNickleVP Europe, cVidya Steve McNickle is VP Europe for cVidya, an innovative provider of revenue intelligence solutions for telecom, media and entertainment service providers including AT&T, BT, Deutsche Telecom and Vodafone. The company's product portfolio helps operators and service providers maximise margins, improve customer experience and optimise ecosystem relationships through revenue assurance, fraud and security management, sales performance management, pricing analytics, and inter-carrier services. cVidya has partnered with Oracle for more than a decade. RESOURCES -- Oracle PartnerNetwork (OPN) Oracle Exastack Program Oracle Exastack Optimized Oracle Exastack Labs and Enablement Resources Oracle Engineered Systems Oracle Communications cVidya SUBSCRIBE FEEDBACK PREVIOUS ISSUES Are you ready for Oracle OpenWorld this October? -- -- Please could you tell us a little about cVidya's partnering history with Oracle, and expand on your Oracle Exastack accreditations? "cVidya was established just over ten years ago and we've had a strong relationship with Oracle almost since the very beginning. Through our Revenue Intelligence work with some of the world's largest service providers we collect tremendous amounts of information, amounting to billions of records per day. We help our clients to collect, store and analyse that data to ensure that their end customers are getting the best levels of service, are billed correctly, and are happy that they are on the correct price plan. We have been an Oracle Gold level partner for seven years, and crucially just two months ago we were also accredited as Oracle Exastack Optimized for MoneyMap, our core Revenue Assurance solution. Very soon we also expect to be Oracle Exastack Optimized DRMap, our Data Retention solution." What unique capabilities and customer benefits does Oracle Exastack add to your applications? "Oracle Exastack enables us to deliver radical benefits to our customers. A typical mobile operator in the UK might handle between 500 million and two billion call data record details daily. Each transaction needs to be validated, billed correctly and fraud checked. Because of the enormous volumes involved, our clients demand scalable infrastructure that allows them to efficiently acquire, store and process all that data within controlled cost, space and environmental constraints. We have proved that the Oracle Exadata system can process data up to seven times faster and load it as much as 20 times faster than other standard best-of-breed server approaches. With the Oracle Exadata Database Machine they can reduce their datacentre equipment from say, the six or seven cabinets that they needed in the past, down to just one. This dramatic simplification delivers incredible value to the customer by cutting down enormously on all of their significant cost, space, energy, cooling and maintenance overheads." "The Oracle Exastack Program has given our clients the ability to switch their focus from reactive to proactive. Traditionally they may have spent 80 percent of their day processing, and just 20 percent enabling end customers to see advanced analytics, and avoiding issues before they occur. With our solutions and Oracle Exadata they can now switch that balance around entirely, resulting not only in reduced revenue leakage, but a far higher focus on proactive leakage prevention. How has the Oracle Exastack Program transformed your customer business? "We can already see the impact. Oracle solutions allow our delivery teams to achieve successful deployments, happy customers and self-satisfaction, and the power of Oracle's Exa solutions is easy to measure in terms of their transformational ability. We gained our first sale into a major European telco by demonstrating the major performance gains that would transform their business. Clients can measure the ease of organisational change, the early prevention of business issues, the reduction in manpower required to provide protection and coverage across all their products and services, plus of course end customer satisfaction. If customers know that that service is provided accurately and that their bills are calculated correctly, then over time this satisfaction can be attributed to revenue intelligence and the underlying systems which provide it. Combine this with the further integration we have with the other layers of the Oracle stack, including the telecommunications offerings such as NCC, OCDM and BRM, and the result is even greater customer value—not to mention the increased speed to market and the reduced project risk." What does the Oracle Exastack community bring to cVidya, both in terms of general benefits, and also tangible new opportunities and partnerships? "A great deal. We have participated in the Oracle Exastack community heavily over the past year, and have had lots of meetings with Oracle and our peers around the globe. It brings us into contact with like-minded, innovative partners, who like us are not happy to just stand still and want to take fresh technology to their customer base in order to gain enhanced value. We identified three new partnerships in each of two recent meetings, and hope these will open up new opportunities, not only in areas that exactly match where we operate today, but also in some new associative areas that will expand our reach into new business sectors. Notably, thanks to the Exastack community we were invited on stage at last year's Oracle OpenWorld conference. Appearing so publically with Oracle senior VP Judson Althoff elevated awareness and visibility of cVidya and has enabled us to participate in a number of other events with Oracle over the past eight months. We've been involved in speaking opportunities, forums and exhibitions, providing us with invaluable opportunities that we wouldn't otherwise have got close to." How has Exastack differentiated cVidya as an ISV, and helped you to evolve your business to the next level? "When we are selling to our core customer base of Tier 1 telecommunications providers, we know that they want more than just software. They want an enduring partnership that will last many years, they want innovation, and a forward thinking partner who knows how to guide them on where they need to be to meet market demand three, five or seven years down the line. Membership of respected global bodies, such as the Telemanagement Forum enables us to lead standard adherence in our area of business, giving us a lot of credibility, but Oracle is also involved in this forum with its own telecommunications portfolio, strengthening our position still further. When we approach CEOs, CTOs and CIOs at the very largest Tier 1 operators, not only can we easily show them that our technology is fantastic, we can also talk about our strong partnership with Oracle, and our joint embracing of today's standards and tomorrow's innovation." Where would you like cVidya to be in one year's time? "We want to get all of our relevant products Oracle Exastack Optimized. Our MoneyMap Revenue Assurance solution is already Exastack Optimised, our DRMAP Data Retention Solution should be Exastack Optimised within the next month, and our FraudView Fraud Management solution within the next two to three months. We'd then like to extend our Oracle accreditation out to include other members of the Oracle Engineered Systems family. We are moving into the 'Big Data' space, and so we're obviously very keen to work closely with Oracle to conduct pilots, map new technologies onto Oracle Big Data platforms, and embrace and measure the benefits of other Oracle systems, namely Oracle Exalogic Elastic Cloud, the Oracle Exalytics In-Memory Machine and the Oracle SPARC SuperCluster. We would also like to examine how the Oracle Database Appliance might benefit our Tier 2 service provider customers. Finally, we'd also like to continue working with the Oracle Communications Global Business Unit (CGBU), furthering our integration with Oracle billing products so that we are able to quickly deploy fraud solutions into Oracle's Engineered System stack, give operational benefits to our clients that are pre-integrated, more cost-effective, and can be rapidly deployed rapidly and producing benefits in three months, not nine months." Chris Baker ,Senior Vice President, Oracle Worldwide ISV-OEM-Java Sales Chris Baker is the Global Head of ISV/OEM Sales responsible for working with ISV/OEM partners to maximise Oracle's business through those partners, whilst maximising those partners' business to their end users. Chris works with partners, customers, innovators, investors and employees to develop innovative business solutions using Oracle products, services and skills. Firstly, could you please explain Oracle's current strategy for ISV partners, globally and in EMEA? "Oracle customers use independent software vendor (ISV) applications to run their businesses. They use them to generate revenue and to fulfil obligations to their own customers. Our strategy is very straight-forward. We want all of our ISV partners and OEMs to concentrate on the things that they do the best – building applications to meet the unique industry and functional requirements of their customer. We want to ensure that we deliver a best in class application platform so the ISV is free to concentrate their effort on their application functionality and user experience We invest over four billion dollars in research and development every year, and we want our ISVs to benefit from all of that investment in operating systems, virtualisation, databases, middleware, engineered systems, and other hardware. By doing this, we help them to reduce their costs, gain more consistency and agility for quicker implementations, and also rapidly differentiate themselves from other application vendors. It's all about simplification because we believe that around 25 to 30 percent of the development costs incurred by many ISVs are caused by customising infrastructure and have nothing to do with their applications. Our strategy is to enable our ISV partners to standardise their application platform using engineered architecture, so they can write once to the Oracle stack and deploy seamlessly in the cloud, on-premise, or in hybrid deployments. It's really important that architecture is the same in order to keep cost and time overheads at a minimum, so we provide standardisation and an environment that enables our ISVs to concentrate on the core business that makes them the most money and brings them success." How do you believe this strategy is helping the ISVs to work hand-in-hand with Oracle to ensure that end customers get the industry-leading solutions that they need? "We work with our ISVs not just to help them be successful, but also to help them market themselves. We have something called the 'Oracle Exastack Ready Program', which enables ISVs to publicise themselves as 'Ready' to run the core software platforms that run on Oracle's engineered systems including Exadata and Exalogic. So, for example, they can become 'Database Ready' which means that they use the latest version of Oracle Database and therefore can run their application without modification on Exadata or the Oracle Database Appliance. Alternatively, they can become WebLogic Ready, Oracle Linux Ready and Oracle Solaris Ready which means they run on the latest release and therefore can run their application, with no new porting work, on Oracle Exalogic. Those 'Ready' logos are important in helping ISVs advertise to their customers that they are using the latest technologies which have been fully tested. We now also have Exadata Ready and Exalogic Ready programmes which allow ISVs to promote the certification of their applications on these platforms. This highlights these partners to Oracle customers as having solutions that run fluently on the Oracle Exadata Database Machine, the Oracle Exalogic Elastic Cloud or one of our other engineered systems. This makes it easy for customers to identify solutions and provides ISVs with an avenue to connect with Oracle customers who are rapidly adopting engineered systems. We have also taken this programme to the next level in the shape of 'Oracle Exastack Optimized' for partners whose applications run best on the Oracle stack and have invested the time to fully optimise application performance. We ensure that Exastack Optimized partner status is promoted and supported by press releases, and we help our ISVs go to market and differentiate themselves through the use our technology and the standardisation it delivers. To date we have had several hundred organisations successfully work through our Exastack Optimized programme." How does Oracle's strategy of offering pre-integrated open platform software and hardware allow ISVs to bring their products to market more quickly? "One of the problems for many ISVs is that they have to think very carefully about the technology on which their solutions will be deployed, particularly in the cloud or hosted environments. They have to think hard about how they secure these environments, whether the concern is, for example, middleware, identity management, or securing personal data. If they don't use the technology that we build-in to our products to help them to fulfil these roles, they then have to build it themselves. This takes time, requires testing, and must be maintained. By taking advantage of our technology, partners will now know that they have a standard platform. They will know that they can confidently talk about implementation being the same every time they do it. Very large ISV applications could once take a year or two to be implemented at an on-premise environment. But it wasn't just the configuration of the application that took the time, it was actually the infrastructure - the different hardware configurations, operating systems and configurations of databases and middleware. Now we strongly believe that it's all about standardisation and repeatability. It's about making sure that our partners can do it once and are then able to roll it out many different times using standard componentry." What actions would you recommend for existing ISV partners that are looking to do more business with Oracle and its customer base, not only to maximise benefits, but also to maximise partner relationships? "My team, around the world and in the EMEA region, is available and ready to talk to any of our ISVs and to explore the possibilities together. We run programmes like 'Excite' and 'Insight' to help us to understand how we can help ISVs with architecture and widen their environments. But we also want to work with, and look at, new opportunities - for example, the Machine-to-Machine (M2M) market or 'The Internet of Things'. Over the next few years, many millions, indeed billions of devices will be collecting massive amounts of data and communicating it back to the central systems where ISVs will be running their applications. The only way that our partners will be able to provide a single vendor 'end-to-end' solution is to use Oracle integrated systems at the back end and Java on the 'smart' devices collecting the data – a complete solution from device to data centre. So there are huge opportunities to work closely with our ISVs, using Oracle's complete M2M platform, to provide the infrastructure that enables them to extract maximum value from the data collected. If any partners don't know where to start or who to contact, then they can contact me directly at [email protected] or indeed any of our teams across the EMEA region. We want to work with ISVs to help them to be as successful as they possibly can through simplification and speed to market, and we also want all of the top ISVs in the world based on Oracle." What opportunities are immediately opened to new ISV partners joining the OPN? "As you know OPN is very, very important. New members will discover a huge amount of content that instantly becomes accessible to them. They can access a wealth of no-cost training and enablement materials to build their expertise in Oracle technology. They can download Oracle software and use it for development projects. They can help themselves become more competent by becoming part of a true community and uncovering new opportunities by working with Oracle and their peers in the Oracle Partner Network. As well as publishing massive amounts of information on OPN, we also hold our global Oracle OpenWorld event, at which partners play a huge role. This takes place at the end of September and the beginning of October in San Francisco. Attending ISV partners have an unrivalled opportunity to contribute to elements such as the OpenWorld / OPN Exchange, at which they can talk to other partners and really begin thinking about how they can move their businesses on and play key roles in a very large ecosystem which revolves around technology and standardisation." Finally, are there any other messages that you would like to share with the Oracle ISV community? "The crucial message that I always like to reinforce is architecture, architecture and architecture! The key opportunities that ISVs have today revolve around standardising their architectures so that they can confidently think: “I will I be able to do exactly the same thing whenever a customer is looking to deploy on-premise, hosted or in the cloud”. The right architecture is critical to being competitive and to really start changing the game. We want to help our ISV partners to do just that; to establish standard architecture and to seize the opportunities it opens up for them. New market opportunities like M2M are enormous - just look at how many devices are all around you right now. We can help our partners to interface with these devices more effectively while thinking about their entire ecosystem, rather than just the piece that they have traditionally focused upon. With standardised architecture, we can help people dramatically improve their speed, reach, agility and delivery of enhanced customer satisfaction and value all the way from the Java side to their centralised systems. All Oracle ISV partners must take advantage of these opportunities, which is why Oracle will continue to invest in and support them." -- Gergely Strbik is Oracle Hardware and Software Product Manager for Avnet in Hungary. Avnet Technology Solutions is an OracleValue Added Distributor focused on the development of the existing Oracle channel. This includes the recruitment and enablement of Oracle partners as well as driving deeper adoption of Oracle's technology and application products within the IT channel. "The main business benefits of ODA for our customers and partners are scalability, flexibility, a great price point for the high performance delivered, and the easily configurable embedded Linux operating system. People welcome a lower point of entry and the ability to grow capacity on demand as their business expands." "Marketing and selling the ODA requires another way of thinking because it is an appliance. We have to transform the ways in which our partners and customers think from buying hardware and software independently to buying complete solutions. Successful early adopters and satisfied customer reactions will certainly help us to sell the ODA. We will have more experience with the product after the first deliveries and installations—end users need to see the power and benefits for themselves." "Our typical ODA customers will be those looking for complete solutions from a single reseller partner who is also able to manage the appliance. They will have enjoyed using Oracle Database but now want a new product that is able to unlock new levels of performance. A higher proportion of potential customers will come from our existing Oracle base, with around 30% from new business, but we intend to evangelise the ODA on the market to see how we can change this balance as all our customers adjust to the concept of 'Hardware and Software, Engineered to Work Together'. -- Back to the welcome page

    Read the article

  • iPhone SDK vs. Windows Phone 7 Series SDK Challenge, Part 2: MoveMe

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. If youre seeing this series for the first time, check out Part 1: Hello World. A note on methodologyin the prior post there was some feedback about lines of code not being a very good metric for this exercise.  I dont really disagree, theres a lot more to this than lines of code but I believe that is a relevant metric, even if its not the ultimate one.  And theres no perfect answer here.  So I am going to continue to report the number of lines of code that I, as a developer would need to write in these apps as a data point, and Ill leave it up to the reader to determine how that fits in with overall complexity, etc.  The first example was so basic that I think it was difficult to talk about in real terms.  I think that as these apps get more complex, the subjective differences in concept count and will be more important.  MoveMe The MoveMe app is the main end-to-end app writing example in the iPhone SDK, called Creating an iPhone Application.  This application demonstrates a few concepts, including handling touch input, how to do animations, and how to do some basic transforms. The behavior of the application is pretty simple.  User touches the button: The button does a throb type animation where it scales up and then back down briefly. User drags the button: After a touch begins, moving the touch point will drag the button around with the touch. User lets go of the button: The button animates back to its original position, but does a few small bounces as it reaches its original point, which makes the app fun and gives it an extra bit of interactivity. Now, how would I write an app that meets this spec for Windows Phone 7 Series, and how hard would it be?  Lets find out!     Implementing the UI Okay, lets build the UI for this application.  In the HelloWorld example, we did all the UI design in Visual Studio and/or by hand in XAML.  In this example, were going to use the Expression Blend 4 Beta. You might be wondering when to use Visual Studio, when to use Blend, and when to do XAML by hand.  Different people will have different takes on this, but heres mine: XAML by hand simple UI that doesnt contain animations, gradients, etc., and or UI that I want to really optimize and craft when I know exactly what I want to do. Visual Studio Basic UI layout, property setting, data binding, etc. Blend Any serious design work needs to be done in Blend, including animations, handling states and transitions, styling and templating, editing resources. As in Part 1, go ahead and fire up Visual Studio 2010 Express for Windows Phone (yes, soon it will take longer to say the name of our products than to start them up!), and create a new Windows Phone Application.  As in Part 1, clear out the XAML from the designer.  An easy way to do this is to just: Click on the design surface Hit Control+A Hit Delete Theres a little bit left over (the Grid.RowDefinitions element), just go ahead and delete that element so were starting with a clean state of only one outer Grid element. To use Blend, we need to save this project.  See, when you create a project with Visual Studio Express, it doesnt commit it to the disk (well, in a place where you can find it, at least) until you actually save the project.  This is handy if youre doing some fooling around, because it doesnt clutter your disk with WindowsPhoneApplication23-like directories.  But its also kind of dangerous, since when you close VS, if you dont save the projectits all gone.  Yes, this has bitten me since I was saving files and didnt remember that, so be careful to save the project/solution via Save All, at least once. So, save and note the location on disk.  Start Expression Blend 4 Beta, and chose File > Open Project/Solution, and load your project.  You should see just about the same thing you saw over in VS: a blank, black designer surface. Now, thinking about this application, we dont really need a button, even though it looks like one.  We never click it.  So were just going to create a visual and use that.  This is also true in the iPhone example above, where the visual is actually not a button either but a jpg image with a nice gradient and round edges.  Well do something simple here that looks pretty good. In Blend, look in the tool pane on the left for the icon that looks like the below (the highlighted one on the left), and hold it down to get the popout menu, and choose Border:    Okay, now draw out a box in the middle of the design surface of about 300x100.  The Properties Pane to the left should show the properties for this item. First, lets make it more visible by giving it a border brush.  Set the BorderBrush to white by clicking BorderBrush and dragging the color selector all the way to the upper right in the palette.  Then, down a bit farther, make the BorderThickness 4 all the way around, and the CornerRadius set to 6. In the Layout section, do the following to Width, Height, Horizontal and Vertical Alignment, and Margin (all 4 margin values): Youll see the outline now is in the middle of the design surface.  Now lets give it a background color.  Above BorderBrush select Background, and click the third tab over: Gradient Brush.  Youll see a gradient slider at the bottom, and if you click the markers, you can edit the gradient stops individually (or add more).  In this case, you can select something you like, but wheres what I chose: Left stop: #BFACCFE2 (I just picked a spot on the palette and set opacity to 75%, no magic here, feel free to fiddle these or just enter these numbers into the hex area and be done with it) Right stop: #FF3E738F Okay, looks pretty good.  Finally set the name of the element in the Name field at the top of the Properties pane to welcome. Now lets add some text.  Just hit T and itll select the TextBlock tool automatically: Now draw out some are inside our welcome visual and type Welcome!, then click on the design surface (to exit text entry mode) and hit V to go back into selection mode (or the top item in the tool pane that looks like a mouse pointer).  Click on the text again to select it in the tool pane.  Just like the border, we want to center this.  So set HorizontalAlignment and VerticalAlignment to Center, and clear the Margins: Thats it for the UI.  Heres how it looks, on the design surface: Not bad!  Okay, now the fun part Adding Animations Using Blend to build animations is a lot of fun, and its easy.  In XAML, I can not only declare elements and visuals, but also I can declare animations that will affect those visuals.  These are called Storyboards. To recap, well be doing two animations: The throb animation when the element is touched The center animation when the element is released after being dragged. The throb animation is just a scale transform, so well do that first.  In the Objects and Timeline Pane (left side, bottom half), click the little + icon to add a new Storyboard called touchStoryboard: The timeline view will appear.  In there, click a bit to the right of 0 to create a keyframe at .2 seconds: Now, click on our welcome element (the Border, not the TextBlock in it), and scroll to the bottom of the Properties Pane.  Open up Transform, click the third tab ("Scale), and set X and Y to 1.2: This all of this says that, at .2 seconds, I want the X and Y size of this element to scale to 1.2. In fact you can see this happen.  Push the Play arrow in the timeline view, and youll see the animation run! Lets make two tweaks.  First, we want the animation to automatically reverse so it scales up then back down nicely. Click in the dropdown that says touchStoryboard in Objects and Timeline, then in the Properties pane check Auto Reverse: Now run it again, and youll see it go both ways. Lets even make it nicer by adding an easing function. First, click on the Render Transform item in the Objects tree, then, in the Property Pane, youll see a bunch of easing functions to choose from.  Feel free to play with this, then seeing how each runs.  I chose Circle In, but some other ones are fun.  Try them out!  Elastic In is kind of fun, but well stick with Circle In.  Thats it for that animation. Now, we also want an animation to move the Border back to its original position when the user ends the touch gesture.  This is exactly the same process as above, but just targeting a different transform property. Create a new animation called releaseStoryboard Select a timeline point at 1.2 seconds. Click on the welcome Border element again Scroll to the Transforms panel at the bottom of the Properties Pane Choose the first tab (Translate), which may already be selected Set both X and Y values to 0.0 (we do this just to make the values stick, because the value is already 0 and we need Blend to know we want to save that value) Click on RenderTransform in the Objects tree In the properties pane, choose Bounce Out Set Bounces to 6, and Bounciness to 4 (feel free to play with these as well) Okay, were done. Note, if you want to test this Storyboard, you have to do something a little tricky because the final value is the same as the initial value, so playing it does nothing.  If you want to play with it, do the following: Next to the selection dropdown, hit the little "x (Close Storyboard) Go to the Translate Transform value for welcome Set X,Y to 50, 200, respectively (or whatever) Select releaseStoryboard again from the dropdown Hit play, see it run Go into the object tree and select RenderTransform to change the easing function. When youre done, hit the Close Storyboard x again and set the values in Transform/Translate back to 0 Wiring Up the Animations Okay, now go back to Visual Studio.  Youll get a prompt due to the modification of MainPage.xaml.  Hit Yes. In the designer, click on the welcome Border element.  In the Property Browser, hit the Events button, then double click each of ManipulationStarted, ManipulationDelta, ManipulationCompleted.  Youll need to flip back to the designer from code, after each double click. Its code time.  Here we go. Here, three event handlers have been created for us: welcome_ManipulationStarted: This will execute when a manipulation begins.  Think of it as MouseDown. welcome_ManipulationDelta: This executes each time a manipulation changes.  Think MouseMove. welcome_ManipulationCompleted: This will  execute when the manipulation ends. Think MouseUp. Now, in ManipuliationStarted, we want to kick off the throb animation that we called touchAnimation.  Thats easy: 1: private void welcome_ManipulationStarted(object sender, ManipulationStartedEventArgs e) 2: { 3: touchStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Likewise, when the manipulation completes, we want to re-center the welcome visual with our bounce animation: 1: private void welcome_ManipulationCompleted(object sender, ManipulationCompletedEventArgs e) 2: { 3: releaseStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Note there is actually a way to kick off these animations from Blend directly via something called Triggers, but I think its clearer to show whats going on like this.  A Trigger basically allows you to say When this event fires, trigger this Storyboard, so its the exact same logical process as above, but without the code. But how do we get the object to move?  Well, for that we really dont want an animation because we want it to respond immediately to user input. We do this by directly modifying the transform to match the offset for the manipulation, and then well let the animation bring it back to zero when the manipulation completes.  The manipulation events do a great job of keeping track of all the stuff that you usually had to do yourself when doing drags: where you started from, how far youve moved, etc. So we can easily modify the position as below: 1: private void welcome_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 2: { 3: CompositeTransform transform = (CompositeTransform)welcome.RenderTransform; 4:   5: transform.TranslateX = e.CumulativeManipulation.Translation.X; 6: transform.TranslateY = e.CumulativeManipulation.Translation.Y; 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Thats it! Go ahead and run the app in the emulator.  I suggest running without the debugger, its a little faster (CTRL+F5).  If youve got a machine that supports DirectX 10, youll see nice smooth GPU accelerated graphics, which also what it looks like on the phone, running at about 60 frames per second.  If your machine does not support DX10 (like the laptop Im writing this on!), it wont be quite a smooth so youll have to take my word for it! Comparing Against the iPhone This is an example where the flexibility and power of XAML meets the tooling of Visual Studio and Blend, and the whole experience really shines.  So, for several things that are declarative and 100% toolable with the Windows Phone 7 Series, this example does them with code on the iPhone.  In parens is the lines of code that I count to do these operations. PlacardView.m: 19 total LOC Creating the view that hosts the button-like image and the text Drawing the image that is the background of the button Drawing the Welcome text over the image (I think you could technically do this step and/or the prior one using Interface Builder) MoveMeView.m:  63 total LOC Constructing and running the scale (throb) animation (25) Constructing the path describing the animation back to center plus bounce effect (38) Beyond the code count, yy experience with doing this kind of thing in code is that its VERY time intensive.  When I was a developer back on Windows Forms, doing GDI+ drawing, we did this stuff a lot, and it took forever!  You write some code and even once you get it basically working, you see its not quite right, you go back, tweak the interval, or the math a bit, run it again, etc.  You can take a look at the iPhone code here to judge for yourself.  Scroll down to animatePlacardViewToCenter toward the bottom.  I dont think this code is terribly complicated, but its not what Id call simple and its not at all simple to get right. And then theres a few other lines of code running around for setting up the ViewController and the Views, about 15 lines between MoveMeAppDelegate, PlacardView, and MoveMeView, plus the assorted decls in the h files. Adding those up, I conservatively get something like 100 lines of code (19+63+15+decls) on iPhone that I have to write, by hand, to make this project work. The lines of code that I wrote in the examples above is 5 lines of code on Windows Phone 7 Series. In terms of incremental concept counts beyond the HelloWorld app, heres a shot at that: iPhone: Drawing Images Drawing Text Handling touch events Creating animations Scaling animations Building a path and animating along that Windows Phone 7 Series: Laying out UI in Blend Creating & testing basic animations in Blend Handling touch events Invoking animations from code This was actually the first example I tried converting, even before I did the HelloWorld, and I was pretty surprised.  Some of this is luck that this app happens to match up with the Windows Phone 7 Series platform just perfectly.  In terms of time, I wrote the above application, from scratch, in about 10 minutes.  I dont know how long it would take a very skilled iPhone developer to write MoveMe on that iPhone from scratch, but if I was to write it on Silverlight in the same way (e.g. all via code), I think it would likely take me at least an hour or two to get it all working right, maybe more if I ended up picking the wrong strategy or couldnt get the math right, etc. Making Some Tweaks Silverlight contains a feature called Projections to do a variety of 3D-like effects with a 2D surface. So lets play with that a bit. Go back to Blend and select the welcome Border in the object tree.  In its properties, scroll down to the bottom, open Transform, and see Projection at the bottom.  Set X,Y,Z to 90.  Youll see the element kind of disappear, replaced by a thin blue line. Now Create a new animation called startupStoryboard. Set its key time to .5 seconds in the timeline view Set the projection values above to 0 for X, Y, and Z. Save Go back to Visual Studio, and in the constructor, add the following bold code (lines 7-9 to the constructor: 1: public MainPage() 2: { 3: InitializeComponent(); 4:   5: SupportedOrientations = SupportedPageOrientation.Portrait; 6:   7: this.Loaded += (s, e) => 8: { 9: startupStoryboard.Begin(); 10: }; 11: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If the code above looks funny, its using something called a lambda in C#, which is an inline anonymous method.  Its just a handy shorthand for creating a handler like the manipulation ones above. So with this youll get a nice 3D looking fly in effect when the app starts up.  Here it is, in flight: Pretty cool!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • OBIA on Teradata - Part 2 Teradata DB Utilization for ETL

    - by Mohan Ramanuja
    Techniques to Monitor Queries and ETL Load CPU and Disk I/OSelect username, processor, sum(cputime), sum(diskio) from dbc.ampusage where processor ='1-0' order by 2,3 descgroup by 1,2;UserName    Vproc    Sum(CpuTime)    Sum(DiskIO)AC00916        10    6.71            24975 List Hardware ErrorsThere is a possibility that the system might have adequate disk space but out of free cylinders. In order to monitor hardware errors, the following query was used:Select * from dbc.Software_Event_Log where Text like '%restart%' order by thedate, thetime;For active users, usage of CPU and analysis of bad CPU to I/O ratiosSelect * from DBC.AMPUSAGE where username='CRMSTGC_DEV_ID';  AND SUBSTR(ACCOUNTNAME,6,3)='006'; Usage By I/OSelect AccountName, UserName, sum(CpuTime), sum(DiskIO)  from DBC.AMPUSAGE group by AccountName, UserName Order by Sum(DiskIO) desc; AccountName                       UserName                          Sum(CpuTime)  Sum(DiskIO)$M1$10062209                      AB89487                           374628.612    7821847$M1$10062210                      AB89487                           186692.244    2799412$M1$10062213                      COC_ETL_ID                        119531.068    331100426$M1$10062200                      AB63472                           118973.316    109881984$M1$10062204                      AB63472                           110825.356    94666986$M1$10062201                      AB63472                           110797.976    75016994$M1$10062202                      AC06936                           100924.448    407839702$M1$10062204                      AB67963                           0         4$M1$10062207                      AB91990                           0         2$M1$10062208                      AB63461                           0         24$M1$10062211                      AB84332                           0         6$M1$10062214                      AB65484                           0         8$M1$10062205                      AB77529                           0         58$M1$10062210                      AC04768                           0         36$M1$10062206                      AB54940                           0         22 Usage By CPUSelect AccountName, UserName, sum(CpuTime), sum(DiskIO)  from DBC.AMPUSAGE group by AccountName, UserName Order by Sum(CpuTime) desc;AccountName                       UserName                          Sum(CpuTime)  Sum(DiskIO)$M1$10062209                      AB89487                           374628.612    7821847$M1$10062210                      AB89487                           186692.244    2799412$M1$10062213                      COC_ETL_ID                        119531.068    331100426$M1$10062200                      AB63472                           118973.316    109881984$M1$10062204                      AB63472                           110825.356    94666986$M1$10062201                      AB63472                           110797.976    75016994$M2$100622105813004760047LOAD     T23_ETLPROC_ENT                   0 6$M1$10062215                      AA37720                           0     180$M1$10062209                      AB81670                           0     6Select count(distinct vproc) from dbc.ampusage;432select * from dbc.dbcinfo;AccountName     UserName     CpuTime DiskIO  CpuTimeNorm         Vproc VprocType    Model$M1$10062205                      CRM_STGC_DEV_ID                   0.32    1764    12.7423999023438    0     AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.28    1730    11.1495999145508    3     AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.304    1736    12.1052799072266    4    AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.248    1731    9.87535992431641    7    AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.332    1731    13.2202398986816    8    AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.284    1712    11.3088799133301    11   AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.24    1757    9.55679992675781    12    AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.292    1737    11.6274399108887    15   AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.268    1753    10.6717599182129    16   AMP      2580$M1$10062205                      CRM_STGC_DEV_ID                   0.276    1732    10.9903199157715    19   AMP      2580select * from dbc.dbcinfo;InfoKey    InfoDataLANGUAGE   SUPPORT           MODE    StandardRELEASE    12.00.03.03VERSION    12.00.03.01a

    Read the article

  • java.lang.ClassCastException: java.lang.Integer cannot be cast to java.util.HashMap

    - by kongkea
    I've got this Error When I click listview to show full image size. how can i solve it? Error 11-20 10:27:47.039: D/AndroidRuntime(5078): Shutting down VM 11-20 10:27:47.039: W/dalvikvm(5078): threadid=1: thread exiting with uncaught exception (group=0x40c061f8) 11-20 10:27:47.047: E/AndroidRuntime(5078): FATAL EXCEPTION: main 11-20 10:27:47.047: E/AndroidRuntime(5078): java.lang.ClassCastException: java.lang.Integer cannot be cast to java.util.HashMap 11-20 10:27:47.047: E/AndroidRuntime(5078): at com.example.mylistview.MainActivity$1.onItemClick(MainActivity.java:103) 11-20 10:27:47.047: E/AndroidRuntime(5078): at android.widget.AdapterView.performItemClick(AdapterView.java:292) 11-20 10:27:47.047: E/AndroidRuntime(5078): at android.widget.AbsListView.performItemClick(AbsListView.java:1173) 11-20 10:27:47.047: E/AndroidRuntime(5078): at android.widget.AbsListView$PerformClick.run(AbsListView.java:2701) 11-20 10:27:47.047: E/AndroidRuntime(5078): at android.widget.AbsListView$1.run(AbsListView.java:3453) 11-20 10:27:47.047: E/AndroidRuntime(5078): at android.os.Handler.handleCallback(Handler.java:605) 11-20 10:27:47.047: E/AndroidRuntime(5078): at android.os.Handler.dispatchMessage(Handler.java:92) 11-20 10:27:47.047: E/AndroidRuntime(5078): at android.os.Looper.loop(Looper.java:137) 11-20 10:27:47.047: E/AndroidRuntime(5078): at android.app.ActivityThread.main(ActivityThread.java:4514) 11-20 10:27:47.047: E/AndroidRuntime(5078): at java.lang.reflect.Method.invokeNative(Native Method) 11-20 10:27:47.047: E/AndroidRuntime(5078): at java.lang.reflect.Method.invoke(Method.java:511) 11-20 10:27:47.047: E/AndroidRuntime(5078): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:790) 11-20 10:27:47.047: E/AndroidRuntime(5078): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:557) 11-20 10:27:47.047: E/AndroidRuntime(5078): at dalvik.system.NativeStart.main(Native Method) MainActivity public class MainActivity extends Activity { public static final int DIALOG_DOWNLOAD_JSON_PROGRESS = 0; private ProgressDialog mProgressDialog; ArrayList<HashMap<String, Object>> MyArrList; @SuppressLint("NewApi") @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); // Permission StrictMode if (android.os.Build.VERSION.SDK_INT > 9) { StrictMode.ThreadPolicy policy = new StrictMode.ThreadPolicy.Builder().permitAll().build(); StrictMode.setThreadPolicy(policy); } // Download JSON File new DownloadJSONFileAsync().execute(); } @Override protected Dialog onCreateDialog(int id) { switch (id) { case DIALOG_DOWNLOAD_JSON_PROGRESS: mProgressDialog = new ProgressDialog(this); mProgressDialog.setMessage("Downloading....."); mProgressDialog.setProgressStyle(ProgressDialog.STYLE_SPINNER); mProgressDialog.setCancelable(true); mProgressDialog.show(); return mProgressDialog; default: return null; } } // Show All Content public void ShowAllContent() { // listView1 final ListView lstView1 = (ListView)findViewById(R.id.listView1); lstView1.setAdapter(new ImageAdapter(MainActivity.this,MyArrList)); lstView1.setOnItemClickListener(new OnItemClickListener() { @Override public void onItemClick(AdapterView<?> parent, View v, int position, long id) { HashMap<String, Object> hm = (HashMap<String, Object>) lstView1.getAdapter().getItem(position); String imagePath = (String) hm.get("photo"); Intent i = new Intent(MainActivity.this,FullImageActivity.class); i.putExtra("fullImage", imagePath); startActivity(i); } }); } public class ImageAdapter extends BaseAdapter { private Context context; private ArrayList<HashMap<String, Object>> MyArr = new ArrayList<HashMap<String, Object>>(); public ImageAdapter(Context c, ArrayList<HashMap<String, Object>> myArrList) { // TODO Auto-generated method stub context = c; MyArr = myArrList; } public int getCount() { // TODO Auto-generated method stub return MyArr.size(); } public Object getItem(int position) { // TODO Auto-generated method stub return position; } public long getItemId(int position) { // TODO Auto-generated method stub return position; } public View getView(int position, View convertView, ViewGroup parent) { // TODO Auto-generated method stub LayoutInflater inflater = (LayoutInflater) context .getSystemService(Context.LAYOUT_INFLATER_SERVICE); if (convertView == null) { convertView = inflater.inflate(R.layout.activity_column, null); } // ColImage ImageView imageView = (ImageView) convertView.findViewById(R.id.ColImgPath); imageView.getLayoutParams().height = 80; imageView.getLayoutParams().width = 80; imageView.setPadding(5, 5, 5, 5); imageView.setScaleType(ImageView.ScaleType.CENTER_CROP); try { imageView.setImageBitmap((Bitmap)MyArr.get(position).get("ImageThumBitmap")); } catch (Exception e) { // When Error imageView.setImageResource(android.R.drawable.ic_menu_report_image); } // ColImgID TextView txtImgID = (TextView) convertView.findViewById(R.id.ColImgID); txtImgID.setPadding(10, 0, 0, 0); txtImgID.setText("ID : " + MyArr.get(position).get("id").toString()); // ColImgName TextView txtPicName = (TextView) convertView.findViewById(R.id.ColImgName); txtPicName.setPadding(50, 0, 0, 0); txtPicName.setText("Name : " + MyArr.get(position).get("first_name").toString()); return convertView; } } // Download JSON in Background public class DownloadJSONFileAsync extends AsyncTask<String, Void, Void> { protected void onPreExecute() { super.onPreExecute(); showDialog(DIALOG_DOWNLOAD_JSON_PROGRESS); } @Override protected Void doInBackground(String... params) { // TODO Auto-generated method stub String url = "http://192.168.10.104/adchara1/"; JSONArray data; try { data = new JSONArray(getJSONUrl(url)); MyArrList = new ArrayList<HashMap<String, Object>>(); HashMap<String, Object> map; for(int i = 0; i < data.length(); i++){ JSONObject c = data.getJSONObject(i); map = new HashMap<String, Object>(); map.put("id", (String)c.getString("id")); map.put("first_name", (String)c.getString("first_name")); // Thumbnail Get ImageBitmap To Object map.put("photo", (String)c.getString("photo")); map.put("ImageThumBitmap", (Bitmap)loadBitmap(c.getString("photo"))); // Full (for View Popup) map.put("frame", (String)c.getString("frame")); MyArrList.add(map); } } catch (JSONException e) { // TODO Auto-generated catch block e.printStackTrace(); } return null; } protected void onPostExecute(Void unused) { ShowAllContent(); // When Finish Show Content dismissDialog(DIALOG_DOWNLOAD_JSON_PROGRESS); removeDialog(DIALOG_DOWNLOAD_JSON_PROGRESS); } } /*** Get JSON Code from URL ***/ public String getJSONUrl(String url) { StringBuilder str = new StringBuilder(); HttpClient client = new DefaultHttpClient(); HttpGet httpGet = new HttpGet(url); try { HttpResponse response = client.execute(httpGet); StatusLine statusLine = response.getStatusLine(); int statusCode = statusLine.getStatusCode(); if (statusCode == 200) { // Download OK HttpEntity entity = response.getEntity(); InputStream content = entity.getContent(); BufferedReader reader = new BufferedReader(new InputStreamReader(content)); String line; while ((line = reader.readLine()) != null) { str.append(line); } } else { Log.e("Log", "Failed to download file.."); } } catch (ClientProtocolException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } return str.toString(); } /***** Get Image Resource from URL (Start) *****/ private static final String TAG = "Image"; private static final int IO_BUFFER_SIZE = 4 * 1024; public static Bitmap loadBitmap(String url) { Bitmap bitmap = null; InputStream in = null; BufferedOutputStream out = null; try { in = new BufferedInputStream(new URL(url).openStream(), IO_BUFFER_SIZE); final ByteArrayOutputStream dataStream = new ByteArrayOutputStream(); out = new BufferedOutputStream(dataStream, IO_BUFFER_SIZE); copy(in, out); out.flush(); final byte[] data = dataStream.toByteArray(); BitmapFactory.Options options = new BitmapFactory.Options(); //options.inSampleSize = 1; bitmap = BitmapFactory.decodeByteArray(data, 0, data.length,options); } catch (IOException e) { Log.e(TAG, "Could not load Bitmap from: " + url); } finally { closeStream(in); closeStream(out); } return bitmap; } private static void closeStream(Closeable stream) { if (stream != null) { try { stream.close(); } catch (IOException e) { android.util.Log.e(TAG, "Could not close stream", e); } } } private static void copy(InputStream in, OutputStream out) throws IOException { byte[] b = new byte[IO_BUFFER_SIZE]; int read; while ((read = in.read(b)) != -1) { out.write(b, 0, read); } } /***** Get Image Resource from URL (End) *****/ @Override public boolean onCreateOptionsMenu(Menu menu) { getMenuInflater().inflate(R.menu.activity_main, menu); return true; } } FullImageActivity String imagePath = getIntent().getStringExtra("fullImage"); if(imagePath != null && !imagePath.isEmpty()){ File imageFile = new File(imagePath); if(imageFile.exists()){ Bitmap myBitmap = BitmapFactory.decodeFile(imageFile.getAbsolutePath()); ImageView iv = (ImageView) findViewById(R.id.fullimage); iv.setImageBitmap(myBitmap); } }

    Read the article

  • Weird vps server issue

    - by anon-user0
    I have an unmanaged linux vps Ubuntu 11.10 (Oneiric Ocelot). I have LNMP installed. Also php-fpm php-apc, varnish, memcache. I have (or rather had) several live sites on it. under normal load the server uses ~700 mb memory. But since last night its using only 20mb~ memory and a lot of the services seems to be down (according to htop) I only see nginx working and mysql starts up and goes does every few minutes on a loop. Here are some information on the server that might help you help me: root@server:~# uname -a Linux server 2.6.18-308.el5.028stab099.3 #1 SMP Wed Mar 7 15:56:00 MSK 2012 i686 i686 i386 GNU/Linux - root@server:~# ifconfig -a lo Link encap:Local Loopback LOOPBACK MTU:16436 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) venet0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:127.0.0.2 P-t-P:127.0.0.2 Bcast:0.0.0.0 Mask:255.255.255.255 UP BROADCAST POINTOPOINT RUNNING NOARP MTU:1500 Metric:1 RX packets:12515 errors:0 dropped:0 overruns:0 frame:0 TX packets:9541 errors:0 dropped:1 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:7191214 (7.1 MB) TX bytes:536726 (536.7 KB) venet0:0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:176.31.158.78 P-t-P:176.31.158.78 Bcast:0.0.0.0 Mask:255.255.255.255 UP BROADCAST POINTOPOINT RUNNING NOARP MTU:1500 Metric:1 - root@server:~# netstat -l Active Internet connections (only servers) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 0 *:http-alt *:* LISTEN tcp 0 0 *:ssh *:* LISTEN tcp6 0 0 [::]:http-alt [::]:* LISTEN tcp6 0 0 [::]:ssh [::]:* LISTEN Active UNIX domain sockets (only servers) Proto RefCnt Flags Type State I-Node Path unix 2 [ ACC ] STREAM LISTENING 9307368 @/com/ubuntu/upstart - htop: http://i.stack.imgur.com/NHKYX.png EDIT: Stressed. mind was not working adding log: root@server:~# less /var/log/syslog Jun 27 05:27:42 server syslogd 1.5.0#6ubuntu1: restart. Jun 27 05:39:01 server CRON[9298]: (root) CMD ([ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) -delete) Jun 27 05:40:01 server CRON[9463]: (smmsp) CMD (test -x /etc/init.d/sendmail && /usr/share/sendmail/sendmail cron-msp) Jun 27 05:46:21 server sm-msp-queue[9480]: q5R1R7Ue004056: to=root, ctladdr=root (0/0), delay=00:19:14, xdelay=00:06:18, mailer=relay, pri=122407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 05:52:39 server sm-msp-queue[9480]: q5QMk7S9009582: to=root, ctladdr=root (0/0), delay=03:06:32, xdelay=00:06:18, mailer=relay, pri=842407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 06:00:01 server CRON[15671]: (smmsp) CMD (test -x /etc/init.d/sendmail && /usr/share/sendmail/sendmail cron-msp) Jun 27 06:06:22 server sm-msp-queue[15690]: q5R1R7Ue004056: to=root, ctladdr=root (0/0), delay=00:39:15, xdelay=00:06:18, mailer=relay, pri=212407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 06:09:01 server CRON[18114]: (root) CMD ([ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) -delete) Jun 27 06:12:40 server sm-msp-queue[15690]: q5QMk7S9009582: to=root, ctladdr=root (0/0), delay=03:26:33, xdelay=00:06:18, mailer=relay, pri=932407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 06:20:02 server CRON[21888]: (smmsp) CMD (test -x /etc/init.d/sendmail && /usr/share/sendmail/sendmail cron-msp) Jun 27 06:26:22 server sm-msp-queue[21907]: q5R1R7Ue004056: to=root, ctladdr=root (0/0), delay=00:59:15, xdelay=00:06:18, mailer=relay, pri=302407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 06:27:02 server CRON[24021]: (root) CMD (cd / && run-parts --report /etc/cron.hourly) Jun 27 06:32:40 server sm-msp-queue[21907]: q5QMk7S9009582: to=root, ctladdr=root (0/0), delay=03:46:33, xdelay=00:06:18, mailer=relay, pri=1022407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 06:39:01 server CRON[27941]: (root) CMD ([ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) -delete) Jun 27 06:40:02 server CRON[28110]: (smmsp) CMD (test -x /etc/init.d/sendmail && /usr/share/sendmail/sendmail cron-msp) Jun 27 06:46:22 server sm-msp-queue[28125]: q5R1R7Ue004056: to=root, ctladdr=root (0/0), delay=01:19:15, xdelay=00:06:18, mailer=relay, pri=392407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 06:52:40 server sm-msp-queue[28125]: q5QMk7S9009582: to=root, ctladdr=root (0/0), delay=04:06:33, xdelay=00:06:18, mailer=relay, pri=1112407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 06:52:40 server sm-msp-queue[28125]: q5QMk7S9009582: q5R2e4uo028125: sender notify: Warning: could not send message for past 4 hours Jun 27 06:52:44 server sm-msp-queue[28125]: q5R2e4uo028125: to=root, delay=00:00:04, xdelay=00:00:04, mailer=relay, pri=33690, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 07:00:02 server CRON[1543]: (smmsp) CMD (test -x /etc/init.d/sendmail && /usr/share/sendmail/sendmail cron-msp) Jun 27 07:06:21 server sm-msp-queue[1560]: q5R2e4uo028125: to=root, delay=00:13:41, xdelay=00:06:18, mailer=relay, pri=123690, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 07:09:01 server CRON[3986]: (root) CMD ([ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) -delete) Jun 27 07:12:39 server sm-msp-queue[1560]: q5R1R7Ue004056: to=root, ctladdr=root (0/0), delay=01:45:32, xdelay=00:06:18, mailer=relay, pri=482407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 07:18:57 server sm-msp-queue[1560]: q5QMk7S9009582: to=root, ctladdr=root (0/0), delay=04:32:50, xdelay=00:06:18, mailer=relay, pri=1202407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 07:20:02 server CRON[7760]: (smmsp) CMD (test -x /etc/init.d/sendmail && /usr/share/sendmail/sendmail cron-msp) Jun 27 07:26:22 server sm-msp-queue[7775]: q5R2e4uo028125: to=root, delay=00:33:42, xdelay=00:06:18, mailer=relay, pri=213690, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 07:27:01 server CRON[9887]: (root) CMD (cd / && run-parts --report /etc/cron.hourly) Jun 27 07:32:40 server sm-msp-queue[7775]: q5R1R7Ue004056: to=root, ctladdr=root (0/0), delay=02:05:33, xdelay=00:06:18, mailer=relay, pri=572407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 07:38:58 server sm-msp-queue[7775]: q5QMk7S9009582: to=root, ctladdr=root (0/0), delay=04:52:51, xdelay=00:06:18, mailer=relay, pri=1292407, relay=[127.0.0.1] [127.0.0.1], dsn=4.0.0, stat=Deferred: Connection timed out with [127.0.0.1] Jun 27 07:39:01 server CRON[13813]: (root) CMD ([ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth : root@server:~# df -h Filesystem Size Used Avail Use% Mounted on /dev/simfs 20G 2.3G 18G 12% / - Jun 26 16:22:41 server varnishd[1413]: Child (32425) died signal=3 Jun 26 16:22:41 server varnishd[1413]: child (21687) Started Jun 26 16:22:41 server varnishd[1413]: Child (21687) said Child starts Jun 26 16:22:41 server varnishd[1413]: Child (21687) said SMF.s0 mmap'ed 1073741824 bytes of 1073741824 Jun 26 16:34:28 server -- MARK -- Jun 26 16:54:29 server -- MARK -- Jun 26 17:14:29 server -- MARK -- Jun 26 17:34:29 server -- MARK -- Jun 26 17:54:29 server -- MARK -- Jun 26 18:14:29 server -- MARK -- Jun 26 18:34:29 server -- MARK -- Jun 26 18:54:29 server -- MARK -- Jun 26 19:14:29 server -- MARK -- Jun 26 19:34:29 server -- MARK -- Jun 26 19:54:29 server -- MARK -- Jun 26 20:14:29 server -- MARK -- Jun 26 20:34:29 server -- MARK -- Jun 26 20:48:12 server exiting on signal 15 Jun 26 20:51:58 server syslogd 1.5.0#6ubuntu1: restart. Jun 26 20:52:01 server varnishd[1324]: Platform: Linux,2.6.18-308.el5.028stab099.3,i686,-sfile,-smalloc,-hcritbit Jun 26 21:11:58 server -- MARK -- Jun 26 21:31:58 server -- MARK -- Jun 26 21:51:58 server -- MARK -- Jun 26 22:11:58 server -- MARK -- Jun 26 22:31:58 server -- MARK -- Jun 26 22:51:58 server -- MARK -- Jun 26 23:11:58 server -- MARK -- Jun 26 23:31:58 server -- MARK -- Jun 26 23:51:58 server -- MARK -- Jun 27 00:11:58 server -- MARK -- Jun 27 00:23:42 server exiting on signal 15 Jun 27 02:21:10 server syslogd 1.5.0#6ubuntu1: restart. Jun 27 02:21:12 server varnishd[1341]: Platform: Linux,2.6.18-308.el5.028stab099.3,i686,-sfile,-smalloc,-hcritbit Jun 27 02:41:10 server -- MARK -- Jun 27 02:46:41 server syslogd 1.5.0#6ubuntu1: restart. Jun 27 03:20:44 server syslogd 1.5.0#6ubuntu1: restart. Jun 27 03:20:46 server varnishd[1238]: Platform: Linux,2.6.18-308.el5.028stab099.3,i686,-sfile,-smalloc,-hcritbit Jun 27 03:20:46 server varnishd[1238]: child (1239) Started Jun 27 03:20:46 server varnishd[1238]: Child (1239) said Child starts Jun 27 03:20:46 server varnishd[1238]: Child (1239) said SMF.s0 mmap'ed 1073741824 bytes of 1073741824 Jun 27 03:32:52 server exiting on signal 15 Jun 27 03:33:16 server syslogd 1.5.0#6ubuntu1: restart. Jun 27 03:33:31 server varnishd[1372]: Platform: Linux,2.6.18-308.el5.028stab099.3,i686,-sfile,-smalloc,-hcritbit Jun 27 03:53:16 server -- MARK -- Jun 27 04:13:16 server -- MARK -- Jun 27 04:33:16 server -- MARK -- Jun 27 04:53:16 server -- MARK -- Jun 27 05:13:16 server -- MARK -- Jun 27 05:27:42 server syslogd 1.5.0#6ubuntu1: restart. Jun 27 05:53:17 server -- MARK -- Jun 27 06:13:17 server -- MARK -- Jun 27 06:33:17 server -- MARK -- Jun 27 06:53:17 server -- MARK -- Jun 27 07:13:17 server -- MARK -- Jun 27 07:33:17 server -- MARK -- Jun 27 07:53:17 server -- MARK -- Jun 27 08:13:17 server -- MARK -- Jun 27 08:33:17 server -- MARK -- Jun 27 08:53:17 server -- MARK -- Jun 27 09:13:17 server -- MARK -- Jun 27 09:33:17 server -- MARK -- Jun 27 09:53:17 server -- MARK -- Jun 27 10:13:17 server -- MARK -- Jun 27 10:33:17 server -- MARK -- Jun 27 10:53:17 server -- MARK -- Jun 27 11:13:17 server -- MARK -- Jun 27 11:33:17 server -- MARK -- Jun 27 11:53:18 server -- MARK -- Jun 27 12:13:18 server -- MARK -- Jun 27 12:33:18 server -- MARK -- Jun 27 12:53:18 server -- MARK -- Jun 27 13:13:18 server -- MARK -- Jun 27 13:33:18 server -- MARK -- Jun 27 13:53:18 server -- MARK -- Jun 27 14:13:18 server -- MARK -- Jun 27 14:33:18 server -- MARK -- Jun 27 14:53:18 server -- MARK -- -- root@server:~# cat /var/log/nginx/error.log 2012/06/27 03:32:54 [alert] 1199#0: worker process 1203 exited on signal 9 2012/06/27 03:32:54 [alert] 1199#0: worker process 1200 exited on signal 9 2012/06/27 03:32:54 [alert] 1199#0: worker process 1201 exited on signal 9 2012/06/27 03:32:54 [alert] 1199#0: worker process 1202 exited on signal 9 root@server:~# cat /var/log/nginx/access.log 31.210.99.87 - - [27/Jun/2012:09:09:08 +0400] "GET /w00tw00t.at.ISC.SANS.DFind:) HTTP/1.1" 400 172 "-" "-" 88.191.138.103 - - [27/Jun/2012:13:27:08 +0400] "GET /cms/cmx.jsp HTTP/1.1" 301 184 "-" "-" 88.191.138.103 - - [27/Jun/2012:13:27:08 +0400] "GET /iesvc/iesvc.jsp HTTP/1.1" 301 184 "-" "-" 88.191.138.103 - - [27/Jun/2012:13:27:08 +0400] "GET /cmd2/index.jsp HTTP/1.1" 301 184 "-" "-" 88.191.138.103 - - [27/Jun/2012:13:27:09 +0400] "GET /cmd/index.jsp HTTP/1.1" 301 184 "-" "-" 58.97.147.197 - - [27/Jun/2012:17:17:19 +0400] "GET / HTTP/1.1" 301 184 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.56 Safari/536.5" 58.97.147.197 - - [27/Jun/2012:17:17:37 +0400] "GET / HTTP/1.1" 301 184 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.56 Safari/536.5" 58.97.147.197 - - [27/Jun/2012:17:17:38 +0400] "-" 400 0 "-" "-" 58.97.147.197 - - [27/Jun/2012:17:17:38 +0400] "-" 400 0 "-" "-" 58.97.147.197 - - [27/Jun/2012:17:17:48 +0400] "-" 400 0 "-" "-" - root@server:~# cat /var/log/daemon.log Jun 26 20:48:10 server xinetd[1177]: Exiting... Jun 26 20:51:58 server xinetd[1174]: Reading included configuration file: /etc/xinetd.d/daytime [file=/etc/xinetd.d/daytime] [line=28] Jun 26 20:51:58 server xinetd[1174]: Reading included configuration file: /etc/xinetd.d/discard [file=/etc/xinetd.d/discard] [line=26] Jun 26 20:51:58 server xinetd[1174]: Reading included configuration file: /etc/xinetd.d/echo [file=/etc/xinetd.d/echo] [line=25] Jun 26 20:51:58 server xinetd[1174]: Reading included configuration file: /etc/xinetd.d/time [file=/etc/xinetd.d/time] [line=26] Jun 26 20:51:58 server xinetd[1174]: removing chargen Jun 26 20:51:58 server xinetd[1174]: removing chargen Jun 26 20:51:58 server xinetd[1174]: removing daytime Jun 26 20:51:58 server xinetd[1174]: removing daytime Jun 26 20:51:58 server xinetd[1174]: removing discard Jun 26 20:51:58 server xinetd[1174]: removing discard Jun 26 20:51:58 server xinetd[1174]: removing echo Jun 26 20:51:58 server xinetd[1174]: removing echo Jun 26 20:51:58 server xinetd[1174]: removing time Jun 26 20:51:58 server xinetd[1174]: removing time Jun 26 20:51:58 server xinetd[1174]: xinetd Version 2.3.14 started with libwrap loadavg options compiled in. Jun 26 20:51:58 server xinetd[1174]: Started working: 0 available services Jun 26 20:52:01 server vnstatd[1330]: vnStat daemon 1.11 started. Jun 26 20:52:01 server vnstatd[1330]: Monitoring: venet0 Jun 27 00:23:41 server xinetd[1174]: Exiting... Jun 27 02:21:12 server vnstatd[1349]: vnStat daemon 1.11 started. Jun 27 02:21:12 server vnstatd[1349]: Monitoring: venet0 Jun 27 03:20:44 server xinetd[1166]: attribute: disable should not be in default section [file=/etc/xinetd.conf] [line=12] Jun 27 03:20:44 server xinetd[1166]: Reading included configuration file: /etc/xinetd.d/chargen [file=/etc/xinetd.conf] [line=15] Jun 27 03:20:44 server xinetd[1166]: Reading included configuration file: /etc/xinetd.d/daytime [file=/etc/xinetd.d/daytime] [line=28] Jun 27 03:20:44 server xinetd[1166]: Reading included configuration file: /etc/xinetd.d/discard [file=/etc/xinetd.d/discard] [line=26] Jun 27 03:20:44 server xinetd[1166]: Reading included configuration file: /etc/xinetd.d/echo [file=/etc/xinetd.d/echo] [line=25] Jun 27 03:20:44 server xinetd[1166]: Reading included configuration file: /etc/xinetd.d/time [file=/etc/xinetd.d/time] [line=26] Jun 27 03:20:44 server xinetd[1166]: removing chargen Jun 27 03:20:44 server xinetd[1166]: removing chargen Jun 27 03:20:44 server xinetd[1166]: removing daytime Jun 27 03:20:44 server xinetd[1166]: removing daytime Jun 27 03:20:44 server xinetd[1166]: removing discard Jun 27 03:20:44 server xinetd[1166]: removing discard Jun 27 03:20:44 server xinetd[1166]: removing echo Jun 27 03:20:44 server xinetd[1166]: removing echo Jun 27 03:20:44 server xinetd[1166]: removing time Jun 27 03:20:44 server xinetd[1166]: removing time Jun 27 03:20:44 server xinetd[1166]: xinetd Version 2.3.14 started with libwrap loadavg options compiled in. Jun 27 03:20:44 server xinetd[1166]: Started working: 0 available services Jun 27 03:20:46 server vnstatd[1249]: vnStat daemon 1.11 started. Jun 27 03:20:46 server vnstatd[1249]: Monitoring: venet0 Jun 27 03:32:41 server xinetd[1166]: Exiting... Jun 27 03:33:32 server vnstatd[1380]: vnStat daemon 1.11 started. Jun 27 03:33:32 server vnstatd[1380]: Monitoring: venet0 root@server:~# - Anything else you need let me know

    Read the article

  • Compare images after canny edge detection in OpenCV (C++)

    - by typoknig
    Hi all, I am working on an OpenCV project and I need to compare some images after canny has been applied to both of them. Before the canny was applied I had the gray scale images populating a histogram and then I compared the histograms, but when canny is added to the images the histogram does not populate. I have read that a canny image can populate a histogram, but have not found a way to make it happen. I do not necessairly need to keep using the histograms, I just want to know the best way to compare two canny images. SSCCE below for you to chew on. I have poached and patched about 75% of this code from books and various sites on the internet, so props to those guys... // SLC (Histogram).cpp : Defines the entry point for the console application. #include "stdafx.h" #include <cxcore.h> #include <cv.h> #include <cvaux.h> #include <highgui.h> #include <stdio.h> #include <sstream> #include <iostream> using namespace std; IplImage* image1= 0; IplImage* imgHistogram1 = 0; IplImage* gray1= 0; CvHistogram* hist1; int main(){ CvCapture* capture = cvCaptureFromCAM(0); if(!cvQueryFrame(capture)){ cout<<"Video capture failed, please check the camera."<<endl; } else{ cout<<"Video camera capture successful!"<<endl; }; CvSize sz = cvGetSize(cvQueryFrame(capture)); IplImage* image = cvCreateImage(sz, 8, 3); IplImage* imgHistogram = 0; IplImage* gray = 0; CvHistogram* hist; cvNamedWindow("Image Source",1); cvNamedWindow("gray", 1); cvNamedWindow("Histogram",1); cvNamedWindow("BG", 1); cvNamedWindow("FG", 1); cvNamedWindow("Canny",1); cvNamedWindow("Canny1", 1); image1 = cvLoadImage("image bin/use this image.jpg");// an image has to load here or the program will not run //size of the histogram -1D histogram int bins1 = 256; int hsize1[] = {bins1}; //max and min value of the histogram float max_value1 = 0, min_value1 = 0; //value and normalized value float value1; int normalized1; //ranges - grayscale 0 to 256 float xranges1[] = { 0, 256 }; float* ranges1[] = { xranges1 }; //create an 8 bit single channel image to hold a //grayscale version of the original picture gray1 = cvCreateImage( cvGetSize(image1), 8, 1 ); cvCvtColor( image1, gray1, CV_BGR2GRAY ); IplImage* canny1 = cvCreateImage(cvGetSize(gray1), 8, 1 ); cvCanny( gray1, canny1, 55, 175, 3 ); //Create 3 windows to show the results cvNamedWindow("original1",1); cvNamedWindow("gray1",1); cvNamedWindow("histogram1",1); //planes to obtain the histogram, in this case just one IplImage* planes1[] = { canny1 }; //get the histogram and some info about it hist1 = cvCreateHist( 1, hsize1, CV_HIST_ARRAY, ranges1,1); cvCalcHist( planes1, hist1, 0, NULL); cvGetMinMaxHistValue( hist1, &min_value1, &max_value1); printf("min: %f, max: %f\n", min_value1, max_value1); //create an 8 bits single channel image to hold the histogram //paint it white imgHistogram1 = cvCreateImage(cvSize(bins1, 50),8,1); cvRectangle(imgHistogram1, cvPoint(0,0), cvPoint(256,50), CV_RGB(255,255,255),-1); //draw the histogram :P for(int i=0; i < bins1; i++){ value1 = cvQueryHistValue_1D( hist1, i); normalized1 = cvRound(value1*50/max_value1); cvLine(imgHistogram1,cvPoint(i,50), cvPoint(i,50-normalized1), CV_RGB(0,0,0)); } //show the image results cvShowImage( "original1", image1 ); cvShowImage( "gray1", gray1 ); cvShowImage( "histogram1", imgHistogram1 ); cvShowImage( "Canny1", canny1); CvBGStatModel* bg_model = cvCreateFGDStatModel( image ); for(;;){ image = cvQueryFrame(capture); cvUpdateBGStatModel( image, bg_model ); //Size of the histogram -1D histogram int bins = 256; int hsize[] = {bins}; //Max and min value of the histogram float max_value = 0, min_value = 0; //Value and normalized value float value; int normalized; //Ranges - grayscale 0 to 256 float xranges[] = {0, 256}; float* ranges[] = {xranges}; //Create an 8 bit single channel image to hold a grayscale version of the original picture gray = cvCreateImage(cvGetSize(image), 8, 1); cvCvtColor(image, gray, CV_BGR2GRAY); IplImage* canny = cvCreateImage(cvGetSize(gray), 8, 1 ); cvCanny( gray, canny, 55, 175, 3 );//55, 175, 3 with direct light //Planes to obtain the histogram, in this case just one IplImage* planes[] = {canny}; //Get the histogram and some info about it hist = cvCreateHist(1, hsize, CV_HIST_ARRAY, ranges,1); cvCalcHist(planes, hist, 0, NULL); cvGetMinMaxHistValue(hist, &min_value, &max_value); //printf("Minimum Histogram Value: %f, Maximum Histogram Value: %f\n", min_value, max_value); //Create an 8 bits single channel image to hold the histogram and paint it white imgHistogram = cvCreateImage(cvSize(bins, 50),8,3); cvRectangle(imgHistogram, cvPoint(0,0), cvPoint(256,50), CV_RGB(255,255,255),-1); //Draw the histogram for(int i=0; i < bins; i++){ value = cvQueryHistValue_1D(hist, i); normalized = cvRound(value*50/max_value); cvLine(imgHistogram,cvPoint(i,50), cvPoint(i,50-normalized), CV_RGB(0,0,0)); } double correlation = cvCompareHist (hist1, hist, CV_COMP_CORREL); double chisquare = cvCompareHist (hist1, hist, CV_COMP_CHISQR); double intersection = cvCompareHist (hist1, hist, CV_COMP_INTERSECT); double bhattacharyya = cvCompareHist (hist1, hist, CV_COMP_BHATTACHARYYA); double difference = (1 - correlation) + chisquare + (1 - intersection) + bhattacharyya; printf("correlation: %f\n", correlation); printf("chi-square: %f\n", chisquare); printf("intersection: %f\n", intersection); printf("bhattacharyya: %f\n", bhattacharyya); printf("difference: %f\n", difference); cvShowImage("Image Source", image); cvShowImage("gray", gray); cvShowImage("Histogram", imgHistogram); cvShowImage( "Canny", canny); cvShowImage("BG", bg_model->background); cvShowImage("FG", bg_model->foreground); //Page 19 paragraph 3 of "Learning OpenCV" tells us why we DO NOT use "cvReleaseImage(&image)" in this section cvReleaseImage(&imgHistogram); cvReleaseImage(&gray); cvReleaseHist(&hist); cvReleaseImage(&canny); char c = cvWaitKey(10); //if ASCII key 27 (esc) is pressed then loop breaks if(c==27) break; } cvReleaseBGStatModel( &bg_model ); cvReleaseImage(&image); cvReleaseCapture(&capture); cvDestroyAllWindows(); }

    Read the article

  • Glassfish 3 Cant update JDK no way

    - by Parhs
    Hello.. I was using 1.6.0_19 jdk and installed 1.6.0_20 jdk.. Glassfish doesnt like that... Here are my windows environment variables.. ALLUSERSPROFILE=C:\ProgramData ANT_HOME=C:\apache-ant-1.8.1\ APPDATA=C:\Users\Parhs\AppData\Roaming CommonProgramFiles=C:\Program Files\Common Files COMPUTERNAME=PARHS-PC ComSpec=C:\Windows\system32\cmd.exe FP_NO_HOST_CHECK=NO HOMEDRIVE=C: HOMEPATH=\Users\Parhs JAVA_HOME=C:\Program Files\Java\jdk1.6.0_20\ LOCALAPPDATA=C:\Users\Parhs\AppData\Local LOGONSERVER=\\PARHS-PC NUMBER_OF_PROCESSORS=2 OS=Windows_NT Path=C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wb em;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetoot h Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apa che-ant-1.8.1\bin PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC PHPRC=C:\Program Files\PHP\php.ini PROCESSOR_ARCHITECTURE=x86 PROCESSOR_IDENTIFIER=x86 Family 6 Model 14 Stepping 8, GenuineIntel PROCESSOR_LEVEL=6 PROCESSOR_REVISION=0e08 ProgramData=C:\ProgramData ProgramFiles=C:\Program Files PROMPT=$P$G PSModulePath=C:\Windows\system32\WindowsPowerShell\v1.0\Modules\ PUBLIC=C:\Users\Public SESSIONNAME=Console SystemDrive=C: SystemRoot=C:\Windows TEMP=C:\Users\Parhs\AppData\Local\Temp TMP=C:\Users\Parhs\AppData\Local\Temp USERDOMAIN=Parhs-PC USERNAME=Parhs USERPROFILE=C:\Users\Parhs VS90COMNTOOLS=C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools\ windir=C:\Windows Also here is my asenv.bat REM DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. REM REM Copyright 2004-2009 Sun Microsystems, Inc. All rights reserved. REM REM Use is subject to License Terms REM set AS_IMQ_LIB=....\mq\lib set AS_IMQ_BIN=....\mq\bin set AS_CONFIG=..\config set AS_INSTALL=.. set AS_DEF_DOMAINS_PATH=..\domains set AS_DERBY_INSTALL=....\javadb set AS_JAVA="C:\Program Files\Java\jdk1.6.0_20" And although restarting system and server i am getting this report Operating System Information: Name of the Operating System: Windows 7 Binary Architecture name of the Operating System: x86, Version: 6.1 Number of processors available on the Operating System: 2 System load on the available processors for the last minute: -1.0. (Sum of running and queued runnable entities per minute) General Java Runtime Environment Information for the VM: 6152@Parhs-PC JRE BootClassPath: C:\glassfishv3\glassfish/modules/endorsed\javax.annotation.jar;C:\glassfishv3\glassfish/modules/endorsed\jaxb-api-osgi.jar;C:\glassfishv3\glassfish/modules/endorsed\webservices-api-osgi.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\resources.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\rt.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\sunrsasign.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jce.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.6.0_19\jre\classes;C:\glassfishv3\glassfish\lib\monitor\btrace-boot.jar JRE ClassPath: C:\glassfishv3\glassfish\modules\glassfish.jar;C:\glassfishv3\glassfish\lib\monitor\btrace-agent.jar JRE Native Library Path: C:\Program Files\Java\jdk1.6.0_19\bin;.;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetooth Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apache-ant-1.8.1\bin JRE name: Java HotSpot(TM) Client VM Vendor: Sun Microsystems Inc. Version: 16.2-b04 List of System Properties for the Java Virtual Machine: ANTLR_USE_DIRECT_CLASS_LOADING = true AS_CONFIG = C:\glassfishv3\glassfish\config\..\config AS_DEF_DOMAINS_PATH = C:\glassfishv3\glassfish\config\..\domains AS_DERBY_INSTALL = C:\glassfishv3\glassfish\config\..\..\javadb AS_IMQ_BIN = C:\glassfishv3\glassfish\config\..\..\mq\bin AS_IMQ_LIB = C:\glassfishv3\glassfish\config\..\..\mq\lib AS_INSTALL = C:\glassfishv3\glassfish\config\.. AS_JAVA = C:\Program Files\Java\jdk1.6.0_20\jre GlassFish_Platform = Felix awt.toolkit = sun.awt.windows.WToolkit catalina.base = C:\glassfishv3\glassfish\domains\domain1 catalina.home = C:\glassfishv3\glassfish\domains\domain1 catalina.useNaming = false com.sun.aas.configRoot = C:\glassfishv3\glassfish\config com.sun.aas.derbyRoot = C:\glassfishv3\javadb com.sun.aas.domainsRoot = C:\glassfishv3\glassfish\domains com.sun.aas.hostName = Parhs-PC com.sun.aas.imqBin = C:\glassfishv3\mq\bin com.sun.aas.imqLib = C:\glassfishv3\mq\lib com.sun.aas.installRoot = C:\glassfishv3\glassfish com.sun.aas.installRootURI = file:/C:/glassfishv3/glassfish/ com.sun.aas.instanceName = server com.sun.aas.instanceRoot = C:\glassfishv3\glassfish\domains\domain1 com.sun.aas.instanceRootURI = file:/C:/glassfishv3/glassfish/domains/domain1/ com.sun.aas.javaRoot = C:\Program Files\Java\jdk1.6.0_19\jre com.sun.enterprise.config.config_environment_factory_class = com.sun.enterprise.config.serverbeans.AppserverConfigEnvironmentFactory com.sun.enterprise.hk2.cacheDir = C:\glassfishv3\glassfish\domains\domain1\osgi-cache\felix com.sun.enterprise.jaccprovider.property.repository = C:\glassfishv3\glassfish\domains\domain1/generated/policy com.sun.enterprise.security.httpsOutboundKeyAlias = s1as common.loader = ${catalina.home}/common/classes,${catalina.home}/common/endorsed/*.jar,${catalina.home}/common/lib/*.jar eclipselink.security.usedoprivileged = true ejb.home = C:\glassfishv3\glassfish\modules\ejb felix.config.properties = file:/C:/glassfishv3/glassfish/osgi/felix/conf/config.properties felix.fileinstall.bundles.new.start = true felix.fileinstall.debug = 1 felix.fileinstall.dir = C:\glassfishv3\glassfish/modules/autostart/ felix.fileinstall.poll = 5000 felix.system.properties = file:/C:/glassfishv3/glassfish/osgi/felix/conf/system.properties file.encoding = Cp1253 file.encoding.pkg = sun.io file.separator = \ glassfish.version = GlassFish v3 (build 74.2) hk2.startup.context.args = #Mon Jun 07 20:27:37 EEST 2010 -startup-classpath=C\:\\glassfishv3\\glassfish\\modules\\glassfish.jar;C\:\\glassfishv3\\glassfish\\lib\\monitor\\btrace-agent.jar __time_zero=1275931657334 hk2.startup.context.mainModule=org.glassfish.core.kernel -startup-args=--domain,,,domain1,,,--domaindir,,,C\:\\glassfishv3\\glassfish\\domains\\domain1 --domain=domain1 -startup-classname=com.sun.enterprise.glassfish.bootstrap.ASMain --domaindir=C\:\\glassfishv3\\glassfish\\domains\\domain1 hk2.startup.context.root = C:\glassfishv3\glassfish\modules http.nonProxyHosts = localhost|127.0.0.1|Parhs-PC java.awt.graphicsenv = sun.awt.Win32GraphicsEnvironment java.awt.printerjob = sun.awt.windows.WPrinterJob java.class.path = C:\glassfishv3\glassfish\modules\glassfish.jar;C:\glassfishv3\glassfish\lib\monitor\btrace-agent.jar java.class.version = 50.0 java.endorsed.dirs = C:\glassfishv3\glassfish/modules/endorsed;C:\glassfishv3\glassfish/lib/endorsed java.ext.dirs = C:\Program Files\Java\jdk1.6.0_19\jre/lib/ext;C:\Program Files\Java\jdk1.6.0_19\jre/jre/lib/ext;C:\glassfishv3\glassfish\domains\domain1/lib/ext java.home = C:\Program Files\Java\jdk1.6.0_19\jre java.io.tmpdir = C:\Users\Parhs\AppData\Local\Temp\ java.library.path = C:\Program Files\Java\jdk1.6.0_19\bin;.;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetooth Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apache-ant-1.8.1\bin java.net.useSystemProxies = true java.rmi.server.randomIDs = true java.runtime.name = Java(TM) SE Runtime Environment java.runtime.version = 1.6.0_19-b04 java.security.auth.login.config = C:\glassfishv3\glassfish\domains\domain1/config/login.conf java.security.policy = C:\glassfishv3\glassfish\domains\domain1/config/server.policy java.specification.name = Java Platform API Specification java.specification.vendor = Sun Microsystems Inc. java.specification.version = 1.6 java.util.logging.config.file = C:\glassfishv3\glassfish\domains\domain1\config\logging.properties java.vendor = Sun Microsystems Inc. java.vendor.url = http://java.sun.com/ java.vendor.url.bug = http://java.sun.com/cgi-bin/bugreport.cgi java.version = 1.6.0_19 java.vm.info = mixed mode java.vm.name = Java HotSpot(TM) Client VM java.vm.specification.name = Java Virtual Machine Specification java.vm.specification.vendor = Sun Microsystems Inc. java.vm.specification.version = 1.0 java.vm.vendor = Sun Microsystems Inc. java.vm.version = 16.2-b04 javax.net.ssl.keyStore = C:\glassfishv3\glassfish\domains\domain1/config/keystore.jks javax.net.ssl.keyStorePassword = changeit javax.net.ssl.trustStore = C:\glassfishv3\glassfish\domains\domain1/config/cacerts.jks javax.net.ssl.trustStorePassword = changeit javax.rmi.CORBA.PortableRemoteObjectClass = com.sun.corba.ee.impl.javax.rmi.PortableRemoteObject javax.rmi.CORBA.StubClass = com.sun.corba.ee.impl.javax.rmi.CORBA.StubDelegateImpl javax.rmi.CORBA.UtilClass = com.sun.corba.ee.impl.javax.rmi.CORBA.Util javax.security.jacc.PolicyConfigurationFactory.provider = com.sun.enterprise.security.provider.PolicyConfigurationFactoryImpl jdbc.drivers = org.apache.derby.jdbc.ClientDriver jpa.home = C:\glassfishv3\glassfish\modules\jpa line.separator = org.glassfish.web.rfc2109_cookie_names_enforced = false org.jvnet.hk2.osgimain.autostartBundles = osgi-adapter.jar, org.apache.felix.shell.jar, org.apache.felix.shell.remote.jar, org.apache.felix.configadmin.jar, org.apache.felix.fileinstall.jar org.jvnet.hk2.osgimain.bundlesDir = C:\glassfishv3\glassfish\modules org.jvnet.hk2.osgimain.excludedSubDirs = autostart/ org.omg.CORBA.ORBClass = com.sun.corba.ee.impl.orb.ORBImpl org.omg.CORBA.ORBSingletonClass = com.sun.corba.ee.impl.orb.ORBSingleton org.osgi.framework.storage = C:\glassfishv3\glassfish\domains\domain1\osgi-cache\felix os.arch = x86 os.name = Windows 7 os.version = 6.1 osgi.shell.telnet.ip = 127.0.0.1 osgi.shell.telnet.maxconn = 1 osgi.shell.telnet.port = 6666 package.access = package.definition = path.separator = ; security.home = C:\glassfishv3\glassfish\modules\security server.loader = ${catalina.home}/server/classes,${catalina.home}/server/lib/*.jar shared.loader = ${catalina.home}/shared/classes,${catalina.home}/shared/lib/*.jar sun.arch.data.model = 32 sun.boot.class.path = C:\glassfishv3\glassfish/modules/endorsed\javax.annotation.jar;C:\glassfishv3\glassfish/modules/endorsed\jaxb-api-osgi.jar;C:\glassfishv3\glassfish/modules/endorsed\webservices-api-osgi.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\resources.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\rt.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\sunrsasign.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jce.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.6.0_19\jre\classes;C:\glassfishv3\glassfish\lib\monitor\btrace-boot.jar sun.boot.library.path = C:\Program Files\Java\jdk1.6.0_19\jre\bin sun.cpu.endian = little sun.cpu.isalist = pentium_pro+mmx pentium_pro pentium+mmx pentium i486 i386 i86 sun.desktop = windows sun.io.unicode.encoding = UnicodeLittle sun.java.launcher = SUN_STANDARD sun.jnu.encoding = Cp1253 sun.management.compiler = HotSpot Client Compiler sun.os.patch.level = user.country = GR user.dir = C:\glassfishv3\glassfish\domains\domain1 user.home = C:\Users\Parhs user.language = el user.name = Parhs user.timezone = Europe/Athens user.variant = web.home = C:\glassfishv3\glassfish\modules\web weld.home = C:\glassfishv3\glassfish\modules\weld Why it is so damn hard??? What am i missing?

    Read the article

  • AbstractMethodError on org.apache.xalan.processor.TransformerFactoryImpl

    - by JBristow
    With the following code: private Document transformDoc(Source source) throws TransformerException, IOException { Transformer xslTransformer = TransformerFactory.newInstance().newTransformer(new StreamSource(pdfTransformXslt.getInputStream())); xslTransformer.setParameter("http://apache.org/xml/features/nonvalidating/load-external-dtd", false); xslTransformer.setParameter("http://xml.org/sax/features/validation", false); JDOMResult result = new JDOMResult(); xslTransformer.transform(source, result); return result.getDocument(); } I'm getting the following error: java.lang.AbstractMethodError: org.apache.xalan.processor.TransformerFactoryImpl.setFeature(Ljava/lang/String;Z)V Why is this? Here's my Maven dependency tree: ------------------------------------------------------------------------ Building mc-hub-batch task-segment: [dependency:tree] ------------------------------------------------------------------------ snapshot com.billmelater:mc-test-support:2.0.0.11-SNAPSHOT: checking for updates from repository.jboss.org [dependency:tree {execution: default-cli}] com.billmelater:mc-hub-batch:jar:2.0.0.11-SNAPSHOT +- com.billmelater:mc-hub-core:jar:2.0.0.11-SNAPSHOT:compile | +- commons-lang:commons-lang:jar:2.4:compile | +- commons-collections:commons-collections:jar:3.2.1:compile | +- commons-beanutils:commons-beanutils:jar:1.8.0:compile | +- commons-digester:commons-digester:jar:2.0:compile | | +- (commons-beanutils:commons-beanutils:jar:1.8.0:compile - omitted for duplicate) | | \- (commons-logging:commons-logging:jar:1.1.1:compile - version managed from 1.0.4; omitted for duplicate) | \- (org.springframework.batch:spring-batch-core:jar:2.0.2.RELEASE:compile - omitted for duplicate) +- com.billmelater:mc-test-support:jar:2.0.0.11-SNAPSHOT:test | +- (com.billmelater:mc-hub-core:jar:2.0.0.11-SNAPSHOT:test - omitted for duplicate) | +- (org.springframework:spring:jar:2.5.6:test - omitted for duplicate) | +- org.springframework:spring-jdbc:jar:2.5.6.SEC01:test | | +- (commons-logging:commons-logging:jar:1.1.1:test - omitted for duplicate) | | +- (org.springframework:spring-beans:jar:2.5.6.SEC01:test - omitted for conflict with 2.5.6) | | +- (org.springframework:spring-context:jar:2.5.6.SEC01:test - omitted for conflict with 2.5.6) | | +- (org.springframework:spring-core:jar:2.5.6.SEC01:test - omitted for conflict with 2.5.6) | | \- (org.springframework:spring-tx:jar:2.5.6.SEC01:test - omitted for conflict with 2.5.6) | +- (org.dbunit:dbunit:jar:2.4.5:test - omitted for duplicate) | +- (log4j:log4j:jar:1.2.15:test - omitted for duplicate) | +- (org.slf4j:slf4j-api:jar:1.5.6:compile - version managed from 1.5.8; scope updated from test; omitted for duplicate) | +- (org.slf4j:slf4j-log4j12:jar:1.5.6:test - omitted for duplicate) | +- org.jboss.seam:jboss-seam:jar:2.2.0.GA:test | | +- xstream:xstream:jar:1.1.3:test | | +- (xpp3:xpp3_min:jar:1.1.3.4.O:compile - scope updated from test; omitted for duplicate) | | \- org.jboss.el:jboss-el:jar:1.0_02.CR4:test | +- (org.testng:testng:jar:jdk15:5.8:test - omitted for duplicate) | +- (org.hibernate:hibernate-core:jar:3.3.2.GA:test - version managed from 3.3.0.SP1; omitted for duplicate) | +- org.hibernate:hibernate-entitymanager:jar:3.4.0.GA:test | | +- (org.hibernate:ejb3-persistence:jar:1.0.2.GA:test - omitted for duplicate) | | +- (org.hibernate:hibernate-commons-annotations:jar:3.1.0.GA:test - omitted for duplicate) | | +- (org.hibernate:hibernate-annotations:jar:3.4.0.GA:test - omitted for duplicate) | | +- (org.hibernate:hibernate-core:jar:3.3.2.GA:test - version managed from 3.3.0.SP1; omitted for duplicate) | | +- (org.slf4j:slf4j-api:jar:1.5.6:test - version managed from 1.4.2; omitted for duplicate) | | +- (dom4j:dom4j:jar:1.6.1-jboss:test - version managed from 1.6.1; omitted for duplicate) | | +- (javax.transaction:jta:jar:1.0.1B:test - version managed from 1.1; omitted for duplicate) | | \- javassist:javassist:jar:3.4.GA:test | +- (org.hibernate:hibernate-validator:jar:3.1.0.GA:test - omitted for duplicate) | +- (org.apache.velocity:velocity:jar:1.6.2:test - omitted for duplicate) | \- (ojdbc:ojdbc:jar:14:test - omitted for duplicate) +- org.springframework:spring:jar:2.5.6:compile +- org.springframework.batch:spring-batch-core:jar:2.0.2.RELEASE:compile | +- org.springframework.batch:spring-batch-infrastructure:jar:2.0.2.RELEASE:compile | | +- (commons-logging:commons-logging:jar:1.1.1:compile - omitted for duplicate) | | +- (org.springframework:spring-core:jar:2.5.6:compile - omitted for duplicate) | | \- (stax:stax:jar:1.2.0:compile - omitted for duplicate) | +- org.aspectj:aspectjrt:jar:1.5.4:compile | +- org.aspectj:aspectjweaver:jar:1.5.4:compile | +- com.thoughtworks.xstream:xstream:jar:1.3:compile | | \- xpp3:xpp3_min:jar:1.1.4c:compile | +- org.codehaus.jettison:jettison:jar:1.0:compile | +- org.springframework:spring-aop:jar:2.5.6:compile | | +- aopalliance:aopalliance:jar:1.0:compile | | +- (commons-logging:commons-logging:jar:1.1.1:compile - omitted for duplicate) | | +- (org.springframework:spring-beans:jar:2.5.6:compile - omitted for duplicate) | | \- (org.springframework:spring-core:jar:2.5.6:compile - omitted for duplicate) | +- org.springframework:spring-beans:jar:2.5.6:compile | | +- (commons-logging:commons-logging:jar:1.1.1:compile - omitted for duplicate) | | \- (org.springframework:spring-core:jar:2.5.6:compile - omitted for duplicate) | +- org.springframework:spring-context:jar:2.5.6:compile | | +- (aopalliance:aopalliance:jar:1.0:compile - omitted for duplicate) | | +- (commons-logging:commons-logging:jar:1.1.1:compile - omitted for duplicate) | | +- (org.springframework:spring-beans:jar:2.5.6:compile - omitted for duplicate) | | \- (org.springframework:spring-core:jar:2.5.6:compile - omitted for duplicate) | +- org.springframework:spring-core:jar:2.5.6:compile | | \- (commons-logging:commons-logging:jar:1.1.1:compile - omitted for duplicate) | +- org.springframework:spring-tx:jar:2.5.6:compile | | +- (commons-logging:commons-logging:jar:1.1.1:compile - omitted for duplicate) | | +- (org.springframework:spring-beans:jar:2.5.6:compile - omitted for duplicate) | | +- (org.springframework:spring-context:jar:2.5.6:compile - omitted for duplicate) | | \- (org.springframework:spring-core:jar:2.5.6:compile - omitted for duplicate) | \- stax:stax:jar:1.2.0:compile | \- stax:stax-api:jar:1.0.1:compile +- commons-dbcp:commons-dbcp:jar:1.2.2:compile | \- commons-pool:commons-pool:jar:1.3:compile +- org.hibernate:hibernate-core:jar:3.3.2.GA:compile | +- antlr:antlr:jar:2.7.7:compile (version managed from 2.7.6) | +- dom4j:dom4j:jar:1.6.1-jboss:compile (version managed from 1.6.1) | +- javax.transaction:jta:jar:1.0.1B:compile (version managed from 1.1) | \- (org.slf4j:slf4j-api:jar:1.5.6:compile - version managed from 1.4.2; omitted for duplicate) +- org.hibernate:hibernate-validator:jar:3.1.0.GA:compile | +- (org.hibernate:hibernate-core:jar:3.3.2.GA:compile - version managed from 3.3.0.SP1; omitted for duplicate) | +- org.hibernate:hibernate-commons-annotations:jar:3.1.0.GA:compile | | \- (org.slf4j:slf4j-api:jar:1.5.6:compile - version managed from 1.4.2; omitted for duplicate) | \- (org.slf4j:slf4j-api:jar:1.5.6:compile - version managed from 1.4.2; omitted for duplicate) +- org.hibernate:hibernate-annotations:jar:3.4.0.GA:compile | +- org.hibernate:ejb3-persistence:jar:1.0.2.GA:compile | +- (org.hibernate:hibernate-commons-annotations:jar:3.1.0.GA:compile - omitted for duplicate) | +- (org.hibernate:hibernate-core:jar:3.3.2.GA:compile - version managed from 3.3.0.SP1; omitted for duplicate) | +- (org.slf4j:slf4j-api:jar:1.5.6:compile - version managed from 1.4.2; omitted for duplicate) | \- (dom4j:dom4j:jar:1.6.1-jboss:compile - version managed from 1.6.1; omitted for duplicate) +- ojdbc:ojdbc:jar:14:compile +- org.slf4j:slf4j-api:jar:1.5.6:compile +- org.slf4j:slf4j-log4j12:jar:1.5.6:compile | \- (org.slf4j:slf4j-api:jar:1.5.6:compile - version managed from 1.4.2; omitted for duplicate) +- log4j:log4j:jar:1.2.15:compile +- org.apache.velocity:velocity:jar:1.6.2:compile | +- (commons-collections:commons-collections:jar:3.2.1:compile - omitted for duplicate) | +- (commons-lang:commons-lang:jar:2.4:compile - omitted for duplicate) | \- oro:oro:jar:2.0.8:compile +- org.testng:testng:jar:jdk15:5.8:test +- org.dbunit:dbunit:jar:2.4.5:test | +- junit:junit:jar:4.7:test (version managed from 3.8.2) | +- (org.slf4j:slf4j-api:jar:1.5.6:test - version managed from 1.4.2; omitted for duplicate) | \- (commons-collections:commons-collections:jar:3.2.1:test - omitted for duplicate) +- hsqldb:hsqldb:jar:1.8.0.7:test +- jboss:javassist:jar:3.3.ga:provided +- org.jdom:jdom:jar:1.1:compile +- jaxen:jaxen:jar:1.1.1:provided +- org.apache.xmlgraphics:fop:jar:0.95:compile | +- (org.apache.xmlgraphics:xmlgraphics-commons:jar:1.3.1:compile - omitted for duplicate) | +- org.apache.xmlgraphics:batik-svg-dom:jar:1.7:compile | | +- (org.apache.xmlgraphics:batik-svg-dom:jar:1.7:compile - omitted for cycle) | | +- org.apache.xmlgraphics:batik-anim:jar:1.7:compile | | | +- (org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile - omitted for duplicate) | | | +- (org.apache.xmlgraphics:batik-dom:jar:1.7:compile - omitted for duplicate) | | | +- (org.apache.xmlgraphics:batik-ext:jar:1.7:compile - omitted for duplicate) | | | \- (org.apache.xmlgraphics:batik-parser:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile - omitted for duplicate) | | +- org.apache.xmlgraphics:batik-css:jar:1.7:compile | | | +- (org.apache.xmlgraphics:batik-ext:jar:1.7:compile - omitted for duplicate) | | | +- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | | | \- (xml-apis:xml-apis-ext:jar:1.3.04:compile - omitted for duplicate) | | +- org.apache.xmlgraphics:batik-dom:jar:1.7:compile | | | +- (org.apache.xmlgraphics:batik-css:jar:1.7:compile - omitted for duplicate) | | | +- (org.apache.xmlgraphics:batik-ext:jar:1.7:compile - omitted for duplicate) | | | +- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | | | +- (org.apache.xmlgraphics:batik-xml:jar:1.7:compile - omitted for duplicate) | | | +- (xalan:xalan:jar:2.6.0:compile - omitted for duplicate) | | | \- (xml-apis:xml-apis-ext:jar:1.3.04:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-ext:jar:1.7:compile - omitted for duplicate) | | +- org.apache.xmlgraphics:batik-parser:jar:1.7:compile | | | +- (org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile - omitted for duplicate) | | | +- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | | | \- (org.apache.xmlgraphics:batik-xml:jar:1.7:compile - omitted for duplicate) | | +- org.apache.xmlgraphics:batik-util:jar:1.7:compile | | \- xml-apis:xml-apis-ext:jar:1.3.04:compile | +- org.apache.xmlgraphics:batik-bridge:jar:1.7:compile | | +- (org.apache.xmlgraphics:batik-anim:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-css:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-dom:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-ext:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-bridge:jar:1.7:compile - omitted for cycle) | | +- (org.apache.xmlgraphics:batik-gvt:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-parser:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-bridge:jar:1.7:compile - omitted for cycle) | | +- org.apache.xmlgraphics:batik-script:jar:1.7:compile | | +- (org.apache.xmlgraphics:batik-svg-dom:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | | +- org.apache.xmlgraphics:batik-xml:jar:1.7:compile | | | \- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | | +- xalan:xalan:jar:2.6.0:compile | | \- (xml-apis:xml-apis-ext:jar:1.3.04:compile - omitted for duplicate) | +- org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile | | \- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | +- org.apache.xmlgraphics:batik-gvt:jar:1.7:compile | | +- (org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-gvt:jar:1.7:compile - omitted for cycle) | | +- (org.apache.xmlgraphics:batik-bridge:jar:1.7:compile - omitted for duplicate) | | \- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | +- org.apache.xmlgraphics:batik-transcoder:jar:1.7:compile | | +- (org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-bridge:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-dom:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-gvt:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-svg-dom:jar:1.7:compile - omitted for duplicate) | | +- org.apache.xmlgraphics:batik-svggen:jar:1.7:compile | | | +- (org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile - omitted for duplicate) | | | \- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-xml:jar:1.7:compile - omitted for duplicate) | | \- (xml-apis:xml-apis-ext:jar:1.3.04:compile - omitted for duplicate) | +- org.apache.xmlgraphics:batik-extension:jar:1.7:compile | | +- (org.apache.xmlgraphics:batik-awt-util:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-bridge:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-css:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-dom:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-ext:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-gvt:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-parser:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-svg-dom:jar:1.7:compile - omitted for duplicate) | | +- (org.apache.xmlgraphics:batik-util:jar:1.7:compile - omitted for duplicate) | | \- (xml-apis:xml-apis-ext:jar:1.3.04:compile - omitted for duplicate) | +- org.apache.xmlgraphics:batik-ext:jar:1.7:compile | +- commons-logging:commons-logging:jar:1.1.1:compile | +- commons-io:commons-io:jar:1.3.1:compile | \- org.apache.avalon.framework:avalon-framework-api:jar:4.3.1:compile +- org.apache.xmlgraphics:xmlgraphics-commons:jar:1.3.1:compile | +- (commons-io:commons-io:jar:1.3.1:compile - omitted for duplicate) | \- (commons-logging:commons-logging:jar:1.1.1:compile - version managed from 1.0.4; omitted for duplicate) +- org.easymock:easymock:jar:2.0:test \- org.easymock:easymockclassextension:jar:2.2:test +- (org.easymock:easymock:jar:2.2:test - omitted for conflict with 2.0) \- cglib:cglib-nodep:jar:2.2:test (version managed from 2.1_3) Can anyone tell me how to clear out intellij's classpath too?

    Read the article

  • IIS 7.5 , Tomcat 7 - Isapi redirector - Fail Over - sticky sessions

    - by Jose Matias
    I have two instances of Tomcat 7.0.8 running in the same machine (Tomcat7A and Tomcat7B) and IIS 7.5 acting as front-end load-balancer with isapi-redirector 1.2.31, running on Windows 2008 R2. When i disconnect the instance wich is handling a request i can see a new instance being assigned with the same sessionid but then the user is redirected to the login page. server.xml configuration file <Engine name="Catalina" defaultHost="localhost" jvmRoute="Tomcat7A"> <Realm className="org.apache.catalina.realm.LockOutRealm"> <Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase"/> </Realm> <Host name="localhost" appBase="webapps" unpackWARs="true" autoDeploy="true"> <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster" channelSendOptions="8"> <Manager className="org.apache.catalina.ha.session.DeltaManager" expireSessionsOnShutdown="false" notifyListenersOnReplication="true"/> <Channel className="org.apache.catalina.tribes.group.GroupChannel"> <Membership className="org.apache.catalina.tribes.membership.McastService" address="228.0.0.8" bind="7.3.1.22" port="45564" frequency="500" dropTime="3000"/> <Receiver className="org.apache.catalina.tribes.transport.nio.NioReceiver" address="auto" port="4200" autoBind="100" selectorTimeout="5000" maxThreads="6"/> <Sender className="org.apache.catalina.tribes.transport.ReplicationTransmitter"> <Transport className="org.apache.catalina.tribes.transport.nio.PooledParallelSender"/> </Sender> <Interceptor className="org.apache.catalina.tribes.group.interceptors.TcpFailureDetector"/> <Interceptor className="org.apache.catalina.tribes.group.interceptors.MessageDispatch15Interceptor"/> </Channel> <Valve className="org.apache.catalina.ha.tcp.ReplicationValve" filter=".*\.gif;.*\.js;.*\.jpg;.*\.htm;.*\.html;.*\.txt"/> <Valve className="org.apache.catalina.ha.session.JvmRouteBinderValve"/> <ClusterListener className="org.apache.catalina.ha.session.JvmRouteSessionIDBinderListener"/> <ClusterListener className="org.apache.catalina.ha.session.ClusterSessionListener"/> </Cluster> <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs" prefix="localhost_access_log." suffix=".txt" pattern="%h %l %u %t &quot;%r&quot; %s %b" resolveHosts="false"/> </Host> </Engine> worker_mount_file=C:\tomcat\iis\conf\uriworkermap_prod.properties worker.list = balancer,status worker.Tomcat7B.host = 7.3.1.22 worker.Tomcat7B.type = ajp13 worker.Tomcat7B.port = 8010 worker.Tomcat7B.lbfactor = 10 worker.Tomcat7A.host = 7.3.1.22 worker.Tomcat7A.type = ajp13 worker.Tomcat7A.port = 8009 worker.Tomcat7A.lbfactor = 10 worker.balancer.type = lb worker.balancer.sticky_session = 1 worker.balancer.balance_workers = Tomcat7B, Tomcat7A worker.status.type = status isapi_redirect log [debug] wc_get_worker_for_name::jk_worker.c (116): found a worker balancer [debug] HttpExtensionProc::jk_isapi_plugin.c (2188): got a worker for name balancer [debug] service::jk_lb_worker.c (1118): service sticky_session=1 id='89569C584CC4F58740D649C4BE655D36.Tomcat7B' [debug] get_most_suitable_worker::jk_lb_worker.c (946): searching worker for partial sessionid 89569C584CC4F58740D649C4BE655D36.Tomcat7B [debug] get_most_suitable_worker::jk_lb_worker.c (954): searching worker for session route Tomcat7B [debug] get_most_suitable_worker::jk_lb_worker.c (968): found worker Tomcat7B (Tomcat7B) for route Tomcat7B and partial sessionid 89569C584CC4F58740D649C4BE655D36.Tomcat7B [debug] service::jk_lb_worker.c (1161): service worker=Tomcat7B route=Tomcat7B [debug] ajp_get_endpoint::jk_ajp_common.c (3096): acquired connection pool slot=0 after 0 retries [debug] ajp_marshal_into_msgb::jk_ajp_common.c (605): ajp marshaling done [debug] ajp_service::jk_ajp_common.c (2379): processing Tomcat7B with 2 retries [debug] jk_shutdown_socket::jk_connect.c (726): About to shutdown socket 820 [7.3.1.22:24482 -> 7.3.1.22:8010] [debug] jk_shutdown_socket::jk_connect.c (797): shutting down the read side of socket 820 [7.3.1.22:24482 -> 7.3.1.22:8010] [debug] jk_shutdown_socket::jk_connect.c (808): Shutdown socket 820 [7.3.1.22:24482 -> 7.3.1.22:8010] and read 0 lingering bytes in 0 sec. [debug] ajp_send_request::jk_ajp_common.c (1496): (Tomcat7B) failed sending request, socket 820 is not connected any more (errno=-10000) [debug] ajp_next_connection::jk_ajp_common.c (823): (Tomcat7B) Will try pooled connection socket 896 from slot 1 [debug] jk_shutdown_socket::jk_connect.c (726): About to shutdown socket 896 [7.3.1.22:24488 -> 7.3.1.22:8010] [debug] jk_shutdown_socket::jk_connect.c (797): shutting down the read side of socket 896 [7.3.1.22:24488 -> 7.3.1.22:8010] [debug] jk_shutdown_socket::jk_connect.c (808): Shutdown socket 896 [7.3.1.22:24488 -> 7.3.1.22:8010] and read 0 lingering bytes in 0 sec. [debug] ajp_send_request::jk_ajp_common.c (1496): (Tomcat7B) failed sending request, socket 896 is not connected any more (errno=-10000) [info] ajp_send_request::jk_ajp_common.c (1567): (Tomcat7B) all endpoints are disconnected, detected by connect check (2), cping (0), send (0) [debug] jk_open_socket::jk_connect.c (484): socket TCP_NODELAY set to On [debug] jk_open_socket::jk_connect.c (608): trying to connect socket 896 to 7.3.1.22:8010 [info] jk_open_socket::jk_connect.c (626): connect to 7.3.1.22:8010 failed (errno=61) [info] ajp_connect_to_endpoint::jk_ajp_common.c (959): Failed opening socket to (7.3.1.22:8010) (errno=61) [error] ajp_send_request::jk_ajp_common.c (1578): (Tomcat7B) connecting to backend failed. Tomcat is probably not started or is listening on the wrong port (errno=61) [info] ajp_service::jk_ajp_common.c (2543): (Tomcat7B) sending request to tomcat failed (recoverable), because of error during request sending (attempt=1) [debug] ajp_service::jk_ajp_common.c (2400): retry 1, sleeping for 100 ms before retrying [debug] ajp_send_request::jk_ajp_common.c (1572): (Tomcat7B) all endpoints are disconnected. [debug] jk_open_socket::jk_connect.c (484): socket TCP_NODELAY set to On [debug] jk_open_socket::jk_connect.c (608): trying to connect socket 896 to 7.3.1.22:8010 [info] jk_open_socket::jk_connect.c (626): connect to 7.3.1.22:8010 failed (errno=61) [info] ajp_connect_to_endpoint::jk_ajp_common.c (959): Failed opening socket to (7.3.1.22:8010) (errno=61) [error] ajp_send_request::jk_ajp_common.c (1578): (Tomcat7B) connecting to backend failed. Tomcat is probably not started or is listening on the wrong port (errno=61) [info] ajp_service::jk_ajp_common.c (2543): (Tomcat7B) sending request to tomcat failed (recoverable), because of error during request sending (attempt=2) [error] ajp_service::jk_ajp_common.c (2562): (Tomcat7B) connecting to tomcat failed. [debug] ajp_reset_endpoint::jk_ajp_common.c (757): (Tomcat7B) resetting endpoint with socket -1 (socket shutdown) [debug] ajp_done::jk_ajp_common.c (3013): recycling connection pool slot=0 for worker Tomcat7B [debug] service::jk_lb_worker.c (1374): worker Tomcat7B escalating local error to global error [info] service::jk_lb_worker.c (1388): service failed, worker Tomcat7B is in error state [debug] service::jk_lb_worker.c (1399): recoverable error... will try to recover on other worker [debug] get_most_suitable_worker::jk_lb_worker.c (946): searching worker for partial sessionid 89569C584CC4F58740D649C4BE655D36.Tomcat7B [debug] get_most_suitable_worker::jk_lb_worker.c (954): searching worker for session route Tomcat7B [debug] get_most_suitable_worker::jk_lb_worker.c (1001): found best worker Tomcat7A (Tomcat7A) using method 'Request' [debug] service::jk_lb_worker.c (1161): service worker=Tomcat7A route=Tomcat7B [debug] ajp_get_endpoint::jk_ajp_common.c (3096): acquired connection pool slot=0 after 0 retries [debug] ajp_marshal_into_msgb::jk_ajp_common.c (605): ajp marshaling done [debug] ajp_service::jk_ajp_common.c (2379): processing Tomcat7A with 2 retries [debug] ajp_send_request::jk_ajp_common.c (1572): (Tomcat7A) all endpoints are disconnected. [debug] jk_open_socket::jk_connect.c (484): socket TCP_NODELAY set to On [debug] jk_open_socket::jk_connect.c (608): trying to connect socket 896 to 7.3.1.22:8009 [debug] jk_open_socket::jk_connect.c (634): socket 896 [7.3.1.22:24496 -> 7.3.1.22:8009] connected [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): sending to ajp13 pos=4 len=615 max=8192 [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0000 .4.c....HTTP/1.1 [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0010 .../Accounter/pr [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0020 intFrameSet.jhtm [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0030 l...::1...::1... [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0040 localhost..P.... [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0050 ...Keep-Alive... [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0060 ..0....rimage/jp [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0070 eg,.image/gif,.i [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0080 mage/pjpeg,.appl [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0090 ication/x-ms-app [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00a0 lication,.applic [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00b0 ation/xaml+xml,. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00c0 application/x-ms [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00d0 -xbap,.*/*...Acc [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00e0 ept-Encoding...g [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00f0 zip,.deflate...A [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0100 ccept-Language.. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0110 .nb-NO....]Usern [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0120 ame=NA_jose.mati [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0130 as_AT_addenergy. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0140 no;.JSESSIONID=8 [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0150 9569C584CC4F5874 [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0160 0D649C4BE655D36. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0170 Tomcat7B.....loc [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0180 alhost.....http: [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0190 //localhost/Acco [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01a0 unter/NemsAccoun [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01b0 ter.jhtml....uMo [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01c0 zilla/4.0.(compa [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01d0 tible;.MSIE.8.0; [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01e0 .Windows.NT.6.1; [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01f0 .WOW64;.Trident/ [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0200 4.0;.SLCC2;..NET [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0210 .CLR.2.0.50727;. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0220 .NET4.0C;..NET4. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0230 0E)............F [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0240 rameName=Reports [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0250 _CS_EUETS....Tom [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0260 cat7B........... [debug] ajp_send_request::jk_ajp_common.c (1632): (Tomcat7A) request body to send 0 - request body to resend 0 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): received from ajp13 pos=0 len=238 max=8192 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0000 .....Moved.Tempo [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0010 rarily......OJSE [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0020 SSIONID=6A2507A4 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0030 626F698EC74A733C [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0040 DBA7D9FE.Tomcat7 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0050 A;.Path=/Account [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0060 er;.HttpOnly...P [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0070 ragma...no-cache [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0080 ...Cache-Control [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0090 ...no-cache....& [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 00a0 http://localhost [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 00b0 /Accounter/login [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 00c0 .jhtml.....text/ [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 00d0 html;charset=ISO [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 00e0 -8859-1.....0... [debug] ajp_unmarshal_response::jk_ajp_common.c (660): status = 302 [debug] ajp_unmarshal_response::jk_ajp_common.c (667): Number of headers is = 6 [debug] ajp_unmarshal_response::jk_ajp_common.c (723): Header[0] [Set-Cookie] = [JSESSIONID=6A2507A4626F698EC74A733CDBA7D9FE.Tomcat7A; Path=/Accounter; HttpOnly] [debug] ajp_unmarshal_response::jk_ajp_common.c (723): Header[1] [Pragma] = [no-cache] [debug] ajp_unmarshal_response::jk_ajp_common.c (723): Header[2] [Cache-Control] = [no-cache] [debug] ajp_unmarshal_response::jk_ajp_common.c (723): Header[3] [Location] = [http://localhost/Accounter/login.jhtml] [debug] ajp_unmarshal_response::jk_ajp_common.c (723): Header[4] [Content-Type] = [text/html;charset=ISO-8859-1] [debug] ajp_unmarshal_response::jk_ajp_common.c (723): Header[5] [Content-Length] = [0] [debug] start_response::jk_isapi_plugin.c (963): Starting response for URI '/Accounter/printFrameSet.jhtml' (protocol HTTP/1.1) [debug] start_response::jk_isapi_plugin.c (1063): Not using Keep-Alive [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): received from ajp13 pos=0 len=2 max=8192 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0000 ................ [debug] ajp_process_callback::jk_ajp_common.c (1943): AJP13 protocol: Reuse is OK [debug] ajp_reset_endpoint::jk_ajp_common.c (757): (Tomcat7A) resetting endpoint with socket 896 [debug] ajp_done::jk_ajp_common.c (3013): recycling connection pool slot=0 for worker Tomcat7A [debug] HttpExtensionProc::jk_isapi_plugin.c (2211): service() returned OK [debug] HttpFilterProc::jk_isapi_plugin.c (1851): Filter started [debug] map_uri_to_worker_ext::jk_uri_worker_map.c (1036): Attempting to map URI '/localhost/Accounter/login.jhtml' from 8 maps [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/servlet/*=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/ws/*=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/nems*.pdf=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/*.service=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/*.jhtml=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/*.json=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/jkmanager=status' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/servlet/*=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/ws/*=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/nems*.pdf=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/*.service=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (850): Attempting to map context URI '/Accounter/*.jhtml=balancer' source 'uriworkermap' [debug] find_match::jk_uri_worker_map.c (863): Found a wildchar match '/Accounter/*.jhtml=balancer' [debug] HttpFilterProc::jk_isapi_plugin.c (1938): check if [/Accounter/login.jhtml] points to the web-inf directory [debug] HttpFilterProc::jk_isapi_plugin.c (1954): [/Accounter/login.jhtml] is a servlet url - should redirect to balancer [debug] HttpFilterProc::jk_isapi_plugin.c (1994): fowarding escaped URI [/Accounter/login.jhtml] [debug] init_ws_service::jk_isapi_plugin.c (2982): Reading extension header HTTP_TOMCATWORKER0000000180000000: balancer [debug] init_ws_service::jk_isapi_plugin.c (2983): Reading extension header HTTP_TOMCATWORKERIDX0000000180000000: 5 [debug] init_ws_service::jk_isapi_plugin.c (2984): Reading extension header HTTP_TOMCATURI0000000180000000: /Accounter/login.jhtml [debug] init_ws_service::jk_isapi_plugin.c (2985): Reading extension header HTTP_TOMCATQUERY0000000180000000: (null) [debug] init_ws_service::jk_isapi_plugin.c (3040): Applying service extensions [debug] init_ws_service::jk_isapi_plugin.c (3298): Service protocol=HTTP/1.1 method=GET host=::1 addr=::1 name=localhost port=80 auth= user= uri=/Accounter/login.jhtml [debug] init_ws_service::jk_isapi_plugin.c (3310): Service request headers=9 attributes=0 chunked=no content-length=0 available=0 [debug] wc_get_worker_for_name::jk_worker.c (116): found a worker balancer [debug] HttpExtensionProc::jk_isapi_plugin.c (2188): got a worker for name balancer [debug] service::jk_lb_worker.c (1118): service sticky_session=1 id='6A2507A4626F698EC74A733CDBA7D9FE.Tomcat7A' [debug] get_most_suitable_worker::jk_lb_worker.c (946): searching worker for partial sessionid 6A2507A4626F698EC74A733CDBA7D9FE.Tomcat7A [debug] get_most_suitable_worker::jk_lb_worker.c (954): searching worker for session route Tomcat7A [debug] get_most_suitable_worker::jk_lb_worker.c (968): found worker Tomcat7A (Tomcat7A) for route Tomcat7A and partial sessionid 6A2507A4626F698EC74A733CDBA7D9FE.Tomcat7A [debug] service::jk_lb_worker.c (1161): service worker=Tomcat7A route=Tomcat7A [debug] ajp_get_endpoint::jk_ajp_common.c (3096): acquired connection pool slot=0 after 0 retries [debug] ajp_marshal_into_msgb::jk_ajp_common.c (605): ajp marshaling done [debug] ajp_service::jk_ajp_common.c (2379): processing Tomcat7A with 2 retries [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): sending to ajp13 pos=4 len=577 max=8192 [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0000 .4.=....HTTP/1.1 [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0010 .../Accounter/lo [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0020 gin.jhtml...::1. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0030 ..::1...localhos [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0040 t..P.......Keep- [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0050 Alive.....0....r [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0060 image/jpeg,.imag [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0070 e/gif,.image/pjp [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0080 eg,.application/ [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0090 x-ms-application [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00a0 ,.application/xa [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00b0 ml+xml,.applicat [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00c0 ion/x-ms-xbap,.* [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00d0 /*...Accept-Enco [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00e0 ding...gzip,.def [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 00f0 late...Accept-La [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0100 nguage...nb-NO.. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0110 ..]Username=NA_j [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0120 ose.matias_AT_ad [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0130 denergy.no;.JSES [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0140 SIONID=6A2507A46 [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0150 26F698EC74A733CD [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0160 BA7D9FE.Tomcat7A [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0170 .....localhost.. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0180 ...http://localh [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0190 ost/Accounter/Ne [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01a0 msAccounter.jhtm [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01b0 l....uMozilla/4. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01c0 0.(compatible;.M [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01d0 SIE.8.0;.Windows [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01f0 Trident/4.0;.SLC [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 01e0 .NT.6.1;.WOW64;. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0200 C2;..NET.CLR.2.0 [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0210 .50727;..NET4.0C [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0220 ;..NET4.0E)..... [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0230 .......Tomcat7A. [debug] ajp_connection_tcp_send_message::jk_ajp_common.c (1145): 0240 ................ [debug] ajp_send_request::jk_ajp_common.c (1621): (Tomcat7A) Statistics about invalid connections: connect check (0), cping (0), send (0) [debug] ajp_send_request::jk_ajp_common.c (1632): (Tomcat7A) request body to send 0 - request body to resend 0 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): received from ajp13 pos=0 len=135 max=8192 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0000 .....OK.....Prag [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0010 ma...no-cache... [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0020 Expires...Thu,.0 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0030 1.Jan.1970.00:00 [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0040 :00.GMT...Cache- [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0050 Control...no-cac [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0060 he...Cache-Contr [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0070 ol...no-store... [debug] ajp_connection_tcp_get_message::jk_ajp_common.c (1329): 0080 ..2995..........

    Read the article

< Previous Page | 831 832 833 834 835 836 837 838 839 840 841  | Next Page >