Daily Archives

Articles indexed Friday November 11 2011

Page 10/21 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Nagging As A Strategy For Better Linking: -z guidance

    - by user9154181
    The link-editor (ld) in Solaris 11 has a new feature that we call guidance that is intended to help you build better objects. The basic idea behind guidance is that if (and only if) you request it, the link-editor will issue messages suggesting better options and other changes you might make to your ld command to get better results. You can choose to take the advice, or you can disable specific types of guidance while acting on others. In some ways, this works like an experienced friend leaning over your shoulder and giving you advice — you're free to take it or leave it as you see fit, but you get nudged to do a better job than you might have otherwise. We use guidance to build the core Solaris OS, and it has proven to be useful, both in improving our objects, and in making sure that regressions don't creep back in later. In this article, I'm going to describe the evolution in thinking and design that led to the implementation of the -z guidance option, as well as give a brief description of how it works. The guidance feature issues non-fatal warnings. However, experience shows that once developers get used to ignoring warnings, it is inevitable that real problems will be lost in the noise and ignored or missed. This is why we have a zero tolerance policy against build noise in the core Solaris OS. In order to get maximum benefit from -z guidance while maintaining this policy, I added the -z fatal-warnings option at the same time. Much of the material presented here is adapted from the arc case: PSARC 2010/312 Link-editor guidance The History Of Unfortunate Link-Editor Defaults The Solaris link-editor is one of the oldest Unix commands. It stands to reason that this would be true — in order to write an operating system, you need the ability to compile and link code. The original link-editor (ld) had defaults that made sense at the time. As new features were needed, command line option switches were added to let the user use them, while maintaining backward compatibility for those who didn't. Backward compatibility is always a concern in system design, but is particularly important in the case of the tool chain (compilers, linker, and related tools), since it is a basic building block for the entire system. Over the years, applications have grown in size and complexity. Important concepts like dynamic linking that didn't exist in the original Unix system were invented. Object file formats changed. In the case of System V Release 4 Unix derivatives like Solaris, the ELF (Extensible Linking Format) was adopted. Since then, the ELF system has evolved to provide tools needed to manage today's larger and more complex environments. Features such as lazy loading, and direct bindings have been added. In an ideal world, many of these options would be defaults, with rarely used options that allow the user to turn them off. However, the reality is exactly the reverse: For backward compatibility, these features are all options that must be explicitly turned on by the user. This has led to a situation in which most applications do not take advantage of the many improvements that have been made in linking over the last 20 years. If their code seems to link and run without issue, what motivation does a developer have to read a complex manpage, absorb the information provided, choose the features that matter for their application, and apply them? Experience shows that only the most motivated and diligent programmers will make that effort. We know that most programs would be improved if we could just get you to use the various whizzy features that we provide, but the defaults conspire against us. We have long wanted to do something to make it easier for our users to use the linkers more effectively. There have been many conversations over the years regarding this issue, and how to address it. They always break down along the following lines: Change ld Defaults Since the world would be a better place the newer ld features were the defaults, why not change things to make it so? This idea is simple, elegant, and impossible. Doing so would break a large number of existing applications, including those of ISVs, big customers, and a plethora of existing open source packages. In each case, the owner of that code may choose to follow our lead and fix their code, or they may view it as an invitation to reconsider their commitment to our platform. Backward compatibility, and our installed base of working software, is one of our greatest assets, and not something to be lightly put at risk. Breaking backward compatibility at this level of the system is likely to do more harm than good. But, it sure is tempting. New Link-Editor One might create a new linker command, not called 'ld', leaving the old command as it is. The new one could use the same code as ld, but would offer only modern options, with the proper defaults for features such as direct binding. The resulting link-editor would be a pleasure to use. However, the approach is doomed to niche status. There is a vast pile of exiting code in the world built around the existing ld command, that reaches back to the 1970's. ld use is embedded in large and unknown numbers of makefiles, and is used by name by compilers that execute it. A Unix link-editor that is not named ld will not find a majority audience no matter how good it might be. Finally, a new linker command will eventually cease to be new, and will accumulate its own burden of backward compatibility issues. An Option To Make ld Do The Right Things Automatically This line of reasoning is best summarized by a CR filed in 2005, entitled 6239804 make it easier for ld(1) to do what's best The idea is to have a '-z best' option that unchains ld from its backward compatibility commitment, and allows it to turn on the "best" set of features, as determined by the authors of ld. The specific set of features enabled by -z best would be subject to change over time, as requirements change. This idea is more realistic than the other two, but was never implemented because it has some important issues that we could never answer to our satisfaction: The -z best proposal assumes that the user can turn it on, and trust it to select good options without the user needing to be aware of the options being applied. This is a fallacy. Features such as direct bindings require the user to do some analysis to ensure that the resulting program will still operate properly. A user who is willing to do the work to verify that what -z best does will be OK for their application is capable of turning on those features directly, and therefore gains little added benefit from -z best. The intent is that when a user opts into -z best, that they understand that z best is subject to sometimes incompatible evolution. Experience teaches us that this won't work. People will use this feature, the meaning of -z best will change, code that used to build will fail, and then there will be complaints and demands to retract the change. When (not if) this occurs, we will of course defend our actions, and point at the disclaimer. We'll win some of those debates, and lose others. Ultimately, we'll end up with -z best2 (-z better), or other compromises, and our goal of simplifying the world will have failed. The -z best idea rolls up a set of features that may or may not be related to each other into a unit that must be taken wholesale, or not at all. It could be that only a subset of what it does is compatible with a given application, in which case the user is expected to abandon -z best and instead set the options that apply to their application directly. In doing so, they lose one of the benefits of -z best, that if you use it, future versions of ld may choose a different set of options, and automatically improve the object through the act of rebuilding it. I drew two conclusions from the above history: For a link-editor, backward compatibility is vital. If a given command line linked your application 10 years ago, you have every reason to expect that it will link today, assuming that the libraries you're linking against are still available and compatible with their previous interfaces. For an application of any size or complexity, there is no substitute for the work involved in examining the code and determining which linker options apply and which do not. These options are largely orthogonal to each other, and it can be reasonable not to use any or all of them, depending on the situation, even in modern applications. It is a mistake to tie them together. The idea for -z guidance came from consideration of these points. By decoupling the advice from the act of taking the advice, we can retain the good aspects of -z best while avoiding its pitfalls: -z guidance gives advice, but the decision to take that advice remains with the user who must evaluate its merit and make a decision to take it or not. As such, we are free to change the specific guidance given in future releases of ld, without breaking existing applications. The only fallout from this will be some new warnings in the build output, which can be ignored or dealt with at the user's convenience. It does not couple the various features given into a single "take it or leave it" option, meaning that there will never be a need to offer "-zguidance2", or other such variants as things change over time. Guidance has the potential to be our final word on this subject. The user is given the flexibility to disable specific categories of guidance without losing the benefit of others, including those that might be added to future versions of the system. Although -z fatal-warnings stands on its own as a useful feature, it is of particular interest in combination with -z guidance. Used together, the guidance turns from advice to hard requirement: The user must either make the suggested change, or explicitly reject the advice by specifying a guidance exception token, in order to get a build. This is valuable in environments with high coding standards. ld Command Line Options The guidance effort resulted in new link-editor options for guidance and for turning warnings into fatal errors. Before I reproduce that text here, I'd like to highlight the strategic decisions embedded in the guidance feature: In order to get guidance, you have to opt in. We hope you will opt in, and believe you'll get better objects if you do, but our default mode of operation will continue as it always has, with full backward compatibility, and without judgement. Guidance suggestions always offers specific advice, and not vague generalizations. You can disable some guidance without turning off the entire feature. When you get guidance warnings, you can choose to take the advice, or you can specify a keyword to disable guidance for just that category. This allows you to get guidance for things that are useful to you, without being bothered about things that you've already considered and dismissed. As the world changes, we will add new guidance to steer you in the right direction. All such new guidance will come with a keyword that let's you turn it off. In order to facilitate building your code on different versions of Solaris, we quietly ignore any guidance keywords we don't recognize, assuming that they are intended for newer versions of the link-editor. If you want to see what guidance tokens ld does and does not recognize on your system, you can use the ld debugging feature as follows: % ld -Dargs -z guidance=foo,nodefs debug: debug: Solaris Linkers: 5.11-1.2275 debug: debug: arg[1] option=-D: option-argument: args debug: arg[2] option=-z: option-argument: guidance=foo,nodefs debug: warning: unrecognized -z guidance item: foo The -z fatal-warning option is straightforward, and generally useful in environments with strict coding standards. Note that the GNU ld already had this feature, and we accept their option names as synonyms: -z fatal-warnings | nofatal-warnings --fatal-warnings | --no-fatal-warnings The -z fatal-warnings and the --fatal-warnings option cause the link-editor to treat warnings as fatal errors. The -z nofatal-warnings and the --no-fatal-warnings option cause the link-editor to treat warnings as non-fatal. This is the default behavior. The -z guidance option is defined as follows: -z guidance[=item1,item2,...] Provide guidance messages to suggest ld options that can improve the quality of the resulting object, or which are otherwise considered to be beneficial. The specific guidance offered is subject to change over time as the system evolves. Obsolete guidance offered by older versions of ld may be dropped in new versions. Similarly, new guidance may be added to new versions of ld. Guidance therefore always represents current best practices. It is possible to enable guidance, while preventing specific guidance messages, by providing a list of item tokens, representing the class of guidance to be suppressed. In this way, unwanted advice can be suppressed without losing the benefit of other guidance. Unrecognized item tokens are quietly ignored by ld, allowing a given ld command line to be executed on a variety of older or newer versions of Solaris. The guidance offered by the current version of ld, and the item tokens used to disable these messages, are as follows. Specify Required Dependencies Dynamic executables and shared objects should explicitly define all of the dependencies they require. Guidance recommends the use of the -z defs option, should any symbol references remain unsatisfied when building dynamic objects. This guidance can be disabled with -z guidance=nodefs. Do Not Specify Non-Required Dependencies Dynamic executables and shared objects should not define any dependencies that do not satisfy the symbol references made by the dynamic object. Guidance recommends that unused dependencies be removed. This guidance can be disabled with -z guidance=nounused. Lazy Loading Dependencies should be identified for lazy loading. Guidance recommends the use of the -z lazyload option should any dependency be processed before either a -z lazyload or -z nolazyload option is encountered. This guidance can be disabled with -z guidance=nolazyload. Direct Bindings Dependencies should be referenced with direct bindings. Guidance recommends the use of the -B direct, or -z direct options should any dependency be processed before either of these options, or the -z nodirect option is encountered. This guidance can be disabled with -z guidance=nodirect. Pure Text Segment Dynamic objects should not contain relocations to non-writable, allocable sections. Guidance recommends compiling objects with Position Independent Code (PIC) should any relocations against the text segment remain, and neither the -z textwarn or -z textoff options are encountered. This guidance can be disabled with -z guidance=notext. Mapfile Syntax All mapfiles should use the version 2 mapfile syntax. Guidance recommends the use of the version 2 syntax should any mapfiles be encountered that use the version 1 syntax. This guidance can be disabled with -z guidance=nomapfile. Library Search Path Inappropriate dependencies that are encountered by ld are quietly ignored. For example, a 32-bit dependency that is encountered when generating a 64-bit object is ignored. These dependencies can result from incorrect search path settings, such as supplying an incorrect -L option. Although benign, this dependency processing is wasteful, and might hide a build problem that should be solved. Guidance recommends the removal of any inappropriate dependencies. This guidance can be disabled with -z guidance=nolibpath. In addition, -z guidance=noall can be used to entirely disable the guidance feature. See Chapter 7, Link-Editor Quick Reference, in the Linker and Libraries Guide for more information on guidance and advice for building better objects. Example The following example demonstrates how the guidance feature is intended to work. We will build a shared object that has a variety of shortcomings: Does not specify all it's dependencies Specifies dependencies it does not use Does not use direct bindings Uses a version 1 mapfile Contains relocations to the readonly allocable text (not PIC) This scenario is sadly very common — many shared objects have one or more of these issues. % cat hello.c #include <stdio.h> #include <unistd.h> void hello(void) { printf("hello user %d\n", getpid()); } % cat mapfile.v1 # This version 1 mapfile will trigger a guidance message % cc hello.c -o hello.so -G -M mapfile.v1 -lelf As you can see, the operation completes without error, resulting in a usable object. However, turning on guidance reveals a number of things that could be better: % cc hello.c -o hello.so -G -M mapfile.v1 -lelf -zguidance ld: guidance: version 2 mapfile syntax recommended: mapfile.v1 ld: guidance: -z lazyload option recommended before first dependency ld: guidance: -B direct or -z direct option recommended before first dependency Undefined first referenced symbol in file getpid hello.o (symbol belongs to implicit dependency /lib/libc.so.1) printf hello.o (symbol belongs to implicit dependency /lib/libc.so.1) ld: warning: symbol referencing errors ld: guidance: -z defs option recommended for shared objects ld: guidance: removal of unused dependency recommended: libelf.so.1 warning: Text relocation remains referenced against symbol offset in file .rodata1 (section) 0xa hello.o getpid 0x4 hello.o printf 0xf hello.o ld: guidance: position independent (PIC) code recommended for shared objects ld: guidance: see ld(1) -z guidance for more information Given the explicit advice in the above guidance messages, it is relatively easy to modify the example to do the right things: % cat mapfile.v2 # This version 2 mapfile will not trigger a guidance message $mapfile_version 2 % cc hello.c -o hello.so -Kpic -G -Bdirect -M mapfile.v2 -lc -zguidance There are situations in which the guidance does not fit the object being built. For instance, you want to build an object without direct bindings: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance ld: guidance: -B direct or -z direct option recommended before first dependency ld: guidance: see ld(1) -z guidance for more information It is easy to disable that specific guidance warning without losing the overall benefit from allowing the remainder of the guidance feature to operate: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance=nodirect Conclusions The linking guidelines enforced by the ld guidance feature correspond rather directly to our standards for building the core Solaris OS. I'm sure that comes as no surprise. It only makes sense that we would want to build our own product as well as we know how. Solaris is usually the first significant test for any new linker feature. We now enable guidance by default for all builds, and the effect has been very positive. Guidance helps us find suboptimal objects more quickly. Programmers get concrete advice for what to change instead of vague generalities. Even in the cases where we override the guidance, the makefile rules to do so serve as documentation of the fact. Deciding to use guidance is likely to cause some up front work for most code, as it forces you to consider using new features such as direct bindings. Such investigation is worthwhile, but does not come for free. However, the guidance suggestions offer a structured and straightforward way to tackle modernizing your objects, and once that work is done, for keeping them that way. The investment is often worth it, and will replay you in terms of better performance and fewer problems. I hope that you find guidance to be as useful as we have.

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • Solaris 11

    - by user9154181
    Oracle has a strict policy about not discussing product features until they appear in shipping product. Now that Solaris 11 is publically available, it is time to catch up. I will be shortly posting articles on a variety of new developments in the Solaris linkers and related bits: 64-bit Archives After 40+ years of Unix, the archive file format has run out of room. The ar and link-editor (ld) commands have been enhanced to allow archives to grow past their previous 32-bit limits. Guidance The link-editor is now willing and able to tell you how to alter your link lines in order to build better objects. Stub Objects This is one of the bigger projects I've undertaken since joining the Solaris group. Stub objects are shared objects, built entirely from mapfiles, that supply the same linking interface as the real object, while containing no code or data. You can link to them, but cannot use them at runtime. It was pretty simple to add this ability to the link-editor, but the changes to the OSnet in order to apply them to building Solaris were massive. I discuss how we came to invent stub objects, how we apply them to build the OSnet in a more parallel and scalable manner, and about the follow on opportunities that have emerged from the new stub proto area we created to hold them. The elffile Utility A new standard Solaris utility, elffile is a variant of the file utility, focused exclusively on linker related files. elffile is of particular value for examining archives, as it allows you to find out what is inside them without having to first extract the archive members into temporary files. This release has been a long time coming. I joined the Solaris group in late 2005, and this will be my first FCS. From a user perspective, Solaris 11 is probably the biggest change to Solaris since Solaris 2.0. Solaris 11 polishes the ground breaking features from Solaris 10 (DTrace, FMA, ZFS, Zones), and uses them to add a powerful new packaging system, numerous other enhacements and features, along with a huge modernization effort. I'm excited to see it go out into the world. I hope you enjoy using it as much as we did creating it. Software is never done. On to the next one...

    Read the article

  • GLP for Pillar Axiom 600 Storage System Implementation Specialist

    - by uwes
    Now availabe at OPN Competency Center. The guided learning path provides you with an overview of the Pillar Axiom 600 storage system, and the technical details that you need to become a Pillar Axiom 600 Storage System Certified Implementation Specialist.  Learn more, go to: Pillar Axiom 600 Storage System Implementation Specialist.

    Read the article

  • Oredev 2011 Trip Report

    - by arungupta
    Oredev had its seventh annual conference in the city of Malmo, Sweden last week. The name "Oredev" signifies to the part that Malmo is connected with Copenhagen with Oresund bridge. There were about 1000 attendees with several speakers from all over the world. The first two days were hands-on workshops and the next three days were sessions. There were different tracks such as Java, Windows 8, .NET, Smart Phones, Architecture, Collaboration, and Entrepreneurship. And then there was Xtra(ck) which had interesting sessions not directly related to technology. I gave two slide-free talks in the Java track. The first one showed how to build an end-to-end Java EE 6 application using NetBeans and GlassFish. The complete instructions to build the application are explained in detail here. This 3-tier application used Java Persistence API, Enterprsie Java Beans, Servlet, Contexts and Dependency Injection, JavaServer Faces, and Java API for RESTful Services. The source code built during the application can be downloaded here (LINK TBD). The second session, slide-free again, showed how to take a Java EE 6 application into production using GlassFish cluster. It explained: Create a 2-instance GlassFish cluster Front-end with a Web server and a load balancer Demonstrate session replication and fail over Monitor the application using JavaScript The complete instructions for this session are available here. Oredev has an interesting way of collecting attendee feedback. The attendees drop a green, yellow, or red card in a bucket as they walk out of the session. Not everybody votes but most do. Other than the instantaneous feedback provided on twitter, this mechanism provides a more coarse grained feedback loop as well. The first talk had about 67 attendees (with 23 green and 7 yellow) and the second one had 22 (11 green and 11 yellow). The speakers' dinner is a good highlight of the conference. It is arranged in the historic city hall and the mayor welcomed all the speakers. As you can see in the pictures, it is a very royal building with lots of history behind it. Fortunately the dinner was a buffet with a much better variety unlike last year where only black soup and geese were served, which was quite cultural BTW ;-) The sauna in 85F, skinny dipping in 35F ocean and alternating between them at Kallbadhus is always very Swedish. Also spent a short evening at a friend's house socializing with other speaker/attendees, drinking Glogg, and eating Pepperkakor.  The welcome packet at the hotel also included cinnamon rolls, recommended to drink with cold milk, for a little more taste of Swedish culture. Something different at this conference was how artists from Image Think were visually capturing all the keynote speakers using images on whiteboards. Here are the images captured for Alexis Ohanian (Reddit co-founder and now running Hipmunk): Unfortunately I could not spend much time engaging with other speakers or attendees because was busy preparing a new hands-on lab material. But was able to spend some time with Matthew Mccullough, Micahel Tiberg, Magnus Martensson, Mattias Karlsson, Corey Haines, Patrick Kua, Charles Nutter, Tushara, Pradeep, Shmuel, and several other folks. Here are a few pictures captured from the event: And the complete album here: Thank you Matthias, Emily, and Kathy for putting up a great show and giving me an opportunity to speak at Oredev. I hope to be back next year with a more vibrant representation of Java - the language and the ecosystem!

    Read the article

  • Oredev 2011 Trip Report

    - by arungupta
    Oredev had its seventh annual conference in the city of Malmo, Sweden last week. The name "Oredev" signifies to the part that Malmo is connected with Copenhagen with Oresund bridge. There were about 1000 attendees with several speakers from all over the world. The first two days were hands-on workshops and the next three days were sessions. There were different tracks such as Java, Windows 8, .NET, Smart Phones, Architecture, Collaboration, and Entrepreneurship. And then there was Xtra(ck) which had interesting sessions not directly related to technology. I gave two slide-free talks in the Java track. The first one showed how to build an end-to-end Java EE 6 application using NetBeans and GlassFish. The complete instructions to build the application are explained in detail here. This 3-tier application used Java Persistence API, Enterprsie Java Beans, Servlet, Contexts and Dependency Injection, JavaServer Faces, and Java API for RESTful Services. The source code built during the application can be downloaded here (LINK TBD). The second session, slide-free again, showed how to take a Java EE 6 application into production using GlassFish cluster. It explained: Create a 2-instance GlassFish cluster Front-end with a Web server and a load balancer Demonstrate session replication and fail over Monitor the application using JavaScript The complete instructions for this session are available here. Oredev has an interesting way of collecting attendee feedback. The attendees drop a green, yellow, or red card in a bucket as they walk out of the session. Not everybody votes but most do. Other than the instantaneous feedback provided on twitter, this mechanism provides a more coarse grained feedback loop as well. The first talk had about 67 attendees (with 23 green and 7 yellow) and the second one had 22 (11 green and 11 yellow). The speakers' dinner is a good highlight of the conference. It is arranged in the historic city hall and the mayor welcomed all the speakers. As you can see in the pictures, it is a very royal building with lots of history behind it. Fortunately the dinner was a buffet with a much better variety unlike last year where only black soup and geese were served, which was quite cultural BTW ;-) The sauna in 85F, skinny dipping in 35F ocean and alternating between them at Kallbadhus is always very Swedish. Also spent a short evening at a friend's house socializing with other speaker/attendees, drinking Glogg, and eating Pepperkakor.  The welcome packet at the hotel also included cinnamon rolls, recommended to drink with cold milk, for a little more taste of Swedish culture. Something different at this conference was how artists from Image Think were visually capturing all the keynote speakers using images on whiteboards. Here are the images captured for Alexis Ohanian (Reddit co-founder and now running Hipmunk): Unfortunately I could not spend much time engaging with other speakers or attendees because was busy preparing a new hands-on lab material. But was able to spend some time with Matthew Mccullough, Micahel Tiberg, Magnus Martensson, Mattias Karlsson, Corey Haines, Patrick Kua, Charles Nutter, Tushara, Pradeep, Shmuel, and several other folks. Here are a few pictures captured from the event: And the complete album here: Thank you Matthias, Emily, and Kathy for putting up a great show and giving me an opportunity to speak at Oredev. I hope to be back next year with a more vibrant representation of Java - the language and the ecosystem!

    Read the article

  • Attention Extension Developers: Your input wanted!

    - by John 'JB' Brock
    Your Input Wanted! I've posted a lot of different topics throughout 2011, and would really like to provide info that is most important to you, the extension developer, as we head for 2012. What are the most important areas that you want to learn more about? Post your requests for examples and topics in the comments section. Let me know what you are struggling with, or something that you worked out, but it took way to long to figure out.  I'll take the list and do my best to provide samples over the coming months. Please provide the version of JDeveloper that you want the topic to cover. Remember: 11gR1 = 11.1.1.x (e.g. 11.1.1.5.0) 11gR2 = 11.1.2.x (e.g. 11.1.2.1.0) Thanks in advance for your comments and suggestions.  Let's get the JDev Extension community going in 2012! --jb John "JB" BrockOracle Product Manager - JDev ESDK

    Read the article

  • New OPN Manager for Belux

    - by Yves Moriceau
    Welcome to Oana Vasilache our new OPN Manager for Belgium & Luxembourg who replaced Roxana Coardos on November 1st, 2011. Oana was formerlly the OPN Manager for our Sapnish Partners so she's already used to the daily OPN job. Her email is [email protected] or the usual [email protected]. She can also be reached by phone at 0800 732 82 (from Belgium) or 800 27 261 (from Luxembourg). We aslo thank Roxana for the excellent job she did for our Belux region in the last 5 years.

    Read the article

  • Technical Questions for Java Experts

    - by Tori Wieldt
    The "Oracle Technology Network" (meaning me) will be at Devoxx next week doing interviews with Java experts. Do you have technical questions about Project Jigsaw, JavaFX or Java on MacOS? Take a look at the list below of experts and topics. Leave your questions as a comment on this blog and I'll do my best to include them. Most of the interviews happen Tuesday, so get you questions in quickly. Thanks! Interviewee InterviewTopic Arun Gupta and Alexis Moussine-Pouchkine Java EE Mark Reinhold OpenJDK Mark Reinhold Project Jigsaw Jasper Potts JavaFX Scott Kovatch Java on Mac OS Brian Goetz & Mark Reinhold JDK 8 Brian Goetz Project Lambda Steven Chin JavaFX Marek Potociar JAX-RS Claude Falguiere Dev for Tablets Alan Bateman NIO2 Regina ten Bruggencate JDuchess Martijn Verburg Adopt a JSR Note: This is different than the call for questions for the Fireside chat on Tuesday afternoon, Devoxx conference keynote speakers (Henrik Ståhl, senior director of product management for the Java platform at Oracle, and Cameron Purdy, VP of development for the Java EE platform) and the technical discussion panel on Friday morning. Leave (and vote on) those questions here. 

    Read the article

  • Guest Post: Christian Finn: Is Facebook About to Become a Victim of its Own Success?

    - by Michael Snow
    12.00 Print 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Cambria","serif"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Cambria; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}  Since we have a number of new members of the WebCenter Evangelist team - I thought it would be appropriate to close the week with the newest hire and leader of the global WebCenter Evangelists, Christian Finn, who has just joined the Red team after many years with the small technology company up in Redmond, WA. He gave an intro to himself in an earlier post this morning but his post below is a great example of how customer engagement takes on a life of its own in our global online connected and social digital ecosystem. Is Facebook About to Become a Victim of its Own Success? What if I told you that your brand could advertise so successfully, you wouldn’t have to pay for the ads? A recent campaign by Ford Motor Company for the Ford Focus featuring Doug the spokespuppet (I am not making this up) did just that—and it raises some interesting issues for marketers and social media alike in the brave new world of customer engagement that is the Social Web. Allow me to elaborate. An article in the Wall Street Journal last week—“Big Brands Like Facebook, But They Don’t Like to Pay” tells the story of Ford’s recently concluded online campaign for the 2012 Ford Focus. (Ford, by the way, under the leadership of people such as Scott Monty, has been a pioneer of effective social campaigns.) The centerpiece of the campaign was the aforementioned Doug, who appeared as a character on Facebook in videos and via chat. (If you are not familiar with Doug, you can see him in action here, and read the WSJ story here.) You may be thinking puppet ads are a sign of Internet Bubble 2.0 and want to stop now, but bear with me. The Journal reported that Ford spent about $95M on its overall Ford Focus campaign, with TV accounting for over $60M of that spend. The Internet buy for the campaign was just over $10M, which included ad buys to drive traffic to Facebook for people to meet and ‘Like’ Doug and some amount on Facebook ads, too, to promote Doug and by extension, the Ford Focus. So far, a fairly straightforward consumer marketing story in the Internet Era. Yet here’s the curious thing: once Doug reached 10,000 fans on Facebook, Ford stopped paying for Facebook ads. Doug had gone viral with people sharing his videos with one another; once critical mass was reached there was no need to buy more ads on Facebook. Doug went on to be Liked by over 43,000 people, and 61% of his fans said they would be more likely to consider buying a Focus. According to the article, Ford says Focus sales are up this year—and increasing sales is every marketer’s goal. And so in effect, Ford found its Facebook campaign so successful that it could stop paying for it, instead letting its target consumers communicate its messages for fun—and for free. Not only did they get a 3X increase in fans beyond their paid campaign, they had thousands of customers sharing their messages in video form for months. Since free advertising is the Holy Grail of marketing both old and new-- and it appears social networks have an advantage in generating that buzz—it seems reasonable to ask: what would happen to brands’ advertising strategies—and the media they use to engage customers, if this success were repeated at scale? It seems logical to conclude that, at least initially, more ad dollars would be spent with social networks like Facebook as brands attempt to replicate Ford’s success. Certainly Facebook ad revenues are on the rise—eMarketer expects Facebook’s ad revenues to quintuple by 2012 compared with 2009 levels, to nearly 2.9B. That’s bad news for TV and the already battered print media and good news for Facebook. But perhaps not so over the longer run. With TV buys, you have to keep paying to generate impressions. If Doug the spokespuppet is any guide, however, that may not be true for social media campaigns. After an initial outlay, if a social campaign takes off, the audience will generate more impressions on its own. Thus a social medium like Facebook could be the victim of its own success when it comes to ad revenue. It may be there is an inherent limiting factor in the ad spend they can capture, as exemplified by Ford’s experience with Dough and the Focus. And brands may spend much less overall on advertising, with as good or better results, than they ever have in the past. How will these trends evolve? Can brands create social campaigns that repeat Ford’s formula for the Focus with effective results? Can social networks find ways to capture more spend and overcome their potential tendency to make further spend unnecessary? And will consumers become tired and insulated from social campaigns, much as they have to traditional advertising channels? These are the questions CMOs and Facebook execs alike will be asking themselves in the brave new world of customer engagement. As always, your thoughts and comments are most welcome.

    Read the article

  • Hello World - My Name is Christian Finn and I'm a WebCenter Evangelist

    - by Michael Snow
    12.00 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Cambria","serif"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}  Good Morning World! I'd like to introduce a new member of the Oracle WebCenter Team, Christian Finn. We decided to let him do his own intros today. Look for his guest posts next week and he'll be a frequent contributor to WebCenter blog and voice of the community. Hello (Oracle) World! Hi everyone, my name is Christian Finn. It’s a coder’s tradition to have “hello world” be the first output from a new program or in a new language. While I have left my coding days far behind, it still seems fitting to start my new role here at Oracle by saying hello to all of you—our customers, partners and my colleagues. So by way of introduction, a little background about me. I am the new senior director for evangelism on the WebCenter product management team. Not only am I new to Oracle, but the evangelism team is also brand new. Our mission is to raise the profile of Oracle in all of the markets/conversations in which WebCenter competes—social business, collaboration, portals, Internet sites, and customer/audience engagement. This is all pretty familiar turf for me because, as some of you may know, until recently I was the director of product management at Microsoft for Microsoft SharePoint Server and several other SharePoint products. And prior to that, I held management roles at Microsoft in marketing, channels, learning, and enterprise sales. Before Microsoft, I got my start in the industry as a software trainer and Lotus Notes consultant. I am incredibly excited to be joining Oracle at this time because of the tremendous opportunity that lies ahead to improve how people and businesses work. Of all the vendors offering a vision for social business, Oracle is unique in having best of breed strength in market (or coming soon) in all three critical areas: customer experience management; the middleware and back-end applications that run your business; and in the social, collaboration, and content technologies that are the connective tissue between them. Everyone else can offer one or two of the above, but not all three unified together. So it is a great time to come board and there’s a fantastic team of people hard at work on building great products for you. In the coming weeks and months you’ll be hearing much more from us. For now, we’ll kick things off with some blog posts here on the WebCenter blog. Enjoy the reads and please share your thoughts with me over Twitter on @cfinn.

    Read the article

  • DTracing TCP congestion control

    - by user12820842
    In a previous post, I showed how we can use DTrace to probe TCP receive and send window events. TCP receive and send windows are in effect both about flow-controlling how much data can be received - the receive window reflects how much data the local TCP is prepared to receive, while the send window simply reflects the size of the receive window of the peer TCP. Both then represent flow control as imposed by the receiver. However, consider that without the sender imposing flow control, and a slow link to a peer, TCP will simply fill up it's window with sent segments. Dealing with multiple TCP implementations filling their peer TCP's receive windows in this manner, busy intermediate routers may drop some of these segments, leading to timeout and retransmission, which may again lead to drops. This is termed congestion, and TCP has multiple congestion control strategies. We can see that in this example, we need to have some way of adjusting how much data we send depending on how quickly we receive acknowledgement - if we get ACKs quickly, we can safely send more segments, but if acknowledgements come slowly, we should proceed with more caution. More generally, we need to implement flow control on the send side also. Slow Start and Congestion Avoidance From RFC2581, let's examine the relevant variables: "The congestion window (cwnd) is a sender-side limit on the amount of data the sender can transmit into the network before receiving an acknowledgment (ACK). Another state variable, the slow start threshold (ssthresh), is used to determine whether the slow start or congestion avoidance algorithm is used to control data transmission" Slow start is used to probe the network's ability to handle transmission bursts both when a connection is first created and when retransmission timers fire. The latter case is important, as the fact that we have effectively lost TCP data acts as a motivator for re-probing how much data the network can handle from the sending TCP. The congestion window (cwnd) is initialized to a relatively small value, generally a low multiple of the sending maximum segment size. When slow start kicks in, we will only send that number of bytes before waiting for acknowledgement. When acknowledgements are received, the congestion window is increased in size until cwnd reaches the slow start threshold ssthresh value. For most congestion control algorithms the window increases exponentially under slow start, assuming we receive acknowledgements. We send 1 segment, receive an ACK, increase the cwnd by 1 MSS to 2*MSS, send 2 segments, receive 2 ACKs, increase the cwnd by 2*MSS to 4*MSS, send 4 segments etc. When the congestion window exceeds the slow start threshold, congestion avoidance is used instead of slow start. During congestion avoidance, the congestion window is generally updated by one MSS for each round-trip-time as opposed to each ACK, and so cwnd growth is linear instead of exponential (we may receive multiple ACKs within a single RTT). This continues until congestion is detected. If a retransmit timer fires, congestion is assumed and the ssthresh value is reset. It is reset to a fraction of the number of bytes outstanding (unacknowledged) in the network. At the same time the congestion window is reset to a single max segment size. Thus, we initiate slow start until we start receiving acknowledgements again, at which point we can eventually flip over to congestion avoidance when cwnd ssthresh. Congestion control algorithms differ most in how they handle the other indication of congestion - duplicate ACKs. A duplicate ACK is a strong indication that data has been lost, since they often come from a receiver explicitly asking for a retransmission. In some cases, a duplicate ACK may be generated at the receiver as a result of packets arriving out-of-order, so it is sensible to wait for multiple duplicate ACKs before assuming packet loss rather than out-of-order delivery. This is termed fast retransmit (i.e. retransmit without waiting for the retransmission timer to expire). Note that on Oracle Solaris 11, the congestion control method used can be customized. See here for more details. In general, 3 or more duplicate ACKs indicate packet loss and should trigger fast retransmit . It's best not to revert to slow start in this case, as the fact that the receiver knew it was missing data suggests it has received data with a higher sequence number, so we know traffic is still flowing. Falling back to slow start would be excessive therefore, so fast recovery is used instead. Observing slow start and congestion avoidance The following script counts TCP segments sent when under slow start (cwnd ssthresh). #!/usr/sbin/dtrace -s #pragma D option quiet tcp:::connect-request / start[args[1]-cs_cid] == 0/ { start[args[1]-cs_cid] = 1; } tcp:::send / start[args[1]-cs_cid] == 1 && args[3]-tcps_cwnd tcps_cwnd_ssthresh / { @c["Slow start", args[2]-ip_daddr, args[4]-tcp_dport] = count(); } tcp:::send / start[args[1]-cs_cid] == 1 && args[3]-tcps_cwnd args[3]-tcps_cwnd_ssthresh / { @c["Congestion avoidance", args[2]-ip_daddr, args[4]-tcp_dport] = count(); } As we can see the script only works on connections initiated since it is started (using the start[] associative array with the connection ID as index to set whether it's a new connection (start[cid] = 1). From there we simply differentiate send events where cwnd ssthresh (congestion avoidance). Here's the output taken when I accessed a YouTube video (where rport is 80) and from an FTP session where I put a large file onto a remote system. # dtrace -s tcp_slow_start.d ^C ALGORITHM RADDR RPORT #SEG Slow start 10.153.125.222 20 6 Slow start 138.3.237.7 80 14 Slow start 10.153.125.222 21 18 Congestion avoidance 10.153.125.222 20 1164 We see that in the case of the YouTube video, slow start was exclusively used. Most of the segments we sent in that case were likely ACKs. Compare this case - where 14 segments were sent using slow start - to the FTP case, where only 6 segments were sent before we switched to congestion avoidance for 1164 segments. In the case of the FTP session, the FTP data on port 20 was predominantly sent with congestion avoidance in operation, while the FTP session relied exclusively on slow start. For the default congestion control algorithm - "newreno" - on Solaris 11, slow start will increase the cwnd by 1 MSS for every acknowledgement received, and by 1 MSS for each RTT in congestion avoidance mode. Different pluggable congestion control algorithms operate slightly differently. For example "highspeed" will update the slow start cwnd by the number of bytes ACKed rather than the MSS. And to finish, here's a neat oneliner to visually display the distribution of congestion window values for all TCP connections to a given remote port using a quantization. In this example, only port 80 is in use and we see the majority of cwnd values for that port are in the 4096-8191 range. # dtrace -n 'tcp:::send { @q[args[4]-tcp_dport] = quantize(args[3]-tcps_cwnd); }' dtrace: description 'tcp:::send ' matched 10 probes ^C 80 value ------------- Distribution ------------- count -1 | 0 0 |@@@@@@ 5 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 0 512 | 0 1024 | 0 2048 |@@@@@@@@@ 8 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 23 8192 | 0

    Read the article

  • Advisor Webcast: Remote Diagnostic Agent (RDA) Use with EPM/BI Applications

    - by THE
    Maurice Bauhan and Ian Bristow will run an Advisor Webcast on the use of RDA with the EPM / BI Applications. Learn how to install, run, and analyze outputs of Remote Diagnostic Agent. RDA is a free tool for Oracle customers that could save you time as you work with your subset of most Oracle software. This one-hour session presented by senior proactive support engineers is recommended for technical users and support contacts. The session will include information on: Download and install of Remote Diagnostic Agent Run RDA, narrowing data retrieval to the context of Oracle products you need to investigate Analyze the RDA program outputs Via My Oracle Support Help the engineers at Oracle and assist communities with what you learn There will be 2 sessions: 12/15/2011 - 09:00 GMT (10:00 CET) - register here ( note 1376286.1 )12/15/2011 - 16:00 GMT (17:00 CET) - register here ( note 1376323.1 ) an overview of all upcoming Advisor Webcasts can be found in note 740966.1 Find more information about Advisor Webcasts: All future Advisor Webcasts | All recorded Advisor Webcasts | Support specific recorded Webcasts

    Read the article

  • BI Applications Test Drive: Joint Partner+Oracle Go To Market Initiatives

    - by Mike.Hallett(at)Oracle-BI&EPM
     A challenge you may be facing is how to easily show the business value of BI to a set of customers.  The key we find to achieve this is to show best in class business analytic examples specific to a business person's role and needs - e.g. "HR analytics" for HR professionals, "Spend Analytics" for procurement professionals, and so on. We have created for you, our specialised partners, the ability to run Oracle BI Applications Test Drive Workshops for your customers. These are carefully scripted to allow a customer business person (usually not IT) to navigate for themselves around a series of dashboards and analysis targetted to show how BI can help their business and drive ROI. These Oracle BI Applications Test Drive kits (in English) are now downloadable from our OMS4P/OPN portal . See it by clicking on this link:http://www.oracle.com/partners/secure/marketing/bi-apps-test-drive-519829.htmlThis kit translation into Italian, French, Spanish and German will be added to this portal soon. NOTE: These are not designed for "training" customers: they really address the need for an effective call to action for any customer you talk to who is in the early stages of exploring their options and the business benefits of a BI project, especially if they are already an Oracle applications customer (eBusiness suite, Peoplesoft, Siebel, JDE). For more demand generation kits see another blog article "Joint Partner+Oracle Go To Market Initiatives: BI Customer Event Kits"

    Read the article

  • BI&EPM in Focus - November 2011

    - by Mike.Hallett(at)Oracle-BI&EPM
    Enterprise Performance Management A Thing of Beauty, by Alison WeissAvon’s enterprise performance management system delivers accurate information and critical insight to managers at every level of the organization Oracle Crystal Ball Helps Managers Guard Against Volatility, by Alison Weiss The Insight Game, by Aaron LazenbyEnterprise performance management can deliver insights crucial to navigating the volatility of the global economy—and that’s no game of checkers. KPI vs. the Bottom Line, by Edward RoskeFor managers, is tracking the key metrics for their departments enough to ensure success for the entire business? The CEO for Oracle partner interRel shares his opinion. Deep Integration, by Aaron LazenbyThe synthesis of Oracle Hyperion applications and core Oracle technologies can deliver deep benefits to analytics-driven businesses. Oracle Crystal Ball. Oracle's #1 Solution for Risk Management Follow EPM Documentation at Hyperion EPM Info for news about EPM documentation releases and updates (twitter | facebook | Linkedin) Whitepaper: Integrating XBRL Into Your Financial Reporting Process Oracle Hyperion Disclosure Management Customer Story: StealthGas Inc. Saves 12 Accountant Days Yearly, Validates XBRL-Compliant Financial Filing Data in One Day Sherwin-Williams Argentina I.C.S.A. Accelerates Budget Preparation Process by 75% BBDO Germany GmbH Consolidates Financial and Planning Processes for More Than 50 Agencies StealthGas Inc. Saves 12 Accountant Days Yearly, Validates XBRL-Compliant Financial Filing Data in One Day Business Intelligence Webcast Replay: Oracle Data Mining & BI EE - Predictive Analytics (Part 2) Innovation Award Winners - BI/EPM: HealthSouth, State of MD, Clorox Company, Telenor and Dunkin Brands Leeds Teaching Hospitals National Health Service Trust Builds Budget Reports Six Times Faster, Achieves 100% ROI in 12 Months with Oracle Business Intelligence Home Credit Group Consolidates Reporting and Saves Time across All Business Units w/ Oracle Essbase & OBIEE Autoglass Improves Business Visibility and Services to Customers and Partners with Oracle Business Intelligence Events Download Oracle OpenWorld Oct 2011 Presentations select Middleware - BI or Applications - Hyperion Oracle Business Analytics Summits:learn about the latest trends, best practices, and innovations in business intelligence, analytics applications, and data warehousing Webcast Nov 15 9am PST: Running the Last Mile, Beyond Financial Consolidations - Streamlining the Close and Addressing the SEC's XBRL Mandate Webcast Dec 13 1pm PST: Defining Your Mobile BI Strategy (BICG) New Training Available: Oracle BI Publisher 11g R1: Fundamentals Webcast Replay: How to Expand the Usage of Analytics in your Organization while Driving Down IT Spend Webcast Replay: Real-Time Decisions (RTD) Updated Use Cases for Ecommerce Personalization in Financial Services & Retail

    Read the article

  • Einstieg in Solaris 11

    - by Stefan Hinker
    Fuer alle die, die jetzt mit Solaris 11 anfangen wollen, gibt es eine gute Zusammenfassung der Neuerungen und Aenderungen gegenueber Solaris 10.  Zu finden als Support Dokument 1313405.1.Auch in OTN gibt es ein ganzes Portal zu Solaris 11.  Besonders hervorheben moechte ich hier die umfangreiche "How-To" Sammlung. Und nicht zuletzt gibt es natuerlich die "ganz normalen" Admin Guides.

    Read the article

  • November eSTEP nyhedsbrev til hardware partner presales

    - by user12842157
    Kære partner,Vi vil hermed gøre dig opmærksom på at November versionen af vores eSTEP nyhedsbrev nu kan findes på eSTEP portalen. Du finder omtalte nyhedsbrev på vores portal under eSTEP News ---> Latest Newsletter. For at få access til portalen skal du bruge linket nederst i denne blog. Nyt fra Oracle: Reflektioner over Oracle OpenWorld, Oracle Buys GoAhead Det tekniske hjørne: T4 processor, SPARC SuperCluster T4-4, Pillar Axiom 600,  Oracle ZFS Appliance,  Hybrid Columnar Compression Support for ZFS Storage Appliances and Pillar Axiom Storage Systems, Oracle Exalytics In-memory Machine, Oracle Big Data Appliance, Oracle Database Express Edition 11g Release 2(Oracle Database XE), Oracle Public Cloud Træning og events: eSTEP Events Schedule, Recently Delivered TechCasts, Delivered Campaigns in 2011, Q&A covering Oracle Database Appliance How to ...: Oracle Server Finder - choose the system that is right for your, Power calculator for all the HW, SW documentation search , TO YOUR ATTENTION - Remarks to new configuration-options for 7120 URL: http://launch.oracle.com/PIN: er sendt til vores kontaktliste, ellers henvend dig til : [email protected] versioner af dette nyhedsbrev kan findes på portalen under "Archived Newsletters", mere information findes også under Events, Download og Links.Vi værdsætter enhver feed back på indholdet på portalen og anden information vi leverer.Med venlig hilsenPartner HW Enablement EMEA

    Read the article

  • OTN Developer Days in the Nordics - Helsinki, Oslo, Stockholm, and Copenhagen

    - by alexismp
    OTN Developers Day are on tour all year long and they are coming to Finland, Norway, Sweden and Denmark with a "Modern Enterprise Java Development" agenda. The dates are as follows (events take place in Oracle offices) : 22.11.2011 – Helsinki 23.11.2011 – Oslo 24.11.2011 – Stockholm 25.11.2011 – Copenhagen This is a free, day-long event covering Java EE 6, GlassFish, WebLogic, TopLink, Coherence, tools and more. See you there!

    Read the article

  • (My) Sun Ray 3i

    - by user13346636
    Last week, some Sun Ray devices were shown at the LASDEC exhibition. Afterward, they were brought back to the Aoyama Center, but not all of them found a place to be stored. So, two days ago, Iwasaki-san, one of the co-workers I've been close to (and who was at the exhibition), put a Sun Ray 3i (all-in-one with 21.5" screen) on my (shared) desk. Yay! I managed to get a Japanese keyboard, and now I can access my card and cardless sessions from Germany, and the performance is just great, as good as when I work from home in Hamburg. That's the way my deskt looks now,almost as messy as my desk in Hamburg: And my back is very grateful.

    Read the article

  • Creating a New XML Publisher Report Using an Existing EBS Purchasing Report

    - by Annemarie Provisero
    ADVISOR WEBCAST: Creating a New XML Publisher Report Using an Existing EBS Purchasing Report PRODUCT FAMILY: EBS - Procurement November 22, 2011 at 9:00 am EST, 12:00 pm, Mid-Atlantic Standard Time, 2:00 pm London, 4:00 pm, Egypt Time This one-hour session is recommended for technical and functional users who want to try and create their own reports in Purchasing based on existing (seeded) oracle report. TOPICS WILL INCLUDE: Introduction to XML Publisher Oracle BI Publisher Desktop Setup and Process Demo References A short, live demonstration (only if applicable) and question and answer period will be included. Oracle Advisor Webcasts are dedicated to building your awareness around our products and services. This session does not replace offerings from Oracle Global Support Services. Click here to register for this session ------------------------------------------------------------------------------------------------------------- The above webcast is a service of the E-Business Suite Communities in My Oracle Support. For more information on other webcasts, please reference the Oracle Advisor Webcast Schedule.Click here to visit the E-Business Communities in My Oracle Support Note that all links require access to My Oracle Support.

    Read the article

  • ?IT????????????????????

    - by ????
    ????2011?11?9??IT?????????????ITGI Japan ???????2001???????IT????????????????? ?????? ?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? IT????????????! ???????? IT????????????????????IT?????????????????????????????? ??IT???????????????????? ???????????? Oracle????????????????????????   ??????? ???????????????IFRS????????????????????????????????????????? ??????????????????????????IT??????????????????????????????   ??????????????IT??????????????????IT????????????????????????????????????????????????????????(GRC)?????????????????? ???????????????????LIXCL???NTT???????????????????????????????????? ?????? ??? ????????????? ??????????????????????????????????????    

    Read the article

  • Tip #13 java.io.File Surprises

    - by ByronNevins
    There is an assumption that I've seen in code many times that is totally wrong.  And this assumption can easily bite you.  The assumption is: File.getAbsolutePath and getAbsoluteFile return paths that are not relative.  Not true!  Sort of.  At least not in the way many people would assume.  All they do is make sure that the beginning of the path is absolute.  The rest of the path can be loaded with relative path elements.  What do you think the following code will print? public class Main {    public static void main(String[] args) {        try {            File f = new File("/temp/../temp/../temp/../");            File abs  = f.getAbsoluteFile();            File parent = abs.getParentFile();            System.out.println("Exists: " + f.exists());            System.out.println("Absolute Path: " + abs);            System.out.println("FileName: " + abs.getName());            System.out.printf("The Parent Directory of %s is %s\n", abs, parent);            System.out.printf("The CANONICAL Parent Directory of CANONICAL %s is %s\n",                        abs, abs.getCanonicalFile().getParent());            System.out.printf("The CANONICAL Parent Directory of ABSOLUTE %s is %s\n",                        abs, parent.getCanonicalFile());            System.out.println("Canonical Path: " + f.getCanonicalPath());        }        catch (IOException ex) {            System.out.println("Got an exception: " + ex);        }    }} Output: Exists: trueAbsolute Path: D:\temp\..\temp\..\temp\..FileName: ..The Parent Directory of D:\temp\..\temp\..\temp\.. is D:\temp\..\temp\..\tempThe CANONICAL Parent Directory of CANONICAL D:\temp\..\temp\..\temp\.. is nullThe CANONICAL Parent Directory of ABSOLUTE D:\temp\..\temp\..\temp\.. is D:\tempCanonical Path: D:\ Notice how it says that the parent of d:\ is d:\temp !!!The file, f, is really the root directory.  The parent is supposed to be null. I learned about this the hard way! getParentXXX simply hacks off the final item in the path. You can get totally unexpected results like the above. Easily. I filed a bug on this behavior a few years ago[1].   Recommendations: (1) Use getCanonical instead of getAbsolute.  There is a 1:1 mapping of files and canonical filenames.  I.e each file has one and only one canonical filename and it will definitely not have relative path elements in it.  There are an infinite number of absolute paths for each file. (2) To get the parent file for File f do the following instead of getParentFile: File parent = new File(f, ".."); [1] http://bt2ws.central.sun.com/CrPrint?id=6687287

    Read the article

  • Looking for Java Developers Using Mac

    - by Shay Shmeltzer
    The Oracle's Middleware User Experience team is currently looking for Java developers on Mac OS . If Mac OS is your primary development platform, we would like to invite you to participate in a customer usability feedback session allowing us to learn more about your experiences developing Java software on Mac OS. Sessions are typically 1.5 hours and would be conducted in your office via web conferencing. If interested, please send an email to this email address with the following information: Name: Job Title / Role: Daytime Phone: Provide a brief description of the programs you create in Java: Is MacOS your primary development platform? What is your primary development environment, tool, or IDE? What version(s) of the JDK do you currently use?

    Read the article

  • Wanted: Java Code Brainteasers

    - by Tori Wieldt
    The Jan/Feb Java Magazine will go out next week. It's full of great Java stories, interviews and technical articles. It also includes a Fix This section; the idea of this section is challenging a Java developer's coding skills. It's a multiple-choice brainteaser that includes code and possible answers. The answer is provided in the next issue. For an example, check out Fix This in the Java Magazine premier issue. We are looking for community submissions to Fix This. Do you have a good code brain teaser? Remember, you want tease your fellow devs, not stump them completely! If you have a submission, here's what you do:  1. State the problem, including a short summary of the tool/technique, in about 75 words. 2. Send us the code snippet, with a short set-up so readers know what they are looking at (such as, "Consider the following piece of code to have database access within a Servlet.") 3. Provide four multiple-choice answers to the question, "What's the fix?" 4. Give us the answer, along with a brief explanation of why. 5. Tell us who you are (name, occupation, etc.) 6. Email the above to JAVAMAG_US at ORACLE.COM with "Fix This Submission" in the title. Deadlines for Fix This for next two issues of Java Magazine are Dec. 12th and Jan. 15th. Bring It!

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >