Search Results

Search found 121 results on 5 pages for 'syscall'.

Page 1/5 | 1 2 3 4 5  | Next Page >

  • syscall from within GCC inline assembly

    - by guest
    is it possible to write a single character using a syscall from within an inline assembly block? if so, how? it should look "something" like this: __asm__ __volatile__ ( " movl $1, %%edx \n\t" " movl $80, %%ecx \n\t" " movl $0, %%ebx \n\t" " movl $4, %%eax \n\t" " int $0x80 \n\t" ::: "%eax", "%ebx", "%ecx", "%edx" ); $80 is 'P' in ascii, but that returns nothing. any suggestions much appreciated!

    Read the article

  • Tracing Silex from PHP to the OS with DTrace

    - by cj
    In this blog post I show the full stack tracing of Brendan Gregg's php_syscolors.d script in the DTrace Toolkit. The Toolkit contains a dozen very useful PHP DTrace scripts and many more scripts for other languages and the OS. For this example, I'll trace the PHP micro framework Silex, which was the topic of the second of two talks by Dustin Whittle at a recent SF PHP Meetup. His slides are at Silex: From Micro to Full Stack. Installing DTrace and PHP The php_syscolors.d script uses some static PHP probes and some kernel probes. For Oracle Linux I discussed installing DTrace and PHP in DTrace PHP Using Oracle Linux 'playground' Pre-Built Packages. On other platforms with DTrace support, follow your standard procedures to enable DTrace and load the correct providers. The sdt and systrace providers are required in addition to fasttrap. On Oracle Linux, I loaded the DTrace modules like: # modprobe fasttrap # modprobe sdt # modprobe systrace # chmod 666 /dev/dtrace/helper Installing the DTrace Toolkit I download DTraceToolkit-0.99.tar.gz and extracted it: $ tar -zxf DTraceToolkit-0.99.tar.gz The PHP scripts are in the Php directory and examples in the Examples directory. Installing Silex I downloaded the "fat" Silex .tgz file from the download page and extracted it: $ tar -zxf silex_fat.tgz I changed the demonstration silex/web/index.php so I could use the PHP development web server: <?php // web/index.php $filename = __DIR__.preg_replace('#(\?.*)$#', '', $_SERVER['REQUEST_URI']); if (php_sapi_name() === 'cli-server' && is_file($filename)) { return false; } require_once __DIR__.'/../vendor/autoload.php'; $app = new Silex\Application(); //$app['debug'] = true; $app->get('/hello', function() { return 'Hello!'; }); $app->run(); ?> Running DTrace The php_syscolors.d script uses the -Z option to dtrace, so it can be started before PHP, i.e. when there are zero of the requested probes available to be traced. I ran DTrace like: # cd DTraceToolkit-0.99/Php # ./php_syscolors.d Next, I started the PHP developer web server in a second terminal: $ cd silex $ php -S localhost:8080 -t web web/index.php At this point, the web server is idle, waiting for requests. DTrace is idle, waiting for the probes in php_syscolors.d to be fired, at which time the action associated with each probe will run. I then loaded the demonstration page in a browser: http://localhost:8080/hello When the request was fulfilled and the simple output of "Hello" was displayed, I ^C'd php and dtrace in their terminals to stop them. DTrace output over a thousand lines long had been generated. Here is one snippet from when run() was invoked: C PID/TID DELTA(us) FILE:LINE TYPE -- NAME ... 1 4765/4765 21 Application.php:487 func -> run 1 4765/4765 29 ClassLoader.php:182 func -> loadClass 1 4765/4765 17 ClassLoader.php:198 func -> findFile 1 4765/4765 31 ":- syscall -> access 1 4765/4765 26 ":- syscall <- access 1 4765/4765 16 ClassLoader.php:198 func <- findFile 1 4765/4765 25 ":- syscall -> newlstat 1 4765/4765 15 ":- syscall <- newlstat 1 4765/4765 13 ":- syscall -> newlstat 1 4765/4765 13 ":- syscall <- newlstat 1 4765/4765 22 ":- syscall -> newlstat 1 4765/4765 14 ":- syscall <- newlstat 1 4765/4765 15 ":- syscall -> newlstat 1 4765/4765 60 ":- syscall <- newlstat 1 4765/4765 13 ":- syscall -> newlstat 1 4765/4765 13 ":- syscall <- newlstat 1 4765/4765 20 ":- syscall -> open 1 4765/4765 16 ":- syscall <- open 1 4765/4765 26 ":- syscall -> newfstat 1 4765/4765 12 ":- syscall <- newfstat 1 4765/4765 17 ":- syscall -> newfstat 1 4765/4765 12 ":- syscall <- newfstat 1 4765/4765 12 ":- syscall -> newfstat 1 4765/4765 12 ":- syscall <- newfstat 1 4765/4765 20 ":- syscall -> mmap 1 4765/4765 14 ":- syscall <- mmap 1 4765/4765 3201 ":- syscall -> mmap 1 4765/4765 27 ":- syscall <- mmap 1 4765/4765 1233 ":- syscall -> munmap 1 4765/4765 53 ":- syscall <- munmap 1 4765/4765 15 ":- syscall -> close 1 4765/4765 13 ":- syscall <- close 1 4765/4765 34 Request.php:32 func -> main 1 4765/4765 22 Request.php:32 func <- main 1 4765/4765 31 ClassLoader.php:182 func <- loadClass 1 4765/4765 33 Request.php:249 func -> createFromGlobals 1 4765/4765 29 Request.php:198 func -> __construct 1 4765/4765 24 Request.php:218 func -> initialize 1 4765/4765 26 ClassLoader.php:182 func -> loadClass 1 4765/4765 89 ClassLoader.php:198 func -> findFile 1 4765/4765 43 ":- syscall -> access ... The output shows PHP functions being called and returning (and where they are located) and which system calls the PHP functions in turn invoked. The time each line took from the previous one is displayed in the third column. The first column is the CPU number. In this example, the process was always on CPU 1 so the output is naturally ordered without requiring post-processing, or the D script requiring to be modified to display a time stamp. On a terminal, the output of php_syscolors.d is color-coded according to whether each function is a PHP or system one, hence the file name. Summary With one tool, I was able to trace the interaction of a user application with the operating system. I was able to do this to an application running "live" in a web context. The DTrace Toolkit provides a very handy repository of DTrace information. Even though the PHP scripts were created in the time frame of the original PHP DTrace PECL extension, which only had PHP function entry and return probes, the scripts provide core examples for custom investigation and resolution scripts. You can easily adapt the ideas and and create scripts using the other PHP static probes, which are listed in the PHP Manual. Because DTrace is "always on", you can take advantage of it to resolve development questions or fix production situations.

    Read the article

  • How does a syscall knows where the wrapper function put its parameters in?

    - by EpsilonVector
    I'm trying to implement a syscall in Linux (RedHat Enterprise 8) and I'm a bit confused about the way it works. From what I understand, I implement a wrapper in user mode which puts the syscall number in eax and parameters in ebx, ecx, edx, etc, and then invokes int 0x80 which calls the appropriate syscall. My question is, since a syscall is written like a regular C function, how does it know what registers contain what parameters? Is it a convention, or is there a mechanism for it, and if so where and how does it do it?

    Read the article

  • Is writing to a socket an arbitrary limitation of the sendfile() syscall?

    - by Sufian
    Prelude sendfile() is an extremely useful syscall for two reasons: First, it's less code than a read()/write() (or recv()/send() if you prefer that jive) loop. Second, it's faster (less syscalls, implementation may copy between devices without buffer, etc...) than the aforementioned methods. Less code. More efficient. Awesome. In UNIX, everything is (mostly) a file. This is the ugly territory from the collision of platonic theory and real-world practice. I understand that sockets are fundamentally different than files residing on some device. I haven't dug through the sources of Linux/*BSD/Darwin/whatever OS implements sendfile() to know why this specific syscall is restricted to writing to sockets (specifically, streaming sockets). I just want to know... Question What is limiting sendfile() from allowing the destination file descriptor to be something besides a socket (like a disk file, or a pipe)?

    Read the article

  • Is there a POSIX syscall to resolve file system paths?

    - by Mike
    Is there a POSIX syscall to resolve filesystem paths? I have the CWD for a path, as well as the path to a file from that CWD. I can't use chdir to switch to the directory because I need to resolve paths from multiple threads simultaneously. I considered appending a / in between the CWD and the path, but for some reason it feels like that's hacky. Is that the proper way to resolve relative paths?

    Read the article

  • Why does the rename() syscall prohibit moving a directory that I can't write to a different director

    - by Daniel Papasian
    I am trying to understand why this design decision was made with the rename() syscall in 4.2BSD. There's nothing I'm trying to solve here, just understand the rationale for the behavior itself. 4.2BSD saw the introduction of the rename() syscall for the purpose of allowing atomic renames/moves of files. From 4.3BSD-Reno/src/sys/ufs/ufs_vnops.c: /* * If ".." must be changed (ie the directory gets a new * parent) then the source directory must not be in the * directory heirarchy above the target, as this would * orphan everything below the source directory. Also * the user must have write permission in the source so * as to be able to change "..". We must repeat the call * to namei, as the parent directory is unlocked by the * call to checkpath(). */ if (oldparent != dp->i_number) newparent = dp->i_number; if (doingdirectory && newparent) { VOP_LOCK(fndp->ni_vp); error = ufs_access(fndp->ni_vp, VWRITE, tndp->ni_cred); VOP_UNLOCK(fndp->ni_vp); So clearly this check was added intentionally. My question is - why? Is this behavior supposed to be intuitive? The effect of this is that one cannot move a directory (located in a directory that one can write) that one cannot write to another directory that one can write to atomically. You can, however, create a new directory, move the links over (assuming one has read access to the directory), and then remove one's write bit on the directory. You just can't do so atomically. % cd /tmp % mkdir stackoverflow-question % cd stackoverflow-question % mkdir directory-1 % mkdir directory-2 % mkdir directory-1/directory-i-cant-write % echo "foo" > directory-1/directory-i-cant-write/contents % chmod 000 directory-1/directory-i-cant-write/contents % chmod 000 directory-1/directory-i-cant-write % mv directory-1/directory-i-cant-write directory-2 mv: rename directory-1/directory-i-cant-write to directory-2/directory-i-cant-write: Permission denied We now have a directory I can't write with contents I can't read that I can't move atomically. I can, however, achieve the same effect non-atomically by changing permissions, making the new directory, using ln to create the new links, and changing permissions. (Left as an exercise to the reader) . and .. are special cased already, so I don't particularly buy that it is intuitive that if I can't write a directory I can't "change .." which is what the source suggests. Is there any reason for this besides it being the perceived correct behavior by the author of the code? Is there anything bad that can happen if we let people atomically move directories (that they can't write) between directories that they can write?

    Read the article

  • find substring and indices in mips

    - by ccc
    im trying find out substring and first occurrence indices. but something wrong. im comparing each element of pattern array and each element of string array until pointer reach to '\0'. and if any characater found it keep in temp array. and increasing pointers +1. whats the problem. algorithm is totaly wrong ? #Note: $v0 is a symbolic name used by the assember for $2. # $a0 is a symbolic name used by the assember for $4. .data prompt_str: .asciiz "Please type a text string: " prompt_ptr: .asciiz "Please type a pattern string: " print_yes: .asciiz "Yes, there is a match." print_no: .asciiz "No, there is no match." text_str: .asciiz "Text string : " pattern_str: .asciiz "Pattern string : " print_out: .asciiz "Output to be produced :" print_dash: .asciiz "----------------------" print_index: .asciiz "Starting index :" print_msg : .asciiz "Length of longest partial match = " nl: .asciiz "\n" str : .space 81 ptr : .space 81 tmp : .space 81 .text main: la $a0, prompt_str li $v0, 4 #print_string command. syscall la $a0,str #read string li $a1,81 li $v0,8 syscall la $t0,str #move string to $t0 la $a0,prompt_ptr li $v0,4 #print pattern command syscall la $a0,ptr #read pattern li $a1,81 li $v0,8 syscall la $t1,ptr #move pattern to $t1 la $t5,tmp #move temp to $t5 lb $t2,0($t0) #pointer first element array of string lb $t3,0($t1) #pointer first element array of pattern lb $t6,0($t5) #pointer first element array of temp loop : beq $t3,$0,end_loop beq $t2,$t3,match addiu $t0,$t0,1 j loop match : move $t6,$t2 addiu $t5,$t5,1 addiu $t0,$t0,1 addiu $t1,$t1,1 j print_match print_match : la $a0,text_str #print string li $v0,4 syscall move $a0,$t0 li $v0,4 syscall la $a0,nl #print newline character li $v0,4 syscall la $a0,pattern_str #print pattern string li $v0,4 syscall move $a0,$t1 li $v0,4 syscall la $a0,nl #print newline character li $v0,4 syscall la $a0,print_out #print output line and newline character li $v0,4 syscall la $a0,nl li $v0,4 syscall la $a0,print_dash li $v0,4 syscall la $a0,print_yes li $v0,4 syscall la $a0,print_index #print starting index li $v0,4 syscall li $v0,10 syscall end_loop : li $v0,10 syscall

    Read the article

  • problem of setting audit rules: Syscall name unknown: stime

    - by zhaojing
    I am setting audit rules in /etc/audit/audit.rules. As the requirement : The audit system should be configured to audit all administrative, privileged, and security actions. So I add one line into /etc/audit/auditd.rules: -a exit,always -S stime -S acct -S reboot -S swapon However, after I restart audit.d by service auditd restart: There is error comeout: Stopping auditd: [ OK ] Starting auditd: [ OK ] Syscall name unknown: stime There was an error in line 14 of /etc/audit/audit.rules It seems stime can't be recognized. Could anybody help me to find out what is wrong with my added rule? Thanks a lot!

    Read the article

  • reading the file name from user input in MIPS assembly

    - by Hassan Al-Jeshi
    I'm writing a MIPS assembly code that will ask the user for the file name and it will produce some statistics about the content of the file. However, when I hard code the file name into a variable from the beginning it works just fine, but when I ask the user to input the file name it does not work. after some debugging, I have discovered that the program adds 0x00 char and 0x0a char (check asciitable.com) at the end of user input in the memory and that's why it does not open the file based on the user input. anyone has any idea about how to get rid of those extra chars, or how to open the file after getting its name from the user?? here is my complete code (it is working fine except for the file name from user thing, and anybody is free to use it for any purpose he/she wants to): .data fin: .ascii "" # filename for input msg0: .asciiz "aaaa" msg1: .asciiz "Please enter the input file name:" msg2: .asciiz "Number of Uppercase Char: " msg3: .asciiz "Number of Lowercase Char: " msg4: .asciiz "Number of Decimal Char: " msg5: .asciiz "Number of Words: " nline: .asciiz "\n" buffer: .asciiz "" .text #----------------------- li $v0, 4 la $a0, msg1 syscall li $v0, 8 la $a0, fin li $a1, 21 syscall jal fileRead #read from file move $s1, $v0 #$t0 = total number of bytes li $t0, 0 # Loop counter li $t1, 0 # Uppercase counter li $t2, 0 # Lowercase counter li $t3, 0 # Decimal counter li $t4, 0 # Words counter loop: bge $t0, $s1, end #if end of file reached OR if there is an error in the file lb $t5, buffer($t0) #load next byte from file jal checkUpper #check for upper case jal checkLower #check for lower case jal checkDecimal #check for decimal jal checkWord #check for words addi $t0, $t0, 1 #increment loop counter j loop end: jal output jal fileClose li $v0, 10 syscall fileRead: # Open file for reading li $v0, 13 # system call for open file la $a0, fin # input file name li $a1, 0 # flag for reading li $a2, 0 # mode is ignored syscall # open a file move $s0, $v0 # save the file descriptor # reading from file just opened li $v0, 14 # system call for reading from file move $a0, $s0 # file descriptor la $a1, buffer # address of buffer from which to read li $a2, 100000 # hardcoded buffer length syscall # read from file jr $ra output: li $v0, 4 la $a0, msg2 syscall li $v0, 1 move $a0, $t1 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg3 syscall li $v0, 1 move $a0, $t2 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg4 syscall li $v0, 1 move $a0, $t3 syscall li $v0, 4 la $a0, nline syscall li $v0, 4 la $a0, msg5 syscall addi $t4, $t4, 1 li $v0, 1 move $a0, $t4 syscall jr $ra checkUpper: blt $t5, 0x41, L1 #branch if less than 'A' bgt $t5, 0x5a, L1 #branch if greater than 'Z' addi $t1, $t1, 1 #increment Uppercase counter L1: jr $ra checkLower: blt $t5, 0x61, L2 #branch if less than 'a' bgt $t5, 0x7a, L2 #branch if greater than 'z' addi $t2, $t2, 1 #increment Lowercase counter L2: jr $ra checkDecimal: blt $t5, 0x30, L3 #branch if less than '0' bgt $t5, 0x39, L3 #branch if greater than '9' addi $t3, $t3, 1 #increment Decimal counter L3: jr $ra checkWord: bne $t5, 0x20, L4 #branch if 'space' addi $t4, $t4, 1 #increment words counter L4: jr $ra fileClose: # Close the file li $v0, 16 # system call for close file move $a0, $s0 # file descriptor to close syscall # close file jr $ra Note: I'm using MARS Simulator, if that makes any different

    Read the article

  • data path (travel) of tcp data from "write" syscall downto I/O registers programming

    - by osgx
    Hello Is there a good overview of tcp data path in Linux (2.6, not 2.4 if the path actually differ)? Where is a packet on different stages of tcp/ip stack handling? How packet is packed to tcp segment, then ip packet. How it is transmitted to network card? (with series of I/O regs write and DMA?) Is it transmitted to network card in the "write" syscall handler (with some deep callstack) or is it transmitted at some other moment?

    Read the article

  • Differnce between linux write and sendfile syscall

    - by JosiP
    Hi Im programming webserver (C), which should send big files. My question is: What are the main differneces in two syscalls: write and sendfile. Does sendfile depends on size of socket system buffer ? I noticed that write often writes less then i requested. For example, if got many requests for one file: should i open it, copy into memory and use 'write', or maybe i can do 'sendfile' for each client ? thx in advance for all answers

    Read the article

  • Invalid argument when calling linux splice()

    - by benny wallace
    Hi I wanted to try out the splice syscall. I have this function - it should copy content of one file to another: static void test_splice( int in, int out ) { int i = 0, rcvd = 0; int filedes[2]; off_t off = 0; if ( pipe( filedes ) < 0 ) { perror( "Kicha pipe" ); exit( EXIT_FAILURE ); } for ( i = 0; i < NUMLOOPS; ++i ) { if ( ( rcvd = splice( in, NULL, filedes[1], NULL, BUFSIZE, SPLICE_F_MORE | SPLICE_F_MOVE ) ) < 0 ) { perror( "splice" ); exit( EXIT_FAILURE ); } if ( splice( filedes[0], NULL, out, NULL, rcvd, SPLICE_F_MORE | SPLICE_F_MOVE ) < 0 ) { perror( "splice" ); exit( EXIT_FAILURE ); } } } The second call to splice in first iteration returns EINVAL ( invalid argument from perror ) everytime - what could be the reason?

    Read the article

  • How do I write x86 Debug registers from user space on OSX?

    - by nall
    I'd like to play around with the debug MSRs defined in the x86 spec (DR0-7) from my OSX user-space program. Unfortunately, these require CPL == 0 (aka ring 0). I've thumbed through the OSX syscalls and with the exception of kernel_debug nothing really jumps out as a way to access these. It may be the case that they are only available via some higher level interface like kernel_debug, but it's unclear to me if that's the case or if I just haven't found the magic invocation to get to them. Anyone know how to do this?

    Read the article

  • Invalid argument in sendfile() with two regular files

    - by Daniel Hershcovich
    I'm trying to test the sendfile() system call under Linux 2.6.32 to zero-copy data between two regular files. As far as I understand, it should work: ever since 2.6.22, sendfile() has been implemented using splice(), and both the input file and the output file can be either regular files or sockets. The following is the content of sendfile_test.c: #include <sys/sendfile.h> #include <fcntl.h> #include <stdio.h> int main(int argc, char **argv) { int result; int in_file; int out_file; in_file = open(argv[1], O_RDONLY); out_file = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, 0644); result = sendfile(out_file, in_file, NULL, 1); if (result == -1) perror("sendfile"); close(in_file); close(out_file); return 0; } And when I'm running the following commands: $ gcc sendfile_test.c $ ./a.out infile The output is sendfile: Bad file descriptor Which means that the system call resulted in errno = -EINVAL, I think. What am I doing wrong?

    Read the article

  • where did the _syscallN macros go in <linux/unistd.h>?

    - by Evan Teran
    It used to be the case that if you needed to make a system call directly in linux without the use of an existing library, you could just include <linux/unistd.h> and it would define a macro similar to this: #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ type name(type1 arg1,type2 arg2,type3 arg3) \ { \ long __res; \ __asm__ volatile ("int $0x80" \ : "=a" (__res) \ : "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2)), \ "d" ((long)(arg3))); \ if (__res>=0) \ return (type) __res; \ errno=-__res; \ return -1; \ } Then you could just put somewhere in your code: _syscall3(ssize_t, write, int, fd, const void *, buf, size_t, count); which would define a write function for you that properly performed the system call. It seems that this system has been superseded by something (i am guessing that "[vsyscall]" page that every process gets) more robust. So what is the proper way (please be specific) for a program to perform a system call directly on newer linux kernels? I realize that I should be using libc and let it do the work for me. But let's assume that I have a decent reason for wanting to know how to do this :-).

    Read the article

1 2 3 4 5  | Next Page >