Search Results

Search found 3875 results on 155 pages for 'opengl es lighting'.

Page 1/155 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • OpenGL or OpenGL ES

    - by zxspectrum
    What should I learn? OpenGL 4.1 or OpenGL ES 2.0? I will be developing desktop applications using Qt but I may start developing mobile applications in a few months, too. I don't know anything about 3D, 3D math, etc and I'd rather spend 100 bucks in a good book than 1 week digging websites and going through trial and error. One problem I see with OpenGL 4.1 is as far as I know there is no book yet (the most recent ones are for OpenGL 3.3 or 4.0), while there are books on OpenGL ES 2.0. On the other hand, from my naive point of view, OpenGL 4.1 seems like OpenGL ES 2.0 + additions, so it looks like it would be easier/better to first learn OpenGL ES 2.0, then go for the shader language, etc Please, don't tell me to use NeHe (it's generally agreed it's full of bad/old practices), the Durian tutorial, etc. Thanks

    Read the article

  • Geometry instancing in OpenGL ES 2.0

    - by seahorse
    I am planning to do geometry instancing in OpenGL ES 2.0 Basically I plan to render the same geometry(a chair) maybe 1000 times in my scene. What is the best way to do this in OpenGL ES 2.0? I am considering passing model view mat4 as an attribute. Since attributes are per vertex data do I need to pass this same mat4, three times for each vertex of the same triangle(since modelview remains constant across vertices of the triangle). That would amount to a lot of extra data sent to the GPU( 2 extra vertices*16 floats*(Number of triangles) amount of extra data). Or should I be sending the mat4 only once per triangle?But how is that possible using attributes since attributes are defined as "per vertex" data? What is the best and efficient way to do instancing in OpenGL ES 2.0?

    Read the article

  • How can I bend an object in OpenGL?

    - by mindnoise
    Is there a way one could bend an object, like a cylinder or a plane using OpenGL? I'm an OpenGL beginner (I'm using OpenGL ES 2.0, if that matters, although I suspect, math matters most in this case, so it's somehow version independent), I understand the basics: translate, rotate, matrix transformations, etc. I was wondering if there is a technique which allows you to actually change the geometry of your objects (in this case by bending them)? Any links, tutorials or other references are welcomed!

    Read the article

  • 2D Rendering with OpenGL ES 2.0 on Android (matrices not working)

    - by TranquilMarmot
    So I'm trying to render two moving quads, each at different locations. My shaders are as simple as possible (vertices are only transformed by the modelview-projection matrix, there's only one color). Whenever I try and render something, I only end up with slivers of color! I've only done work with 3D rendering in OpenGL before so I'm having issues with 2D stuff. Here's my basic rendering loop, simplified a bit (I'm using the Matrix manipulation methods provided by android.opengl.Matrix and program is a custom class I created that just calls GLES20.glUniformMatrix4fv()): Matrix.orthoM(projection, 0, 0, windowWidth, 0, windowHeight, -1, 1); program.setUniformMatrix4f("Projection", projection); At this point, I render the quads (this is repeated for each quad): Matrix.setIdentityM(modelview, 0); Matrix.translateM(modelview, 0, quadX, quadY, 0); program.setUniformMatrix4f("ModelView", modelview); quad.render(); // calls glDrawArrays and all I see is a sliver of the color each quad is! I'm at my wits end here, I've tried everything I can think of and I'm at the point where I'm screaming at my computer and tossing phones across the room. Anybody got any pointers? Am I using ortho wrong? I'm 100% sure I'm rendering everything at a Z value of 0. I tried using frustumM instead of orthoM, which made it so that I could see the quads but they would get totally skewed whenever they got moved, which makes sense if I correctly understand the way frustum works (it's more for 3D rendering, anyway). If it makes any difference, I defined my viewport with GLES20.glViewport(0, 0, windowWidth, windowHeight); Where windowWidth and windowHeight are the same values that are pased to orthoM It might be worth noting that the android.opengl.Matrix methods take in an offset as the second parameter so that multiple matrices can be shoved into one array, so that'w what the first 0 is for For reference, here's my vertex shader code: uniform mat4 ModelView; uniform mat4 Projection; attribute vec4 vPosition; void main() { mat4 mvp = Projection * ModelView; gl_Position = vPosition * mvp; } I tried swapping Projection * ModelView with ModelView * Projection but now I just get some really funky looking shapes... EDIT Okay, I finally figured it out! (Note: Since I'm new here (longtime lurker!) I can't answer my own question for a few hours, so as soon as I can I'll move this into an actual answer to the question) I changed Matrix.orthoM(projection, 0, 0, windowWidth, 0, windowHeight, -1, 1); to float ratio = windowWwidth / windowHeight; Matrix.orthoM(projection, 0, 0, ratio, 0, 1, -1, 1); I then had to scale my projection matrix to make it a lot smaller with Matrix.scaleM(projection, 0, 0.05f, 0.05f, 1.0f);. I then added an offset to the modelview translations to simulate a camera so that I could center on my action (so Matrix.translateM(modelview, 0, quadX, quadY, 0); was changed to Matrix.translateM(modelview, 0, quadX + camX, quadY + camY, 0);) Thanks for the help, all!

    Read the article

  • OpenGL ES 2/3 vs OpenGL 3 (and 4)

    - by Martin Perry
    I have migrated my code from OpenGL ES 2/3 to OpenGL 3 (I added bunch of defines and abstract classes to encapsulate both versions, so I have both in one project and compile only one or another). All I need to change was context initialization and glClearDepth. I dont have any errors. This was kind of strange to me. Even shaders are working correctly (some of them are GL ES 3 - with #version 300 es in their header) Is this a kind of good solution, or should I rewrite something more, before I start adding another functionality like geometry shaders, performance tools etc ?

    Read the article

  • exporting bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    I'm having a hard time trying to understand how exactly Blender's concept of bone transforms maps to the usual math of skinning (which I'm implementing in an OpenGL-based engine of sorts). Or I'm missing out something in the math.. It's gonna be long, but here's as much background as I can think of. First, a few notes and assumptions: I'm using column-major order and multiply from right to left. So for instance, vertex v transformed by matrix A and then further transformed by matrix B would be: v' = BAv. This also means whenever I export a matrix from blender through python, I export it (in text format) in 4 lines, each representing a column. This is so I can then I can read them back into my engine like this: if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[0], &skeleton.joints[currentJointIndex].inverseBindTransform.m[1], &skeleton.joints[currentJointIndex].inverseBindTransform.m[2], &skeleton.joints[currentJointIndex].inverseBindTransform.m[3])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[4], &skeleton.joints[currentJointIndex].inverseBindTransform.m[5], &skeleton.joints[currentJointIndex].inverseBindTransform.m[6], &skeleton.joints[currentJointIndex].inverseBindTransform.m[7])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[8], &skeleton.joints[currentJointIndex].inverseBindTransform.m[9], &skeleton.joints[currentJointIndex].inverseBindTransform.m[10], &skeleton.joints[currentJointIndex].inverseBindTransform.m[11])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[12], &skeleton.joints[currentJointIndex].inverseBindTransform.m[13], &skeleton.joints[currentJointIndex].inverseBindTransform.m[14], &skeleton.joints[currentJointIndex].inverseBindTransform.m[15])) { I'm simplifying the code I show because otherwise it would make things unnecessarily harder (in the context of my question) to explain / follow. Please refrain from making remarks related to optimizations. This is not final code. Having said that, if I understand correctly, the basic idea of skinning/animation is: I have a a mesh made up of vertices I have the mesh model-world transform W I have my joints, which are really just transforms from each joint's space to its parent's space. I'll call these transforms Bj meaning matrix which takes from joint j's bind pose to joint j-1's bind pose. For each of these, I actually import their inverse to the engine, Bj^-1. I have keyframes each containing a set of current poses Cj for each joint J. These are initially imported to my engine in TQS format but after (S)LERPING them I compose them into Cj matrices which are equivalent to the Bjs (not the Bj^-1 ones) only that for the current spacial configurations of each joint at that frame. Given the above, the "skeletal animation algorithm is" On each frame: check how much time has elpased and compute the resulting current time in the animation, from 0 meaning frame 0 to 1, meaning the end of the animation. (Oh and I'm looping forever so the time is mod(total duration)) for each joint: 1 -calculate its world inverse bind pose, that is Bj_w^-1 = Bj^-1 Bj-1^-1 ... B0^-1 2 -use the current animation time to LERP the componets of the TQS and come up with an interpolated current pose matrix Cj which should transform from the joints current configuration space to world space. Similar to what I did to get the world version of the inverse bind poses, I come up with the joint's world current pose, Cj_w = C0 C1 ... Cj 3 -now that I have world versions of Bj and Cj, I store this joint's world- skinning matrix K_wj = Cj_w Bj_w^-1. The above is roughly implemented like so: - (void)update:(NSTimeInterval)elapsedTime { static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.jointPoses[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.jointPoses[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4Multiply(currentTransform, GLKMatrix4MakeTranslation(LERPTranslation.x, LERPTranslation.y, LERPTranslation.z)); currentTransform = GLKMatrix4Multiply(currentTransform, GLKMatrix4MakeScale(LERPScaling.x, LERPScaling.y, LERPScaling.z)); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = aSkeleton.joints[i].inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(aSkeleton.joints[i].inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } } At this point, I should have my skinning palette. So on each frame in my vertex shader, I do: uniform mat4 modelMatrix; uniform mat4 projectionMatrix; uniform mat3 normalMatrix; uniform mat4 skinningPalette[6]; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { vec3 eyeNormal = normalize(normalMatrix * normal); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } gl_Position = projectionMatrix * modelMatrix * skinnedVertexPosition; } The result: The mesh parts that are supposed to animate do animate and follow the expected motion, however, the rotations are messed up in terms of orientations. That is, the mesh is not translated somewhere else or scaled in any way, but the orientations of rotations seem to be off. So a few observations: In the above shader notice I actually did not multiply the vertices by the mesh modelMatrix (the one which would take them to model or world or global space, whichever you prefer, since there is no parent to the mesh itself other than "the world") until after skinning. This is contrary to what I implied in the theory: if my skinning matrix takes vertices from model to joint and back to model space, I'd think the vertices should already be premultiplied by the mesh transform. But if I do so, I just get a black screen. As far as exporting the joints from Blender, my python script exports for each armature bone in bind pose, it's matrix in this way: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: poseJoint = skeleton.pose.bones[joint.name] jointTransform = poseJoint.matrix.inverted() file.write('Joint ' + joint.name + ' Transform {\n') for col in jointTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') And for current / keyframe poses (assuming I'm in the right keyframe): def exportAnimations(filepath): # Only one skeleton per scene objList = [object for object in bpy.context.scene.objects if object.type == 'ARMATURE'] if len(objList) == 0: return elif len(objList) > 1: return #raise exception? dialog box? skeleton = objList[0] jointNames = [bone.name for bone in skeleton.data.bones] for action in bpy.data.actions: # One animation clip per action in Blender, named as the action animationClipFilePath = filepath[0 : filepath.rindex('/') + 1] + action.name + ".aClip" file = open(animationClipFilePath, 'w') file.write('target skeleton: ' + skeleton.name + '\n') file.write('joints count: {:d}'.format(len(jointNames)) + '\n') skeleton.animation_data.action = action keyframeNum = max([len(fcurve.keyframe_points) for fcurve in action.fcurves]) keyframes = [] for fcurve in action.fcurves: for keyframe in fcurve.keyframe_points: keyframes.append(keyframe.co[0]) keyframes = set(keyframes) keyframes = [kf for kf in keyframes] keyframes.sort() file.write('keyframes count: {:d}'.format(len(keyframes)) + '\n') for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) joint = skeleton.pose.bones[i] jointCurrentPoseTransform = joint.matrix translationV = jointCurrentPoseTransform.to_translation() rotationQ = jointCurrentPoseTransform.to_3x3().to_quaternion() scaleV = jointCurrentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') file.close() Which I believe follow the theory explained at the beginning of my question. But then I checked out Blender's directX .x exporter for reference.. and what threw me off was that in the .x script they are exporting bind poses like so (transcribed using the same variable names I used so you can compare): if joint.parent: jointTransform = poseJoint.parent.matrix.inverted() else: jointTransform = Matrix() jointTransform *= poseJoint.matrix and exporting current keyframe poses like this: if joint.parent: jointCurrentPoseTransform = joint.parent.matrix.inverted() else: jointCurrentPoseTransform = Matrix() jointCurrentPoseTransform *= joint.matrix why are they using the parent's transform instead of the joint in question's? isn't the join transform assumed to exist in the context of a parent transform since after all it transforms from this joint's space to its parent's? Why are they concatenating in the same order for both bind poses and keyframe poses? If these two are then supposed to be concatenated with each other to cancel out the change of basis? Anyway, any ideas are appreciated.

    Read the article

  • OpenGL Lighting

    - by gopgop
    I have a simple day and night cycle by at day disabling OpenGL lighting and at night enabling openGL Lighting. When I enable everything appears darker. My question is How would I make it that at a specific spot there would be a light that will only light up its surrounding area for example: http://media.giantbomb.com/uploads/0/276/1414275-light_large.png Where the light is is where I want to position my light. My application is in 2D.

    Read the article

  • OpenGL lighting with dynamic geometry

    - by Tank
    I'm currently thinking hard about how to implement lighting in my game. The geometry is quite dynamic (fixed 3D grid with custom geometry in each cell) and needs some light to get more depth and in general look nicer. A scene in my game always contains sunlight and local light sources like lamps (point lights). One can move underground, so sunlight must be able to illuminate as far as it can get. Here's a render of a typical situation: The lamp is positioned behind the wall to the top, and in the hollow cube there's a hole in the back, so that light can shine through. (I don't want soft shadows, this is just for illustration) While spending the whole day searching through Google, I stumbled on some keywords like deferred rendering, forward rendering, ambient occlusion, screen space ambient occlusion etc. Some articles/tutorials even refer to "normal shading", but to be honest I don't really have an idea to even do simple shading. OpenGL of course has a fixed lighting pipeline with 8 possible light sources. However they just illuminate all vertices without checking for occluding geometry. I'd be very thankful if someone could give me some pointers into the right direction. I don't need complete solutions or similar, just good sources with information understandable for someone with nearly no lighting experience (preferably with OpenGL).

    Read the article

  • Implementing lighting similar as in CubeWorld

    - by Phito
    I am currently writing a voxel engine and my goal is to achieve something looking like CubeWorld. The problem that I am encountering is about lighting. I don't have a lot of knowledge in OpenGL but I don't think lighting in a game like that should be done with glLight. But beside that I have no idea of how to implement it. Here's what I have for the moment (with glLight): Do you have any ideas/link that could give me an idea of how to achieve that? Thanks

    Read the article

  • Per fragment lighting with OpenGL 4.x tessellated model

    - by Finlaybob
    I'm experienced with OpenGL 3+. I'm dabbling with tessellation shaders and have now got to a point where I have a nicely tessellated teapot/plane demo (quick look here) As can be seen from the screenshots, the lighting is broken (though admittedly doesn't look too bad in the image) I've tried to add a normal map to the equation but it still doesn't come out right, I can calculate the normals, tangents and binormals per triangle in the geometry shader but still looks wrong. I think the question would be; How do I add per fragment lighting to a tessellated model? The teapot is 32 16-point patches, the plane is one single 16 point patch. The shaders are here, but they are a complete mess, so I don't blame anyone who cant make sense of them. But peruse at your leisure if you like. Also, if this question is more suited to be somewhere else i.e. Stack Overflow or the Programming stack please let me know.

    Read the article

  • Missing features from WebGL and OpenGL ES

    - by Chris Smith
    I've started using WebGL and am pleased with how easy it is to leverage my OpenGL (and by extension OpenGL ES) experience. However, my understanding is as follows: OpenGL ES is a subset of OpenGL WebGL is a subset of OpenGL ES Is this correct for both cases? If so, are there resources for detailing which features are missing? For example, one notable missing feature is glPushMatrix and glPopMatrix. I don't see those in WebGL, but in my searches I cannot find them referenced in OpenGL ES material either.

    Read the article

  • Can't get LWJGL lighting to work

    - by Zarkonnen
    I'm trying to enable lighting in lwjgl according to the method described by NeHe and this post. However, no matter what I try, all faces of my shapes always receive the same amount of light, or, in the case of a spinning shape, the amount of lighting seems to oscillate. All faces are lit up by the same amount, which changes as the pyramid rotates. Concrete example (apologies for the length): Note how all panels are always the same brightness, but the brightness varies with the pyramid's rotation. This is using lwjgl 2.8.3 on Mac OS X. package com; import com.zarkonnen.lwjgltest.Main; import org.lwjgl.opengl.Display; import org.lwjgl.opengl.DisplayMode; import org.lwjgl.opengl.GL11; import org.newdawn.slick.opengl.Texture; import org.newdawn.slick.opengl.TextureLoader; import org.lwjgl.util.glu.*; import org.lwjgl.input.Keyboard; import java.nio.FloatBuffer; import java.nio.ByteBuffer; import java.nio.ByteOrder; /** * * @author penguin */ public class main { public static void main(String[] args) { try { Display.setDisplayMode(new DisplayMode(800, 600)); Display.setTitle("3D Pyramid"); Display.create(); } catch (Exception e) { } initGL(); float rtri = 0.0f; Texture texture = null; try { texture = TextureLoader.getTexture("png", Main.class.getResourceAsStream("tex.png")); } catch (Exception ex) { ex.printStackTrace(); } while (!Display.isCloseRequested()) { // Draw a Triangle :D GL11.glClear(GL11.GL_COLOR_BUFFER_BIT | GL11.GL_DEPTH_BUFFER_BIT); GL11.glLoadIdentity(); GL11.glTranslatef(0.0f, 0.0f, -10.0f); GL11.glRotatef(rtri, 0.0f, 1.0f, 0.0f); texture.bind(); GL11.glBegin(GL11.GL_TRIANGLES); GL11.glTexCoord2f(0.0f, 1.0f); GL11.glVertex3f(0.0f, 1.0f, 0.0f); GL11.glTexCoord2f(-1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, 1.0f); GL11.glTexCoord2f(1.0f, -1.0f); GL11.glVertex3f(1.0f, -1.0f, 1.0f); GL11.glTexCoord2f(0.0f, 1.0f); GL11.glVertex3f(0.0f, 1.0f, 0.0f); GL11.glTexCoord2f(-1.0f, -1.0f); GL11.glVertex3f(1.0f, -1.0f, 1.0f); GL11.glTexCoord2f(1.0f, -1.0f); GL11.glVertex3f(1.0f, -1.0f, -1.0f); GL11.glTexCoord2f(0.0f, 1.0f); GL11.glVertex3f(0.0f, 1.0f, 0.0f); GL11.glTexCoord2f(-1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, -1.0f); GL11.glTexCoord2f(1.0f, -1.0f); GL11.glVertex3f(1.0f, -1.0f, -1.0f); GL11.glTexCoord2f(0.0f, 1.0f); GL11.glVertex3f(0.0f, 1.0f, 0.0f); GL11.glTexCoord2f(-1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, -1.0f); GL11.glTexCoord2f(1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, 1.0f); GL11.glEnd(); GL11.glBegin(GL11.GL_QUADS); GL11.glVertex3f(1.0f, -1.0f, 1.0f); GL11.glVertex3f(1.0f, -1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, -1.0f); GL11.glVertex3f(-1.0f, -1.0f, 1.0f); GL11.glEnd(); Display.update(); rtri += 0.05f; // Exit-Key = ESC boolean exitPressed = Keyboard.isKeyDown(Keyboard.KEY_ESCAPE); if (exitPressed) { System.out.println("Escape was pressed!"); Display.destroy(); } } Display.destroy(); } private static void initGL() { GL11.glEnable(GL11.GL_LIGHTING); GL11.glMatrixMode(GL11.GL_PROJECTION); GL11.glLoadIdentity(); GLU.gluPerspective(45.0f, ((float) 800) / ((float) 600), 0.1f, 100.0f); GL11.glMatrixMode(GL11.GL_MODELVIEW); GL11.glLoadIdentity(); GL11.glEnable(GL11.GL_TEXTURE_2D); GL11.glShadeModel(GL11.GL_SMOOTH); GL11.glClearColor(0.0f, 0.0f, 0.0f, 0.0f); GL11.glClearDepth(1.0f); GL11.glEnable(GL11.GL_DEPTH_TEST); GL11.glDepthFunc(GL11.GL_LEQUAL); GL11.glHint(GL11.GL_PERSPECTIVE_CORRECTION_HINT, GL11.GL_NICEST); float lightAmbient[] = {0.5f, 0.5f, 0.5f, 1.0f}; // Ambient Light Values float lightDiffuse[] = {1.0f, 1.0f, 1.0f, 1.0f}; // Diffuse Light Values float lightPosition[] = {0.0f, 0.0f, 2.0f, 1.0f}; // Light Position ByteBuffer temp = ByteBuffer.allocateDirect(16); temp.order(ByteOrder.nativeOrder()); GL11.glLight(GL11.GL_LIGHT1, GL11.GL_AMBIENT, (FloatBuffer) temp.asFloatBuffer().put(lightAmbient).flip()); // Setup The Ambient Light GL11.glLight(GL11.GL_LIGHT1, GL11.GL_DIFFUSE, (FloatBuffer) temp.asFloatBuffer().put(lightDiffuse).flip()); // Setup The Diffuse Light GL11.glLight(GL11.GL_LIGHT1, GL11.GL_POSITION, (FloatBuffer) temp.asFloatBuffer().put(lightPosition).flip()); // Position The Light GL11.glEnable(GL11.GL_LIGHT1); // Enable Light One } }

    Read the article

  • Correcting Lighting in Stencil Reflections

    - by Reanimation
    I'm just playing around with OpenGL seeing how different methods of making shadows and reflections work. I've been following this tutorial which describes using GLUT_STENCIL's and MASK's to create a reasonable interpretation of a reflection. Following that and a bit of tweaking to get things to work, I've come up with the code below. Unfortunately, the lighting isn't correct when the reflection is created. glPushMatrix(); plane(); //draw plane that reflection appears on glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); glDepthMask(GL_FALSE); glEnable(GL_STENCIL_TEST); glStencilFunc(GL_ALWAYS, 1, 0xFFFFFFFF); glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE); plane(); //draw plane that acts as clipping area for reflection glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glDepthMask(GL_TRUE); glStencilFunc(GL_EQUAL, 1, 0xFFFFFFFF); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glDisable(GL_DEPTH_TEST); glPushMatrix(); glScalef(1.0f, -1.0f, 1.0f); glTranslatef(0,2,0); glRotatef(180,0,1,0); sphere(radius, spherePos); //draw object that you want to have a reflection glPopMatrix(); glEnable(GL_DEPTH_TEST); glDisable(GL_STENCIL_TEST); sphere(radius, spherePos); //draw object that creates reflection glPopMatrix(); It looked really cool to start with, then I noticed that the light in the reflection isn't correct. I'm not sure that it's even a simple fix because effectively the reflection is also a sphere but I thought I'd ask here none-the-less. I've tried various rotations (seen above the first time the sphere is drawn) but it doesn't seem to work. I figure it needs to rotate around the Y and Z axis but that's not correct. Have I implemented the rotation wrong or is there a way to correct the lighting?

    Read the article

  • Normal map lighting bug in bottom right quadrant

    - by Ryan Capote
    I am currently working on getting normal maps working in my project, and have run into a problem with lighting. As you can see, the normals in the bottom right quadrant of the lighting isn't calculating the correct direction to the light or something. Best seen by the red light If I use flat normals (z normal = 1.0), it seems to be working fine: normals for the tile sheet: Shader: #version 330 uniform sampler2D uDiffuseTexture; uniform sampler2D uNormalsTexture; uniform sampler2D uSpecularTexture; uniform sampler2D uEmissiveTexture; uniform sampler2D uWorldNormals; uniform sampler2D uShadowMap; uniform vec4 uLightColor; uniform float uConstAtten; uniform float uLinearAtten; uniform float uQuadradicAtten; uniform float uColorIntensity; in vec2 TexCoords; in vec2 GeomSize; out vec4 FragColor; float sample(vec2 coord, float r) { return step(r, texture2D(uShadowMap, coord).r); } float occluded() { float PI = 3.14; vec2 normalized = TexCoords.st * 2.0 - 1.0; float theta = atan(normalized.y, normalized.x); float r = length(normalized); float coord = (theta + PI) / (2.0 * PI); vec2 tc = vec2(coord, 0.0); float center = sample(tc, r); float sum = 0.0; float blur = (1.0 / GeomSize.x) * smoothstep(0.0, 1.0, r); sum += sample(vec2(tc.x - 4.0*blur, tc.y), r) * 0.05; sum += sample(vec2(tc.x - 3.0*blur, tc.y), r) * 0.09; sum += sample(vec2(tc.x - 2.0*blur, tc.y), r) * 0.12; sum += sample(vec2(tc.x - 1.0*blur, tc.y), r) * 0.15; sum += center * 0.16; sum += sample(vec2(tc.x + 1.0*blur, tc.y), r) * 0.15; sum += sample(vec2(tc.x + 2.0*blur, tc.y), r) * 0.12; sum += sample(vec2(tc.x + 3.0*blur, tc.y), r) * 0.09; sum += sample(vec2(tc.x + 4.0*blur, tc.y), r) * 0.05; return sum * smoothstep(1.0, 0.0, r); } float calcAttenuation(float distance) { float linearAtten = uLinearAtten * distance; float quadAtten = uQuadradicAtten * distance * distance; float attenuation = 1.0 / (uConstAtten + linearAtten + quadAtten); return attenuation; } vec3 calcFragPosition(void) { return vec3(TexCoords*GeomSize, 0.0); } vec3 calcLightPosition(void) { return vec3(GeomSize/2.0, 0.0); } float calcDistance(vec3 fragPos, vec3 lightPos) { return length(fragPos - lightPos); } vec3 calcLightDirection(vec3 fragPos, vec3 lightPos) { return normalize(lightPos - fragPos); } vec4 calcFinalLight(vec2 worldUV, vec3 lightDir, float attenuation) { float diffuseFactor = dot(normalize(texture2D(uNormalsTexture, worldUV).rgb), lightDir); vec4 diffuse = vec4(0.0); vec4 lightColor = uLightColor * uColorIntensity; if(diffuseFactor > 0.0) { diffuse = vec4(texture2D(uDiffuseTexture, worldUV.xy).rgb, 1.0); diffuse *= diffuseFactor; lightColor *= diffuseFactor; } else { discard; } vec4 final = (diffuse + lightColor); if(texture2D(uWorldNormals, worldUV).g > 0.0) { return final * attenuation; } else { return final * occluded(); } } void main(void) { vec3 fragPosition = calcFragPosition(); vec3 lightPosition = calcLightPosition(); float distance = calcDistance(fragPosition, lightPosition); float attenuation = calcAttenuation(distance); vec2 worldPos = gl_FragCoord.xy / vec2(1024, 768); vec3 lightDir = calcLightDirection(fragPosition, lightPosition); lightDir = (lightDir*0.5)+0.5; float atten = calcAttenuation(distance); vec4 emissive = texture2D(uEmissiveTexture, worldPos); FragColor = calcFinalLight(worldPos, lightDir, atten) + emissive; }

    Read the article

  • Should we always prefer OpenGL ES version 2 over version 1.x

    - by Shivan Dragon
    OpengGL ES version 2 goes a long way into changing the development paradigm that was established with OpenGL ES 1.x. You have shaders which you can chain together to apply varios effects/transforms to your elements, the projection and transformation matrices work completly different etc. I've seen a lot of online tutorials and blogs that simply say "ditch version 1.x, use version 2, that's the way to go". Even on Android's documentation it sais to "use version 2 as it may prove faster than 1.x". Now, I've also read a book on OpenGL ES (which was rather good, but I'm not gonna mention here because I don't want to give the impression that I'm trying to make hidden publicity). The guy there treated only OpenGL ES 1.x for 80% of the book, and then at the end only listed the differences in version 2 and said something like "if OpenGL ES 1 does what you need, there's no need to switch to version 2, as it's only gonna over complicate your code. Version 2 was changed a lot to facillitate newer, fancier stuff, but if you don't need it, version 1.x is fine". My question is then, is the last statement right? Should I always use Open GL ES version 1.x if I don't need version 2 only stuff? I'd sure like to do that, because I find coding in version 1.x A LOT simpler than version 2 but I'm afraid that my apps might get obsolete faster for using an older version.

    Read the article

  • book and resource about vanilla OpenGL ES 2.0 development

    - by user827992
    I Found this book but it talks about an SDK created by the author rather than pure simple OpenGL ES 2.0; this sounds more like a commercial to me than a good book for programming, i would like to start with just OpenGL ES 2.0 without talking about anything else: can you give me a good advice on this? A good book or on-line resource. I'm also interested in cross platform development with OpenGL ES, in particular Android and iOS.

    Read the article

  • I need help with 3d shading/lighting.

    - by Xavier
    How do you guys handle shading in a 3d game? I have a directional light source that shades one side of a tree made of cubes. The remaining 3 sides all get ambient shading only. So the 3d effect is lost when looking at two ambient shaded sides. Am I missing something? Should I be shading the side furthest from the light source even darker? I tried looking at Fallout 3 and it kinda looks like this is what they do however Minecraft appears to shade a grass mound with two opposite sides light and the remaining two opposite sides dark kinda giving the effect that there are two directional lights for the two light shaded sides and ambient light for the dark shaded sides.

    Read the article

  • GLSL per pixel lighting with custom light type

    - by Justin
    Ok, I am having a big problem here. I just got into GLSL yesterday, so the code will be terrible, I'm sure. Basically, I am attempting to make a light that can be passed into the fragment shader (for learning purposes). I have four input values: one for the position of the light, one for the color, one for the distance it can travel, and one for the intensity. I want to find the distance between the light and the fragment, then calculate the color from there. The code I have gives me a simply gorgeous ring of light that get's twisted and widened as the matrix is modified. I love the results, but it is not even close to what I am after. I want the light to be moved with all of the vertices, so it is always in the same place in relation to the objects. I can easily take it from there, but getting that to work seems to be impossible with my current structure. Can somebody give me a few pointers (pun not intended)? Vertex shader: attribute vec4 position; attribute vec4 color; attribute vec2 textureCoordinates; varying vec4 colorVarying; varying vec2 texturePosition; varying vec4 fposition; varying vec4 lightPosition; varying float lightDistance; varying float lightIntensity; varying vec4 lightColor; void main() { vec4 ECposition = gl_ModelViewMatrix * gl_Vertex; vec3 tnorm = normalize(vec3 (gl_NormalMatrix * gl_Normal)); fposition = ftransform(); gl_Position = fposition; gl_TexCoord[0] = gl_MultiTexCoord0; fposition = ECposition; lightPosition = vec4(0.0, 0.0, 5.0, 0.0) * gl_ModelViewMatrix * gl_Vertex; lightDistance = 5.0; lightIntensity = 1.0; lightColor = vec4(0.2, 0.2, 0.2, 1.0); } Fragment shader: varying vec4 colorVarying; varying vec2 texturePosition; varying vec4 fposition; varying vec4 lightPosition; varying float lightDistance; varying float lightIntensity; varying vec4 lightColor; uniform sampler2D texture; void main() { float l_distance = sqrt((gl_FragCoord.x * lightPosition.x) + (gl_FragCoord.y * lightPosition.y) + (gl_FragCoord.z * lightPosition.z)); float l_value = lightIntensity / (l_distance / lightDistance); vec4 l_color = vec4(l_value * lightColor.r, l_value * lightColor.g, l_value * lightColor.b, l_value * lightColor.a); vec4 color; color = texture2D(texture, gl_TexCoord[0].st); gl_FragColor = l_color * color; //gl_FragColor = fposition; }

    Read the article

  • Where are some good resources to learn Game Development with OpenGL ES 2.X

    - by Mahbubur R Aaman
    Background: From http://www.khronos.org/opengles/2_X/ OpenGL ES 2.0 combines a version of the OpenGL Shading Language for programming vertex and fragment shaders that has been adapted for embedded platforms, together with a streamlined API from OpenGL ES 1.1 that has removed any fixed functionality that can be easily replaced by shader programs, to minimize the cost and power consumption of advanced programmable graphics subsystems. Related Resources The OpenGL ES 2.0 specification, header files, and optional extension specifications The OpenGL ES 2.0 Online Manual Pages The OpenGL ES 3.0 Shading LanguageOnline Reference Pages The OpenGL ES 2.0 Quick Reference Card OpenGL ES 1.X OpenGL ES 2.0 From http://www.cocos2d-iphone.org/archives/2003 Cocos2d Version 2 released and one of primary key point noted as OpenGL ES 2.0 support From http://www.h-online.com/open/news/item/Compiz-now-supports-OpenGL-ES-2-0-1674605.html Compiz now supports OpenGL ES 2.0 My Question : Being as a Game Developer ( I have to work with several game engine Cocos2d, Unity). I need several resources to cope up with OpenGL ES 2.X for better outcome while developing games?

    Read the article

  • OpenGL ES 2.0: Using VBOs?

    - by Bunkai.Satori
    OpenGL VBOs (vertex buffer objects) have been developed to improve performance of OpenGL (OpenGL ES 2.0 in my case). The logic is that with the help of VBOs, the data does not need to be copied from client memory to graphics card on per frame basis. However, as I see it, the game scene changes continuously: position of objects change, their scaling and rotating change, they get animated, they explode, they get spawn or disappear. In such highly dynamic environment, such as computer game scene is, what is the point of using VBOs, if the VBOs would need to be constructed on per-frame basis anyway? Can you please help me to understand how to practically take beneif of VBOs in computer games? Can there be more vertex based VBOs (say one per one object) or there must be always exactly only one VBO present for each draw cycle?

    Read the article

  • Trying to Draw a 2D Triangle in OpenGL ES 2.0

    - by Nathan Campos
    I'm trying to convert a code from OpenGL to OpenGL ES 2.0 (for the BlackBerry PlayBook). So far what I got is this (just the part of the code that should draw the triangle): void setupScene() { glClearColor(250, 250, 250, 1); glViewport(0, 0, 600, 1024); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } void drawScene() { setupScene(); glColorMask(0, 0, 0, 1); const GLfloat triangleVertices[] = { 100, 100, 150, 0, 200, 100 }; glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, triangleVertices); glEnableVertexAttribArray(0); glDrawArrays(GL_TRIANGLES, 0, 2); } void render() { drawScene(); bbutil_swap(); } The problem is that when I launch the app instead of showing me the triangle the screen just flickers (very fast) from white to gray. Any idea what I'm doing wrong? Also, here is the entire code if you need: Full source code

    Read the article

  • OpenGL ES 2.0: Filtering Polygons within VBO

    - by Bunkai.Satori
    Say, I send 10 polygon pairs (one polygon pair == one 2d sprite == one rectangle == two triangles) into OpenGL ES 2.0 VBO. The 10 polygon pairs represent one animated 2D object consisting of 10 frames. The 10 frames, of course, can not be rendered all at the same time, but will be rendered in particular order to make up smooth animation. Would you have an advice, how to pick up proper polygon pair for rendering (4 vertices) inside Vertex Shader from the VBO? Creating separate VBO for each frame would end up with thousands of VBOs, which is not the right way of doing it. I use OpenGL ES 2.0, and VBOs for both Vertices and Indices.

    Read the article

  • How to use mipmap in OpenGL-ES

    - by VanDir
    I have recently entered in the OpenGL world. I am very pleased with the performance that I got with opengl compared to those obtained with a SurfaceView and its canvas. At the same time because of the limitation of the images to be in power of two I noticed that the quality of the sprite of my game is a little decreased. I read that we can use mipmap in Android but I have not found a real tutotial. Are they compatible with Android 2.2+ ? Which program creates mipmaps? How do you actually use in code?

    Read the article

  • Camera rotation flicker in OpenGL ES 2.0

    - by seahorse
    I implemented an orbit camera in my own OpenGL ES 2.0 application. I was getting extensive amount of flicker while rotating the camera using the mouse. When I added the line eglSwapInterval( ..., 0.1); after eglSwapBuffers() and then the flicker immediately stopped. I am not able to understand why eglSwapInterval solves the flicker problem? (The FPS of my app prior to eglSwapInterval was around 700FPS) (The flicker is NOT due to z-fighting because I have set near and far clip planes as 100 and 500)

    Read the article

  • OpenGL ES 2.0: Vertex and Fragment Shader for 2D with Transparency

    - by Bunkai.Satori
    Could I knindly ask for correct examples of OpenGL ES 2.0 Vertex and Fragment shader for displaying 2D textured sprites with transparency? I have fairly simple shaders that display textured polygon pairs but transparency is not applied despite: texture map contains transparency information Blending is enabled: glEnable(GL_BLEND); glEnable(GL_DEPTH_TEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); My Vertex Shader: uniform mat4 uOrthoProjection; uniform vec3 Translation; attribute vec4 Position; attribute vec2 TextureCoord; varying vec2 TextureCoordOut; void main() { gl_Position = uOrthoProjection * (Position + vec4(Translation, 0)); TextureCoordOut = TextureCoord; } My Fragment Shader: varying mediump vec2 TextureCoordOut; uniform sampler2D Sampler; void main() { gl_FragColor = texture2D(Sampler, TextureCoordOut); }

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >