Search Results

Search found 226 results on 10 pages for 'bounding'.

Page 1/10 | 1 2 3 4 5 6 7 8 9 10  | Next Page >

  • Axis-Aligned Bounding Boxes vs Bounding Ellipse

    - by Griffin
    Why is it that most, if not all collision detection algorithms today require each body to have an AABB for the use in the broad phase only? It seems to me like simply placing a circle at the body's centroid, and extending the radius to where the circle encompasses the entire body would be optimal. This would not need to be updated after the body rotates and broad overlap-calculation would be faster to. Correct? Bonus: Would a bounding ellipse be practical for broad phase calculations also, since it would better represent long, skinny shapes? Or would it require extensive calculations, defeating the purpose of broad-phase?

    Read the article

  • 2D object-aligned bounding-box intersection test

    - by AshleysBrain
    Hi all, I have two object-aligned bounding boxes (i.e. not axis aligned, they rotate with the object). I'd like to know if two object-aligned boxes overlap. (Edit: note - I'm using an axis-aligned bounding box test to quickly discard distant objects, so it doesn't matter if the quad routine is a little slower.) My boxes are stored as four x,y points. I've searched around for answers, but I can't make sense of the variable names and algorithms in examples to apply them to my particular case. Can someone help show me how this would be done, in a clear and simple way? Thanks. (The particular language isn't important, C-style pseudo code is OK.)

    Read the article

  • Bounding volume hierarchy - linked nodes (linear model)

    - by teodron
    The scenario A chain of points: (Pi)i=0,N where Pi is linked to its direct neighbours (Pi-1 and Pi+1). The goal: perform efficient collision detection between any two, non-adjacent links: (PiPi+1) vs. (PjPj+1). The question: it's highly recommended in all works treating this subject of collision detection to use a broad phase and to implement it via a bounding volume hierarchy. For a chain made out of Pi nodes, it can look like this: I imagine the big blue sphere to contain all links, the green half of them, the reds a quarter and so on (the picture is not accurate, but it's there to help understand the question). What I do not understand is: How can such a hierarchy speed up computations between segments collision pairs if one has to update it for a deformable linear object such as a chain/wire/etc. each frame? More clearly, what is the actual principle of collision detection broad phases in this particular case/ how can it work when the actual computation of bounding spheres is in itself a time consuming task and has to be done (since the geometry changes) in each frame update? I think I am missing a key point - if we look at the picture where the chain is in a spiral pose, we see that most spheres are already contained within half of others or do intersect them.. it's odd if this is the way it should work.

    Read the article

  • Building dynamic bounding box hierachies.

    - by adivasile
    I've been reading about collision detection and I saw that the first part was a coarse detection which generates possible contacts using bounding box hierarchies. I understand the concept of splitting up your objects in groups, to speed up the detection phase, but I'm a little confused on how do you actually build the hierachy, more so on what criteria is used to group them together. Do I iterate through all the objects in the scene, and check the distance between them to see where they should be inserted in the tree? Do you know some resources that may shed some light on this topic for me?

    Read the article

  • Resolving bounding box collision detection

    - by ndg
    I'm working on a simple collision detection and resolution method for a 2d tile-based bounding box system. Collision appears to work correctly, but I'm having issues with resolving a collision after it has happened. Essentially what I'm attempting to do is very similar to this approach. The problem I'm experiencing is that because objects can be traveling with both horizontal and vertical velocity, my resolution code causes the object to jump incorrectly. I've drawn the following annotation to explain my issue. In this example, because my object has both horizontal and vertical velocity, my object (which is heading upwards and collides with the bottom of a tile) has it's position altered twice: To correctly adjust it's vertical position to be beneath the tile. To incorrectly adjust it's horizontal position to be to the left of the tile. Below is my collision/resolution code in full: function intersects(x1, y1, w1, h1, x2, y2, w2, h2) { w2 += x2; w1 += x1; if (x2 > w1 || x1 > w2) return false; h2 += y2; h1 += y1; if (y2 > h1 || y1 > h2) return false; return true; } for(var y = 0; y < this.game.level.tiles.length; y++) { for(var x = 0; x < this.game.level.tiles[y].length; x++) { var tile = this.game.level.getTile(x, y); if(tile) { if( this.velocity.x > 0 && intersects(this.position.x+dx+this.size.w, this.position.y+dy, 1, this.size.h, x*tileSize, y*tileSize, tileSize, tileSize) ) { this.position.x = ((x*tileSize)-this.size.w); hitSomething = true; break; } else if( this.velocity.x < 0 && intersects(this.position.x+dx, this.position.y+dy, 1, this.size.h, x*tileSize, y*tileSize, tileSize, tileSize) ) { this.position.x = ((x*tileSize)+tileSize); hitSomething = true; break; } if( this.velocity.y > 0 && intersects(this.position.x+dx, this.position.y+dy+this.size.h, this.size.w, 1, x*tileSize, y*tileSize, tileSize, tileSize) ) { this.position.y = ((y*tileSize)-this.size.h); hitSomething = true; break; } else if( this.velocity.y < 0 && intersects(this.position.x+dx, this.position.y+dy, this.size.w, 1, x*tileSize, y*tileSize, tileSize, tileSize) ) { this.position.y = ((y*tileSize)+tileSize); hitSomething = true; break; } } } } if(hitSomething) { this.velocity.x = this.velocity.y = 0; dx = dy = 0; this.setJumping(false); }

    Read the article

  • Please help with bounding box/sprite collision in darkBASIC pro

    - by user1601163
    So I just recently learned BASIC and figured I would try making a clone of pong on my own in darkBASIC pro, and I made everything else work just fine except for the part that makes the ball bounce off the paddle. And yes I'm aware that the game is not yet finished. The error is on lines 39-51 EVERYTHING IS 2D. /////////////////////////////////////////////////////////// // // Project: Pong // Created: Friday, August 31, 2012 // Code: Brandon Spaulding // Art: Brandon Spaulding // Made in CIS lab at CPAVTS // Pong art and code © Brandon Spaulding 2012-2013 // ////////////////////////////////////////////////////////// y=150 x=0 ay=150 ax=612 ballx=300 bally=200 ballx_DIR=1 bally_DIR=1 hide mouse set global collision on //objectnumber=10 //make object box objectnumber,5,150,0 do load image "media\paddle1.png",1 load image "media\paddle2.png",2 load image "media\ball.png",3 sprite 1,x,y,1 sprite 2,ax,ay,2 sprite 3,ballx,bally,3 if upkey()=1 then y = y - 4 if downkey()=1 then y = y + 4 //num_1 = sprite collision(1,0) //num_2 = sprite collision(2,0) num_3 = sprite collision(3,0) for t=1 to 2 //ball&paddle collision if num_3 > 0 if bally_DIR=1 bally_DIR=0 else bally_DIR=1 endif if ballx_DIR=0 ballx_DIR=1 else ballx_DIR=0 endif endif //if bally > 1 and bally < 500 then bally=bally + 2.5 if bally_DIR=1 bally=bally-2.5 if bally<-2.5 bally_DIR=0 endif else bally=bally+2.5 if bally>452.5 bally_DIR=1 endif endif if ballx_DIR=1 ballx=ballx-2.5 if ballx<-2.5 ballx_DIR=0 endif else ballx=ballx+2.5 if ballx>612 ballx_DIR=1 endif endif //bally = bally + t //if bally < 600 or bally > 1 then bally = bally - 2.5 //if ballx < 400 or ballx > 1 then ballx = ballx + 2.5 //move sprite 3,1 next t if escapekey()=1 then exit loop end Thank you in advance for the help.

    Read the article

  • Need a bounding box for CCSprite that includes all children/subchildren

    - by prototypical
    I have a CCSprite that has CCSprite children, and those CCSprite children have CCSprite children. The contentSize property doesn't seem to include all children/subchildren, and seems to only work for the base node. I could write a recursive method to traverse a CCSprite for all children/subchildren and calculate a proper boundingbox, but am curious as to if I am missing something and it's possible to get that information without doing so. I'l be a little surprised if such a method doesn't exist, but I can't seem to find it.

    Read the article

  • Unity3d: Box collider attached to animated FBX models through scripts at run-time have wrong dimension

    - by Heisenbug
    I have several scripts attached to static and non static models of my scene. All models are instantiated at run-time (and must be instantiated at run-time because I'm procedural building the scene). I'd like to add a BoxCollider or SphereCollider to my FBX models at runtime. With non animated models it works simply requiring BoxCollider component from the script attached to my GameObject. BoxCollider is created of the right dimension. Something like: [RequireComponent(typeof(BoxCollider))] public class AScript: MonoBehavior { } If I do the same thing with animated models, BoxCollider are created of the wrong dimension. For example if attach the script above to penelopeFBX model of the standard asset, BoxCollider is created smaller than the mesh itself. How can I solve this?

    Read the article

  • Grouping rectangles (getting the bounding boxes of rects)

    - by hyn
    What is a good, fast way to get the "final" bounding boxes of a set of random (up to about 40, not many) rectangles? By final I mean that all bounding boxes don't intersect with any other. Brute force way: in a double for loop, for each rect, test for intersection against every other rect. The intersecting rects become a new rect (replaced), indicating the bounding box. Start over and repeat until no intersection is detected. Because the rects are random every time, and the rect count is relatively small, collision detection using spatial hashing seems like overkill. Is there a way to do this more effectively?

    Read the article

  • Calculating bounding box a certain distance away from a lat/long coordinate in Java

    - by Bryce Thomas
    Given a coordinate (lat, long), I am trying to calculate a square bounding box that is a given distance (e.g. 50km) away from the coordinate. So as input I have lat, long and distance and as output I would like two coordinates; one being the south-west (bottom-left) corner and one being the north-east (top-right) corner. I have seen a couple of answers on here that try to address this question in Python, but I am looking for a Java implementation in particular. Just to be clear, I intend on using the algorithm on Earth only and so I don't need to accommodate a variable radius. It doesn't have to be hugely accurate (+/-20% is fine) and it'll only be used to calculate bounding boxes over small distances (no more than 150km). So I'm happy to sacrifice some accuracy for an efficient algorithm. Any help is much appreciated. Edit: I should have been clearer, I really am after a square, not a circle. I understand that the distance between the center of a square and various points along the square's perimeter is not a constant value like it is with a circle. I guess what I mean is a square where if you draw a line from the center to any one of the four points on the perimeter that results in a line perpendicular to a side of the perimeter, then those 4 lines have the same length.

    Read the article

  • List of bounding boxes?

    - by Christian Frantz
    When I create a bounding box for each object in my chunk, would it be better to store them in a list? List<BoundingBox> cubeBoundingBox Or can I just use a single variable? BoundingBox cubeBoundingBox The bounding boxes will be used for all types of things so they will be moving around. In any case, I'd be adding it to a method that gets called 2500+ times for each chunk, so either I have a giant list of them or 2500+ individual boxes. Is there any advantage to using one or the other?

    Read the article

  • creating bounding box list

    - by Christian Frantz
    I'm trying to create a list of bounding boxes for each cube drawn, so I can use the boxes to intersect with a ray that my mouse position is casting, but I have no idea how. I've created a list that stores the boxes, but how am I getting the values from each box? for (int x = 0; x < mapHeight; x++) { for (int z = 0; z < mapWidth; z++) { cubes.Add(new Vector3(x, map[x, z], z), Matrix.Identity, grass); boxList.Add(something here); } } public Cube(GraphicsDevice graphicsDevice) { device = graphicsDevice; var vertices = new List<VertexPositionTexture>(); BuildFace(vertices, new Vector3(0, 0, 0), new Vector3(0, 1, 1)); BuildFace(vertices, new Vector3(0, 0, 1), new Vector3(1, 1, 1)); BuildFace(vertices, new Vector3(1, 0, 1), new Vector3(1, 1, 0)); BuildFace(vertices, new Vector3(1, 0, 0), new Vector3(0, 1, 0)); BuildFaceHorizontal(vertices, new Vector3(0, 1, 0), new Vector3(1, 1, 1)); BuildFaceHorizontal(vertices, new Vector3(0, 0, 1), new Vector3(1, 0, 0)); cubeVertexBuffer = new VertexBuffer(device, VertexPositionTexture.VertexDeclaration, vertices.Count, BufferUsage.WriteOnly); cubeVertexBuffer.SetData<VertexPositionTexture>(vertices.ToArray()); } There aren't any clearly defined variables for the bounds of each cube created, so where do I create the bounding box from?

    Read the article

  • Different bounding volumes for culling and collision detection

    - by Serthy
    Should an object in a 3D-engine use different bounding volumes for collision-detection (broad-phase) and culling? Basically class renderBounds and class physBounds versus class boundingVolume? Each of this classes then could either contain the same type of volumes (AABB's, kDOP's, sphere's etc.) or a special fitting one for the particular object. (note: without considering of using an external physics engine)

    Read the article

  • 2D fighting bounding boxes

    - by user36420
    I'm prototyping a 2D platformer/brawler game for uni and I'm having some trouble with creating collision/bounding boxes. This is most likely going to end up on a Vita so I do have some library constraints as well as performance implications. None of this has yet been implemented but is all theory. My idea was to have the artist create a sprite sheet for the character animation and then a second identical sprite sheet with the corresponding collisions in a solid colour (e.g green for where the character can be hit and red for dealing damage, near the foot if kicking etc.) With this, I would then parse the collision sheet and generate the various collisions required storing them in the character model. This is the point I feel would be most inefficient. While I think this is a possible solution, I was wondering if there was a more standard way of doing this or a more efficient way as I feel this would have severe performance problems.

    Read the article

  • Finding the normals of an oriented bounding box?

    - by Milo
    Here is my problem. I'm working on the physics for my 2D game. All objects are oriented bounding boxes (OBB) based on the separate axis theorem. In order to do collision resolution, I need to be able to get an object out out of the object it is penetrating. To do this I need to find the normal of the face(s) that the other OBB is touching. Example: The small red OBB is a car lets say, and the big OBB is a static building. I need to determine the unit vector that is the normal of the building edge(s) the car is penetrating to get the car out of there. Here are my questions: How do I determine which edges the car is penetrating. I know how to determine the normal of an edge, but how do I know if I need (-dy, dx) or (dy, -dx)? In the case I'm demonstrating the car is penetrating 2 edges, which edge(s) do I use to get it out? Answers or help with any or all of these is greatly appreciated. Thank you

    Read the article

  • Trouble using Ray.Intersect method on bounding boxes in a 2D XNA game

    - by getsauce
    I am trying to use a ray and bounding box to determine if a box is between the player and the mouse pointer in 2D space. When I try testing the code, the collision will return true when pointed at the box but it also returns true under other circumstances where it shouldn't. For instance. If I have a player on the left and a box directly to the right, I can put the mouse pointer a few hundred pixels above the box or a few hundred below and it will still return true. Also, I can put my mouse pointer to the left of the player and in a certain area it will still return true. Does anyone have any idea what might cause this? I have left out definitions for some of my members and properties just to make this code sample easier to read. The position property is just a Vector2 for where each object is located. ray = new Ray(new Vector3(player.Position, 0), new Vector3(mouse.Position, 0); box = new BoundingBox(new Vector3(box.Position, 0), new Vector3( new Vector2(box.Position + box.Width, box.Position + box.Height), 0); if (ray.Intersects(box) != null) collision = true; else collision = false;

    Read the article

  • Bounding Box Collision Glitching Problem (Pygame)

    - by Ericson Willians
    So far the "Bounding Box" method is the only one that I know. It's efficient enough to deal with simple games. Nevertheless, the game I'm developing is not that simple anymore and for that reason, I've made a simplified example of the problem. (It's worth noticing that I don't have rotating sprites on my game or anything like that. After showing the code, I'll explain better). Here's the whole code: from pygame import * DONE = False screen = display.set_mode((1024,768)) class Thing(): def __init__(self,x,y,w,h,s,c): self.x = x self.y = y self.w = w self.h = h self.s = s self.sur = Surface((64,48)) draw.rect(self.sur,c,(self.x,self.y,w,h),1) self.sur.fill(c) def draw(self): screen.blit(self.sur,(self.x,self.y)) def move(self,x): if key.get_pressed()[K_w] or key.get_pressed()[K_UP]: if x == 1: self.y -= self.s else: self.y += self.s if key.get_pressed()[K_s] or key.get_pressed()[K_DOWN]: if x == 1: self.y += self.s else: self.y -= self.s if key.get_pressed()[K_a] or key.get_pressed()[K_LEFT]: if x == 1: self.x -= self.s else: self.x += self.s if key.get_pressed()[K_d] or key.get_pressed()[K_RIGHT]: if x == 1: self.x += self.s else: self.x -= self.s def warp(self): if self.y < -48: self.y = 768 if self.y > 768 + 48: self.y = 0 if self.x < -64: self.x = 1024 + 64 if self.x > 1024 + 64: self.x = -64 r1 = Thing(0,0,64,48,1,(0,255,0)) r2 = Thing(6*64,6*48,64,48,1,(255,0,0)) while not DONE: screen.fill((0,0,0)) r2.draw() r1.draw() # If not intersecting, then moves, else, it moves in the opposite direction. if not ((((r1.x + r1.w) > (r2.x - r1.s)) and (r1.x < ((r2.x + r2.w) + r1.s))) and (((r1.y + r1.h) > (r2.y - r1.s)) and (r1.y < ((r2.y + r2.h) + r1.s)))): r1.move(1) else: r1.move(0) r1.warp() if key.get_pressed()[K_ESCAPE]: DONE = True for ev in event.get(): if ev.type == QUIT: DONE = True display.update() quit() The problem: In my actual game, the grid is fixed and each tile has 64 by 48 pixels. I know how to deal with collision perfectly if I moved by that size. Nevertheless, obviously, the player moves really fast. In the example, the collision is detected pretty well (Just as I see in many examples throughout the internet). The problem is that if I put the player to move WHEN IS NOT intersecting, then, when it touches the obstacle, it does not move anymore. Giving that problem, I began switching the directions, but then, when it touches and I press the opposite key, it "glitches through". My actual game has many walls, and the player will touch them many times, and I can't afford letting the player go through them. The code-problem illustrated: When the player goes towards the wall (Fine). When the player goes towards the wall and press the opposite direction. (It glitches through). Here is the logic I've designed before implementing it: I don't know any other method, and I really just want to have walls fixed in a grid, but move by 1 or 2 or 3 pixels (Slowly) and have perfect collision without glitching-possibilities. What do you suggest?

    Read the article

  • BoundingBox created from mesh to origin, making it bigger

    - by Gunnar Södergren
    I'm working on a level-based survival game and I want to design my scenes in Maya and export them as a single model (with multiple meshes) into XNA. My problem is that when I try to create Bounding Boxes(for Collision purposes) for each of the meshes, the are calculated from origin to the far-end of the current mesh, so to speak. I'm thinking that it might have something to do with the position each mesh brings from Maya and that it's interpreted wrongly... or something. Here's the code for when I create the boxes: private static BoundingBox CreateBoundingBox(Model model, ModelMesh mesh) { Matrix[] boneTransforms = new Matrix[model.Bones.Count]; model.CopyAbsoluteBoneTransformsTo(boneTransforms); BoundingBox result = new BoundingBox(); foreach (ModelMeshPart meshPart in mesh.MeshParts) { BoundingBox? meshPartBoundingBox = GetBoundingBox(meshPart, boneTransforms[mesh.ParentBone.Index]); if (meshPartBoundingBox != null) result = BoundingBox.CreateMerged(result, meshPartBoundingBox.Value); } result = new BoundingBox(result.Min, result.Max); return result; } private static BoundingBox? GetBoundingBox(ModelMeshPart meshPart, Matrix transform) { if (meshPart.VertexBuffer == null) return null; Vector3[] positions = VertexElementExtractor.GetVertexElement(meshPart, VertexElementUsage.Position); if (positions == null) return null; Vector3[] transformedPositions = new Vector3[positions.Length]; Vector3.Transform(positions, ref transform, transformedPositions); for (int i = 0; i < transformedPositions.Length; i++) { Console.WriteLine(" " + transformedPositions[i]); } return BoundingBox.CreateFromPoints(transformedPositions); } public static class VertexElementExtractor { public static Vector3[] GetVertexElement(ModelMeshPart meshPart, VertexElementUsage usage) { VertexDeclaration vd = meshPart.VertexBuffer.VertexDeclaration; VertexElement[] elements = vd.GetVertexElements(); Func<VertexElement, bool> elementPredicate = ve => ve.VertexElementUsage == usage && ve.VertexElementFormat == VertexElementFormat.Vector3; if (!elements.Any(elementPredicate)) return null; VertexElement element = elements.First(elementPredicate); Vector3[] vertexData = new Vector3[meshPart.NumVertices]; meshPart.VertexBuffer.GetData((meshPart.VertexOffset * vd.VertexStride) + element.Offset, vertexData, 0, vertexData.Length, vd.VertexStride); return vertexData; } } Here's a link to the picture of the mesh(The model holds six meshes, but I'm only rendering one and it's bounding box to make it clearer: http://www.gsodergren.se/portfolio/wp-content/uploads/2011/10/Screen-shot-2011-10-24-at-1.16.37-AM.png The mesh that I'm refering to is the Cubelike one. The cylinder is a completely different model and not part of any bounding box calculation. I've double- (and tripple-)-checked that this mesh corresponds to this bounding box. Any thoughts on what I'm doing wrong?

    Read the article

  • Point inside Oriented Bounding Box?

    - by Milo
    I have an OBB2D class based on SAT. This is my point in OBB method: public boolean pointInside(float x, float y) { float newy = (float) (Math.sin(angle) * (y - center.y) + Math.cos(angle) * (x - center.x)); float newx = (float) (Math.cos(angle) * (x - center.x) - Math.sin(angle) * (y - center.y)); return (newy > center.y - (getHeight() / 2)) && (newy < center.y + (getHeight() / 2)) && (newx > center.x - (getWidth() / 2)) && (newx < center.x + (getWidth() / 2)); } public boolean pointInside(Vector2D v) { return pointInside(v.x,v.y); } Here is the rest of the class; the parts that pertain: public class OBB2D { private Vector2D projVec = new Vector2D(); private static Vector2D projAVec = new Vector2D(); private static Vector2D projBVec = new Vector2D(); private static Vector2D tempNormal = new Vector2D(); private Vector2D deltaVec = new Vector2D(); private ArrayList<Vector2D> collisionPoints = new ArrayList<Vector2D>(); // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(float centerx, float centery, float w, float h, float angle) { for(int i = 0; i < corner.length; ++i) { corner[i] = new Vector2D(); } for(int i = 0; i < axis.length; ++i) { axis[i] = new Vector2D(); } set(centerx,centery,w,h,angle); } public OBB2D(float left, float top, float width, float height) { for(int i = 0; i < corner.length; ++i) { corner[i] = new Vector2D(); } for(int i = 0; i < axis.length; ++i) { axis[i] = new Vector2D(); } set(left + (width / 2), top + (height / 2),width,height,0.0f); } public void set(float centerx,float centery,float w, float h,float angle) { float vxx = (float)Math.cos(angle); float vxy = (float)Math.sin(angle); float vyx = (float)-Math.sin(angle); float vyy = (float)Math.cos(angle); vxx *= w / 2; vxy *= (w / 2); vyx *= (h / 2); vyy *= (h / 2); corner[0].x = centerx - vxx - vyx; corner[0].y = centery - vxy - vyy; corner[1].x = centerx + vxx - vyx; corner[1].y = centery + vxy - vyy; corner[2].x = centerx + vxx + vyx; corner[2].y = centery + vxy + vyy; corner[3].x = centerx - vxx + vyx; corner[3].y = centery - vxy + vyy; this.center.x = centerx; this.center.y = centery; this.angle = angle; computeAxes(); extents.x = w / 2; extents.y = h / 2; computeBoundingRect(); } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0].x = corner[1].x - corner[0].x; axis[0].y = corner[1].y - corner[0].y; axis[1].x = corner[3].x - corner[0].x; axis[1].y = corner[3].y - corner[0].y; // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { float l = axis[a].length(); float ll = l * l; axis[a].x = axis[a].x / ll; axis[a].y = axis[a].y / ll; origin[a] = corner[0].dot(axis[a]); } } public void computeBoundingRect() { boundingRect.left = JMath.min(JMath.min(corner[0].x, corner[3].x), JMath.min(corner[1].x, corner[2].x)); boundingRect.top = JMath.min(JMath.min(corner[0].y, corner[1].y),JMath.min(corner[2].y, corner[3].y)); boundingRect.right = JMath.max(JMath.max(corner[1].x, corner[2].x), JMath.max(corner[0].x, corner[3].x)); boundingRect.bottom = JMath.max(JMath.max(corner[2].y, corner[3].y),JMath.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(rect.centerX(),rect.centerY(),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } public void moveTo(float centerx, float centery) { float cx,cy; cx = center.x; cy = center.y; deltaVec.x = centerx - cx; deltaVec.y = centery - cy; for (int c = 0; c < 4; ++c) { corner[c].x += deltaVec.x; corner[c].y += deltaVec.y; } boundingRect.left += deltaVec.x; boundingRect.top += deltaVec.y; boundingRect.right += deltaVec.x; boundingRect.bottom += deltaVec.y; this.center.x = centerx; this.center.y = centery; computeAxes(); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center.x,center.y,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center.x,center.y,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } public static float distance(float ax, float ay,float bx, float by) { if (ax < bx) return bx - ay; else return ax - by; } public Vector2D project(float ax, float ay) { projVec.x = Float.MAX_VALUE; projVec.y = Float.MIN_VALUE; for (int i = 0; i < corner.length; ++i) { float dot = Vector2D.dot(corner[i].x,corner[i].y,ax,ay); projVec.x = JMath.min(dot, projVec.x); projVec.y = JMath.max(dot, projVec.y); } return projVec; } public Vector2D getCorner(int c) { return corner[c]; } public int getNumCorners() { return corner.length; } public boolean pointInside(float x, float y) { float newy = (float) (Math.sin(angle) * (y - center.y) + Math.cos(angle) * (x - center.x)); float newx = (float) (Math.cos(angle) * (x - center.x) - Math.sin(angle) * (y - center.y)); return (newy > center.y - (getHeight() / 2)) && (newy < center.y + (getHeight() / 2)) && (newx > center.x - (getWidth() / 2)) && (newx < center.x + (getWidth() / 2)); } public boolean pointInside(Vector2D v) { return pointInside(v.x,v.y); } public ArrayList<Vector2D> getCollsionPoints(OBB2D b) { collisionPoints.clear(); for(int i = 0; i < corner.length; ++i) { if(b.pointInside(corner[i])) { collisionPoints.add(corner[i]); } } for(int i = 0; i < b.corner.length; ++i) { if(pointInside(b.corner[i])) { collisionPoints.add(b.corner[i]); } } return collisionPoints; } }; What could be wrong? When I getCollisionPoints for 2 OBBs I know are penetrating, it returns no points. Thanks

    Read the article

  • libgdx collision detection / bounding the object

    - by johnny-b
    i am trying to get collision detection so i am drawing a red rectangle to see if it is working, and when i do the code below in the update method. to check if it is going to work. the position is not in the right place. the red rectangle starts from the middle and not at the x and y point?Huh so it draws it wrong. i also have a getter method so nothing wrong there. bullet.set(getX(), getY(), getOriginX(), getOriginY()); this is for the render shapeRenderer.begin(ShapeType.Filled); shapeRenderer.setColor(Color.RED); shapeRenderer.rect(bullet.getX(), bullet.getY(), bullet.getOriginX(), bullet.getOriginY(), 15, 5, bullet.getRotation()); shapeRenderer.end(); i have tried to do it with a circle but the circle draws in the middle and i want it to be at the tip of the bullet. at the front of the bullet. x, y point. boundingCircle.set(getX() + getOriginX(), getY() + getOriginY(), 4.0f); shapeRenderer.begin(ShapeType.Filled); shapeRenderer.setColor(Color.RED); shapeRenderer.circle(bullet.getBoundingCircle().x, bullet.getBoundingCircle().y, bullet.getBoundingCircle().radius); shapeRenderer.end(); thank you need it to be of the x and y as the bullet is in the middle of the sprite when drawn originally via paint.

    Read the article

  • Transforming object world space matrix to a position in world space

    - by Fredrik Boston Westman
    Im trying to make a function for picking objects with a bounding sphere however I have run in to a problem. First I check against my my bounding sphere, then if it checks out then I test against the vertexes. I have already tested my vertex picking method and it work fine, however when I check first with my bounding sphere method it dosnt register anything. My conclusion is that when im transform my sphere position in to the position of the object in world space, the transformation goes wrong ( I base this on the fact the the x coordinate always becomes 1, even tho i translate non of my meshes along the x-axis to 1). So my question is: What is the proper way to transform a objects world space matrix to a position vector ? This is how i do it now: First i set my position vector to 0. XMVECTOR meshPos = XMVectorSet(0.0f, 0.0f, 0.0f, 0.0f); Then I trannsform it with my object space matrix, and then add the offset to the center of the mesh. meshPos = XMVector3TransformCoord(meshPos, meshWorld) + centerOffset;

    Read the article

  • dvi generation: no bounding box

    - by Akshey
    Hi, I wrote a research paper in latex and generated pdf using kile. It worked perfectly well. Now conference people are asking for dvi file also. But Kile's quick build process does not give a dvi file, but its 'Latex' compile process does. So I tried to compile the document, and it gave errors for includegraphics saying figure not found. When I append the correct extensions to the image names, that errors stopped coming but new errors came "bounding box is missing". I added bounding box values and now DVI file is being generated. My questions are: I have tried giving very high and low bounding box values but there is no deformation in the PDF. Why? Can I generate a DVI without giving bounding box values? Thanks and regards, Akshey

    Read the article

  • Checking if an object is inside bounds of an isometric chunk

    - by gopgop
    How would I check if an object is inside the bounds of an isometric chunk? for example I have a player and I want to check if its inside the bounds of this isometric chunk. I draw the isometric chunk's tiles using OpenGL Quads. My first try was checking in a square pattern kind of thing: e = object; this = isometric chunk; if (e.getLocation().getX() < this.getLocation().getX()+World.CHUNK_WIDTH*World.TILE_WIDTH && e.getLocation().getX() > this.getLocation().getX()) { if (e.getLocation().getY() > this.getLocation().getY() && e.getLocation().getY() < this.getLocation().getY()+World.CHUNK_HEIGHT*World.TILE_HEIGHT) { return true; } } return false; What happens here is that it checks in a SQUARE around the chunk so not the real isometric bounds. Image example: (THE RED IS WHERE THE PROGRAM CHECKS THE BOUNDS) What I have now: Desired check: Ultimately I want to do the same for each tile in the chunk. EXTRA INFO: Till now what I had in my game is you could only move tile by tile but now I want them to move freely but I still need them to have a tile location so no matter where they are on the tile their tile location will be that certain tile. then when they are inside a different tile's bounding box then their tile location becomes the new tile. Same thing goes with chunks. the player does have an area but the area does not matter in this case. and as long as the X and Y are inside the bounding box then it should return true. they don't have to be completely on the tile.

    Read the article

  • Calculating bounding grid coordinates to a user click on google maps/google earth

    - by user170304
    Hello, I have a requirement to calculate the centroid or geodesic midpoint of when a user clicks in between the lat/long grid crossing. The crossing forms a square in most parts of GE and sometimes elongated rectangles. This is due to the shape of the earth of course. I'm looking for a valid mathematical formula that would allow a user to click anywhere in between this grid and then an accurate function (in Javascript or server side code) that would take an assumed grid resolution (say 1km intervals for this discussion) and the input coordinates that should return a centroid coordinate within that graticule grid. To clarify please take a look at the attached image to my google group post: http://google-earth-api.googlegroups.com/web/Picture+5.png?gda=h5oFPz8AAAD315KpovipQeBwdfGpmW3ZhBc9PTADwYa-n193hZ6AItFmHuno63c7phcEXYVuRA6ccyFKn-rNKC-d1pM%5FIdV0&gsc=sz6bbAsAAABBKF7YXWYyc4GmXg-QruHj What I need to be able to do is if a user clicks anywhere in this grid square, I need to find the centroid or center point of that grid intersection/square or at least the bounding grid coordinates (that make the square). If we assume that the grid is UTM standard and has a max resolution of 1km (or make this a parameter), I need to detect the four other points nearby and then calculating the centroid is not as difficult. I welcome any feedback you all may have and appreciate it. I don't have a simple way of letting a user click anywhere on the grid and finding the grid bounding coordinates (making a square of 4 coordinates) or the centroid / midpoint of the graticule grid square necessary. One thought is to use assumptions as much as possible using a reference such as UTM coordinate reference. If I assume that the grid is X degrees wide, can we have a pure javascript function take any input coordinate and return for me the bounding graticule coordinates in Decimal Degrees? Another thought I had was to create the grid in a geo-spatial layer to take any input coordinate and return the nearest centroid of the graticule? Does this make sense? Thanks! Omar

    Read the article

1 2 3 4 5 6 7 8 9 10  | Next Page >