Search Results

Search found 591 results on 24 pages for 'arm'.

Page 9/24 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • Linux USB debug connection to LuminaryMicro evaluation board

    - by mikelong
    Hi, I am trying to connect a Stellaris LM3S8962 evaluation kit to a linux host machine. I am using the CodeSourcery G++ for the development toolchain. When I try to run a helloworld example the connection fails with this message: arm-stellaris-eabi-sprite: error: E104. I/O Error communicating with USB Device. arm-stellaris-eabi-sprite: waiting for GDB connection, to pass error along warning: Remote failure reply: E.fatal.E104. I/O Error communicating with USB Device. arm-stellaris-eabi-sprite: error: E002. Not initialized When I connect the evaluation board with the USB cable it seems the device is made available to the system: Mar 24 14:37:16 n6-ws2 kernel: usb 5-2: USB disconnect, address 5 Mar 24 14:37:18 n6-ws2 kernel: usb 5-2: new full speed USB device using uhci_hcd and address 6 Mar 24 14:37:19 n6-ws2 kernel: usb 5-2: configuration #1 chosen from 1 choice Also, it seems that I can connect in some way via the command line tool (but I do get some strange characters): [mlong@n6-ws2 bin]$ ./arm-stellaris-eabi-sprite -i CodeSourcery ARM Debug Sprite (Sourcery G++ 4.4-104) armusb: [speed=] ARMUSB device armusb:///?? - ?? (??) Does anyone have any suggestions I could try? Thanks a lot, Mike

    Read the article

  • Agile Awakenings and the Rules of Agile

    - by Robert May
    For those that care, you can read my history of management and technology to understand why I think I’m qualified to talk about this at all.  It’s boring, so feel free to skip it. Awakenings I first started to play around with the idea of “agile” in 2004 or 2005.  I found a book on the Rational Unified Process that I thought was good, and attempted to implement parts of it.  I thought I was agile, but really, it wasn’t.   I still didn’t understand the concept of a team.  I still wanted to tell the team what to do and how to get it done.  I still thought I was smarter than the team. After that job, I started work on another project and began helping that team.  The first few months were really rough.  We were implementing Scrum, which was relatively new to everyone on the team, and, quite frankly, I was doing a poor job of it.  I was trying to micro-manage every aspect of the teams work, and we were all miserable. The moment of change came when the senior architect bailed on the project.  His comment to me was: “This isn’t Agile.  Where are the stand-ups?  Where are the stories?”  He was dead on, and I finally woke up.  I finally realized that I was the problem!  I wasn’t trusting the team.  I wasn’t helping the team.  I was being a manager. Like many (most?), I was claiming to be Agile and use Scrum, but I wasn’t in fact following the rules Scrum.  Since then, I’ve done a lot of studying, hands on practice, coaching of many different teams, and other learning around Scrum, and I have discovered that Scrum has some rules that must be followed for success, even though the process is about continuous improvement. I’ve been practicing Scrum right for about 4 years now and have helped multiple teams implement it successfully, so what you’re about to get is based on experience, rather than just theory. The Rules of Scrum In my experience, what I’ve found is that most companies that claim to be doing Scrum or Agile are actually NOT doing either.  This stems largely because they think that they can “adopt the rules of Agile that fit their organization.”  Sadly, many of them think that this means they can adopt iterations (sprints) and not much else.  Either that, or they think they can do whatever they want, or were doing before, and call it Scrum.  This is simply not true. Here are some rules that must be followed for you to really be doing Scrum.  I’ll go into detail on each one of these posts in future blog posts and update links here.  My intent is that this will help other teams implementing scrum to see more success. Agile does not allow you to do whatever you want A Product Owner is required A ScrumMaster is required The team must function as a Team, and QA must be part of the team Support from upper management is required A prioritized product backlog is required A prioritized sprint backlog is required Release planning is required Complete spring planning is required Showcases are required Velocity must be measured Retrospectives are required Daily stand-ups are required Visibility is absolutely required For now, I think that’s enough, although I reserve the right to add more.  If you’re breaking any of these rules, you’re probably not doing Scrum.  There are exceptions to these rules, but until you have practiced Scrum for a while, you don’t know what those exceptions are. Breaking the Rules Many teams break these rules because they are the ones that expose the most pain.  Scrum is not Advil.  It’s not intended to mask the pain, its intended to cure it.  Let me explain that analogy a bit more.  Recently, my 7 year old son broke his arm, quite severely (see the X-Ray to the right).  That caused him a great deal of pain.  We went first to one doctor, and after viewing the X-Ray, they determined that there was no way that they’d cast the arm at their location.  It was simply too bad of a break for them to deal with.  They did, however, give him some Advil for the pain and put a splint on his arm to stabilize the broken bones.  Within minutes, he was feeling much better.  Had we been stupid, we could have gone home and he’d have been just as happy as ever . . . until the pain medication wore off or one of his siblings touched the splint.  Then, all of that pain would come right back to the top.  Sure, he could make it go away by just taking more Advil and moving the splint out of the way, but that wasn’t going to fix the problem permanently. We ended up in an emergency room with a doctor who could fix his arm.  However, we were warned that the fix was going to be VERY painful, and it was.  Even with heavy sedation (Propofol), my son was in enough pain that he squirmed and wiggled trying to get his arm away from the doctor.  He had to endure this pain in order to have a functional arm. But the setting wasn’t the end.  He had to have several casts, had to have it re-broken once, since the first setting didn’t take and finally was given a clean bill of health. Agile implementation is much like this story.  Agile was developed as a result of people recognizing that the development methodologies that were currently in place simply were ineffective.  However, the fix to the broken development that’s been festering for many years is not painless.  Many people start Agile thinking that things will be wonderful.  They won’t!  Agile is about visibility, and often, it brings great pain to surface.  It causes all of the missed deadlines, the cowboy coders, the coasters, the micro-managers, the lazy, and all of the other problems that are really part of your development process now to become painfully visible to EVERYONE.  Many people don’t like this exposure.  Agile will make the pain better, but not if you remove the cast (the rules above) prematurely and start breaking the rules that expose the most pain.  The healing will take time and is not instant (like Advil).  Figuring out what the true source of pain and fixing it is very valuable to you, your team, and your company.  Remember as you’re doing this that Agile isn’t the source of the pain, it’s really just exposing it.  Find the source. My recommendation is that ALL of these rules are followed for a minimum of six months, and preferably for an entire year, before you decide to break any of these rules.  Get a few good releases under your belt.  Figure out what your velocity is and start firing as a team.  Chances are, after you see agile really in action, you won’t want to break the rules because you’ll see their value. More Reading Jean Tabaka recently published a list of 78 Things I Have Learned in 6 Years of Agile Coaching.  Highly recommended. Technorati Tags: Agile,Scrum,Rules

    Read the article

  • Remote Graphics Diagnostics with Windows RT 8.1 and Visual Studio 2013

    - by Michael B. McLaughlin
    Originally posted on: http://geekswithblogs.net/mikebmcl/archive/2013/11/12/remote-graphics-diagnostics-with-windows-rt-8.1-and-visual-studio.aspxThis blog post is a brief follow up to my What’s New in Graphics and Game Development in Visual Studio 2013 post on the MVP Award blog. While writing that post I was testing out various features to try to make sure everything worked as expected. I had some trouble getting Remote Graphics Diagnostics (a/k/a remote graphics debugging) working on my first generation Surface RT (upgraded to Windows RT 8.1). It was more strange since I could use remote debugging when doing CPU debugging; it was just graphics debugging that was causing trouble. After some discussions with the great folks who work on the graphics tools in Visual Studio, they were able to repro the problem and recommend a solution. My Surface RT needed the ARM Kits policy installed on it. Once I followed the instructions on the previous link, I could successfully use Remote Graphics Diagnostics on my Surface RT. Please note that this requires Windows RT 8.1 RTM (i.e. not Preview) and that Remote Graphics Diagnostics on ARM only works when you are using Visual Studio 2013 as it is a new feature (it should work just fine using the Express for Windows version). Also, when I installed the ARM Kits policy I needed to do two things to get it to work properly. First, when following the “How to install the Kits policy” instructions, I needed to copy the SecureBoot folder into Program Files on my Surface RT (specifically, I copied the SecureBoot folder to “C:\Program Files\Windows Kits\8.1\bin\arm\” on my Surface RT, creating any necessary directories). It may work if it’s in any system folder; I didn’t test any others after I got it working. I had initially put it in my Downloads folder and tried installing it from there. When the machine restarted it displayed a worrisome error message. I repeatedly pressed the button that would allow me to retry and eventually the machine rebooted and managed to recover itself to its previous state. Second, I needed to install it as an Administrator. The instructions say that this might be necessary. For me it was. This is a Remote Graphics Diagnostics is a great new feature in Visual Studio 2013 so I definitely encourage all of you to check it out!

    Read the article

  • Does Windows 8 RTM Support VB6 (SP6) Runtime files? If so, which ones?

    - by user51047
    Basically, I'm trying to find out which of the following files come packaged with the Windows 8 RTM (that is, the final version). Just to be clear, we're not wanting to know if any of the runtime files (listed below) are or were included with any of the previous versions (Beta, CTP, RS etc) or releases of Windows 8 - we are just interested in this compatibility question as far as Windows 8 RTM (Final Version) is concerned. In addition, if possible, we would also like to know which of the below files (if any) come shipped and registered with the Windows 8 RT (on ARM) version. As far as the ARM version is concerned, you're welcome to base your answer on the latest version of Windows 8 RT (on ARM) that is available at the date and time your answer is posted. (This will also serve to future-proof this question as additional releases or versions of Windows 8 and Windows 8 RT on ARM come out). Here are the list of files (which are basically the VB6 SP6 runtime files): File name Version Size Asycfilt.dll 2.40.4275.1 144 KB (147,728 bytes) Comcat.dll 4.71.1460.1 21.7 KB (22,288 bytes) Msvbvm60.dll 6.0.97.82 1.32 MB (1,386,496 bytes) Oleaut32.dll 2.40.4275.1 584 KB (598,288 bytes) Olepro32.dll 5.0.4275.1 160 KB (164,112 bytes) Stdole2.tlb 2.40.4275.1 17.5 KB (17,920 bytes) Of course, the most important file in there is MSVBVM60.DLL, so if you cannot provide details for all files relating to both Windows Releases, then basing the answer on as many of the files possible would also be useful. Thank you for reading and for your anticipated assistance in putting this question/answer on record.

    Read the article

  • The first day of JavaOne is already over!

    - by delabassee
    In the past Sunday used to be a more relaxing day with ‘just’ some JavaOne activities going on. Sunday used to be a soft day to prepare yourself for an exhausting week. This is now over as JavaOne is expanding; Sunday is now an integral part of the conference. One of the side effect of this extra day is that some activities related to JavaOne and OpenWorld such as MySQL Connect are being push to start a day earlier on Saturday (can you spot the pattern here?). On the GlassFish front, Sunday was a very busy day! It started at the Moscone Center with the annual GlassFish Community Event where the Java EE 7 and GF 4 roadmaps were presented and discussed. During the event, different GlassFish users such as ZeroTurnaround (the JRebel guys), Grupo RBS and IDR Solutions shared their views on GF, why they like GF but also what could be improved. The event was also a forum for the GF community to exchange with some of the key Java EE / GlassFish Oracle Executives and the different GF team members. The Strategy keynote and the Technical keynote were held in the Masonic Auditorium later in the after-noon. Oracle executives have presented the plans for Java SE, Java FX and Java EE. As on-demand replays will be available soon, I will not summarize several hours of content but here are some personal takeaways from those keynotes. Modularity Modularity is a big deal. We know by now that Project Jigsaw will not be ready for Java SE 8 but in any case, it is already possible (and encouraged) to test Jigsaw today. In the future, Java EE plan to rely on the modularity features provided by Java SE, so Project Jigsaw is also relevant for Java EE developers. Shorter term, to cover some of the modular requirements, Java SE will adopt the approach that was used for Java EE 6 and the notion of Profiles. This approach does not define a module system per say; Profiles is a way to clearly define different subsets of Java SE to fulfill different needs (e.g. the full JRE is not required for a headless application). The introduction of different Profiles, from the Base profile (10mb) to the Full Profile (+50mb), has been proposed for Java SE 8. Embedded Embedded is a strong theme going forward for the Java Plaform. There is now a dedicated program : Java Embedded @ JavaOne Java by nature (e.g. platform independence, built-in security, ability easily talks to any back-end systems, large set of skills available on the market, etc.) is probably the most suited platform for the Internet of Things. You can quickly be up-to-speed and develop services and applications for that space just by using your current Java skills. All you need to start developing on ARM is a 35$ Raspberry Pi ARM board (25$ if you are cheap and can live without an ethernet connection) and the recently released JDK for Linux/ARM. Obviously, GlassFish runs on Raspberry Pi. If you wan to go further in the embedded space, you should take a look Java SE Embedded, an optimized, low footprint, Java environment that support the major embedded architectures (ARM, PPC and x86). Finally, Oracle has recently introduced Java Embedded Suite, a new solution that brings modern middleware capabilities to the embedded space. Java Embedded Suite is an optimized solution that leverage Java SE Embedded but also GlassFish, Jersey and JavaDB to deploy advanced value added capabilities (eg. sensor data filtering and) deeper in the network, closer to the devices. JavaFX JavaFX is going strong! Starting from Java SE 7u6, JavaFX is bundled with the JDK. JavaFX is now available for all the major desktop platforms (Windows, Linux and Mac OS X). JavaFX is now also available, in developer preview, for low end device running Linux/ARM. During the keynote, JavaFX was shown running on a Raspberry Pi! And as announced during the keynote, JavaFX should be fully open-sourced by the end of the year; contributions are welcome!. There is a strong momentum around JavaFX, it’s the ideal client solution for the Java platform. A client layer that works perfectly with GlassFish on the back-end. If you were not convince by JavaFX, it’s time to reconsider it! As an old Chinese proverb say “One tweet is worth a thousand words!” HTML5, Project Avatar and Java EE 7 HTML5 got a lot of airtime too, it was covered during the Java EE 7 section of the keynote. Some details about Project Avatar, Oracle’s incubator project for a TSA (Thin Server Architecture) solution, were diluted and shown during the keynote. On the tooling side, Project Easel running on NetBeans 7.3 beta was demo’ed, including a cool NetBeans debugging session running in Chrome! HTML 5, Project Avatar and Java EE 7 deserve separate posts... Feedback We need your feedback! There are many projects, JSRs and products cooking : GlassFish 4, Project Jigsaw, Concurrency Utilities for Java EE (JSR 236), OpenJFX, OpenJDK to name just a few. Those projects, those specifications will have a profound impact on the Java platform for the years to come! So if you have the opportunity, download, install, learn, tests them and give feedback! Remember, you can "Make the Future Java!" Finally, the traditional GlassFish Party at the Thirsty Bear concluded the first JavaOne day. This party is another place where the community can freely exchange with the GlassFish team in a more relaxed, more friendly (but sometime more noisy) atmosphere. Arun has posted a set of pictures to reflect the atmosphere of the keynotes and the GlassFish party. You can find more details on the others Java EE and GlassFish activities here.

    Read the article

  • Build-Essentials installation failing

    - by Brickman
    I am having trouble accessing the several critical header files that show to be a part of the build process. The "Ubuntu Software Center" shows "Build Essentials" as installed: Next I did the following two commands, which did not improve the problem: ~$ sudo apt-get install build-essential [sudo] password for: Reading package lists... Done Building dependency tree Reading state information... Done build-essential is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. :~$ sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. :~$ Dump of headers after installation attempts. > /usr/include/boost/interprocess/detail/atomic.hpp > /usr/include/boost/interprocess/smart_ptr/detail/sp_counted_base_atomic.hpp > /usr/include/qt4/Qt/qatomic.h /usr/include/qt4/Qt/qbasicatomic.h > /usr/include/qt4/QtCore/qatomic.h > /usr/include/qt4/QtCore/qbasicatomic.h > /usr/share/doc/git-annex/html/bugs/git_annex_unlock_is_not_atomic.html > /usr/src/linux-headers-3.11.0-15/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-15/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-15-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-17/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-17-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-18/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-18-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-19/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-19-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-20/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-20-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-22/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-22-generic/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.14.4-031404/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404-generic/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404-lowlatency/include/linux/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/alpha/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arm/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arm64/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/avr32/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/blackfin/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/frv/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/h8300/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/hexagon/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/ia64/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/m32r/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/m68k/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/metag/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/microblaze/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/mips/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/mn10300/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/parisc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/powerpc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/s390/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/score/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/sh/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/sparc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/tile/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/x86/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/xtensa/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/linux/atomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng/lib/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng/wrapper/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng-modules/lib/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng-modules/wrapper/ringbuffer/vatomic.h Yes, I know there are multiple headers of the same type here, but they are different versions. Version "linux-headers-3.14.4-031404" shows to be the latest. Ubuntu shows "Nothing needed to be installed." However, the following C/C++ headers files show to be missing for Eclipse and QT4. #include <linux/version.h> #include <linux/module.h> #include <linux/socket.h> #include <linux/miscdevice.h> #include <linux/list.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include <linux/init.h> #include <asm/uaccess.h> #include <asm/atomic.h> #include <linux/delay.h> #include <linux/usb.h> This problem appears on my 32-bit version of Ubuntu and on both of my 64-bit versions. What I am doing wrong?

    Read the article

  • 10 Reasons Why Java is the Top Embedded Platform

    - by Roger Brinkley
    With the release of Oracle ME Embedded 3.2 and Oracle Java Embedded Suite, Java is now ready to fully move into the embedded developer space, what many have called the "Internet of Things". Here are 10 reasons why Java is the top embedded platform. 1. Decouples software development from hardware development cycle Development is typically split between both hardware and software in a traditional design flow . This leads to complicated co-design and requires prototype hardware to be built. This parallel and interdependent hardware / software design process typically leads to two or more re-development phases. With Embedded Java, all specific work is carried out in software, with the (processor) hardware implementation fully decoupled. This with eliminate or at least reduces the need for re-spins of software or hardware and the original development efforts can be carried forward directly into product development and validation. 2. Development and testing can be done (mostly) using standard desktop systems through emulation Because the software and hardware are decoupled it now becomes easier to test the software long before it reaches the hardware through hardware emulation. Emulation is the ability of a program in an electronic device to imitate another program or device. In the past Java tools like the Java ME SDK and the SunSPOTs Solarium provided developers with emulation for a complete set of mobile telelphones and SunSpots. This often included network interaction or in the case of SunSPOTs radio communication. What emulation does is speed up the development cycle by refining the software development process without the need of hardware. The software is fixed, redefined, and refactored without the timely expense of hardware testing. With tools like the Java ME 3.2 SDK, Embedded Java applications can be be quickly developed on Windows based platforms. In the end of course developers should do a full set of testing on the hardware as incompatibilities between emulators and hardware will exist, but the amount of time to do this should be significantly reduced. 3. Highly productive language, APIs, runtime, and tools mean quick time to market Charles Nutter probably said it best in twitter blog when he tweeted, "Every time I see a piece of C code I need to port, my heart dies a little. Then I port it to 1/4 as much Java, and feel better." The Java environment is a very complex combination of a Java Virtual Machine, the Java Language, and it's robust APIs. Combine that with the Java ME SDK for small devices or just Netbeans for the larger devices and you have a development environment where development time is reduced significantly meaning the product can be shipped sooner. Of course this is assuming that the engineers don't get slap happy adding new features given the extra time they'll have.  4. Create high-performance, portable, secure, robust, cross-platform applications easily The latest JIT compilers for the Oracle JVM approach the speed of C/C++ code, and in some memory allocation intensive circumstances, exceed it. And specifically for the embedded devices both ME Embedded and SE Embedded have been optimized for the smaller footprints.  In portability Java uses Bytecode to make the language platform independent. This creates a write once run anywhere environment that allows you to develop on one platform and execute on others and avoids a platform vendor lock in. For security, Java achieves protection by confining a Java program to a Java execution environment and not allowing it to access other parts of computer.  In variety of systems the program must execute reliably to be robust. Finally, Oracle Java ME Embedded is a cross-industry and cross-platform product optimized in release version 3.2 for chipsets based on the ARM architectures. Similarly Oracle Java SE Embedded works on a variety of ARM V5, V6, and V7, X86 and Power Architecture Linux. 5. Java isolates your apps from language and platform variations (e.g. C/C++, kernel, libc differences) This has been a key factor in Java from day one. Developers write to Java and don't have to worry about underlying differences in the platform variations. Those platform variations are being managed by the JVM. Gone are the C/C++ problems like memory corruptions, stack overflows, and other such bugs which are extremely difficult to isolate. Of course this doesn't imply that you won't be able to get away from native code completely. There could be some situations where you have to write native code in either assembler or C/C++. But those instances should be limited. 6. Most popular embedded processors supported allowing design flexibility Java SE Embedded is now available on ARM V5, V6, and V7 along with Linux on X86 and Power Architecture platforms. Java ME Embedded is available on system based on ARM architecture SOCs with low memory footprints and a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN). 7. Support for key embedded features (low footprint, power mgmt., low latency, etc) All embedded devices by there very nature are constrained in some way. Economics may dictate a device with a less RAM and ROM. The CPU needs can dictate a less powerful device. Power consumption is another major resource in some embedded devices as connecting to consistent power source not always desirable or possible. For others they have to constantly on. Often many of these systems are headless (in the embedded space it's almost always Halloween).  For memory resources ,Java ME Embedded can run in environment as low as 130KB RAM/350KB ROM for a minimal, customized configuration up to 700KB RAM/1500KB ROM for the full, standard configuration. Java SE Embedded is designed for environments starting at 32MB RAM/39MB  ROM. Key functionality of embedded devices such as auto-start and recovery, flexible networking are fully supported. And while Java SE Embedded has been optimized for mid-range to high-end embedded systems, Java ME Embedded is a Java runtime stack optimized for small embedded systems. It provides a robust and flexible application platform with dedicated embedded functionality for always-on, headless (no graphics/UI), and connected devices. 8. Leverage huge Java developer ecosystem (expertise, existing code) There are over 9 million developers in world that work on Java, and while not all of them work on embedded systems, their wealth of expertise in developing applications is immense. In short, getting a java developer to work on a embedded system is pretty easy, you probably have a java developer living in your subdivsion.  Then of course there is the wealth of existing code. The Java Embedded Community on Java.net is central gathering place for embedded Java developers. Conferences like Embedded Java @ JavaOne and the a variety of hardware vendor conferences like Freescale Technlogy Forums offer an excellent opportunity for those interested in embedded systems. 9. Easily create end-to-end solutions integrated with Java back-end services In the "Internet of Things" things aren't on an island doing an single task. For instance and embedded drink dispenser doesn't just dispense a beverage, but could collect money from a credit card and also send information about current sales. Similarly, an embedded house power monitoring system doesn't just manage the power usage in a house, but can also send that data back to the power company. In both cases it isn't about the individual thing, but monitoring a collection of  things. How much power did your block, subdivsion, area of town, town, county, state, nation, world use? How many Dr Peppers were purchased from thing1, thing2, thingN? The point is that all this information can be collected and transferred securely  (and believe me that is key issue that Java fully supports) to back end services for further analysis. And what better back in service exists than a Java back in service. It's interesting to note that on larger embedded platforms that support the Java Embedded Suite some of the analysis might be done on the embedded device itself as JES has a glassfish server and Java Database as part of the installation. The result is an end to end Java solution. 10. Solutions from constrained devices to server-class systems Just take a look at some of the embedded Java systems that have already been developed and you'll see a vast range of solutions. Livescribe pen, Kindle, each and every Blu-Ray player, Cisco's Advanced VOIP phone, KronosInTouch smart time clock, EnergyICT smart metering, EDF's automated meter management, Ricoh Printers, and Stanford's automated car  are just a few of the list of embedded Java implementation that continues to grow. Conclusion Now if your a Java Developer you probably look at some of the 10 reasons and say "duh", but for the embedded developers this is should be an eye opening list. And with the release of ME Embedded 3.2 and the Java Embedded Suite the embedded developers life is now a whole lot easier. For the Java developer your employment opportunities are about to increase. For both it's a great time to start developing Java for the "Internet of Things".

    Read the article

  • Oracle Java ME Embedded Client 1.1????

    - by sasa
    6?26???????????Java ME????????Oracle Java ME Embedded Client (OJEC) 1.1???????????CDC 1.1.2?Foundation Profile (FP) 1.1.2???????????ARM, MIPS, x86?Linux???????????Security Optional Package, RMI, JDBC, XML API, Web Services?????????????????????????????·???????????? 2011?5???????1.0??????????????XML API???????????????????????????????????????????x86?????????????x86????????Just-in-Time (JIT)?????????????? ?????????????????????(????GUI??)??????????????Linux (x86)?JDK 6?????????????????????? CPU OS ROM RAM ARM (v5) Linux 2.6.31??, glibc 2.10.2?? 5MB?? 8MB?? ARM (v6, v7) Linux 2.6.35??, glibc 2.12.1?? 5MB?? 8MB?? MIPS (MIPS32 74K) Linux 2.6.22??, glibc 2.8?? 5MB?? 8MB?? x86 (Pentium III??) Linux 2.6.35??, glibc 2.12.1?? 5MB??  8MB?? OJEC 1.1??????????????OTN??????????????????????????????????????Java Embedded??????????? OJEC 1.1 ?????? OJEC 1.1 ??????

    Read the article

  • Directly Jump to another C++ function

    - by maligree
    I'm porting a small academic OS from TriCore to ARM Cortex (Thumb-2 instruction set). For the scheduler to work, I sometimes need to JUMP directly to another function without modifying the stack nor the link register. On TriCore (or, rather, on tricore-g++), this wrapper template (for any three-argument-function) works: template< class A1, class A2, class A3 > inline void __attribute__((always_inline)) JUMP3( void (*func)( A1, A2, A3), A1 a1, A2 a2, A3 a3 ) { typedef void (* __attribute__((interrupt_handler)) Jump3)( A1, A2, A3); ( (Jump3)func )( a1, a2, a3 ); } //example for using the template: JUMP3( superDispatch, this, me, next ); This would generate the assembler instruction J (a.k.a. JUMP) instead of CALL, leaving the stack and CSAs unchanged when jumping to the (otherwise normal) C++ function superDispatch(SchedulerImplementation* obj, Task::Id from, Task::Id to). Now I need an equivalent behaviour on ARM Cortex (or, rather, for arm-none-linux-gnueabi-g++), i.e. generate a B (a.k.a. BRANCH) instruction instead of BLX (a.k.a. BRANCH with link and exchange). But there is no interrupt_handler attribute for arm-g++ and I could not find any equivalent attribute. So I tried to resort to asm volatile and writing the asm code directly: template< class A1, class A2, class A3 > inline void __attribute__((always_inline)) JUMP3( void (*func)( A1, A2, A3), A1 a1, A2 a2, A3 a3 ) { asm volatile ( "mov.w r0, %1;" "mov.w r1, %2;" "mov.w r2, %3;" "b %0;" : : "r"(func), "r"(a1), "r"(a2), "r"(a3) : "r0", "r1", "r2" ); } So far, so good, in my theory, at least. Thumb-2 requires function arguments to be passed in the registers, i.e. r0..r2 in this case, so it should work. But then the linker dies with undefined reference to `r6' on the closing bracket of the asm statement ... and I don't know what to make of it. OK, I'm not the expert in C++, and the asm syntax is not very straightforward... so has anybody got a hint for me? A hint to the correct __attribute__ for arm-g++ would be one way, a hint to fix the asm code would be another. Another way maybe would be to tell the compiler that a1..a3 should already be in the registers r0..r2 when the asm statement is entered (I looked into that a bit, but did not find any hint).

    Read the article

  • How to move point on arc?

    - by bbZ
    I am writing an app that is simulating RobotArm movement. What I want to achieve, and where I have couple of problems is moving a Point on arc (180degree) that is arm range of movement. I am moving an arm by grabbing with mouse end of arm (Elbow, the Point I was talking about), robot can have multiple arms with diffrent arm lenghts. If u can help me with this part, I'd be grateful. This is what I have so far, drawing function: public void draw(Graphics graph) { Graphics2D g2d = (Graphics2D) graph.create(); graph.setColor(color); graph.fillOval(location.x - 4, location.y - 4, point.width, point.height); //Draws elbow if (parentLocation != null) { graph.setColor(Color.black); graph.drawLine(location.x, location.y, parentLocation.x, parentLocation.y); //Connects to parent if (arc == null) { angle = new Double(90 - getAngle(parentInitLocation)); arc = new Arc2D.Double(parentLocation.x - (parentDistance * 2 / 2), parentLocation.y - (parentDistance * 2 / 2), parentDistance * 2, parentDistance * 2, 90 - getAngle(parentInitLocation), 180, Arc2D.OPEN); //Draws an arc if not drawed yet. } else if (angle != null) //if parent is moved, angle is moved also { arc = new Arc2D.Double(parentLocation.x - (parentDistance * 2 / 2), parentLocation.y - (parentDistance * 2 / 2), parentDistance * 2, parentDistance * 2, angle, 180, Arc2D.OPEN); } g2d.draw(arc); } if (spacePanel.getElbows().size() > level + 1) {//updates all childElbows position updateChild(graph); } } I just do not know how to prevent moving Point moving outside of arc line. It can not be inside or outside arc, just on it. Here I wanted to put a screenshot, sadly I don't have enough rep. Am I allowed to put link to this? Maybe you got other ways how to achieve this kind of thing. Here is the image: Red circle is actual state, and green one is what I want to do. EDIT2: As requested, repo link: https://github.com/dspoko/RobotArm

    Read the article

  • Can I copy a cross compiler tool chain between systems (I did before)?

    - by Jamie
    I tested fairly extensively with Ubuntu 10.04 Beta 2 Server in a VM, and was able to simply copy (read tar x) a cross compiled tool chain from an Ubuntu 8.10 VM. I created the tar myself, which is essentially a lot of stuff in \usr\local. Now that I've got a bare metal installation of Ubuntu 10.04 proper, the copy isn't working. In particularly, I'm getting the error: $ arm-linux-gcc -bash: /usr/local/bin/arm-linux-gcc: No such file or directory I've got the systems side by side in SSH windows ... any suggestions?

    Read the article

  • How to keep asm output from Linux kernel module build

    - by fastmonkeywheels
    I'm working on a Linux kernel module for a 2.6.x kernel and I need to view the assembly output, though it's currently being done as a temporary file an deleted afterwords. I'd like to have the assembly output mixed with my C source file so I can easily trace where my problem lies. This is for an ARMv6 core and apparently objdump doesn't support this architecture. I've included my makefile below. ETREP=/xxSourceTreexx/ GNU_BIN=$(ETREP)/arm-none-linux-gnueabi/bin CROSS_COMPILE := $(GNU_BIN)/arm-none-linux-gnueabi- ARCH := arm KDIR=$(ETREP)/linux-2.6.31/ MAKE= CROSS_COMPILE=$(CROSS_COMPILE) ARCH=$(ARCH) make obj-m += xxfile1xx.o all: $(MAKE) -C $(KDIR) M=$(PWD) modules clean: $(MAKE) -C $(KDIR) M=$(PWD) clean

    Read the article

  • problem with hand tracking, opencv

    - by JP Talusan
    I am currently creating an opencv program that identifies a hand in an image and then gets the contour of the hand only, in order for us to get the center (x,y)m in pixels, of the hand. The problem is that whenever the image or video includes an arm or a face, we can't split or separate the hand from the contours of the arm or the face. We are currently using an HSV flesh colored histogram to get the contours of the hand. is there a way to separate them, i just need the hand. also if the picture includes only a hand and some part of the arm. How can we isolate the palm itself from the rest of the picture. all we need is a clear center of the palm. thanks in advanced.

    Read the article

  • How do i compile a static library (fat) for armv6, armv7 and i386

    - by unforgiven
    I know this question has been posed several times, but my goal is slightly different with regard to what I have found searching the web. Specifically, I am already able to build a static library for iPhone, but the final fat file I am able to build only contains arm and i386 architectures (and I am not sure to what arm refers: is v6 or v7?). I am not able to compile specifically for armv6 and armv7 and them merge both architectures using lipo. The lipo tool complains that the same architecture (arm, not armv6 or armv7) is present in both the armv6 and armv7 libraries. Can someone explain exactly how to build for armv6 and armv7, and them merge these libraries into a fat file using lipo?

    Read the article

  • Cascade Saves with Fluent NHibernate AutoMapping

    - by Ryan Montgomery
    How do I "turn on" cascading saves using AutoMap Persistence Model with Fluent NHibernate? As in: I Save the Person and the Arm should also be saved. Currently I get "object references an unsaved transient instance - save the transient instance before flushing" public class Person : DomainEntity { public virtual Arm LeftArm { get; set; } } public class Arm : DomainEntity { public virtual int Size { get; set; } } I found an article on this topic, but it seems to be outdated.

    Read the article

  • Debug Linux kernel pre-decompression stage

    - by Shawn J. Goff
    I am trying to use GDB to debug a Linux kernel zImage before it is decompressed. The kernel is running on an ARM target and I have a JTAG debugger connected to it with a GDB server stub. The target has to load a boot loader. The boot loader reads the kernel image from flash and puts it in RAM at 0x20008000, then branches to that location. I have started GDB and connected to the remote target, then I use GDB's add-symbol-file command like so: add-symbol-file arch/arm/boot/compressed/vmlinux 0x20008000 -readnow When I set a breakpoint for that address, it does trap at the correct place - right when it branches to the kernel. However, GDB shows the wrong line from the source of arch/arm/boot/compressed/head.S. It's 4 lines behind. How can I fix this? I also have tried adding the -s section addr option to add-symbol-file with -s .start 0x20008000; this results in exactly the same problem.

    Read the article

  • Lua-Objective-C bridge on the iphone

    - by John Smith
    I have partially ported the LuaObjCBridge to the iPhone. Most things work but there are still some issues I have to deal with. There are sections where #defines are defined with-respect-to intel or ppc. Is the ARM chip closer to intel or ppc? Here is the most relevant section where most of the defines are: #if defined(__ppc__)||defined(__PPC__)||defined(__powerpc__) #define LUA_OBJC_METHODCALL_INT_IS_SHORTEST_INTEGRAL_TYPE #define LUA_OBJC_METHODCALL_PASS_FLOATS_IN_MARG_HEADER #define LUA_OBJC_POWER_ALIGNMENT #elif defined(__i386__)||defined(__arm__) #warning LuaObjCBridge is not fully tested for use on Intel chips. #define LUA_OBJC_METHODCALL_RETURN_STRUCTS_DIRECTLY // Use this or the code was crashing for me for structs LUA_OBJC_METHODCALL_RETURN_STRUCTS_DIRECTLY_LIMIT #define LUA_OBJC_METHODCALL_USE_OBJC_MSGSENDV_FPRET #define LUA_OBJC_METHODCALL_RETURN_STRUCTS_DIRECTLY_LIMIT 8 #define LUA_OBJC_INTEL_ALIGNMENT #endif For now I added arm with i386, but I could be wrong

    Read the article

  • New Product: Oracle Java ME Embedded 3.2 – Small, Smart, Connected

    - by terrencebarr
    The Internet of Things (IoT) is coming. And, with todays launch of the Oracle Java ME Embedded 3.2 product, Java is going to play an even greater role in it. Java in the Internet of Things By all accounts, intelligent embedded devices are penetrating the world around us – driving industrial processes, monitoring environmental conditions, providing better health care, analyzing and processing data, and much more. And these devices are becoming increasingly connected, adding another dimension of utility. Welcome to the Internet of Things. As I blogged yesterday, this is a huge opportunity for the Java technology and ecosystem. To enable and utilize these billions of devices effectively you need a programming model, tools, and protocols which provide a feature-rich, consistent, scalable, manageable, and interoperable platform.  Java technology is ideally suited to address these technical and business problems, enabling you eliminate many of the typical challenges in designing embedded solutions. By using Java you can focus on building smarter, more valuable embedded solutions faster. To wit, Java technology is already powering around 10 billion devices worldwide. Delivering on this vision and accelerating the growth of embedded Java solutions, Oracle is today announcing a brand-new product: Oracle Java Micro Edition (ME) Embedded 3.2, accompanied by an update release of the Java ME Software Development Kit (SDK) to version 3.2. What is Oracle Java ME Embedded 3.2? Oracle Java ME Embedded 3.2 is a complete Java runtime client, optimized for ARM architecture connected microcontrollers and other resource-constrained systems. The product provides dedicated embedded functionality and is targeted for low-power, limited memory devices requiring support for a range of network services and I/O interfaces.  What features and APIs are provided by Oracle Java ME Embedded 3.2? Oracle Java ME Embedded 3.2 is a Java ME runtime based on CLDC 1.1 (JSR-139) and IMP-NG (JSR-228). The runtime and virtual machine (VM) are highly optimized for embedded use. Also included in the product are the following optional JSRs and Oracle APIs: File I/O API’s (JSR-75)  Wireless Messaging API’s (JSR-120) Web Services (JSR-172) Security and Trust Services subset (JSR-177) Location API’s (JSR-179) XML API’s (JSR-280)  Device Access API Application Management System (AMS) API AccessPoint API Logging API Additional embedded features are: Remote application management system Support for continuous 24×7 operation Application monitoring, auto-start, and system recovery Application access to peripheral interfaces such as GPIO, I2C, SPIO, memory mapped I/O Application level logging framework, including option for remote logging Headless on-device debugging – source level Java application debugging over IP Connection Remote configuration of the Java VM What type of platforms are targeted by Oracle Java ME 3.2 Embedded? The product is designed for embedded, always-on, resource-constrained, headless (no graphics/no UI), connected (wired or wireless) devices with a variety of peripheral I/O.  The high-level system requirements are as follows: System based on ARM architecture SOCs Memory footprint (approximate) from 130 KB RAM/350KB ROM (for a minimal, customized configuration) to 700 KB RAM/1500 KB ROM (for the full, standard configuration)  Very simple embedded kernel, or a more capable embedded OS/RTOS At least one type of network connection (wired or wireless) The initial release of the product is delivered as a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN).  What types of applications can I develop with Oracle Java ME Embedded 3.2? The Oracle Java ME Embedded 3.2 product is a full-featured embedded Java runtime supporting applications based on the IMP-NG application model, which is derived from the well-known MIDP 2 application model. The runtime supports execution of multiple concurrent applications, remote application management, versatile connectivity, and a rich set of APIs and features relevant for embedded use cases, including the ability to interact with peripheral I/O directly from Java applications. This rich feature set, coupled with familiar and best-in class software development tools, allows developers to quickly build and deploy sophisticated embedded solutions for a wide range of use cases. Target markets well supported by Oracle Java ME Embedded 3.2 include wireless modules for M2M, industrial and building control, smart grid infrastructure, home automation, and environmental sensors and tracking. What tools are available for embedded application development for Oracle Java ME Embedded 3.2? Along with the release of Oracle Java ME Embedded 3.2, Oracle is also making available an updated version of the Java ME Software Development Kit (SDK), together with plug-ins for the NetBeans and Eclipse IDEs, to deliver a complete development environment for embedded application development.  OK – sounds great! Where can I find out more? And how do I get started? There is a complete set of information, data sheet, API documentation, “Getting Started Guide”, FAQ, and download links available: For an overview of Oracle Embeddable Java, see here. For the Oracle Java ME Embedded 3.2 press release, see here. For the Oracle Java ME Embedded 3.2 data sheet, see here. For the Oracle Java ME Embedded 3.2 landing page, see here. For the Oracle Java ME Embedded 3.2 documentation page, including a “Getting Started Guide” and FAQ, see here. For the Oracle Java ME SDK 3.2 landing and download page, see here. Finally, to ask more questions, please see the OTN “Java ME Embedded” forum To get started, grab the “Getting Started Guide” and download the Java ME SDK 3.2, which includes the Oracle Java ME Embedded 3.2 device emulation.  Can I learn more about Oracle Java ME Embedded 3.2 at JavaOne and/or Java Embedded @ JavaOne? Glad you asked Both conferences, JavaOne and Java Embedded @ JavaOne, will feature a host of content and information around the new Oracle Java ME Embedded 3.2 product, from technical and business sessions, to hands-on tutorials, and demos. Stay tuned, I will post details shortly. Cheers, – Terrence Filed under: Mobile & Embedded Tagged: "Oracle Java ME Embedded", Connected, embedded, Embedded Java, Java Embedded @ JavaOne, JavaOne, Smart

    Read the article

  • Will an app made for windows store support WindowsRT, windows8 and windows 8 mobile?

    - by AnhSirk Dasarp
    I am very much confused about these. I would like to develop app for windows 8 , Windows RT , and windows mobile. I have windows 8 OS installed in my laptop. As far as I know, Windows RT is for ARM based devices. HERE ARE MY QUESTIONS: I develop an app, and put in windows store. Will that can be downloaded from a ARM based device ,which runs on Windows RT, AND from a windows 8 laptop , and same from a Windows 8 mobile? OR should it be different apps ?

    Read the article

  • Tool for creating Spritesheet? and Tips

    - by Spooks
    I am looking for a tool that I can use to create sprite sheet easily. Right now I am using Illustrator, but I can never get the center of the character in the exact position, so it looks like it is moving around(even though its always in one place), while being loop through the sprite sheet. Is there any better tools that I can be using? Also what kind of tips would you give for working with a sprite sheet? Should I create each part of the character in individual layers (left arm, right arm, body, etc.) or everything at once? any other tips would also be helpful! thank you

    Read the article

  • JavaOne 2012 Sunday Strategy Keynote

    - by Janice J. Heiss
    At the Sunday Strategy Keynote, held at the Masonic Auditorium, Hasan Rizvi, EVP, Middleware and Java Development, stated that the theme for this year's JavaOne is: “Make the future Java”-- meaning that Java continues in its role as the most popular, complete, productive, secure, and innovative development platform. But it also means, he qualified, the process by which we make the future Java -- an open, transparent, collaborative, and community-driven evolution. "Many of you have bet your businesses and your careers on Java, and we have bet our business on Java," he said.Rizvi detailed the three factors they consider critical to the success of Java--technology innovation, community participation, and Oracle's leadership/stewardship. He offered a scorecard in these three realms over the past year--with OS X and Linux ARM support on Java SE, open sourcing of JavaFX by the end of the year, the release of Java Embedded Suite 7.0 middleware platform, and multiple releases on the Java EE side. The JCP process continues, with new JSR activity, and JUGs show a 25% increase in participation since last year. Oracle, meanwhile, continues its commitment to both technology and community development/outreach--with four regional JavaOne conferences last year in various part of the world, as well as the release of Java Magazine, with over 120,000 current subscribers. Georges Saab, VP Development, Java SE, next reviewed features of Java SE 7--the first major revision to the platform under Oracle's stewardship, which has included near-monthly update releases offering hundreds of fixes, performance enhancements, and new features. Saab indicated that developers, ISVs, and hosting providers have all been rapid adopters of the platform. He also noted that Oracle's entire Fusion middleware stack is supported on SE 7. The supported platforms for SE 7 has also increased--from Windows, Linux, and Solaris, to OS X, Linux ARM, and the emerging ARM micro-server market. "In the last year, we've added as many new platforms for Java, as were added in the previous decade," said Saab.Saab also explored the upcoming JDK 8 release--including Project Lambda, Project Nashorn (a modern implementation of JavaScript running on the JVM), and others. He noted that Nashorn functionality had already been used internally in NetBeans 7.3, and announced that they were planning to contribute the implementation to OpenJDK. Nandini Ramani, VP Development, Java Client, ME and Card, discussed the latest news pertaining to JavaFX 2.0--releases on Windows, OS X, and Linux, release of the FX Scene Builder tool, the JavaFX WebView component in NetBeans 7.3, and an OpenJFX project in OpenJDK. Nandini announced, as of Sunday, the availability for download of JavaFX on Linux ARM (developer preview), as well as Scene Builder on Linux. She noted that for next year's JDK 8 release, JavaFX will offer 3D, as well as third-party component integration. Avinder Brar, Senior Software Engineer, Navis, and Dierk König, Canoo Fellow, next took the stage and demonstrated all that JavaFX offers, with a feature-rich, animation-rich, real-time cargo management application that employs Canoo's just open-sourced Dolphin technology.Saab also explored Java SE 9 and beyond--Jigsaw modularity, Penrose Project for interoperability with OSGi, improved multi-tenancy for Java in the cloud, and Project Sumatra. Phil Rogers, HSA Foundation President and AMD Corporate Fellow, explored heterogeneous computing platforms that combine the CPU and the parallel processor of the GPU into a single piece of silicon and shared memory—a hardware technology driven by such advanced functionalities as HD video, face recognition, and cloud workloads. Project Sumatra is an OpenJDK project targeted at bringing Java to such heterogeneous platforms--with hardware and software experts working together to modify the JVM for these advanced applications and platforms.Ramani next discussed the latest with Java in the embedded space--"the Internet of things" and M2M--declaring this to be "the next IT revolution," with Java as the ideal technology for the ecosystem. Last week, Oracle released Java ME Embedded 3.2 (for micro-contollers and low-power devices), and Java Embedded Suite 7.0 (a middleware stack based on Java SE 7). Axel Hansmann, VP Strategy and Marketing, Cinterion, explored his company's use of Java in M2M, and their new release of EHS5, the world's smallest 3G-capable M2M module, running Java ME Embedded. Hansmaan explained that Java offers them the ability to create a "simple to use, scalable, coherent, end-to-end layer" for such diverse edge devices.Marc Brule, Chief Financial Office, Royal Canadian Mint, also explored the fascinating use-case of JavaCard in his country's MintChip e-cash technology--deployable on smartphones, USB device, computer, tablet, or cloud. In parting, Ramani encouraged developers to download the latest releases of Java Embedded, and try them out.Cameron Purdy, VP, Fusion Middleware Development and Java EE, summarized the latest developments and announcements in the Enterprise space--greater developer productivity in Java EE6 (with more on the way in EE 7), portability between platforms, vendors, and even cloud-to-cloud portability. The earliest version of the Java EE 7 SDK is now available for download--in GlassFish 4--with WebSocket support, better JSON support, and more. The final release is scheduled for April of 2013. Nicole Otto, Senior Director, Consumer Digital Technology, Nike, explored her company's Java technology driven enterprise ecosystem for all things sports, including the NikeFuel accelerometer wrist band. Looking beyond Java EE 7, Purdy mentioned NoSQL database functionality for EE 8, the concurrency utilities (possibly in EE 7), some of the Avatar projects in EE 7, some in EE 8, multi-tenancy for the cloud, supporting SaaS applications, and more.Rizvi ended by introducing Dr. Robert Ballard, oceanographer and National Geographic Explorer in Residence--part of Oracle's philanthropic relationship with the National Geographic Society to fund K-12 education around ocean science and conservation. Ballard is best known for having discovered the wreckage of the Titanic. He offered a fascinating video and overview of the cutting edge technology used in such deep-sea explorations, noting that in his early days, high-bandwidth exploration meant that you’d go down in a submarine and "stick your face up against the window." Now, it's a remotely operated, technology telepresence--"I think of my Hercules vehicle as my equivalent of a Na'vi. When I go beneath the sea, I actually send my spirit." Using high bandwidth satellite links, such amazing explorations can now occur via smartphone, laptop, or whatever platform. Ballard’s team regularly offers live feeds and programming out to schools and the world, spanning 188 countries--with embedding educators as part of the expeditions. It's technology at its finest, inspiring the next-generation of scientists and explorers!

    Read the article

  • JavaOne Latin America Opening Keynotes

    - by Tori Wieldt
    Originally published on blogs.oracle.com/javaone It was a great first day at JavaOne Brazil, which included the Java Strategy and Java Technical keynotes. Henrik Stahl, Senior Director, Product Management for Java opened the keynotes by saying that this is the third year for JavaOne Latin America. He explained, "You know what they say, the first time doesn't count, the second time is a habit and the third time it's a tradition!" He mentioned that he was thrilled that this is largest JavaOne in Brazil to date, and he wants next year to be larger. He said that Oracle knows Latin America is an important hub for development.  "We continually come back to Latin America because of the dedication the community has with driving the continued innovation for Java," he said. Stahl explained that Oracle and the Java community must continue to innovate and Make the Future Java together. The success of Java depends on three important factors: technological innovation, Oracle as a strong steward of Java, and community participation. "The Latin American Java Community (especially in Brazil) is a shining example of how to be positive contributor to Java," Stahl said. Next, George Saab, VP software dev, Java Platform Group at Oracle, discussed some of the recent and upcoming changes to Java. "In addition to the incremental improvements to Java 7, we have also increased the set of platforms supported by Oracle from Linux, Windows, and Solaris to now also include Mac OS X and Linux/ARM for ARM-based PCs such as the Raspberry Pi and emerging ARM based microservers."  Saab announced that EA builds for Linux ARM Hard Float ABI will be available by the end of the year.  Staffan Friberg, Product Manager, Java Platform Group, provided an overview of some of the language coming in Java 8, including Lambda, remove of PermGen, improved data and time APIs and improved security, Java 8 development is moving along. He reminded the audience that they can go to OpenJDK to see this development being done in real-time, and that there are weekly early access builds of OracleJDK 8 that developers can download and try today. Judson Althoff, Senior Vice President, Worldwide Alliances and Channels and Embedded Sales, was invited to the stage, and the audience was told that "even though he is wearing a suit, he is still pretty technical." Althoff started off with a bang: "The Internet of Things is on a collision course with big data and this is a huge opportunity for developers."  For example, Althoff said, today cars are more a data device than a mechanical device. A car embedded with sensors for fuel efficiency, temperature, tire pressure, etc. can generate a petabyte of data A DAY. There are similar examples in healthcare (patient monitoring and privacy requirements creates a complex data problem) and transportation management (sending a package around the world with sensors for humidity, temperature and light). Althoff then brought on stage representatives from three companies that are successful with Java today, first Axel Hansmann, VP Strategy & Marketing Communications, Cinterion. Mr. Hansmann explained that Cinterion, a market leader in Latin America, enables M2M services with Java. At JavaOne San Francisco, Cinterion launched the EHS5, the smallest 3g solderable module, with Java installed on it. This provides Original Equipment Manufacturers (OEMs) with a cost effective, flexible platform for bringing advanced M2M technology to market.Next, Steve Nelson, Director of Marketing for the Americas, at Freescale explained that Freescale is #1 in Embedded Processors in Wired and Wireless Communications, and #1 in Automotive Semiconductors in the Americas. He said that Java provides a mature, proven platform that is uniquely suited to meet the requirements of almost any type of embedded device. He encouraged University students to get involved in the Freescale Cup, a global competition where student teams build, program, and race a model car around a track for speed.Roberto Franco, SBTVD Forum President, SBTVD, talked about Ginga, a Java-based standard for television in Brazil. He said there are 4 million Ginga TV sets in Brazil, and they expect over 20 million TV sets to be sold by the end of 2014. Ginga is also being adopted in other 11 countries in Latin America. Ginga brings interactive services not only at TV set, but also on other devices such as tablets,  PCs or smartphones, as the main or second screen. "Interactive services is already a reality," he said, ' but in a near future, we foresee interactivity enhanced TV content, convergence with OTT services and a big participation from the audience,  all integrated on TV, tablets, smartphones and second screen devices."Before he left the stage, Nandini Ramani thanked Judson for being part of the Java community and invited him to the next Geek Bike Ride in Brazil. She presented him an official geek bike ride jersey.For the Technical Keynote, a "blue screen of death" appeared. With mock concern, Stephin Chin asked the rest of the presenters if they could go on without slides. What followed was a interesting collection of demos, including JavaFX on a tablet, a look at Project Easel in NetBeans, and even Simon Ritter controlling legos with his brainwaves! Stay tuned for more dispatches.

    Read the article

  • JavaOne Latin America Opening Keynotes

    - by Tori Wieldt
    It was a great first day at JavaOne Brazil, which included the Java Strategy and Java Technical keynotes. Henrik Stahl, Senior Director, Product Management for Java opened the keynotes by saying that this is the third year for JavaOne Latin America. He explained, "You know what they say, the first time doesn't count, the second time is a habit and the third time it's a tradition!" He mentioned that he was thrilled that this is largest JavaOne in Brazil to date, and he wants next year to be larger. He said that Oracle knows Latin America is an important hub for development.  "We continually come back to Latin America because of the dedication the community has with driving the continued innovation for Java," he said. Stahl explained that Oracle and the Java community must continue to innovate and Make the Future Java together. The success of Java depends on three important factors: technological innovation, Oracle as a strong steward of Java, and community participation. "The Latin American Java Community (especially in Brazil) is a shining example of how to be positive contributor to Java," Stahl said. Next, George Saab, VP software dev, Java Platform Group at Oracle, discussed some of the recent and upcoming changes to Java. "In addition to the incremental improvements to Java 7, we have also increased the set of platforms supported by Oracle from Linux, Windows, and Solaris to now also include Mac OS X and Linux/ARM for ARM-based PCs such as the Raspberry Pi and emerging ARM based microservers."  Saab announced that EA builds for Linux ARM Hard Float ABI will be available by the end of the year.  Staffan Friberg, Product Manager, Java Platform Group, provided an overview of some of the language coming in Java 8, including Lambda, remove of PermGen, improved data and time APIs and improved security, Java 8 development is moving along. He reminded the audience that they can go to OpenJDK to see this development being done in real-time, and that there are weekly early access builds of OracleJDK 8 that developers can download and try today. Judson Althoff, Senior Vice President, Worldwide Alliances and Channels and Embedded Sales, was invited to the stage, and the audience was told that "even though he is wearing a suit, he is still pretty technical." Althoff started off with a bang: "The Internet of Things is on a collision course with big data and this is a huge opportunity for developers."  For example, Althoff said, today cars are more a data device than a mechanical device. A car embedded with sensors for fuel efficiency, temperature, tire pressure, etc. can generate a petabyte of data A DAY. There are similar examples in healthcare (patient monitoring and privacy requirements creates a complex data problem) and transportation management (sending a package around the world with sensors for humidity, temperature and light). Althoff then brought on stage representatives from three companies that are successful with Java today, first Axel Hansmann, VP Strategy & Marketing Communications, Cinterion. Mr. Hansmann explained that Cinterion, a market leader in Latin America, enables M2M services with Java. At JavaOne San Francisco, Cinterion launched the EHS5, the smallest 3g solderable module, with Java installed on it. This provides Original Equipment Manufacturers (OEMs) with a cost effective, flexible platform for bringing advanced M2M technology to market.Next, Steve Nelson, Director of Marketing for the Americas, at Freescale explained that Freescale is #1 in Embedded Processors in Wired and Wireless Communications, and #1 in Automotive Semiconductors in the Americas. He said that Java provides a mature, proven platform that is uniquely suited to meet the requirements of almost any type of embedded device. He encouraged University students to get involved in the Freescale Cup, a global competition where student teams build, program, and race a model car around a track for speed.Roberto Franco, SBTVD Forum President, SBTVD, talked about Ginga, a Java-based standard for television in Brazil. He said there are 4 million Ginga TV sets in Brazil, and they expect over 20 million TV sets to be sold by the end of 2014. Ginga is also being adopted in other 11 countries in Latin America. Ginga brings interactive services not only at TV set, but also on other devices such as tablets,  PCs or smartphones, as the main or second screen. "Interactive services is already a reality," he said, ' but in a near future, we foresee interactivity enhanced TV content, convergence with OTT services and a big participation from the audience,  all integrated on TV, tablets, smartphones and second screen devices."Before he left the stage, Nandini Ramani thanked Judson for being part of the Java community and invited him to the next Geek Bike Ride in Brazil. She presented him an official geek bike ride jersey.For the Technical Keynote, a "blue screen of death" appeared. With mock concern, Stephin Chin asked the rest of the presenters if they could go on without slides. What followed was a interesting collection of demos, including JavaFX on a tablet, a look at Project Easel in NetBeans, and even Simon Ritter controlling legos with his brainwaves! Stay tuned for more dispatches.

    Read the article

  • Working with CPU cycles in Gameboy Advance

    - by Preston Sexton
    I am working on an GBA emulator and stuck at implementing CPU cycles. I just know the basic knowledge about it, each instruction of ARM and THUMB mode as each different set of cycles for each instructions. Currently I am simply saying every ARM instructions cost 4 cycles and THUMB instructions cost 2 cycles. But how do you implement it like the CPU documentation says? Does instruction cycles vary depending on which section of the memory it's currently accessing to? http://nocash.emubase.de/gbatek.htm#cpuinstructioncycletimes According to the above specification, it says different memory areas have different waitstates but I don't know what it exactly mean. Furthermore, what are Non-sequential cycle, Sequential cycle, Internal Cycle, Coprocessor Cycle for? I saw in some GBA source code that they are using PC to figure out how many cycles each instruction takes to complete, but how are they doing it?

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >