Search Results

Search found 25440 results on 1018 pages for 'agent based modeling'.

Page 1012/1018 | < Previous Page | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018  | Next Page >

  • West Wind WebSurge - an easy way to Load Test Web Applications

    - by Rick Strahl
    A few months ago on a project the subject of load testing came up. We were having some serious issues with a Web application that would start spewing SQL lock errors under somewhat heavy load. These sort of errors can be tough to catch, precisely because they only occur under load and not during typical development testing. To replicate this error more reliably we needed to put a load on the application and run it for a while before these SQL errors would flare up. It’s been a while since I’d looked at load testing tools, so I spent a bit of time looking at different tools and frankly didn’t really find anything that was a good fit. A lot of tools were either a pain to use, didn’t have the basic features I needed, or are extravagantly expensive. In  the end I got frustrated enough to build an initially small custom load test solution that then morphed into a more generic library, then gained a console front end and eventually turned into a full blown Web load testing tool that is now called West Wind WebSurge. I got seriously frustrated looking for tools every time I needed some quick and dirty load testing for an application. If my aim is to just put an application under heavy enough load to find a scalability problem in code, or to simply try and push an application to its limits on the hardware it’s running I shouldn’t have to have to struggle to set up tests. It should be easy enough to get going in a few minutes, so that the testing can be set up quickly so that it can be done on a regular basis without a lot of hassle. And that was the goal when I started to build out my initial custom load tester into a more widely usable tool. If you’re in a hurry and you want to check it out, you can find more information and download links here: West Wind WebSurge Product Page Walk through Video Download link (zip) Install from Chocolatey Source on GitHub For a more detailed discussion of the why’s and how’s and some background continue reading. How did I get here? When I started out on this path, I wasn’t planning on building a tool like this myself – but I got frustrated enough looking at what’s out there to think that I can do better than what’s available for the most common simple load testing scenarios. When we ran into the SQL lock problems I mentioned, I started looking around what’s available for Web load testing solutions that would work for our whole team which consisted of a few developers and a couple of IT guys both of which needed to be able to run the tests. It had been a while since I looked at tools and I figured that by now there should be some good solutions out there, but as it turns out I didn’t really find anything that fit our relatively simple needs without costing an arm and a leg… I spent the better part of a day installing and trying various load testing tools and to be frank most of them were either terrible at what they do, incredibly unfriendly to use, used some terminology I couldn’t even parse, or were extremely expensive (and I mean in the ‘sell your liver’ range of expensive). Pick your poison. There are also a number of online solutions for load testing and they actually looked more promising, but those wouldn’t work well for our scenario as the application is running inside of a private VPN with no outside access into the VPN. Most of those online solutions also ended up being very pricey as well – presumably because of the bandwidth required to test over the open Web can be enormous. When I asked around on Twitter what people were using– I got mostly… crickets. Several people mentioned Visual Studio Load Test, and most other suggestions pointed to online solutions. I did get a bunch of responses though with people asking to let them know what I found – apparently I’m not alone when it comes to finding load testing tools that are effective and easy to use. As to Visual Studio, the higher end skus of Visual Studio and the test edition include a Web load testing tool, which is quite powerful, but there are a number of issues with that: First it’s tied to Visual Studio so it’s not very portable – you need a VS install. I also find the test setup and terminology used by the VS test runner extremely confusing. Heck, it’s complicated enough that there’s even a Pluralsight course on using the Visual Studio Web test from Steve Smith. And of course you need to have one of the high end Visual Studio Skus, and those are mucho Dinero ($$$) – just for the load testing that’s rarely an option. Some of the tools are ultra extensive and let you run analysis tools on the target serves which is useful, but in most cases – just plain overkill and only distracts from what I tend to be ultimately interested in: Reproducing problems that occur at high load, and finding the upper limits and ‘what if’ scenarios as load is ramped up increasingly against a site. Yes it’s useful to have Web app instrumentation, but often that’s not what you’re interested in. I still fondly remember early days of Web testing when Microsoft had the WAST (Web Application Stress Tool) tool, which was rather simple – and also somewhat limited – but easily allowed you to create stress tests very quickly. It had some serious limitations (mainly that it didn’t work with SSL),  but the idea behind it was excellent: Create tests quickly and easily and provide a decent engine to run it locally with minimal setup. You could get set up and run tests within a few minutes. Unfortunately, that tool died a quiet death as so many of Microsoft’s tools that probably were built by an intern and then abandoned, even though there was a lot of potential and it was actually fairly widely used. Eventually the tools was no longer downloadable and now it simply doesn’t work anymore on higher end hardware. West Wind Web Surge – Making Load Testing Quick and Easy So I ended up creating West Wind WebSurge out of rebellious frustration… The goal of WebSurge is to make it drop dead simple to create load tests. It’s super easy to capture sessions either using the built in capture tool (big props to Eric Lawrence, Telerik and FiddlerCore which made that piece a snap), using the full version of Fiddler and exporting sessions, or by manually or programmatically creating text files based on plain HTTP headers to create requests. I’ve been using this tool for 4 months now on a regular basis on various projects as a reality check for performance and scalability and it’s worked extremely well for finding small performance issues. I also use it regularly as a simple URL tester, as it allows me to quickly enter a URL plus headers and content and test that URL and its results along with the ability to easily save one or more of those URLs. A few weeks back I made a walk through video that goes over most of the features of WebSurge in some detail: Note that the UI has slightly changed since then, so there are some UI improvements. Most notably the test results screen has been updated recently to a different layout and to provide more information about each URL in a session at a glance. The video and the main WebSurge site has a lot of info of basic operations. For the rest of this post I’ll talk about a few deeper aspects that may be of interest while also giving a glance at how WebSurge works. Session Capturing As you would expect, WebSurge works with Sessions of Urls that are played back under load. Here’s what the main Session View looks like: You can create session entries manually by individually adding URLs to test (on the Request tab on the right) and saving them, or you can capture output from Web Browsers, Windows Desktop applications that call services, your own applications using the built in Capture tool. With this tool you can capture anything HTTP -SSL requests and content from Web pages, AJAX calls, SOAP or REST services – again anything that uses Windows or .NET HTTP APIs. Behind the scenes the capture tool uses FiddlerCore so basically anything you can capture with Fiddler you can also capture with Web Surge Session capture tool. Alternately you can actually use Fiddler as well, and then export the captured Fiddler trace to a file, which can then be imported into WebSurge. This is a nice way to let somebody capture session without having to actually install WebSurge or for your customers to provide an exact playback scenario for a given set of URLs that cause a problem perhaps. Note that not all applications work with Fiddler’s proxy unless you configure a proxy. For example, .NET Web applications that make HTTP calls usually don’t show up in Fiddler by default. For those .NET applications you can explicitly override proxy settings to capture those requests to service calls. The capture tool also has handy optional filters that allow you to filter by domain, to help block out noise that you typically don’t want to include in your requests. For example, if your pages include links to CDNs, or Google Analytics or social links you typically don’t want to include those in your load test, so by capturing just from a specific domain you are guaranteed content from only that one domain. Additionally you can provide url filters in the configuration file – filters allow to provide filter strings that if contained in a url will cause requests to be ignored. Again this is useful if you don’t filter by domain but you want to filter out things like static image, css and script files etc. Often you’re not interested in the load characteristics of these static and usually cached resources as they just add noise to tests and often skew the overall url performance results. In my testing I tend to care only about my dynamic requests. SSL Captures require Fiddler Note, that in order to capture SSL requests you’ll have to install the Fiddler’s SSL certificate. The easiest way to do this is to install Fiddler and use its SSL configuration options to get the certificate into the local certificate store. There’s a document on the Telerik site that provides the exact steps to get SSL captures to work with Fiddler and therefore with WebSurge. Session Storage A group of URLs entered or captured make up a Session. Sessions can be saved and restored easily as they use a very simple text format that simply stored on disk. The format is slightly customized HTTP header traces separated by a separator line. The headers are standard HTTP headers except that the full URL instead of just the domain relative path is stored as part of the 1st HTTP header line for easier parsing. Because it’s just text and uses the same format that Fiddler uses for exports, it’s super easy to create Sessions by hand manually or under program control writing out to a simple text file. You can see what this format looks like in the Capture window figure above – the raw captured format is also what’s stored to disk and what WebSurge parses from. The only ‘custom’ part of these headers is that 1st line contains the full URL instead of the domain relative path and Host: header. The rest of each header are just plain standard HTTP headers with each individual URL isolated by a separator line. The format used here also uses what Fiddler produces for exports, so it’s easy to exchange or view data either in Fiddler or WebSurge. Urls can also be edited interactively so you can modify the headers easily as well: Again – it’s just plain HTTP headers so anything you can do with HTTP can be added here. Use it for single URL Testing Incidentally I’ve also found this form as an excellent way to test and replay individual URLs for simple non-load testing purposes. Because you can capture a single or many URLs and store them on disk, this also provides a nice HTTP playground where you can record URLs with their headers, and fire them one at a time or as a session and see results immediately. It’s actually an easy way for REST presentations and I find the simple UI flow actually easier than using Fiddler natively. Finally you can save one or more URLs as a session for later retrieval. I’m using this more and more for simple URL checks. Overriding Cookies and Domains Speaking of HTTP headers – you can also overwrite cookies used as part of the options. One thing that happens with modern Web applications is that you have session cookies in use for authorization. These cookies tend to expire at some point which would invalidate a test. Using the Options dialog you can actually override the cookie: which replaces the cookie for all requests with the cookie value specified here. You can capture a valid cookie from a manual HTTP request in your browser and then paste into the cookie field, to replace the existing Cookie with the new one that is now valid. Likewise you can easily replace the domain so if you captured urls on west-wind.com and now you want to test on localhost you can do that easily easily as well. You could even do something like capture on store.west-wind.com and then test on localhost/store which would also work. Running Load Tests Once you’ve created a Session you can specify the length of the test in seconds, and specify the number of simultaneous threads to run each session on. Sessions run through each of the URLs in the session sequentially by default. One option in the options list above is that you can also randomize the URLs so each thread runs requests in a different order. This avoids bunching up URLs initially when tests start as all threads run the same requests simultaneously which can sometimes skew the results of the first few minutes of a test. While sessions run some progress information is displayed: By default there’s a live view of requests displayed in a Console-like window. On the bottom of the window there’s a running total summary that displays where you’re at in the test, how many requests have been processed and what the requests per second count is currently for all requests. Note that for tests that run over a thousand requests a second it’s a good idea to turn off the console display. While the console display is nice to see that something is happening and also gives you slight idea what’s happening with actual requests, once a lot of requests are processed, this UI updating actually adds a lot of CPU overhead to the application which may cause the actual load generated to be reduced. If you are running a 1000 requests a second there’s not much to see anyway as requests roll by way too fast to see individual lines anyway. If you look on the options panel, there is a NoProgressEvents option that disables the console display. Note that the summary display is still updated approximately once a second so you can always tell that the test is still running. Test Results When the test is done you get a simple Results display: On the right you get an overall summary as well as breakdown by each URL in the session. Both success and failures are highlighted so it’s easy to see what’s breaking in your load test. The report can be printed or you can also open the HTML document in your default Web Browser for printing to PDF or saving the HTML document to disk. The list on the right shows you a partial list of the URLs that were fired so you can look in detail at the request and response data. The list can be filtered by success and failure requests. Each list is partial only (at the moment) and limited to a max of 1000 items in order to render reasonably quickly. Each item in the list can be clicked to see the full request and response data: This particularly useful for errors so you can quickly see and copy what request data was used and in the case of a GET request you can also just click the link to quickly jump to the page. For non-GET requests you can find the URL in the Session list, and use the context menu to Test the URL as configured including any HTTP content data to send. You get to see the full HTTP request and response as well as a link in the Request header to go visit the actual page. Not so useful for a POST as above, but definitely useful for GET requests. Finally you can also get a few charts. The most useful one is probably the Request per Second chart which can be accessed from the Charts menu or shortcut. Here’s what it looks like:   Results can also be exported to JSON, XML and HTML. Keep in mind that these files can get very large rather quickly though, so exports can end up taking a while to complete. Command Line Interface WebSurge runs with a small core load engine and this engine is plugged into the front end application I’ve shown so far. There’s also a command line interface available to run WebSurge from the Windows command prompt. Using the command line you can run tests for either an individual URL (similar to AB.exe for example) or a full Session file. By default when it runs WebSurgeCli shows progress every second showing total request count, failures and the requests per second for the entire test. A silent option can turn off this progress display and display only the results. The command line interface can be useful for build integration which allows checking for failures perhaps or hitting a specific requests per second count etc. It’s also nice to use this as quick and dirty URL test facility similar to the way you’d use Apache Bench (ab.exe). Unlike ab.exe though, WebSurgeCli supports SSL and makes it much easier to create multi-URL tests using either manual editing or the WebSurge UI. Current Status Currently West Wind WebSurge is still in Beta status. I’m still adding small new features and tweaking the UI in an attempt to make it as easy and self-explanatory as possible to run. Documentation for the UI and specialty features is also still a work in progress. I plan on open-sourcing this product, but it won’t be free. There’s a free version available that provides a limited number of threads and request URLs to run. A relatively low cost license  removes the thread and request limitations. Pricing info can be found on the Web site – there’s an introductory price which is $99 at the moment which I think is reasonable compared to most other for pay solutions out there that are exorbitant by comparison… The reason code is not available yet is – well, the UI portion of the app is a bit embarrassing in its current monolithic state. The UI started as a very simple interface originally that later got a lot more complex – yeah, that never happens, right? Unless there’s a lot of interest I don’t foresee re-writing the UI entirely (which would be ideal), but in the meantime at least some cleanup is required before I dare to publish it :-). The code will likely be released with version 1.0. I’m very interested in feedback. Do you think this could be useful to you and provide value over other tools you may or may not have used before? I hope so – it already has provided a ton of value for me and the work I do that made the development worthwhile at this point. You can leave a comment below, or for more extensive discussions you can post a message on the West Wind Message Board in the WebSurge section Microsoft MVPs and Insiders get a free License If you’re a Microsoft MVP or a Microsoft Insider you can get a full license for free. Send me a link to your current, official Microsoft profile and I’ll send you a not-for resale license. Send any messages to [email protected]. Resources For more info on WebSurge and to download it to try it out, use the following links. West Wind WebSurge Home Download West Wind WebSurge Getting Started with West Wind WebSurge Video© Rick Strahl, West Wind Technologies, 2005-2014Posted in ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Oracle Coherence, Split-Brain and Recovery Protocols In Detail

    - by Ricardo Ferreira
    This article provides a high level conceptual overview of Split-Brain scenarios in distributed systems. It will focus on a specific example of cluster communication failure and recovery in Oracle Coherence. This includes a discussion on the witness protocol (used to remove failed cluster members) and the panic protocol (used to resolve Split-Brain scenarios). Note that the removal of cluster members does not necessarily indicate a Split-Brain condition. Oracle Coherence does not (and cannot) detect a Split-Brain as it occurs, the condition is only detected when cluster members that previously lost contact with each other regain contact. Cluster Topology and Configuration In order to create an good didactic for the article, let's assume a cluster topology and configuration. In this example we have a six member cluster, consisting of one JVM on each physical machine. The member IDs are as follows: Member ID  IP Address  1  10.149.155.76  2  10.149.155.77  3  10.149.155.236  4  10.149.155.75  5  10.149.155.79  6  10.149.155.78 Members 1, 2, and 3 are connected to a switch, and members 4, 5, and 6 are connected to a second switch. There is a link between the two switches, which provides network connectivity between all of the machines. Member 1 is the first member to join this cluster, thus making it the senior member. Member 6 is the last member to join this cluster. Here is a log snippet from Member 6 showing the complete member set: 2010-02-26 15:27:57.390/3.062 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=main, member=6): Started DefaultCacheServer... SafeCluster: Name=cluster:0xDDEB Group{Address=224.3.5.3, Port=35465, TTL=4} MasterMemberSet ( ThisMember=Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) OldestMember=Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) ActualMemberSet=MemberSet(Size=6, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=5, Timestamp=2010-02-26 15:27:49.095, Address=10.149.155.79:8088, MachineId=1103, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:3229, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) RecycleMillis=120000 RecycleSet=MemberSet(Size=0, BitSetCount=0 ) ) At approximately 15:30, the connection between the two switches is severed: Thirty seconds later (the default packet timeout in development mode) the logs indicate communication failures across the cluster. In this example, the communication failure was caused by a network failure. In a production setting, this type of communication failure can have many root causes, including (but not limited to) network failures, excessive GC, high CPU utilization, swapping/virtual memory, and exceeding maximum network bandwidth. In addition, this type of failure is not necessarily indicative of a split brain. Any communication failure will be logged in this fashion. Member 2 logs a communication failure with Member 5: 2010-02-26 15:30:32.638/196.928 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=2): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=5, Timestamp=2010-02-26 15:27:49.095, Address=10.149.155.79:8088, MachineId=1103, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:3229, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) ) The Coherence clustering protocol (TCMP) is a reliable transport mechanism built on UDP. In order for the protocol to be reliable, it requires an acknowledgement (ACK) for each packet delivered. If a packet fails to be acknowledged within the configured timeout period, the Coherence cluster member will log a packet timeout (as seen in the log message above). When this occurs, the cluster member will consult with other members to determine who is at fault for the communication failure. If the witness members agree that the suspect member is at fault, the suspect is removed from the cluster. If the witnesses unanimously disagree, the accuser is removed. This process is known as the witness protocol. Since Member 2 cannot communicate with Member 5, it selects two witnesses (Members 1 and 4) to determine if the communication issue is with Member 5 or with itself (Member 2). However, Member 4 is on the switch that is no longer accessible by Members 1, 2 and 3; thus a packet timeout for member 4 is recorded as well: 2010-02-26 15:30:35.648/199.938 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=2): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) Member 1 has the ability to confirm the departure of member 4, however Member 6 cannot as it is also inaccessible. At the same time, Member 3 sends a request to remove Member 6, which is followed by a report from Member 3 indicating that Member 6 has departed the cluster: 2010-02-26 15:30:35.706/199.996 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=2): MemberLeft request for Member 6 received from Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) 2010-02-26 15:30:35.709/199.999 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=2): MemberLeft notification for Member 6 received from Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) The log for Member 3 determines how Member 6 departed the cluster: 2010-02-26 15:30:35.161/191.694 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=3): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) ) 2010-02-26 15:30:35.165/191.698 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=3): Member departure confirmed by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) ); removing Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) In this case, Member 3 happened to select two witnesses that it still had connectivity with (Members 1 and 2) thus resulting in a simple decision to remove Member 6. Given the departure of Member 6, Member 2 is left with a single witness to confirm the departure of Member 4: 2010-02-26 15:30:35.713/200.003 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=2): Member departure confirmed by MemberSet(Size=1, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) ); removing Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) In the meantime, Member 4 logs a missing heartbeat from the senior member. This message is also logged on Members 5 and 6. 2010-02-26 15:30:07.906/150.453 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=PacketListenerN, member=4): Scheduled senior member heartbeat is overdue; rejoining multicast group. Next, Member 4 logs a TcpRing failure with Member 2, thus resulting in the termination of Member 2: 2010-02-26 15:30:21.421/163.968 Oracle Coherence GE 3.5.3/465p2 <D4> (thread=Cluster, member=4): TcpRing: Number of socket exceptions exceeded maximum; last was "java.net.SocketTimeoutException: connect timed out"; removing the member: 2 For quick process termination detection, Oracle Coherence utilizes a feature called TcpRing which is a sparse collection of TCP/IP-based connections between different members in the cluster. Each member in the cluster is connected to at least one other member, which (if at all possible) is running on a different physical box. This connection is not used for any data transfer, only heartbeat communications are sent once a second per each link. If a certain number of exceptions are thrown while trying to re-establish a connection, the member throwing the exceptions is removed from the cluster. Member 5 logs a packet timeout with Member 3 and cites witnesses Members 4 and 6: 2010-02-26 15:30:29.791/165.037 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=5): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) 2010-02-26 15:30:29.798/165.044 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=5): Member departure confirmed by MemberSet(Size=2, BitSetCount=2 Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ); removing Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) Eventually we are left with two distinct clusters consisting of Members 1, 2, 3 and Members 4, 5, 6, respectively. In the latter cluster, Member 4 is promoted to senior member. The connection between the two switches is restored at 15:33. Upon the restoration of the connection, the cluster members immediately receive cluster heartbeats from the two senior members. In the case of Members 1, 2, and 3, the following is logged: 2010-02-26 15:33:14.970/369.066 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=1): The member formerly known as Member(Id=4, Timestamp=2010-02-26 15:30:35.341, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) has been forcefully evicted from the cluster, but continues to emit a cluster heartbeat; henceforth, the member will be shunned and its messages will be ignored. Likewise for Members 4, 5, and 6: 2010-02-26 15:33:14.343/336.890 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=4): The member formerly known as Member(Id=1, Timestamp=2010-02-26 15:30:31.64, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) has been forcefully evicted from the cluster, but continues to emit a cluster heartbeat; henceforth, the member will be shunned and its messages will be ignored. This message indicates that a senior heartbeat is being received from members that were previously removed from the cluster, in other words, something that should not be possible. For this reason, the recipients of these messages will initially ignore them. After several iterations of these messages, the existence of multiple clusters is acknowledged, thus triggering the panic protocol to reconcile this situation. When the presence of more than one cluster (i.e. Split-Brain) is detected by a Coherence member, the panic protocol is invoked in order to resolve the conflicting clusters and consolidate into a single cluster. The protocol consists of the removal of smaller clusters until there is one cluster remaining. In the case of equal size clusters, the one with the older Senior Member will survive. Member 1, being the oldest member, initiates the protocol: 2010-02-26 15:33:45.970/400.066 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=1): An existence of a cluster island with senior Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) containing 3 nodes have been detected. Since this Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) is the senior of an older cluster island, the panic protocol is being activated to stop the other island's senior and all junior nodes that belong to it. Member 3 receives the panic: 2010-02-26 15:33:45.803/382.336 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=3): Received panic from senior Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) caused by Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member 4, the senior member of the younger cluster, receives the kill message from Member 3: 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. In turn, Member 4 requests the departure of its junior members 5 and 6: 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. 2010-02-26 15:33:43.343/349.015 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=6): Received a Kill message from a valid Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer); stopping cluster service. Once Members 4, 5, and 6 restart, they rejoin the original cluster with senior member 1. The log below is from Member 4. Note that it receives a different member id when it rejoins the cluster. 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. 2010-02-26 15:33:46.921/369.468 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Service Cluster left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Invocation:InvocationService, member=4): Service InvocationService left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=OptimisticCache, member=4): Service OptimisticCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=ReplicatedCache, member=4): Service ReplicatedCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=DistributedCache, member=4): Service DistributedCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Invocation:Management, member=4): Service Management left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service Management with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service DistributedCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service ReplicatedCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service OptimisticCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service InvocationService with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member(Id=6, Timestamp=2010-02-26 15:33:47.046, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) left Cluster with senior member 4 2010-02-26 15:33:49.218/371.765 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=main, member=n/a): Restarting cluster 2010-02-26 15:33:49.421/371.968 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=n/a): Service Cluster joined the cluster with senior service member n/a 2010-02-26 15:33:49.625/372.172 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=n/a): This Member(Id=5, Timestamp=2010-02-26 15:33:50.499, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=1) joined cluster "cluster:0xDDEB" with senior Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) Cool isn't it?

    Read the article

  • Using jQuery to POST Form Data to an ASP.NET ASMX AJAX Web Service

    - by Rick Strahl
    The other day I got a question about how to call an ASP.NET ASMX Web Service or PageMethods with the POST data from a Web Form (or any HTML form for that matter). The idea is that you should be able to call an endpoint URL, send it regular urlencoded POST data and then use Request.Form[] to retrieve the posted data as needed. My first reaction was that you can’t do it, because ASP.NET ASMX AJAX services (as well as Page Methods and WCF REST AJAX Services) require that the content POSTed to the server is posted as JSON and sent with an application/json or application/x-javascript content type. IOW, you can’t directly call an ASP.NET AJAX service with regular urlencoded data. Note that there are other ways to accomplish this. You can use ASP.NET MVC and a custom route, an HTTP Handler or separate ASPX page, or even a WCF REST service that’s configured to use non-JSON inputs. However if you want to use an ASP.NET AJAX service (or Page Methods) with a little bit of setup work it’s actually quite easy to capture all the form variables on the client and ship them up to the server. The basic steps needed to make this happen are: Capture form variables into an array on the client with jQuery’s .serializeArray() function Use $.ajax() or my ServiceProxy class to make an AJAX call to the server to send this array On the server create a custom type that matches the .serializeArray() name/value structure Create extension methods on NameValue[] to easily extract form variables Create a [WebMethod] that accepts this name/value type as an array (NameValue[]) This seems like a lot of work but realize that steps 3 and 4 are a one time setup step that can be reused in your entire site or multiple applications. Let’s look at a short example that looks like this as a base form of fields to ship to the server: The HTML for this form looks something like this: <div id="divMessage" class="errordisplay" style="display: none"> </div> <div> <div class="label">Name:</div> <div><asp:TextBox runat="server" ID="txtName" /></div> </div> <div> <div class="label">Company:</div> <div><asp:TextBox runat="server" ID="txtCompany"/></div> </div> <div> <div class="label" ></div> <div> <asp:DropDownList runat="server" ID="lstAttending"> <asp:ListItem Text="Attending" Value="Attending"/> <asp:ListItem Text="Not Attending" Value="NotAttending" /> <asp:ListItem Text="Maybe Attending" Value="MaybeAttending" /> <asp:ListItem Text="Not Sure Yet" Value="NotSureYet" /> </asp:DropDownList> </div> </div> <div> <div class="label">Special Needs:<br /> <small>(check all that apply)</small></div> <div> <asp:ListBox runat="server" ID="lstSpecialNeeds" SelectionMode="Multiple"> <asp:ListItem Text="Vegitarian" Value="Vegitarian" /> <asp:ListItem Text="Vegan" Value="Vegan" /> <asp:ListItem Text="Kosher" Value="Kosher" /> <asp:ListItem Text="Special Access" Value="SpecialAccess" /> <asp:ListItem Text="No Binder" Value="NoBinder" /> </asp:ListBox> </div> </div> <div> <div class="label"></div> <div> <asp:CheckBox ID="chkAdditionalGuests" Text="Additional Guests" runat="server" /> </div> </div> <hr /> <input type="button" id="btnSubmit" value="Send Registration" /> The form includes a few different kinds of form fields including a multi-selection listbox to demonstrate retrieving multiple values. Setting up the Server Side [WebMethod] The [WebMethod] on the server we’re going to call is going to be very simple and just capture the content of these values and echo then back as a formatted HTML string. Obviously this is overly simplistic but it serves to demonstrate the simple point of capturing the POST data on the server in an AJAX callback. public class PageMethodsService : System.Web.Services.WebService { [WebMethod] public string SendRegistration(NameValue[] formVars) { StringBuilder sb = new StringBuilder(); sb.AppendFormat("Thank you {0}, <br/><br/>", HttpUtility.HtmlEncode(formVars.Form("txtName"))); sb.AppendLine("You've entered the following: <hr/>"); foreach (NameValue nv in formVars) { // strip out ASP.NET form vars like _ViewState/_EventValidation if (!nv.name.StartsWith("__")) { if (nv.name.StartsWith("txt") || nv.name.StartsWith("lst") || nv.name.StartsWith("chk")) sb.Append(nv.name.Substring(3)); else sb.Append(nv.name); sb.AppendLine(": " + HttpUtility.HtmlEncode(nv.value) + "<br/>"); } } sb.AppendLine("<hr/>"); string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs == null) sb.AppendLine("No Special Needs"); else { sb.AppendLine("Special Needs: <br/>"); foreach (string need in needs) { sb.AppendLine("&nbsp;&nbsp;" + need + "<br/>"); } } return sb.ToString(); } } The key feature of this method is that it receives a custom type called NameValue[] which is an array of NameValue objects that map the structure that the jQuery .serializeArray() function generates. There are two custom types involved in this: The actual NameValue type and a NameValueExtensions class that defines a couple of extension methods for the NameValue[] array type to allow for single (.Form()) and multiple (.FormMultiple()) value retrieval by name. The NameValue class is as simple as this and simply maps the structure of the array elements of .serializeArray(): public class NameValue { public string name { get; set; } public string value { get; set; } } The extension method class defines the .Form() and .FormMultiple() methods to allow easy retrieval of form variables from the returned array: /// <summary> /// Simple NameValue class that maps name and value /// properties that can be used with jQuery's /// $.serializeArray() function and JSON requests /// </summary> public static class NameValueExtensionMethods { /// <summary> /// Retrieves a single form variable from the list of /// form variables stored /// </summary> /// <param name="formVars"></param> /// <param name="name">formvar to retrieve</param> /// <returns>value or string.Empty if not found</returns> public static string Form(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).FirstOrDefault(); if (matches != null) return matches.value; return string.Empty; } /// <summary> /// Retrieves multiple selection form variables from the list of /// form variables stored. /// </summary> /// <param name="formVars"></param> /// <param name="name">The name of the form var to retrieve</param> /// <returns>values as string[] or null if no match is found</returns> public static string[] FormMultiple(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).Select(nv => nv.value).ToArray(); if (matches.Length == 0) return null; return matches; } } Using these extension methods it’s easy to retrieve individual values from the array: string name = formVars.Form("txtName"); or multiple values: string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs != null) { // do something with matches } Using these functions in the SendRegistration method it’s easy to retrieve a few form variables directly (txtName and the multiple selections of lstSpecialNeeds) or to iterate over the whole list of values. Of course this is an overly simple example – in typical app you’d probably want to validate the input data and save it to the database and then return some sort of confirmation or possibly an updated data list back to the client. Since this is a full AJAX service callback realize that you don’t have to return simple string values – you can return any of the supported result types (which are most serializable types) including complex hierarchical objects and arrays that make sense to your client code. POSTing Form Variables from the Client to the AJAX Service To call the AJAX service method on the client is straight forward and requires only use of little native jQuery plus JSON serialization functionality. To start add jQuery and the json2.js library to your page: <script src="Scripts/jquery.min.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> json2.js can be found here (be sure to remove the first line from the file): http://www.json.org/json2.js It’s required to handle JSON serialization for those browsers that don’t support it natively. With those script references in the document let’s hookup the button click handler and call the service: $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); $.ajax({ url: "PageMethodsService.asmx/SendRegistration", type: "POST", contentType: "application/json", data: JSON.stringify({ formVars: arForm }), dataType: "json", success: function (result) { var jEl = $("#divMessage"); jEl.html(result.d).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, error: function (xhr, status) { alert("An error occurred: " + status); } }); } The key feature in this code is the $("#form1").serializeArray();  call which serializes all the form fields of form1 into an array. Each form var is represented as an object with a name/value property. This array is then serialized into JSON with: JSON.stringify({ formVars: arForm }) The format for the parameter list in AJAX service calls is an object with one property for each parameter of the method. In this case its a single parameter called formVars and we’re assigning the array of form variables to it. The URL to call on the server is the name of the Service (or ASPX Page for Page Methods) plus the name of the method to call. On return the success callback receives the result from the AJAX callback which in this case is the formatted string which is simply assigned to an element in the form and displayed. Remember the result type is whatever the method returns – it doesn’t have to be a string. Note that ASP.NET AJAX and WCF REST return JSON data as a wrapped object so the result has a ‘d’ property that holds the actual response: jEl.html(result.d).fadeIn(1000); Slightly simpler: Using ServiceProxy.js If you want things slightly cleaner you can use the ServiceProxy.js class I’ve mentioned here before. The ServiceProxy class handles a few things for calling ASP.NET and WCF services more cleanly: Automatic JSON encoding Automatic fix up of ‘d’ wrapper property Automatic Date conversion on the client Simplified error handling Reusable and abstracted To add the service proxy add: <script src="Scripts/ServiceProxy.js" type="text/javascript"></script> and then change the code to this slightly simpler version: <script type="text/javascript"> proxy = new ServiceProxy("PageMethodsService.asmx/"); $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); proxy.invoke("SendRegistration", { formVars: arForm }, function (result) { var jEl = $("#divMessage"); jEl.html(result).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, function (error) { alert(error.message); } ); } The code is not very different but it makes the call as simple as specifying the method to call, the parameters to pass and the actions to take on success and error. No more remembering which content type and data types to use and manually serializing to JSON. This code also removes the “d” property processing in the response and provides more consistent error handling in that the call always returns an error object regardless of a server error or a communication error unlike the native $.ajax() call. Either approach works and both are pretty easy. The ServiceProxy really pays off if you use lots of service calls and especially if you need to deal with date values returned from the server  on the client. Summary Making Web Service calls and getting POST data to the server is not always the best option – ASP.NET and WCF AJAX services are meant to work with data in objects. However, in some situations it’s simply easier to POST all the captured form data to the server instead of mapping all properties from the input fields to some sort of message object first. For this approach the above POST mechanism is useful as it puts the parsing of the data on the server and leaves the client code lean and mean. It’s even easy to build a custom model binder on the server that can map the array values to properties on an object generically with some relatively simple Reflection code and without having to manually map form vars to properties and do string conversions. Keep in mind though that other approaches also abound. ASP.NET MVC makes it pretty easy to create custom routes to data and the built in model binder makes it very easy to deal with inbound form POST data in its original urlencoded format. The West Wind West Wind Web Toolkit also includes functionality for AJAX callbacks using plain POST values. All that’s needed is a Method parameter to query/form value to specify the method to be called on the server. After that the content type is completely optional and up to the consumer. It’d be nice if the ASP.NET AJAX Service and WCF AJAX Services weren’t so tightly bound to the content type so that you could more easily create open access service endpoints that can take advantage of urlencoded data that is everywhere in existing pages. It would make it much easier to create basic REST endpoints without complicated service configuration. Ah one can dream! In the meantime I hope this article has given you some ideas on how you can transfer POST data from the client to the server using JSON – it might be useful in other scenarios beyond ASP.NET AJAX services as well. Additional Resources ServiceProxy.js A small JavaScript library that wraps $.ajax() to call ASP.NET AJAX and WCF AJAX Services. Includes date parsing extensions to the JSON object, a global dataFilter for processing dates on all jQuery JSON requests, provides cleanup for the .NET wrapped message format and handles errors in a consistent fashion. Making jQuery Calls to WCF/ASMX with a ServiceProxy Client More information on calling ASMX and WCF AJAX services with jQuery and some more background on ServiceProxy.js. Note the implementation has slightly changed since the article was written. ww.jquery.js The West Wind West Wind Web Toolkit also includes ServiceProxy.js in the West Wind jQuery extension library. This version is slightly different and includes embedded json encoding/decoding based on json2.js.© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  AJAX  

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Rounded Corners and Shadows &ndash; Dialogs with CSS

    - by Rick Strahl
    Well, it looks like we’ve finally arrived at a place where at least all of the latest versions of main stream browsers support rounded corners and box shadows. The two CSS properties that make this possible are box-shadow and box-radius. Both of these CSS Properties now supported in all the major browsers as shown in this chart from QuirksMode: In it’s simplest form you can use box-shadow and border radius like this: .boxshadow { -moz-box-shadow: 3px 3px 5px #535353; -webkit-box-shadow: 3px 3px 5px #535353; box-shadow: 3px 3px 5px #535353; } .roundbox { -moz-border-radius: 6px 6px 6px 6px; -webkit-border-radius: 6px; border-radius: 6px 6px 6px 6px; } box-shadow: horizontal-shadow-pixels vertical-shadow-pixels blur-distance shadow-color box-shadow attributes specify the the horizontal and vertical offset of the shadow, the blur distance (to give the shadow a smooth soft look) and a shadow color. The spec also supports multiple shadows separated by commas using the attributes above but we’re not using that functionality here. box-radius: top-left-radius top-right-radius bottom-right-radius bottom-left-radius border-radius takes a pixel size for the radius for each corner going clockwise. CSS 3 also specifies each of the individual corner elements such as border-top-left-radius, but support for these is much less prevalent so I would recommend not using them for now until support improves. Instead use the single box-radius to specify all corners. Browser specific Support in older Browsers Notice that there are two variations: The actual CSS 3 properties (box-shadow and box-radius) and the browser specific ones (-moz, –webkit prefixes for FireFox and Chrome/Safari respectively) which work in slightly older versions of modern browsers before official CSS 3 support was added. The goal is to spread support as widely as possible and the prefix versions extend the range slightly more to those browsers that provided early support for these features. Notice that box-shadow and border-radius are used after the browser specific versions to ensure that the latter versions get precedence if the browser supports both (last assignment wins). Use the .boxshadow and .roundbox Styles in HTML To use these two styles create a simple rounded box with a shadow you can use HTML like this: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext"> Simple Rounded Corner Box. </div> </div> which looks like this in the browser: This works across browsers and it’s pretty sweet and simple. Watch out for nested Elements! There are a couple of things to be aware of however when using rounded corners. Specifically, you need to be careful when you nest other non-transparent content into the rounded box. For example check out what happens when I change the inside <div> to have a colored background: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> which renders like this:   If you look closely you’ll find that the inside <div>’s corners are not rounded and so ‘poke out’ slightly over the rounded corners. It looks like the rounded corners are ‘broken’ up instead of a solid rounded line around the corner, which his pretty ugly. The bigger the radius the more drastic this effect becomes . To fix this issue the inner <div> also has have rounded corners at the same or slightly smaller radius than the outer <div>. The simple fix for this is to simply also apply the roundbox style to the inner <div> in addition to the boxcontenttext style already applied: <div class="boxcontenttext roundbox" style="background: khaki;"> The fixed display now looks proper: Separate Top and Bottom Elements This gets even a little more tricky if you have an element at the top or bottom only of the rounded box. What if you need to add something like a header or footer <div> that have non-transparent backgrounds which is a pretty common scenario? In those cases you want only the top or bottom corners rounded and not both. To make this work a couple of additional styles to round only the top and bottom corners can be created: .roundbox-top { -moz-border-radius: 4px 4px 0 0; -webkit-border-radius: 4px 4px 0 0; border-radius: 4px 4px 0 0; } .roundbox-bottom { -moz-border-radius: 0 0 4px 4px; -webkit-border-radius: 0 0 4px 4px; border-radius: 0 0 4px 4px; } Notice that radius used for the ‘inside’ rounding is smaller (4px) than the outside radius (6px). This is so the inner radius fills into the outer border – if you use the same size you may have some white space showing between inner and out rounded corners. Experiment with values to see what works – in my experimenting the behavior across browsers here is consistent (thankfully). These styles can be applied in addition to other styles to make only the top or bottom portions of an element rounded. For example imagine I have styles like this: .gridheader, .gridheaderbig, .gridheaderleft, .gridheaderright { padding: 4px 4px 4px 4px; background: #003399 url(images/vertgradient.png) repeat-x; text-align: center; font-weight: bold; text-decoration: none; color: khaki; } .gridheaderleft { text-align: left; } .gridheaderright { text-align: right; } .gridheaderbig { font-size: 135%; } If I just apply say gridheader by itself in HTML like this: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft">Box with a Header</div> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> This results in a pretty funky display – again due to the fact that the inner elements render square rather than rounded corners: If you look close again you can see that both the header and the main content have square edges which jumps out at the eye. To fix this you can now apply the roundbox-top and roundbox-bottom to the header and content respectively: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft roundbox-top">Box with a Header</div> <div class="boxcontenttext roundbox-bottom" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> Which now gives the proper display with rounded corners both on the top and bottom: All of this is sweet to be supported – at least by the newest browser – without having to resort to images and nasty JavaScripts solutions. While this is still not a mainstream feature yet for the majority of actually installed browsers, the majority of browser users are very likely to have this support as most browsers other than IE are actively pushing users to upgrade to newer versions. Since this is a ‘visual display only feature it degrades reasonably well in non-supporting browsers: You get an uninteresting square and non-shadowed browser box, but the display is still overall functional. The main sticking point – as always is Internet Explorer versions 8.0 and down as well as older versions of other browsers. With those browsers you get a functional view that is a little less interesting to look at obviously: but at least it’s still functional. Maybe that’s just one more incentive for people using older browsers to upgrade to a  more modern browser :-) Creating Dialog Related Styles In a lot of my AJAX based applications I use pop up windows which effectively work like dialogs. Using the simple CSS behaviors above, it’s really easy to create some fairly nice looking overlaid windows with nothing but CSS. Here’s what a typical ‘dialog’ I use looks like: The beauty of this is that it’s plain CSS – no plug-ins or images (other than the gradients which are optional) required. Add jQuery-ui draggable (or ww.jquery.js as shown below) and you have a nice simple inline implementation of a dialog represented by a simple <div> tag. Here’s the HTML for this dialog: <div id="divDialog" class="dialog boxshadow" style="width: 450px;"> <div class="dialog-header"> <div class="closebox"></div> User Sign-in </div> <div class="dialog-content"> <label>Username:</label> <input type="text" name="txtUsername" value=" " /> <label>Password</label> <input type="text" name="txtPassword" value=" " /> <hr /> <input type="button" id="btnLogin" value="Login" /> </div> <div class="dialog-statusbar">Ready</div> </div> Most of this behavior is driven by the ‘dialog’ styles which are fairly basic and easy to understand. They do use a few support images for the gradients which are provided in the sample I’ve provided. Here’s what the CSS looks like: .dialog { background: White; overflow: hidden; border: solid 1px steelblue; -moz-border-radius: 6px 6px 4px 4px; -webkit-border-radius: 6px 6px 4px 4px; border-radius: 6px 6px 3px 3px; } .dialog-header { background-image: url(images/dialogheader.png); background-repeat: repeat-x; text-align: left; color: cornsilk; padding: 5px; padding-left: 10px; font-size: 1.02em; font-weight: bold; position: relative; -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-top { -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-bottom { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; } .dialog-content { padding: 15px; } .dialog-statusbar, .dialog-toolbar { background: #eeeeee; background-image: url(images/dialogstrip.png); background-repeat: repeat-x; padding: 5px; padding-left: 10px; border-top: solid 1px silver; border-bottom: solid 1px silver; font-size: 0.8em; } .dialog-statusbar { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; padding-right: 10px; } .closebox { position: absolute; right: 2px; top: 2px; background-image: url(images/close.gif); background-repeat: no-repeat; width: 14px; height: 14px; cursor: pointer; opacity: 0.60; filter: alpha(opacity="80"); } .closebox:hover { opacity: 1; filter: alpha(opacity="100"); } The main style is the dialog class which is the outer box. It has the rounded border that serves as the outline. Note that I didn’t add the box-shadow to this style because in some situations I just want the rounded box in an inline display that doesn’t have a shadow so it’s still applied separately. dialog-header, then has the rounded top corners and displays a typical dialog heading format. dialog-bottom and dialog-top then provide the same functionality as roundbox-top and roundbox-bottom described earlier but are provided mainly in the stylesheet for consistency to match the dialog’s round edges and making it easier to  remember and find in Intellisense as it shows up in the same dialog- group. dialog-statusbar and dialog-toolbar are two elements I use a lot for floating windows – the toolbar serves for buttons and options and filters typically, while the status bar provides information specific to the floating window. Since the the status bar is always on the bottom of the dialog it automatically handles the rounding of the bottom corners. Finally there’s  closebox style which is to be applied to an empty <div> tag in the header typically. What this does is render a close image that is by default low-lighted with a low opacity value, and then highlights when hovered over. All you’d have to do handle the close operation is handle the onclick of the <div>. Note that the <div> right aligns so typically you should specify it before any other content in the header. Speaking of closable – some time ago I created a closable jQuery plug-in that basically automates this process and can be applied against ANY element in a page, automatically removing or closing the element with some simple script code. Using this you can leave out the <div> tag for closable and just do the following: To make the above dialog closable (and draggable) which makes it effectively and overlay window, you’d add jQuery.js and ww.jquery.js to the page: <script type="text/javascript" src="../../scripts/jquery.min.js"></script> <script type="text/javascript" src="../../scripts/ww.jquery.min.js"></script> and then simply call: <script type="text/javascript"> $(document).ready(function () { $("#divDialog") .draggable({ handle: ".dialog-header" }) .closable({ handle: ".dialog-header", closeHandler: function () { alert("Window about to be closed."); return true; // true closes - false leaves open } }); }); </script> * ww.jquery.js emulates base features in jQuery-ui’s draggable. If jQuery-ui is loaded its draggable version will be used instead and voila you have now have a draggable and closable window – here in mid-drag:   The dragging and closable behaviors are of course optional, but it’s the final touch that provides dialog like window behavior. Relief for older Internet Explorer Versions with CSS Pie If you want to get these features to work with older versions of Internet Explorer all the way back to version 6 you can check out CSS Pie. CSS Pie provides an Internet Explorer behavior file that attaches to specific CSS rules and simulates these behavior using script code in IE (mostly by implementing filters). You can simply add the behavior to each CSS style that uses box-shadow and border-radius like this: .boxshadow {     -moz-box-shadow: 3px 3px 5px #535353;     -webkit-box-shadow: 3px 3px 5px #535353;           box-shadow: 3px 3px 5px #535353;     behavior: url(scripts/PIE.htc);           } .roundbox {      -moz-border-radius: 6px 6px 6px 6px;     -webkit-border-radius: 6px;      border-radius: 6px 6px 6px 6px;     behavior: url(scripts/PIE.htc); } CSS Pie requires the PIE.htc on your server and referenced from each CSS style that needs it. Note that the url() for IE behaviors is NOT CSS file relative as other CSS resources, but rather PAGE relative , so if you have more than one folder you probably need to reference the HTC file with a fixed path like this: behavior: url(/MyApp/scripts/PIE.htc); in the style. Small price to pay, but a royal pain if you have a common CSS file you use in many applications. Once the PIE.htc file has been copied and you have applied the behavior to each style that uses these new features Internet Explorer will render rounded corners and box shadows! Yay! Hurray for box-shadow and border-radius All of this functionality is very welcome natively in the browser. If you think this is all frivolous visual candy, you might be right :-), but if you take a look on the Web and search for rounded corner solutions that predate these CSS attributes you’ll find a boatload of stuff from image files, to custom drawn content to Javascript solutions that play tricks with a few images. It’s sooooo much easier to have this functionality built in and I for one am glad to see that’s it’s finally becoming standard in the box. Still remember that when you use these new CSS features, they are not universal, and are not going to be really soon. Legacy browsers, especially old versions of Internet Explorer that can’t be updated will continue to be around and won’t work with this shiny new stuff. I say screw ‘em: Let them get a decent recent browser or see a degraded and ugly UI. We have the luxury with this functionality in that it doesn’t typically affect usability – it just doesn’t look as nice. Resources Download the Sample The sample includes the styles and images and sample page as well as ww.jquery.js for the draggable/closable example. Online Sample Check out the sample described in this post online. Closable and Draggable Documentation Documentation for the closeable and draggable plug-ins in ww.jquery.js. You can also check out the full documentation for all the plug-ins contained in ww.jquery.js here. © Rick Strahl, West Wind Technologies, 2005-2011Posted in HTML  CSS  

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • Setting up a local AI server - easy with Solaris 11

    - by Stefan Hinker
    Many things are new in Solaris 11, Autoinstall is one of them.  If, like me, you've known Jumpstart for the last 2 centuries or so, you'll have to start from scratch.  Well, almost, as the concepts are similar, and it's not all that difficult.  Just new. I wanted to have an AI server that I could use for demo purposes, on the train if need be.  That answers the question of hardware requirements: portable.  But let's start at the beginning. First, you need an OS image, of course.  In the new world of Solaris 11, it is now called a repository.  The original can be downloaded from the Solaris 11 page at Oracle.   What you want is the "Oracle Solaris 11 11/11 Repository Image", which comes in two parts that can be combined using cat.  MD5 checksums for these (and all other downloads from that page) are available closer to the top of the page. With that, building the repository is quick and simple: # zfs create -o mountpoint=/export/repo rpool/ai/repo # zfs create rpool/ai/repo/s11 # mount -o ro -F hsfs /tmp/sol-11-1111-repo-full.iso /mnt # rsync -aP /mnt/repo /export/repo/s11 # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@fcs # pkgrepo info -s /export/repo/sol11/repo PUBLISHER PACKAGES STATUS UPDATED solaris 4292 online 2012-03-12T20:47:15.378639Z That's all there's to it.  Let's make a snapshot, just to be on the safe side.  You never know when one will come in handy.  To use this repository, you could just add it as a file-based publisher: # pkg set-publisher -g file:///export/repo/sol11/repo solaris In case I'd want to access this repository through a (virtual) network, i'll now quickly activate the repository-service: # svccfg -s application/pkg/server \ setprop pkg/inst_root=/export/repo/sol11/repo # svccfg -s application/pkg/server setprop pkg/readonly=true # svcadm refresh application/pkg/server # svcadm enable application/pkg/server That's all you need - now point your browser to http://localhost/ to view your beautiful repository-server. Step 1 is done.  All of this, by the way, is nicely documented in the README file that's contained in the repository image. Of course, we already have updates to the original release.  You can find them in MOS in the Oracle Solaris 11 Support Repository Updates (SRU) Index.  You can simply add these to your existing repository or create separate repositories for each SRU.  The individual SRUs are self-sufficient and incremental - SRU4 includes all updates from SRU2 and SRU3.  With ZFS, you can also get both: A full repository with all updates and at the same time incremental ones up to each of the updates: # mount -o ro -F hsfs /tmp/sol-11-1111-sru4-05-incr-repo.iso /mnt # pkgrecv -s /mnt/repo -d /export/repo/sol11/repo '*' # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@sru4 # zfs set snapdir=visible rpool/ai/repo/sol11 # svcadm restart svc:/application/pkg/server:default The normal repository is now updated to SRU4.  Thanks to the ZFS snapshots, there is also a valid repository of Solaris 11 11/11 without the update located at /export/repo/sol11/.zfs/snapshot/fcs . If you like, you can also create another repository service for each update, running on a separate port. But now lets continue with the AI server.  Just a little bit of reading in the dokumentation makes it clear that we will need to run a DHCP server for this.  Since I already have one active (for my SunRay installation) and since it's a good idea to have these kinds of services separate anyway, I decided to create this in a Zone.  So, let's create one first: # zfs create -o mountpoint=/export/install rpool/ai/install # zfs create -o mountpoint=/zones rpool/zones # zonecfg -z ai-server zonecfg:ai-server> create create: Using system default template 'SYSdefault' zonecfg:ai-server> set zonepath=/zones/ai-server zonecfg:ai-server> add dataset zonecfg:ai-server:dataset> set name=rpool/ai/install zonecfg:ai-server:dataset> set alias=install zonecfg:ai-server:dataset> end zonecfg:ai-server> commit zonecfg:ai-server> exit # zoneadm -z ai-server install # zoneadm -z ai-server boot ; zlogin -C ai-server Give it a hostname and IP address at first boot, and there's the Zone.  For a publisher for Solaris packages, it will be bound to the "System Publisher" from the Global Zone.  The /export/install filesystem, of course, is intended to be used by the AI server.  Let's configure it now: #zlogin ai-server root@ai-server:~# pkg install install/installadm root@ai-server:~# installadm create-service -n x86-fcs -a i386 \ -s pkg://solaris/install-image/[email protected],5.11-0.175.0.0.0.2.1482 \ -d /export/install/fcs -i 192.168.2.20 -c 3 With that, the core AI server is already done.  What happened here?  First, I installed the AI server software.  IPS makes that nice and easy.  If necessary, it'll also pull in the required DHCP-Server and anything else that might be missing.  Watch out for that DHCP server software.  In Solaris 11, there are two different versions.  There's the one you might know from Solaris 10 and earlier, and then there's a new one from ISC.  The latter is the one we need for AI.  The SMF service names of both are very similar.  The "old" one is "svc:/network/dhcp-server:default". The ISC-server comes with several SMF-services. We at least need "svc:/network/dhcp/server:ipv4".  The command "installadm create-service" creates the installation-service. It's called "x86-fcs", serves the "i386" architecture and gets its boot image from the repository of the system publisher, using version 5.11,5.11-0.175.0.0.0.2.1482, which is Solaris 11 11/11.  (The option "-a i386" in this example is optional, since the installserver itself runs on a x86 machine.) The boot-environment for clients is created in /export/install/fcs and the DHCP-server is configured for 3 IP-addresses starting at 192.168.2.20.  This configuration is stored in a very human readable form in /etc/inet/dhcpd4.conf.  An AI-service for SPARC systems could be created in the very same way, using "-a sparc" as the architecture option. Now we would be ready to register and install the first client.  It would be installed with the default "solaris-large-server" using the publisher "http://pkg.oracle.com/solaris/release" and would query it's configuration interactively at first boot.  This makes it very clear that an AI-server is really only a boot-server.  The true source of packets to install can be different.  Since I don't like these defaults for my demo setup, I did some extra config work for my clients. The configuration of a client is controlled by manifests and profiles.  The manifest controls which packets are installed and how the filesystems are layed out.  In that, it's very much like the old "rules.ok" file in Jumpstart.  Profiles contain additional configuration like root passwords, primary user account, IP addresses, keyboard layout etc.  Hence, profiles are very similar to the old sysid.cfg file. The easiest way to get your hands on a manifest is to ask the AI server we just created to give us it's default one.  Then modify that to our liking and give it back to the installserver to use: root@ai-server:~# mkdir -p /export/install/configs/manifests root@ai-server:~# cd /export/install/configs/manifests root@ai-server:~# installadm export -n x86-fcs -m orig_default \ -o orig_default.xml root@ai-server:~# cp orig_default.xml s11-fcs.small.local.xml root@ai-server:~# vi s11-fcs.small.local.xml root@ai-server:~# more s11-fcs.small.local.xml <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install> <ai_instance name="S11 Small fcs local"> <target> <logical> <zpool name="rpool" is_root="true"> <filesystem name="export" mountpoint="/export"/> <filesystem name="export/home"/> <be name="solaris"/> </zpool> </logical> </target> <software type="IPS"> <destination> <image> <!-- Specify locales to install --> <facet set="false">facet.locale.*</facet> <facet set="true">facet.locale.de</facet> <facet set="true">facet.locale.de_DE</facet> <facet set="true">facet.locale.en</facet> <facet set="true">facet.locale.en_US</facet> </image> </destination> <source> <publisher name="solaris"> <origin name="http://192.168.2.12/"/> </publisher> </source> <!-- By default the latest build available, in the specified IPS repository, is installed. If another build is required, the build number has to be appended to the 'entire' package in the following form: <name>pkg:/[email protected]#</name> --> <software_data action="install"> <name>pkg:/[email protected],5.11-0.175.0.0.0.2.0</name> <name>pkg:/group/system/solaris-small-server</name> </software_data> </software> </ai_instance> </auto_install> root@ai-server:~# installadm create-manifest -n x86-fcs -d \ -f ./s11-fcs.small.local.xml root@ai-server:~# installadm list -m -n x86-fcs Manifest Status Criteria -------- ------ -------- S11 Small fcs local Default None orig_default Inactive None The major points in this new manifest are: Install "solaris-small-server" Install a few locales less than the default.  I'm not that fluid in French or Japanese... Use my own package service as publisher, running on IP address 192.168.2.12 Install the initial release of Solaris 11:  pkg:/[email protected],5.11-0.175.0.0.0.2.0 Using a similar approach, I'll create a default profile interactively and use it as a template for a few customized building blocks, each defining a part of the overall system configuration.  The modular approach makes it easy to configure numerous clients later on: root@ai-server:~# mkdir -p /export/install/configs/profiles root@ai-server:~# cd /export/install/configs/profiles root@ai-server:~# sysconfig create-profile -o default.xml root@ai-server:~# cp default.xml general.xml; cp default.xml mars.xml root@ai-server:~# cp default.xml user.xml root@ai-server:~# vi general.xml mars.xml user.xml root@ai-server:~# more general.xml mars.xml user.xml :::::::::::::: general.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/timezone"> <instance enabled="true" name="default"> <property_group type="application" name="timezone"> <propval type="astring" name="localtime" value="Europe/Berlin"/> </property_group> </instance> </service> <service version="1" type="service" name="system/environment"> <instance enabled="true" name="init"> <property_group type="application" name="environment"> <propval type="astring" name="LANG" value="C"/> </property_group> </instance> </service> <service version="1" type="service" name="system/keymap"> <instance enabled="true" name="default"> <property_group type="system" name="keymap"> <propval type="astring" name="layout" value="US-English"/> </property_group> </instance> </service> <service version="1" type="service" name="system/console-login"> <instance enabled="true" name="default"> <property_group type="application" name="ttymon"> <propval type="astring" name="terminal_type" value="vt100"/> </property_group> </instance> </service> <service version="1" type="service" name="network/physical"> <instance enabled="true" name="default"> <property_group type="application" name="netcfg"> <propval type="astring" name="active_ncp" value="DefaultFixed"/> </property_group> </instance> </service> <service version="1" type="service" name="system/name-service/switch"> <property_group type="application" name="config"> <propval type="astring" name="default" value="files"/> <propval type="astring" name="host" value="files dns"/> <propval type="astring" name="printer" value="user files"/> </property_group> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="system/name-service/cache"> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="network/dns/client"> <property_group type="application" name="config"> <property type="net_address" name="nameserver"> <net_address_list> <value_node value="192.168.2.1"/> </net_address_list> </property> </property_group> <instance enabled="true" name="default"/> </service> </service_bundle> :::::::::::::: mars.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="network/install"> <instance enabled="true" name="default"> <property_group type="application" name="install_ipv4_interface"> <propval type="astring" name="address_type" value="static"/> <propval type="net_address_v4" name="static_address" value="192.168.2.100/24"/> <propval type="astring" name="name" value="net0/v4"/> <propval type="net_address_v4" name="default_route" value="192.168.2.1"/> </property_group> <property_group type="application" name="install_ipv6_interface"> <propval type="astring" name="stateful" value="yes"/> <propval type="astring" name="stateless" value="yes"/> <propval type="astring" name="address_type" value="addrconf"/> <propval type="astring" name="name" value="net0/v6"/> </property_group> </instance> </service> <service version="1" type="service" name="system/identity"> <instance enabled="true" name="node"> <property_group type="application" name="config"> <propval type="astring" name="nodename" value="mars"/> </property_group> </instance> </service> </service_bundle> :::::::::::::: user.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/config-user"> <instance enabled="true" name="default"> <property_group type="application" name="root_account"> <propval type="astring" name="login" value="root"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="role"/> </property_group> <property_group type="application" name="user_account"> <propval type="astring" name="login" value="stefan"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="normal"/> <propval type="astring" name="description" value="Stefan Hinker"/> <propval type="count" name="uid" value="12345"/> <propval type="count" name="gid" value="10"/> <propval type="astring" name="shell" value="/usr/bin/bash"/> <propval type="astring" name="roles" value="root"/> <propval type="astring" name="profiles" value="System Administrator"/> <propval type="astring" name="sudoers" value="ALL=(ALL) ALL"/> </property_group> </instance> </service> </service_bundle> root@ai-server:~# installadm create-profile -n x86-fcs -f general.xml root@ai-server:~# installadm create-profile -n x86-fcs -f user.xml root@ai-server:~# installadm create-profile -n x86-fcs -f mars.xml \ -c ipv4=192.168.2.100 root@ai-server:~# installadm list -p Service Name Profile ------------ ------- x86-fcs general.xml mars.xml user.xml root@ai-server:~# installadm list -n x86-fcs -p Profile Criteria ------- -------- general.xml None mars.xml ipv4 = 192.168.2.100 user.xml None Here's the idea behind these files: "general.xml" contains settings valid for all my clients.  Stuff like DNS servers, for example, which in my case will always be the same. "user.xml" only contains user definitions.  That is, a root password and a primary user.Both of these profiles will be valid for all clients (for now). "mars.xml" defines network settings for an individual client.  This profile is associated with an IP-Address.  For this to work, I'll have to tweak the DHCP-settings in the next step: root@ai-server:~# installadm create-client -e 08:00:27:AA:3D:B1 -n x86-fcs root@ai-server:~# vi /etc/inet/dhcpd4.conf root@ai-server:~# tail -5 /etc/inet/dhcpd4.conf host 080027AA3DB1 { hardware ethernet 08:00:27:AA:3D:B1; fixed-address 192.168.2.100; filename "01080027AA3DB1"; } This completes the client preparations.  I manually added the IP-Address for mars to /etc/inet/dhcpd4.conf.  This is needed for the "mars.xml" profile.  Disabling arbitrary DHCP-replies will shut up this DHCP server, making my life in a shared environment a lot more peaceful ;-)Now, I of course want this installation to be completely hands-off.  For this to work, I'll need to modify the grub boot menu for this client slightly.  You can find it in /etc/netboot.  "installadm create-client" will create a new boot menu for every client, identified by the client's MAC address.  The template for this can be found in a subdirectory with the name of the install service, /etc/netboot/x86-fcs in our case.  If you don't want to change this manually for every client, modify that template to your liking instead. root@ai-server:~# cd /etc/netboot root@ai-server:~# cp menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org root@ai-server:~# vi menu.lst.01080027AA3DB1 root@ai-server:~# diff menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org 1,2c1,2 < default=1 < timeout=10 --- > default=0 > timeout=30 root@ai-server:~# more menu.lst.01080027AA3DB1 default=1 timeout=10 min_mem64=0 title Oracle Solaris 11 11/11 Text Installer and command line kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install_media=htt p://$serverIP:5555//export/install/fcs,install_service=x86-fcs,install_svc_addre ss=$serverIP:5555 module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive title Oracle Solaris 11 11/11 Automated Install kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install=true,inst all_media=http://$serverIP:5555//export/install/fcs,install_service=x86-fcs,inst all_svc_address=$serverIP:5555,livemode=text module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive Now just boot the client off the network using PXE-boot.  For my demo purposes, that's a client from VirtualBox, of course.  That's all there's to it.  And despite the fact that this blog entry is a little longer - that wasn't that hard now, was it?

    Read the article

  • Table sorting & pagination with jQuery and Razor in ASP.NET MVC

    - by hajan
    Introduction jQuery enjoys living inside pages which are built on top of ASP.NET MVC Framework. The ASP.NET MVC is a place where things are organized very well and it is quite hard to make them dirty, especially because the pattern enforces you on purity (you can still make it dirty if you want so ;) ). We all know how easy is to build a HTML table with a header row, footer row and table rows showing some data. With ASP.NET MVC we can do this pretty easy, but, the result will be pure HTML table which only shows data, but does not includes sorting, pagination or some other advanced features that we were used to have in the ASP.NET WebForms GridView. Ok, there is the WebGrid MVC Helper, but what if we want to make something from pure table in our own clean style? In one of my recent projects, I’ve been using the jQuery tablesorter and tablesorter.pager plugins that go along. You don’t need to know jQuery to make this work… You need to know little CSS to create nice design for your table, but of course you can use mine from the demo… So, what you will see in this blog is how to attach this plugin to your pure html table and a div for pagination and make your table with advanced sorting and pagination features.   Demo Project Resources The resources I’m using for this demo project are shown in the following solution explorer window print screen: Content/images – folder that contains all the up/down arrow images, pagination buttons etc. You can freely replace them with your own, but keep the names the same if you don’t want to change anything in the CSS we will built later. Content/Site.css – The main css theme, where we will add the theme for our table too Controllers/HomeController.cs – The controller I’m using for this project Models/Person.cs – For this demo, I’m using Person.cs class Scripts – jquery-1.4.4.min.js, jquery.tablesorter.js, jquery.tablesorter.pager.js – required script to make the magic happens Views/Home/Index.cshtml – Index view (razor view engine) the other items are not important for the demo. ASP.NET MVC 1. Model In this demo I use only one Person class which defines Person entity with several properties. You can use your own model, maybe one which will access data from database or any other resource. Person.cs public class Person {     public string Name { get; set; }     public string Surname { get; set; }     public string Email { get; set; }     public int? Phone { get; set; }     public DateTime? DateAdded { get; set; }     public int? Age { get; set; }     public Person(string name, string surname, string email,         int? phone, DateTime? dateadded, int? age)     {         Name = name;         Surname = surname;         Email = email;         Phone = phone;         DateAdded = dateadded;         Age = age;     } } 2. View In our example, we have only one Index.chtml page where Razor View engine is used. Razor view engine is my favorite for ASP.NET MVC because it’s very intuitive, fluid and keeps your code clean. 3. Controller Since this is simple example with one page, we use one HomeController.cs where we have two methods, one of ActionResult type (Index) and another GetPeople() used to create and return list of people. HomeController.cs public class HomeController : Controller {     //     // GET: /Home/     public ActionResult Index()     {         ViewBag.People = GetPeople();         return View();     }     public List<Person> GetPeople()     {         List<Person> listPeople = new List<Person>();                  listPeople.Add(new Person("Hajan", "Selmani", "[email protected]", 070070070,DateTime.Now, 25));                     listPeople.Add(new Person("Straight", "Dean", "[email protected]", 123456789, DateTime.Now.AddDays(-5), 35));         listPeople.Add(new Person("Karsen", "Livia", "[email protected]", 46874651, DateTime.Now.AddDays(-2), 31));         listPeople.Add(new Person("Ringer", "Anne", "[email protected]", null, DateTime.Now, null));         listPeople.Add(new Person("O'Leary", "Michael", "[email protected]", 32424344, DateTime.Now, 44));         listPeople.Add(new Person("Gringlesby", "Anne", "[email protected]", null, DateTime.Now.AddDays(-9), 18));         listPeople.Add(new Person("Locksley", "Stearns", "[email protected]", 2135345, DateTime.Now, null));         listPeople.Add(new Person("DeFrance", "Michel", "[email protected]", 235325352, DateTime.Now.AddDays(-18), null));         listPeople.Add(new Person("White", "Johnson", null, null, DateTime.Now.AddDays(-22), 55));         listPeople.Add(new Person("Panteley", "Sylvia", null, 23233223, DateTime.Now.AddDays(-1), 32));         listPeople.Add(new Person("Blotchet-Halls", "Reginald", null, 323243423, DateTime.Now, 26));         listPeople.Add(new Person("Merr", "South", "[email protected]", 3232442, DateTime.Now.AddDays(-5), 85));         listPeople.Add(new Person("MacFeather", "Stearns", "[email protected]", null, DateTime.Now, null));         return listPeople;     } }   TABLE CSS/HTML DESIGN Now, lets start with the implementation. First of all, lets create the table structure and the main CSS. 1. HTML Structure @{     Layout = null;     } <!DOCTYPE html> <html> <head>     <title>ASP.NET & jQuery</title>     <!-- referencing styles, scripts and writing custom js scripts will go here --> </head> <body>     <div>         <table class="tablesorter">             <thead>                 <tr>                     <th> value </th>                 </tr>             </thead>             <tbody>                 <tr>                     <td>value</td>                 </tr>             </tbody>             <tfoot>                 <tr>                     <th> value </th>                 </tr>             </tfoot>         </table>         <div id="pager">                      </div>     </div> </body> </html> So, this is the main structure you need to create for each of your tables where you want to apply the functionality we will create. Of course the scripts are referenced once ;). As you see, our table has class tablesorter and also we have a div with id pager. In the next steps we will use both these to create the needed functionalities. The complete Index.cshtml coded to get the data from controller and display in the page is: <body>     <div>         <table class="tablesorter">             <thead>                 <tr>                     <th>Name</th>                     <th>Surname</th>                     <th>Email</th>                     <th>Phone</th>                     <th>Date Added</th>                 </tr>             </thead>             <tbody>                 @{                     foreach (var p in ViewBag.People)                     {                                 <tr>                         <td>@p.Name</td>                         <td>@p.Surname</td>                         <td>@p.Email</td>                         <td>@p.Phone</td>                         <td>@p.DateAdded</td>                     </tr>                     }                 }             </tbody>             <tfoot>                 <tr>                     <th>Name</th>                     <th>Surname</th>                     <th>Email</th>                     <th>Phone</th>                     <th>Date Added</th>                 </tr>             </tfoot>         </table>         <div id="pager" style="position: none;">             <form>             <img src="@Url.Content("~/Content/images/first.png")" class="first" />             <img src="@Url.Content("~/Content/images/prev.png")" class="prev" />             <input type="text" class="pagedisplay" />             <img src="@Url.Content("~/Content/images/next.png")" class="next" />             <img src="@Url.Content("~/Content/images/last.png")" class="last" />             <select class="pagesize">                 <option selected="selected" value="5">5</option>                 <option value="10">10</option>                 <option value="20">20</option>                 <option value="30">30</option>                 <option value="40">40</option>             </select>             </form>         </div>     </div> </body> So, mainly the structure is the same. I have added @Razor code to create table with data retrieved from the ViewBag.People which has been filled with data in the home controller. 2. CSS Design The CSS code I’ve created is: /* DEMO TABLE */ body {     font-size: 75%;     font-family: Verdana, Tahoma, Arial, "Helvetica Neue", Helvetica, Sans-Serif;     color: #232323;     background-color: #fff; } table { border-spacing:0; border:1px solid gray;} table.tablesorter thead tr .header {     background-image: url(images/bg.png);     background-repeat: no-repeat;     background-position: center right;     cursor: pointer; } table.tablesorter tbody td {     color: #3D3D3D;     padding: 4px;     background-color: #FFF;     vertical-align: top; } table.tablesorter tbody tr.odd td {     background-color:#F0F0F6; } table.tablesorter thead tr .headerSortUp {     background-image: url(images/asc.png); } table.tablesorter thead tr .headerSortDown {     background-image: url(images/desc.png); } table th { width:150px;            border:1px outset gray;            background-color:#3C78B5;            color:White;            cursor:pointer; } table thead th:hover { background-color:Yellow; color:Black;} table td { width:150px; border:1px solid gray;} PAGINATION AND SORTING Now, when everything is ready and we have the data, lets make pagination and sorting functionalities 1. jQuery Scripts referencing <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" /> <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.tablesorter.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.tablesorter.pager.js")" type="text/javascript"></script> 2. jQuery Sorting and Pagination script   <script type="text/javascript">     $(function () {         $("table.tablesorter").tablesorter({ widthFixed: true, sortList: [[0, 0]] })         .tablesorterPager({ container: $("#pager"), size: $(".pagesize option:selected").val() });     }); </script> So, with only two lines of code, I’m using both tablesorter and tablesorterPager plugins, giving some options to both these. Options added: tablesorter - widthFixed: true – gives fixed width of the columns tablesorter - sortList[[0,0]] – An array of instructions for per-column sorting and direction in the format: [[columnIndex, sortDirection], ... ] where columnIndex is a zero-based index for your columns left-to-right and sortDirection is 0 for Ascending and 1 for Descending. A valid argument that sorts ascending first by column 1 and then column 2 looks like: [[0,0],[1,0]] (source: http://tablesorter.com/docs/) tablesorterPager – container: $(“#pager”) – tells the pager container, the div with id pager in our case. tablesorterPager – size: the default size of each page, where I get the default value selected, so if you put selected to any other of the options in your select list, you will have this number of rows as default per page for the table too. END RESULTS 1. Table once the page is loaded (default results per page is 5 and is automatically sorted by 1st column as sortList is specified) 2. Sorted by Phone Descending 3. Changed pagination to 10 items per page 4. Sorted by Phone and Name (use SHIFT to sort on multiple columns) 5. Sorted by Date Added 6. Page 3, 5 items per page   ADDITIONAL ENHANCEMENTS We can do additional enhancements to the table. We can make search for each column. I will cover this in one of my next blogs. Stay tuned. DEMO PROJECT You can download demo project source code from HERE.CONCLUSION Once you finish with the demo, run your page and open the source code. You will be amazed of the purity of your code.Working with pagination in client side can be very useful. One of the benefits is performance, but if you have thousands of rows in your tables, you will get opposite result when talking about performance. Hence, sometimes it is nice idea to make pagination on back-end. So, the compromise between both approaches would be best to combine both of them. I use at most up to 500 rows on client-side and once the user reach the last page, we can trigger ajax postback which can get the next 500 rows using server-side pagination of the same data. I would like to recommend the following blog post http://weblogs.asp.net/gunnarpeipman/archive/2010/09/14/returning-paged-results-from-repositories-using-pagedresult-lt-t-gt.aspx, which will help you understand how to return page results from repository. I hope this was helpful post for you. Wait for my next posts ;). Please do let me know your feedback. Best Regards, Hajan

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • How to deploy the advanced search page using Module in SharePoint 2013

    - by ybbest
    Today, I’d like to show you how to deploy your custom advanced search page using module in Visual Studio 2012.Using a module is the way how SharePoint deploy all the publishing pages to the search centre. Browse to the template under 15 hive of SharePoint2013, then go to the SearchCenterFiles under Features(as shown below).Then open the Files.xml it shows how SharePoint using module to deploy advanced search.You can download the solution here. Now I am going to show you how to deploy your custom advanced search page.The feature is located  in the C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15\TEMPLATE\FEATURES\SearchCenterFiles . To deploy SharePoint advanced Search pages, you need to do the following: 1. Create SharePoint2013 project and then create a module item. 2. Find how Out of box SharePoint deploy the Advanced Search Page from Files.xml and copy and paste it into the elements.xml <File Url="advanced.aspx" Type="GhostableInLibrary"> <Property Name="PublishingPageLayout" Value="~SiteCollection/_catalogs/masterpage/AdvancedSearchLayout.aspx, $Resources:Microsoft.Office.Server.Search,SearchCenterAdvancedSearchTitle;" /> <Property Name="Title" Value="$Resources:Microsoft.Office.Server.Search,Search_Advanced_Page_Title;" /> <Property Name="ContentType" Value="$Resources:Microsoft.Office.Server.Search,contenttype_welcomepage_name;" /> <AllUsersWebPart WebPartZoneID="MainZone" WebPartOrder="1"> <![CDATA[ <WebPart xmlns="http://schemas.microsoft.com/WebPart/v2"> <Assembly>Microsoft.Office.Server.Search, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c</Assembly> <TypeName>Microsoft.Office.Server.Search.WebControls.AdvancedSearchBox</TypeName> <Title>$Resources:Microsoft.Office.Server.Search,AdvancedSearch_Webpart_Title;</Title> <Description>$Resources:Microsoft.Office.Server.Search,AdvancedSearch_Webpart_Description;</Description> <FrameType>None</FrameType> <AllowMinimize>true</AllowMinimize> <AllowRemove>true</AllowRemove> <IsVisible>true</IsVisible> <SearchResultPageURL xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">results.aspx</SearchResultPageURL> <TextQuerySectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">$Resources:Microsoft.Office.Server.Search,AdvancedSearch_FindDocsWith_Title;</TextQuerySectionLabelText> <ShowAndQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowAndQueryTextBox> <ShowPhraseQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowPhraseQueryTextBox> <ShowOrQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowOrQueryTextBox> <ShowNotQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowNotQueryTextBox> <ScopeSectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">$Resources:Microsoft.Office.Server.Search,AdvancedSearch_NarrowSearch_Title;</ScopeSectionLabelText> <ShowLanguageOptions xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowLanguageOptions> <ShowResultTypePicker xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowResultTypePicker> <ShowPropertiesSection xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowPropertiesSection> <PropertiesSectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">$Resources:Microsoft.Office.Server.Search,AdvancedSearch_AddPropRestrictions_Title;</PropertiesSectionLabelText> </WebPart> ]]> </AllUsersWebPart> </File> 3. Customize your SharePoint advanced Search Page by modifying the Advanced Search Box and Export the webpart and copy the webpart file to the elements under module. 4. Export the web part and copy the content of the web part file to the elements.xml in the module. <File Path="AdvancedSearchPage\advanced.aspx" Url="employeeAdvanced.aspx" Type="GhostableInLibrary"> <Property Name="PublishingPageLayout" Value="~SiteCollection/_catalogs/masterpage/AdvancedSearchLayout.aspx, $Resources:Microsoft.Office.Server.Search,SearchCenterAdvancedSearchTitle;" /> <Property Name="Title" Value="$Resources:Microsoft.Office.Server.Search,Search_Advanced_Page_Title;" /> <Property Name="ContentType" Value="$Resources:Microsoft.Office.Server.Search,contenttype_welcomepage_name;" /> <AllUsersWebPart WebPartZoneID="MainZone" WebPartOrder="1"> <![CDATA[ <WebPart xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.microsoft.com/WebPart/v2"> <Title>Advanced Search Box</Title> <FrameType>None</FrameType> <Description>Displays parameterized search options based on properties and combinations of words.</Description> <IsIncluded>true</IsIncluded> <ZoneID>MainZone</ZoneID> <PartOrder>1</PartOrder> <FrameState>Normal</FrameState> <Height /> <Width /> <AllowRemove>true</AllowRemove> <AllowZoneChange>true</AllowZoneChange> <AllowMinimize>true</AllowMinimize> <AllowConnect>true</AllowConnect> <AllowEdit>true</AllowEdit> <AllowHide>true</AllowHide> <IsVisible>true</IsVisible> <DetailLink /> <HelpLink /> <HelpMode>Modeless</HelpMode> <Dir>Default</Dir> <PartImageSmall /> <MissingAssembly>Cannot import this Web Part.</MissingAssembly> <PartImageLarge /> <IsIncludedFilter /> <Assembly>Microsoft.Office.Server.Search, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c</Assembly> <TypeName>Microsoft.Office.Server.Search.WebControls.AdvancedSearchBox</TypeName> <SearchResultPageURL xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">results.aspx</SearchResultPageURL> <TextQuerySectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">Find documents that have...</TextQuerySectionLabelText> <ShowAndQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowAndQueryTextBox> <AndQueryTextBoxLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowPhraseQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowPhraseQueryTextBox> <PhraseQueryTextBoxLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowOrQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowOrQueryTextBox> <OrQueryTextBoxLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowNotQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowNotQueryTextBox> <NotQueryTextBoxLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ScopeSectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">Narrow the search...</ScopeSectionLabelText> <ShowScopes xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">false</ShowScopes> <ScopeLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <DisplayGroup xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">Advanced Search</DisplayGroup> <ShowLanguageOptions xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">false</ShowLanguageOptions> <LanguagesLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowResultTypePicker xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowResultTypePicker> <ResultTypeLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowPropertiesSection xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowPropertiesSection> <PropertiesSectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">Add property restrictions...</PropertiesSectionLabelText> <Properties xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">&lt;root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;  &lt;LangDefs&gt;    &lt;LangDef DisplayName="Arabic" LangID="ar"/&gt;    &lt;LangDef DisplayName="Bengali" LangID="bn"/&gt;    &lt;LangDef DisplayName="Bulgarian" LangID="bg"/&gt;    &lt;LangDef DisplayName="Catalan" LangID="ca"/&gt;    &lt;LangDef DisplayName="Simplified Chinese" LangID="zh-cn"/&gt;    &lt;LangDef DisplayName="Traditional Chinese" LangID="zh-tw"/&gt;    &lt;LangDef DisplayName="Croatian" LangID="hr"/&gt;    &lt;LangDef DisplayName="Czech" LangID="cs"/&gt;    &lt;LangDef DisplayName="Danish" LangID="da"/&gt;    &lt;LangDef DisplayName="Dutch" LangID="nl"/&gt;    &lt;LangDef DisplayName="English" LangID="en"/&gt;    &lt;LangDef DisplayName="Finnish" LangID="fi"/&gt;    &lt;LangDef DisplayName="French" LangID="fr"/&gt;    &lt;LangDef DisplayName="German" LangID="de"/&gt;    &lt;LangDef DisplayName="Greek" LangID="el"/&gt;    &lt;LangDef DisplayName="Gujarati" LangID="gu"/&gt;    &lt;LangDef DisplayName="Hebrew" LangID="he"/&gt;    &lt;LangDef DisplayName="Hindi" LangID="hi"/&gt;    &lt;LangDef DisplayName="Hungarian" LangID="hu"/&gt;    &lt;LangDef DisplayName="Icelandic" LangID="is"/&gt;    &lt;LangDef DisplayName="Indonesian" LangID="id"/&gt;    &lt;LangDef DisplayName="Italian" LangID="it"/&gt;    &lt;LangDef DisplayName="Japanese" LangID="ja"/&gt;    &lt;LangDef DisplayName="Kannada" LangID="kn"/&gt;    &lt;LangDef DisplayName="Korean" LangID="ko"/&gt;    &lt;LangDef DisplayName="Latvian" LangID="lv"/&gt;    &lt;LangDef DisplayName="Lithuanian" LangID="lt"/&gt;    &lt;LangDef DisplayName="Malay" LangID="ms"/&gt;    &lt;LangDef DisplayName="Malayalam" LangID="ml"/&gt;    &lt;LangDef DisplayName="Marathi" LangID="mr"/&gt;    &lt;LangDef DisplayName="Norwegian" LangID="no"/&gt;    &lt;LangDef DisplayName="Polish" LangID="pl"/&gt;    &lt;LangDef DisplayName="Portuguese" LangID="pt"/&gt;    &lt;LangDef DisplayName="Punjabi" LangID="pa"/&gt;    &lt;LangDef DisplayName="Romanian" LangID="ro"/&gt;    &lt;LangDef DisplayName="Russian" LangID="ru"/&gt;    &lt;LangDef DisplayName="Slovak" LangID="sk"/&gt;    &lt;LangDef DisplayName="Slovenian" LangID="sl"/&gt;    &lt;LangDef DisplayName="Spanish" LangID="es"/&gt;    &lt;LangDef DisplayName="Swedish" LangID="sv"/&gt;    &lt;LangDef DisplayName="Tamil" LangID="ta"/&gt;    &lt;LangDef DisplayName="Telugu" LangID="te"/&gt;    &lt;LangDef DisplayName="Thai" LangID="th"/&gt;    &lt;LangDef DisplayName="Turkish" LangID="tr"/&gt;    &lt;LangDef DisplayName="Ukrainian" LangID="uk"/&gt;    &lt;LangDef DisplayName="Urdu" LangID="ur"/&gt;    &lt;LangDef DisplayName="Vietnamese" LangID="vi"/&gt;  &lt;/LangDefs&gt;  &lt;Languages&gt;    &lt;Language LangRef="en"/&gt;    &lt;Language LangRef="fr"/&gt;    &lt;Language LangRef="de"/&gt;    &lt;Language LangRef="ja"/&gt;    &lt;Language LangRef="zh-cn"/&gt;    &lt;Language LangRef="es"/&gt;    &lt;Language LangRef="zh-tw"/&gt;  &lt;/Languages&gt;  &lt;PropertyDefs&gt;    &lt;PropertyDef Name="Path" DataType="url" DisplayName="URL"/&gt;    &lt;PropertyDef Name="Size" DataType="integer" DisplayName="Size (bytes)"/&gt;    &lt;PropertyDef Name="Write" DataType="datetime" DisplayName="Last Modified Date"/&gt;    &lt;PropertyDef Name="FileName" DataType="text" DisplayName="Name"/&gt;    &lt;PropertyDef Name="Description" DataType="text" DisplayName="Description"/&gt;    &lt;PropertyDef Name="Title" DataType="text" DisplayName="Title"/&gt;    &lt;PropertyDef Name="Author" DataType="text" DisplayName="Author"/&gt;    &lt;PropertyDef Name="DocSubject" DataType="text" DisplayName="Subject"/&gt;    &lt;PropertyDef Name="DocKeywords" DataType="text" DisplayName="Keywords"/&gt;    &lt;PropertyDef Name="DocComments" DataType="text" DisplayName="Comments"/&gt;    &lt;PropertyDef Name="CreatedBy" DataType="text" DisplayName="Created By"/&gt;    &lt;PropertyDef Name="ModifiedBy" DataType="text" DisplayName="Last Modified By"/&gt;    &lt;PropertyDef Name="EmployeeNumber" DataType="text" DisplayName="EmployeeNumber"/&gt;    &lt;PropertyDef Name="EmployeeId" DataType="text" DisplayName="EmployeeId"/&gt;    &lt;PropertyDef Name="EmployeeFirstName" DataType="text" DisplayName="EmployeeFirstName"/&gt;    &lt;PropertyDef Name="EmployeeLastName" DataType="text" DisplayName="EmployeeLastName"/&gt;  &lt;/PropertyDefs&gt;  &lt;ResultTypes&gt;    &lt;ResultType DisplayName="Employee Document" Name="default"&gt;      &lt;KeywordQuery/&gt;      &lt;PropertyRef Name="EmployeeNumber" /&gt;      &lt;PropertyRef Name="EmployeeId" /&gt;      &lt;PropertyRef Name="EmployeeFirstName" /&gt;      &lt;PropertyRef Name="EmployeeLastName" /&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="All Results"&gt;      &lt;KeywordQuery/&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="Documents" Name="documents"&gt;      &lt;KeywordQuery&gt;IsDocument="True"&lt;/KeywordQuery&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="DocComments"/&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="DocKeywords"/&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="DocSubject"/&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;      &lt;PropertyRef Name="Title"/&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="Word Documents" Name="worddocuments"&gt;      &lt;KeywordQuery&gt;FileExtension="doc" OR FileExtension="docx" OR FileExtension="dot" OR FileExtension="docm" OR FileExtension="odt"&lt;/KeywordQuery&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="DocComments"/&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="DocKeywords"/&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="DocSubject"/&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;      &lt;PropertyRef Name="Title"/&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="Excel Documents" Name="exceldocuments"&gt;      &lt;KeywordQuery&gt;FileExtension="xls" OR FileExtension="xlsx" OR FileExtension="xlsm" OR FileExtension="xlsb" OR FileExtension="ods"&lt;/KeywordQuery&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="DocComments"/&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="DocKeywords"/&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="DocSubject"/&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;      &lt;PropertyRef Name="Title"/&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="PowerPoint Presentations" Name="presentations"&gt;      &lt;KeywordQuery&gt;FileExtension="ppt" OR FileExtension="pptx" OR FileExtension="pptm" OR FileExtension="odp"&lt;/KeywordQuery&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="DocComments"/&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="DocKeywords"/&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="DocSubject"/&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;      &lt;PropertyRef Name="Title"/&gt;    &lt;/ResultType&gt;  &lt;/ResultTypes&gt;&lt;/root&gt;</Properties> </WebPart> ]]> </AllUsersWebPart> </File> 5.Deploy your custom solution and you will have a custom advanced search page.

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1

    - by shiju
    In this post, I will demonstrate web application development using ASP. NET MVC 3, Razor and EF code First. This post will also cover Dependency Injection using Unity 2.0 and generic Repository and Unit of Work for EF Code First. The following frameworks will be used for this step by step tutorial. ASP.NET MVC 3 EF Code First CTP 5 Unity 2.0 Define Domain Model Let’s create domain model for our simple web application Category class public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } }   Expense class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First.    public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     }   RepositoryBasse – Generic Repository class public abstract class RepositoryBase<T> where T : class { private MyFinanceContext database; private readonly IDbSet<T> dbset; protected RepositoryBase(IDatabaseFactory databaseFactory) {     DatabaseFactory = databaseFactory;     dbset = Database.Set<T>(); }   protected IDatabaseFactory DatabaseFactory {     get; private set; }   protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } }   DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work   public interface IUnitOfWork {     void Commit(); }   UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } }   The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>.   public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext.   public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } }   Let’s create controller factory for Unity in the ASP.NET MVC 3 application. public class UnityControllerFactory : DefaultControllerFactory { IUnityContainer container; public UnityControllerFactory(IUnityContainer container) {     this.container = container; } protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType) {     IController controller;     if (controllerType == null)         throw new HttpException(                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   }   Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies.   private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); }   In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity.   protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); }   Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller   public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        }   Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div>   We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Let’s create view page for insert Category information   @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.      @{     Layout = "~/Views/Shared/_Layout.cshtml"; }   Source Code You can download the source code from http://efmvc.codeplex.com/ . The source will be refactored on over time.   Summary In this post, we have created a simple web application using ASP.NET MVC 3 and EF Code First. We have discussed on technologies and practices such as ASP.NET MVC 3, Razor, EF Code First, Unity 2, generic Repository and Unit of Work. In my later posts, I will modify the application and will be discussed on more things. Stay tuned to my blog  for more posts on step by step application building.

    Read the article

  • OTN ???? ?????? ???????

    - by Yusuke.Yamamoto
    Database ?? Database ??????? Database ?????????? Java WebLogic Server/????????·???? SOA/BPM/????? ???????/???? ID??/?????? ?????EPM/BI EPM/BI ??????? EPM/BI ???? OS/??? ???? ????? MySQL Database ?? ???? ?? ????????? ??? ?? ORACLE MASTER??Master??ORACLE MASTER Bronze?Bronze DBA11g? ??(WMV)??(MP4)2011/6/22 ORACLE MASTER??Master??ORACLE MASTER Bronze?11g SQL??????(WMV)??(MP4)2011/3/9 ORACLE MASTER??Master??ORACLE MASTER Silver?Silver DBA11g???(WMV)??(MP4)2010/3/2 ORACLE MASTER??Master??ORACLE MASTER Silver?Silver DBA11g?[10g-11g???] ??(WMV)??(MP4)2012/4/23 ORACLE MASTER??Master??ORACLE MASTER Gold DBA11g ??(WMV)??(MP4)2011/2/23 ORACLE MASTER??Master??ORACLE MASTER Gold ?Gold DBA11g ????[??]??(WMV)??(MP4)2012/4/23 ORACLE MASTER??Master??30?????? ORACLE MASTER??????(WMV)??(MP4)2012/9/3 Oracle Database???????????????!Oracle??????????!???(WMV)??(MP4)2010/9/8 Oracle Database???????????????????!? Oracle?? ?????(WMV)??(MP4)2011/4/13 Oracle Database???????????????????!? Oracle?? ??????????(WMV)??(MP4)2011/4/20 Oracle Database???????????????????????????!? ??????????-?????(WMV)??(MP4)2012/2/20 Oracle Database???????????????????????????!? ??????????-?????(WMV)??(MP4)2012/2/20 Oracle Database????????????60???????!?????????????·???????? ??(WMV)??(MP4)2011/5/17 Oracle Database???Step by Step?????!? Oracle Database 11g -?????????-??(WMV)??(MP4)2009/12/17 Oracle Database???Step by Step?????!? OracleDatabase11g -???????????(WMV)??(MP4)2009/12/24 Oracle Database???Step by Step?????!? Oracle Database 11g -?????????(WMV)??(MP4)2009/12/10 Oracle Database DBA?????????????????!???????????(WMV)??(MP4)2010/12/21 Oracle Database DBA?????????????????!????????·??????????(WMV)??(MP4)2010/11/16 Oracle Database DBA?????????????????!???????·????????(WMV)??(MP4)2010/12/15 Oracle Database DBA?????????????????!???????????(WMV)??(MP4)2010/7/21 Oracle Database DBA?????????????????!?Export/Import?????(WMV)??(MP4)2010/9/8 Oracle Database DBA??????????????????!??????????????(WMV)??(MP4)2011/7/20 Oracle Database DBA?????????·????????!!????????!?????????SQL????????(WMV)??(MP4)2010/11/24 Oracle Database DBA?????????·?????????SQL????????????!SQL????????(WMV)??(MP4)2012/1/23 Oracle Database DBA?????????·????????!!???????·??????~DiskI/O?????????~??(WMV)??(MP4)2011/3/9 Oracle Database DBA?????????·????????!!???????·??????~SQL???????~??(WMV)??(MP4)2011/9/20 Oracle Database DBA?????????·????????!???????·??????-Statspack??-??(WMV)??(MP4)2010/7/28 Oracle Database DBA?????????·????????!!???????·??????~??????????~??(WMV)??(MP4)2010/8/4 Oracle Database DBA?????????·????????!!???????·??????-?????????-??(WMV)??(MP4)2010/7/14 Oracle Database DBA?????????·?????? ??!????????????? ??????(WMV)??(MP4)2010/7/7 Oracle Database DBA?????????·????????!????????????? ??????(WMV)??(MP4)2010/7/7 Oracle Database DBA?????????·????????!! ????????DB ??????Tips??(WMV)??(MP4)2010/8/5 Oracle Database DBA??????????!!??????~Oracle Database???~??(WMV)??(MP4)2010/8/31 Oracle Database DBA??????????!!??????~OracleDatabase????~??(WMV)??(MP4)2010/8/24 Oracle Database DBA???????????????????????????????????????(WMV)??(MP4)2010/4/27 Oracle Database DBA????????&?????????????·???? - ?????RMAN??????(WMV)??(MP4)2010/10/13 Oracle Database DBA????????&???????!!??????·????-???????????-??(WMV)??(MP4)2010/9/8 Oracle Database DBA????????&???????!??????·???? ~?????? VS RMAN ?????????~??(WMV)??(MP4)2012/1/23 Oracle Database DBA????????&???????!??????·???? ~????????????~??(WMV)??(MP4)2011/7/27 Oracle Database DBA????????&?????????????????-???????????????????(WMV)??(MP4)2010/10/6 Oracle Database Developer??????????????? Oracle SQL????(WMV)??(MP4)2010/10/20 Oracle Database Developer??????????????? Oracle PL/SQL????(WMV)??(MP4)2012/1/23 Oracle Database Developer????????!!PL/SQL????????(WMV)??(MP4)2011/03 Oracle Database Developer?????????????????????(WMV)??(MP4)2011/5/25 Oracle Database Developer??Java??java???!??(WMV)??(MP4)2009/11/26 Database ??????? ???? ?? ????????? ??? ?? DB???????????????!Oracle Database????????(WMV)??(MP4)2010/5/12 DB???????????????????? Oracle Enterprise Manager??(WMV)??(MP4)2012/1/23 DB??????????!Oracle Enterprise Manager???????????????? ??(WMV)??(MP4)2012/1/23 DB??????????!Oracle Enterprise Manager??????????????·?????? ??(WMV)??(MP4)2012/1/23 DB?????????????(UX)????????????????????(WMV)??(MP4)2011/4/6 DB???????????????????????????????Oracle Enterprise Manager??????!??(WMV)??(MP4)2012/1/23 DB???JP1??????????????????????!JP1???????????(WMV)??(MP4)2011/6/9 DB???JP1JP1???????!DB????????·??????!??(WMV)??(MP4)2011/1/12 DB???SAP"SAP on Oracle Database"???Tips??(WMV)??(MP4)2011/1/12 DB?????????????????! Oracle Database ????????(WMV)??(MP4)2012/1/23 DB?????????Web????????? ~????????~??(WMV)??(MP4)2010/3/10 DB?????????Web??????? ~????????????????????????~??(WMV)??(MP4)2010/2/3 DB??????????Oracle Database Upgrade?????(WMV)??(MP4)2011/9/20 DB??????????Oracle Database Client??????????????(WMV)??(MP4)2011/4/26 DB??????????Oracle Database 11g Release 2????????????????? ??(WMV)??(MP4)2012/1/23 DB?????????????!Oracle???????????????????????????(WMV)??(MP4)2011/1/18 DB???PL/SQLPL/SQL??????? ????(WMV)??(MP4)2012/1/23 DB???PL/SQLPL/SQL??????? ????(WMV)??(MP4)2012/1/23 DB???SQL DeveloperOracle SQL Developer????????????????(WMV)??(MP4)2012/1/23 DB???Jdeveloper??IDE Oracle JDeveloper??????????????????(WMV)??(MP4)2012/1/23 DB???APEX?????????!!APEX??????????????(WMV)??(MP4)2011/4/13 DB???APEX????!60??????Web??????????(WMV)??(MP4)2011/3/3 DB???APEXOracle??????????????! APEX4.0??????(WMV)??(MP4)2011/2/9 DB???APEX?????!????????!Oracle APEX???????????(WMV)??(MP4)2011/6/23 DB???Large Object??·???????DB????? -LOB???????-??(WMV)??(MP4)2010/2/4 DB???XMLOracle Database???????XML???????(WMV)??(MP4)2011/3/16 DB???XML??????XML?? - ?????! XML??? -??(WMV)??(MP4)2010/8/18 DB???XML??????XML?? - Oracle????XML -??(WMV)??(MP4)2010/8/25 DB???????SQL?????!Oracle Database????????Oracle Text???????(WMV)??(MP4) - DB???Oracle Data Guard??!Oracle Data Guard ????????????????????(WMV)??(MP4)2012/1/23 DB???Oracle Real Application Clusters??!?????????? ~RAC???~??(WMV)??(MP4)2012/1/23 DB???Oracle Real Application Clusters??!?????????? ~RAC??? ~??(WMV)??(MP4)2012/1/23 DB???Oracle Real Application Clusters??!Oracle RAC????????????????????????(WMV)??(MP4)2012/1/23 DB???Oracle Real Application Clusters??????!RAC????????????(WMV)??(MP4)2012/1/23 DB???Oracle Real Application Clusters?????????????!!60?????RAC????(WMV)??(MP4)2010/12/8 DB???????????????????????????!!?Oracle Database Firewall? ??(WMV)??(MP4)2012/1/23 DB?????????Oracle Database Firewall??????????? ??(WMV)??(MP4)2012/5/14 DB?????????????????????????????????????????(WMV)??(MP4)2011/5/11 DB??????????????????????????????????????(WMV)??(MP4)2011/4/19 DB????????????????! ???????????????(WMV)??(MP4)2012/1/23 DB?????????????????????????????????(WMV)??(MP4)2010/11/16 DB???????????????????????????????????????????????(WMV)??(MP4)2011/2/9 DB???????????????~???????~??(WMV)??(MP4)2010/12/22 DB???????????????~????/????????~??(WMV)??(MP4)2011/5/24 DB??????Oracle VM 3.0 ???????(WMV)??(MP4)2011/10/3 DB??????????????BCP/BCM???Oracle??????????(WMV)??(MP4)2011/7/13 DB???????????????????????????????????????(WMV)??(MP4)2011/7/12 DB????????DB??????????!??????? Oracle ????????????? ??(WMV)??(MP4)2012/1/23 DB??????????????????!?????????????????(WMV)??(MP4)2011/6/22 DB??????????????????????(WMV)??(MP4)2011/10/17 DB???????????????????????????(WMV)??(MP4)2011/10/17 DB????????????????~?????????????????IT????~??(WMV)??(MP4)2009/12/22 DB??????????!???????? ~????????????????~??(WMV)??(MP4)2011/11/1 DB???????????????????? -???????????(WMV)??(MP4)2011/6/21 DB????????20?????? Oracle GoldenGate??(WMV)??(MP4)2012/4/23 DB????????Oracle GoldenGate?????????????(WMV)??(MP4)2012/5/14 DB???????????????????????????!Oracle GoldenGate??????(WMV)??(MP4)2011/11/1 DB???????????????????!GoldenGate????DB?????????(WMV)??(MP4)2011/8/24 DB????????????????????????? Oracle GoldenGate ????????????! ??(WMV)??(MP4)2012/1/23 DB???????? ??????????????????????????????(WMV)??(MP4)2011/03 DB???????????????!! Oracle Data Integrator??????????(WMV)??(MP4)2009/12/17 DB??????????!??????????????????????(WMV)??(MP4)2011/4/6 DB???????????????????????Oracle Database ????? ????(WMV)??(MP4)2012/1/23 DB???????????????????????Oracle Database ????? ????(WMV)??(MP4)2012/1/23 DB????????????!??????·??????????????????(WMV)??(MP4)2012/1/23 DB???Oracle Partitioning??!????????????????? ????(WMV)??(MP4)2012/1/23 DB???Oracle Partitioning??!????????????????? ????(WMV)??(MP4)2012/1/23 DB?????????????????!SQL?????????? ??(WMV)??(MP4)2010/12/21 DB???Exadata20?????? Oracle Exadata??(WMV)??(MP4)2012/4/23 DB???ExadataOracle Exadata??????????????????(WMV)??(MP4)2012/5/14 DB???Exadata????!Oracle Exadata????? ??(WMV)??(MP4)2011/10/17 DB???ExadataOracle Exadata????????????????????????? ??(WMV)??(MP4)2012/1/23 DB?????????DB?????DB????????????????? -Oracle TimesTen ????-??(WMV)??(MP4)2012/1/23 DB?????????DBWeb????????????!????????????????(WMV)??(MP4)2010/11/4 DB????????DBA?"???????" ????????????????(WMV)??(MP4)2010/8/25 DB?????????????!?Oracle ASM??????????????(WMV)??(MP4)2011/7/8 DB????????Oracle ASM ? Oracle Clusterware ??????????? ??(WMV)??(MP4)2012/1/23 DB????????????????????????????????? - Oracle ASM Cluster File System (ACFS)????! ??(WMV)??(MP4)2012/1/23 DB??????????????????/????·????????Flashback Database with SSD???(WMV)??(MP4)2011/10/17 DB???????????????????DB??????~RAC VM with SSD??(WMV)??(MP4)2011/1/11 DB????????Oracle???????????? SSD?????!??(WMV)??(MP4)2010/8/11 DB??????????????NAS??????!Oracle Database?I/O???????NFS????????????SSD?????????????(WMV)??(MP4)2012/1/23 DB????????????! ???????????? ~????·???????????????~??(WMV)??(MP4)2009/3/25 DB??????????!???????????????????(WMV)??(MP4)2011/3/15 DB???????????????????????!??????·?????????(WMV)??(MP4)2010/6/23 Windows/.Net?????????Oracle on Windows-???? OVM,Hyper-V????(WMV)??(MP4)2011/4/13 Windows/.Net????????Windows Server?Oracle?????!??(WMV)??(MP4)2010/5/19 Windows/.Net????????Oracle on Windows - ??????&???? ?????(WMV)??(MP4)2011/4/20 Windows/.Net??????.Net.NET + Oracle Database ??????????????????????(WMV)??(MP4)2012/1/23 Windows/.Net??????.Net.NET????????Oracle Database ??(WMV)??(MP4)2011/1/20 Windows/.Net??????.NetOracle on Windows-.NET+Oracle ???????(WMV)??(MP4)2011/6/28 Windows/.Net??????.NetVB6????.NET? ~DB????????????~??(WMV)??(MP4)2010/8/4 Windows/.Net??????.Net.NET+Oracle ???????????????????(WMV)??(MP4)2011/10/3 Windows/.Net??????Active Directory30????!Active Directory+Oracle??(WMV)??(MP4)2010/9/8 Windows/.Net??????AccessAccess????WEB?????????????????????????(WMV)??(MP4)2011/7/20 Windows/.Net??????Oracle Real Application ClustersWindows?RAC??!????????????(WMV)??(MP4)2010/9/1 Windows/.Net????????????Oracle on Windows ~???????~ ??(WMV)??(MP4)2011/1/18 Windows/.Net????????????Oracle on Windows ~???????~ ??(WMV)??(MP4)2011/1/20 Windows/.Net???????????MSCS????!?Windows+Oracle????????(WMV)??(MP4)2010/8/4 ???????11gR2???????!Oracle DB 11g???????/??????(WMV)??(MP4)2011/4/14 ???????11gR2???! Oracle Database 11g R2 ?????????(WMV)??(MP4)2010/11/17 ???????11gR2DB??????·??????????11g R2?????(WMV)??(MP4)2010/9/15 ????????????????DWH????????????????·??????????(WMV)??(MP4)2010/11/25 ????????????????DWH????????????????·??????????(WMV)??(MP4)2010/11/25 ????????????????DWH????????????????·??????????(WMV)??(MP4)2010/11/25 Database ?????????? ???? ?? ????????? ??? ?? Oracle Master Platinum??Oracle Real Application Clusters?Platinum???????Platinum???!?????? Oracle RAC ?????????(WMV)??(MP4)2010/1/26 Oracle Master Platinum??????????Platinum??????? Platinum???!???????Oracle??????????????(WMV)??(MP4)2010/4/21 Oracle Master Platinum????????Platinum??:?????????????????????(WMV)??(MP4)2010/5/26 Oracle Master Platinum????????·?????Platinum??????? Platinum???! ????????????·?????????(WMV)??(MP4)2010/3/9 ????????????????????????????!?????????&?????????(WMV)??(MP4)2012/1/23 ????????????????????????????!SQL????????? ??? Part1&2??(WMV)??(MP4)2010/10/12 ????????????????????????????!SQL????????? ??? Part3 ??(WMV)??(MP4)2010/10/19 ????????????????????????????!SQL????????? ??? Part4 ??(WMV)??(MP4)2011/1/27 ????????????????????????????!SQL????????? ??? Part5 ??(WMV)??(MP4)2011/1/27 ????????????????????????????!?????????????????????(WMV)??(MP4)2012/1/23 ????????????????????????????!????????? Part1 ??(WMV)??(MP4) - ????????????????????????????!????????? Part2 ??(WMV)??(MP4)2011/7/26 ????????????????????????????!????????? Part3 ??(WMV)??(MP4)2010/4/28 ????????????????????????????!??????? Part1 ??(WMV)??(MP4)2011/11/1 ????????????????????????????????????????? Part2 ??(WMV)??(MP4)2012/5/28 ????????????????????????????!???????????????????????????? ??(WMV)??(MP4)2012/1/23 ??????????????????????????!??????? Part1 ??(WMV)??(MP4)2011/2/10 ??????????????????????????!??????? Part2 ??(WMV)??(MP4)2011/3/23 ??????????????????????????!??????? Part3 ??(WMV)??(MP4)2011/4/26 ??????????????????????????!??????? Part4 ??(WMV)??(MP4)2011/5/26 ???????????Exadata???????????!Exadata???????????????????Tips??(WMV)??(MP4)2012/1/23 ?????????????????DB???????????!??TimesTen?????????? ??(WMV)??(MP4)2012/1/23 ???????????????????????????!GoldenGate?????????????????????(WMV)??(MP4)2012/1/23 ???????????EDA/CEP???????????!Oracle CEP?????????·?????????????(WMV)??(MP4)2012/1/23 ????????????????????????????????!???????????????????(WMV)??(MP4)2011/2/15 ???????????????????????????????RAC ????????????????(WMV)??(MP4)2012/1/23 ????????????????????????????????!Oracle Net ??????????????(WMV)??(MP4)2012/1/23 ?????????????????????????????:???????????????0??????(WMV)??(MP4)2010/5/19 ???????????????????????????!???????????????????????(WMV)??(MP4)2012/1/23 ?????????Oracle Real Application Clusters????????????!RAC????????????????????(WMV)??(MP4)2011/3/1 ???????Core Tech Oracle Database Core Tech SeminarOracle Data Guard,Oracle Recovery Manager(RMAN),Flashback??(WMV)??(MP4)2012/5/14 ???????Core Tech Oracle Database Core Tech SeminarOracle Real Application Clusters,Oracle Clusterware,Oracle Automatic Storage Management??(WMV)??(MP4)2012/5/14 ???????Big Data Appliance?????????????????????(WMV)??(MP4)2012/5/14 ???????Oracle Real Application ClustersRAC????10??!US Oracle??????????????Oracle Real Application Clusters????????????(WMV)??(MP4)2012/2/20 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager 12c ???????(WMV)??(MP4)2012/1/23 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager 12c ???????/?????????? ????(WMV)??(MP4)2012/1/23 ???????Oracle Enterprise Manager 12c Oracle Enterprise Manager 12c ???????/????????? ????(WMV)??(MP4)2012/1/23 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager 12c ??????? ????(WMV)??(MP4)2012/1/23 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager 12c ??????? ????(WMV)??(MP4)2012/1/23 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager 12c ????????? ????(WMV)??(MP4)2012/1/23 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager 12c ????????? ????(WMV)??(MP4)2012/1/23 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager 12c Exadata?????(WMV)??(MP4)2012/1/23 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager 12c ???????????(WMV)??(MP4)2012/2/6 ???????Oracle Enterprise Manager 12cOracle Enterprise Manager???????????·?????????????(WMV)??(MP4)2012/5/14 ???????Database Appliance???????????1Box?????2???????? Oracle Database Appliance ??????(WMV)??(MP4)2011/12/19 ???????Database ApplianceOracle Database Appliance????????·????????(WMV)??(MP4)2012/5/14 ???????Oracle Data MiningOracle DB????!????????????(WMV)??(MP4)2010/9/14 ???????Oracle Data MiningOracleDB????????????(WMV)??(MP4)2011/6/29 OracleDirect ?????????????????!?????·???????ABC -Oracle Database???(WMV)??(MP4)2012/3/5 OracleDirect ???????????????????????-SE·EE??????-??(WMV)??(MP4)2010/5/19 OracleDirect ?????????????Oracle Database EE?SE???????????!???(WMV)??(MP4)2010/2/25 OracleDirect ????????????????98(????)???Oracle Database?????????! ~?????????????Oracle Database?????!~??(WMV)??(MP4)2009/12/2 OracleDirect ????????????!! Oracle Database????????(WMV)??(MP4)2010/10/13 OracleDirect ?????SQL?????????SQL?????????!SQL?????(WMV)??(MP4)2011/4/12 ???????????ACE????? ??Oracle Database???????(WMV)??(MP4)2012/5/14 ???????????????????????????????????????????? ??(WMV)??(MP4)2012/1/23 ????????????????!?????????????????·???????????? ????(WMV)??(MP4)2012/1/23 ????????????????!?????????????????·???????????? ????(WMV)??(MP4)2012/1/23 Java ???? ?? ????????? ??? ?? Java??Java EEJava EE 6 ??(132page)??(WMV)??(MP4)2011/04 Java?????!???????Java?????????(WMV)??(MP4)2011/06 Java??Java???????·???????????(WMV)??(MP4)2012/01 Java??Oracle ???? Java ??????? ??(WMV)??(MP4)2011/03 WebLogic Server/????????·???? ???? ?? ????????? ??? ?? WebLogic Server????Oracle????????WebLogic ????(WMV)??(MP4)2012/1/23 WebLogic Server????:????????? FastSwap??????·???????(??) ??(WMV)??(MP4)- WebLogic Server????:???????????????????(??)??(WMV)??(MP4)- WebLogic Server????:????????? ?????????????????????·??????????????????????(CAT)(??) ??(WMV)??(MP4)- WebLogic Server????:????????? ???????????????????????:????????????????????(??) ??(WMV)??(MP4)- WebLogic Server????:????????? JRockit Mission Control(??)??(WMV)??(MP4)- WebLogic Server????:????????? JRockit Flight Recorder????WebLogic????????????(??)??(WMV)??(MP4)- WebLogic Server????:????????? ?????????????? ???????????(??)??(WMV)??(MP4)- WebLogic Server????/???????????????????????????????????WebLogic????????(WMV)??(MP4)2011/3/24 WebLogic Server????WebLogic Server?JDBC??????????(WMV)??(MP4)2010/6/17 WebLogic Server????Oracle WebLogic Server???????Web??????? -???-??(WMV)??(MP4)2010/2/17 WebLogic Server????????????????? WebLogic Server ?????????????? ??(WMV)??(MP4)2012/1/23 WebLogic Server????????????????!WebLogic Scripting Tool?????WLS???·??????(WMV)??(MP4)2012/1/23 WebLogic Server????????????????????????~Oracle WebLogic Server 11g~??(WMV)??(MP4)2010/2/10 WebLogic Server????????????????!EM???WebLogic?????(WMV)??(MP4)2010/5/27 WebLogic Server ?????????????????WebLogic Server???????????????(WMV)??(MP4)2010/3/24 WebLogic Server????Oracle???????????????????????·????!??(WMV)??(MP4)2011/5/26 WebLogic Server??·????????OracleAS???????WebLogic Server??????????(WMV)??(MP4)2010/4/22 WebLogic ServerExalogicOracle Exalogic Elastic Cloud ?? ~ Exalogic ??? ~??(WMV)??(MP4)2012/1/23 JRockit??JVM JRockit?? ??Update??(WMV)??(MP4)2011/03 CoherenceOracle Coherence ?????·????????????????(WMV)??(MP4)2012/1/23 CoherenceOracle Coherence ????????????????(WMV)??(MP4)2012/1/23 Coherence???????????!???!Oracle Coherence?????????????????????????(WMV)??(MP4)2012/1/23 Coherence????????????Coherence??????(WMV)??(MP4)2011/04 SOA/BPM/????? ???? ?? ????????? ??? ?? BPM???????????BPM?????????????? ??(WMV)??(MP4)2011/04 BPMBPM Suite 11g??????????????????(WMV)??(MP4)2011/03 CEP??????????????????????????CEP????????(WMV)??(MP4)2011/04 ????????? ???? ?? ????????? ??? ?? ?????????????????????!???·????????????(WMV)??(MP4)2010/5/25 ???????Notes??????????????(WMV)??(MP4)2010/5/20 ???????Notes??13?????????????????????!??(WMV)??(MP4)2010/4/20 ??????????????????????Notes?????????????(WMV)??(MP4)2010/3/17 ???????Mashup Award5 ????????????????????????????????·?????????(WMV)??(MP4)2010/2/23 ID??/?????? ???? ?? ????????? ??? ?? ID????????????????!!~OracleDB?????????????????????????(WMV)??(MP4)2012/1/23 ID?????????????!????ID????????????(WMV)??(MP4)2010/6/15 ID???????????!????DB?OS?????/???????????(WMV)??(MP4)2010/1/27 ??????????/???????????????·???????????(WMV)??(MP4)2011/04 ?????????????~???????????????????(WMV)??(MP4)2011/4/5 ??????????!??ID·??????????????????(WMV)??(MP4)2010/12/7 ???????????????·???????????(WMV)??(MP4)2010/6/23 ?????EPM/BI EPM/BI ??????? ???? ?? ????????? ??? ?? ???BI????????????BI?????~5W1H1T?~??(WMV)??(MP4)2010/3/17 ???BI????????????BI?????~?????????~??(WMV)??(MP4)2010/2/24 ???????BI?????????? -Evidence-based Management- ??????????(WMV)??(MP4)2010/2/18 ???BI????????????BI?????~???KPI?~??(WMV)??(MP4)2010/1/28 EPM/BI ???? ???? ?? ????????? ??? ?? ??BIEE?????????????????(WMV)??(MP4)2010/3/10 OS/??? ???? ?? ????????? ??? ?? ???Solaris??????Oracle Solaris??????(WMV)??(MP4)2010/10/14 ???SolarisSolaris 10 ?? ~????Solaris???~??(WMV)??(MP4)2010/9/14 ???ZFSZFS ???! ZFS ???????(???)??(WMV)??(MP4)2011/11/21 ???ZFSZFS ???! ??????????????????(WMV)??(MP4)2010/9/28 ???LinuxOracle Linux?Unbreakable Enterprise Kernel?????(WMV)??(MP4)2011/11/21 ???LinuxOracle Linux Unbreakable Enterprise Kernel?????????(WMV)??(MP4)2012/5/14 ???Linux??????Oracle?????????Linux????(WMV)??(MP4)2010/5/25 ????????????????????????????????????(WMV)??(MP4)2012/1/6 ???????SolarisSolaris: ??????????????? ??(WMV)??(MP4)2011/1/27 ???????SolarisOracle Solaris 11????????????????? ??(WMV)??(MP4)2012/5/14 ???????SolarisSolaris ? DTrace ?????????????(WMV)??(MP4)2010/9/21 ???SolarisOracle Solaris 11 ??????????????-IPS ??????? ??(WMV)??(MP4)2012/5/14 ???SolarisSolaris ?????????????????????????????? ??(WMV)??(MP4)2012/5/14 ???ZFSZFS?Oracle UCM????????????? ??(WMV)??(MP4)2011/12/19 ???? ???? ?? ????????? ??? ?? ???SPARCSPARC ????? ~ OVM ???????!??(WMV)??(MP4)2011/12/5 ????? ???? ?? ????????? ??? ?? ???SAN????????????? Pillar Axiom 600 ???? ??(WMV)??(MP4)2012/4/23 ???ZFSOracleDB????SunStorage7000?????(WMV)??(MP4)2010/9/9 ????????!??????????????????????(WMV)??(MP4)2012/2/6 ???ZFS??S7000???:S7000????????????(WMV)??(MP4)2011/12/5 MySQL ???? ?? ????????? ??? ?? MySQL????MySQL????MySQL?????? ????????(WMV)??(MP4)2011/7/25 MySQL???MySQL??MySQL?? ?????(WMV)??(MP4)2012/1/23 MySQL???MySQL??MySQL?? ?????(WMV)??(MP4)2012/5/28 MySQL???MySQL??MySQL?? ???????(WMV)??(MP4)2012/6/25 MySQL???MySQL??MySQL???????(WMV)??(MP4)2011/7/25 MySQL????????????????MySQL ???????????????(WMV)??(MP4)2012/1/23 MySQL???MySQL Cluster MySQL Cluster ??????(WMV)??(MP4)2012/2/6 MySQL???MySQL Cluster MySQL Cluster 7.2 ??????(WMV)??(MP4)2012/3/19 MySQL??????? MySQL ????????(WMV)??(MP4)2012/2/6

    Read the article

  • Fed Authentication Methods in OIF / IdP

    - by Damien Carru
    This article is a continuation of my previous entry where I explained how OIF/IdP leverages OAM to authenticate users at runtime: OIF/IdP internally forwards the user to OAM and indicates which Authentication Scheme should be used to challenge the user if needed OAM determine if the user should be challenged (user already authenticated, session timed out or not, session authentication level equal or higher than the level of the authentication scheme specified by OIF/IdP…) After identifying the user, OAM internally forwards the user back to OIF/IdP OIF/IdP can resume its operation In this article, I will discuss how OIF/IdP can be configured to map Federation Authentication Methods to OAM Authentication Schemes: When processing an Authn Request, where the SP requests a specific Federation Authentication Method with which the user should be challenged When sending an Assertion, where OIF/IdP sets the Federation Authentication Method in the Assertion Enjoy the reading! Overview The various Federation protocols support mechanisms allowing the partners to exchange information on: How the user should be challenged, when the SP/RP makes a request How the user was challenged, when the IdP/OP issues an SSO response When a remote SP partner redirects the user to OIF/IdP for Federation SSO, the message might contain data requesting how the user should be challenged by the IdP: this is treated as the Requested Federation Authentication Method. OIF/IdP will need to map that Requested Federation Authentication Method to a local Authentication Scheme, and then invoke OAM for user authentication/challenge with the mapped Authentication Scheme. OAM would authenticate the user if necessary with the scheme specified by OIF/IdP. Similarly, when an IdP issues an SSO response, most of the time it will need to include an identifier representing how the user was challenged: this is treated as the Federation Authentication Method. When OIF/IdP issues an Assertion, it will evaluate the Authentication Scheme with which OAM identified the user: If the Authentication Scheme can be mapped to a Federation Authentication Method, then OIF/IdP will use the result of that mapping in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled If the Authentication Scheme cannot be mapped, then OIF/IdP will set the Federation Authentication Method as the Authentication Scheme name in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled Mappings In OIF/IdP, the mapping between Federation Authentication Methods and Authentication Schemes has the following rules: One Federation Authentication Method can be mapped to several Authentication Schemes In a Federation Authentication Method <-> Authentication Schemes mapping, a single Authentication Scheme is marked as the default scheme that will be used to authenticate a user, if the SP/RP partner requests the user to be authenticated via a specific Federation Authentication Method An Authentication Scheme can be mapped to a single Federation Authentication Method Let’s examine the following example and the various use cases, based on the SAML 2.0 protocol: Mappings defined as: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport mapped to LDAPScheme, marked as the default scheme used for authentication BasicScheme urn:oasis:names:tc:SAML:2.0:ac:classes:X509 mapped to X509Scheme, marked as the default scheme used for authentication Use cases: SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:X509 as the RequestedAuthnContext: OIF/IdP will authenticate the use with X509Scheme since it is the default scheme mapped for that method. SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the RequestedAuthnContext: OIF/IdP will authenticate the use with LDAPScheme since it is the default scheme mapped for that method, not the BasicScheme SP did not request any specific methods, and user was authenticated with BasisScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with LDAPScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with BasisSessionlessScheme: OIF/IdP will issue an Assertion with BasisSessionlessScheme as the FederationAuthenticationMethod, since that scheme could not be mapped to any Federation Authentication Method (in this case, the administrator would need to correct that and create a mapping) Configuration Mapping Federation Authentication Methods to OAM Authentication Schemes is protocol dependent, since the methods are defined in the various protocols (SAML 2.0, SAML 1.1, OpenID 2.0). As such, the WLST commands to set those mappings will involve: Either the SP Partner Profile and affect all Partners referencing that profile, which do not override the Federation Authentication Method to OAM Authentication Scheme mappings Or the SP Partner entry, which will only affect the SP Partner It is important to note that if an SP Partner is configured to define one or more Federation Authentication Method to OAM Authentication Scheme mappings, then all the mappings defined in the SP Partner Profile will be ignored. Authentication Schemes As discussed in the previous article, during Federation SSO, OIF/IdP will internally forward the user to OAM for authentication/verification and specify which Authentication Scheme to use. OAM will determine if a user needs to be challenged: If the user is not authenticated yet If the user is authenticated but the session timed out If the user is authenticated, but the authentication scheme level of the original authentication is lower than the level of the authentication scheme requested by OIF/IdP So even though an SP requests a specific Federation Authentication Method to be used to challenge the user, if that method is mapped to an Authentication Scheme and that at runtime OAM deems that the user does not need to be challenged with that scheme (because the user is already authenticated, session did not time out, and the session authn level is equal or higher than the one for the specified Authentication Scheme), the flow won’t result in a challenge operation. Protocols SAML 2.0 The SAML 2.0 specifications define the following Federation Authentication Methods for SAML 2.0 flows: urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol urn:oasis:names:tc:SAML:2.0:ac:classes:Telephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:PersonalTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard urn:oasis:names:tc:SAML:2.0:ac:classes:Password urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocolPassword urn:oasis:names:tc:SAML:2.0:ac:classes:X509 urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient urn:oasis:names:tc:SAML:2.0:ac:classes:PGP urn:oasis:names:tc:SAML:2.0:ac:classes:SPKI urn:oasis:names:tc:SAML:2.0:ac:classes:XMLDSig urn:oasis:names:tc:SAML:2.0:ac:classes:SoftwarePKI urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport urn:oasis:names:tc:SAML:2.0:ac:classes:SecureRemotePassword urn:oasis:names:tc:SAML:2.0:ac:classes:NomadTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:AuthenticatedTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken Out of the box, OIF/IdP has the following mappings for the SAML 2.0 protocol: Only urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml20-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 2.0 An example of an AuthnRequest message sent by an SP to an IdP with the SP requesting a specific Federation Authentication Method to be used to challenge the user would be: <samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" Destination="https://idp.com/oamfed/idp/samlv20" ID="id-8bWn-A9o4aoMl3Nhx1DuPOOjawc-" IssueInstant="2014-03-21T20:51:11Z" Version="2.0">  <saml:Issuer ...>https://acme.com/sp</saml:Issuer>  <samlp:NameIDPolicy AllowCreate="false" Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"/>  <samlp:RequestedAuthnContext Comparison="minimum">    <saml:AuthnContextClassRef xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">      urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport </saml:AuthnContextClassRef>  </samlp:RequestedAuthnContext></samlp:AuthnRequest> An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                    urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> An administrator would be able to specify a mapping between a SAML 2.0 Federation Authentication Method and one or more OAM Authentication Schemes SAML 1.1 The SAML 1.1 specifications define the following Federation Authentication Methods for SAML 1.1 flows: urn:oasis:names:tc:SAML:1.0:am:unspecified urn:oasis:names:tc:SAML:1.0:am:HardwareToken urn:oasis:names:tc:SAML:1.0:am:password urn:oasis:names:tc:SAML:1.0:am:X509-PKI urn:ietf:rfc:2246 urn:oasis:names:tc:SAML:1.0:am:PGP urn:oasis:names:tc:SAML:1.0:am:SPKI urn:ietf:rfc:3075 urn:oasis:names:tc:SAML:1.0:am:XKMS urn:ietf:rfc:1510 urn:ietf:rfc:2945 Out of the box, OIF/IdP has the following mappings for the SAML 1.1 protocol: Only urn:oasis:names:tc:SAML:1.0:am:password is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml11-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 1.1 An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameID ...>[email protected]</saml:NameID>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> Note: SAML 1.1 does not define an AuthnRequest message. An administrator would be able to specify a mapping between a SAML 1.1 Federation Authentication Method and one or more OAM Authentication Schemes OpenID 2.0 The OpenID 2.0 PAPE specifications define the following Federation Authentication Methods for OpenID 2.0 flows: http://schemas.openid.net/pape/policies/2007/06/phishing-resistant http://schemas.openid.net/pape/policies/2007/06/multi-factor http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical Out of the box, OIF/IdP does not define any mappings for the OpenID 2.0 Federation Authentication Methods. For OpenID 2.0, the configuration will involve mapping a list of OpenID 2.0 policies to a list of Authentication Schemes. An example of an OpenID 2.0 Request message sent by an SP/RP to an IdP/OP would be: https://idp.com/openid?openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=checkid_setup&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.realm=https%3A%2F%2Facme.com%2Fopenid&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_request&openid.ax.type.attr0=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.if_available=attr0&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.max_auth_age=0 An example of an Open ID 2.0 SSO Response issued by an IdP/OP would be: https://acme.com/openid?refid=id-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=id_res&openid.op_endpoint=https%3A%2F%2Fidp.com%2Fopenid&openid.claimed_id=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.identity=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.response_nonce=2014-03-24T19%3A20%3A06Zid-YPa2kTNNFftZkgBb460jxJGblk2g--iNwPpDI7M1&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_response&openid.ax.type.attr0=http%3A%2F%2Fsession%2Fcount&openid.ax.value.attr0=1&openid.ax.type.attr1=http%3A%2F%2Fopenid.net%2Fschema%2FnamePerson%2Ffriendly&openid.ax.value.attr1=My+name+is+Bobby+Smith&openid.ax.type.attr2=http%3A%2F%2Fschemas.openid.net%2Fax%2Fapi%2Fuser_id&openid.ax.value.attr2=bob&openid.ax.type.attr3=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.value.attr3=bob%40oracle.com&openid.ax.type.attr4=http%3A%2F%2Fsession%2Fipaddress&openid.ax.value.attr4=10.145.120.253&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.auth_time=2014-03-24T19%3A20%3A05Z&openid.pape.auth_policies=http%3A%2F%2Fschemas.openid.net%2Fpape%2Fpolicies%2F2007%2F06%2Fphishing-resistant&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cns.ax%2Cax.mode%2Cax.type.attr0%2Cax.value.attr0%2Cax.type.attr1%2Cax.value.attr1%2Cax.type.attr2%2Cax.value.attr2%2Cax.type.attr3%2Cax.value.attr3%2Cax.type.attr4%2Cax.value.attr4%2Cns.pape%2Cpape.auth_time%2Cpape.auth_policies&openid.sig=mYMgbGYSs22l8e%2FDom9NRPw15u8%3D In the next article, I will provide examples on how to configure OIF/IdP for the various protocols, to map OAM Authentication Schemes to Federation Authentication Methods.Cheers,Damien Carru

    Read the article

  • Unable to transfer data to or from mounted hard drive

    - by user210335
    So usually i'm good at sorting out issues. But this one has me at a loss! This issues has occured since upgrading my ubuntu so this was workingg prior. I use mounted hard drives to manage my downloads which are then copied over accordingly by a python based app. I found it was having issues with permissions to create anything on these mounted hard drives. I'm able to play and access he content of these drives so they're not faulty. My mount script looks like the following rw,user,exec,auto I really am stuck. Could anyone shed any light on how to fix this and allow me to access it. I've checked the properties and all groups should have read and write access so i'm very confused! thanks, edit here's the output of my mount options /dev/sda2 on / type ext4 (rw,errors=remount-ro) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/cgroup type tmpfs (rw) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) none on /sys/firmware/efi/efivars type efivarfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) none on /sys/fs/pstore type pstore (rw) /dev/sda1 on /boot/efi type vfat (rw) /dev/sdc1 on /mnt/tv type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sdb1 on /mnt/B88A30E88A30A4B2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) systemd on /sys/fs/cgroup/systemd type cgroup (rw,noexec,nosuid,nodev,none,name=systemd) gvfsd-fuse on /run/user/1000/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=simon) /dev/sdd1 on /media/simon/New Volume3 type fuseblk (rw,nosuid,nodev,allow_other,default_permissions,blksize=4096) the main mount in question is /dev/sdc1 on /mnt/tv type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) heres my dmesg output. I tried cchanging permissions in a terminal and I got an io error. [52803.343417] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.343420] sd 2:0:0:0: [sdc] CDB: [52803.343422] Read(10): 28 00 00 60 9e 3f 00 00 08 00 [52803.343805] sd 2:0:0:0: [sdc] Unhandled error code [52803.343808] sd 2:0:0:0: [sdc] [52803.343810] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.343812] sd 2:0:0:0: [sdc] CDB: [52803.343813] Read(10): 28 00 00 67 64 67 00 00 08 00 [52803.344389] sd 2:0:0:0: [sdc] Unhandled error code [52803.344392] sd 2:0:0:0: [sdc] [52803.344394] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.344396] sd 2:0:0:0: [sdc] CDB: [52803.344397] Read(10): 28 00 09 bd e7 6f 00 00 08 00 [52803.344584] sd 2:0:0:0: [sdc] Unhandled error code [52803.344587] sd 2:0:0:0: [sdc] [52803.344589] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.344591] sd 2:0:0:0: [sdc] CDB: [52803.344592] Read(10): 28 00 07 3a cf b7 00 00 08 00 [52803.344776] sd 2:0:0:0: [sdc] Unhandled error code [52803.344779] sd 2:0:0:0: [sdc] [52803.344781] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.344783] sd 2:0:0:0: [sdc] CDB: [52803.344784] Read(10): 28 00 09 bd e7 97 00 00 08 00 [52803.344973] sd 2:0:0:0: [sdc] Unhandled error code [52803.344976] sd 2:0:0:0: [sdc] [52803.344978] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.344980] sd 2:0:0:0: [sdc] CDB: [52803.344981] Read(10): 28 00 08 dd 57 ef 00 00 08 00 [52803.346745] sd 2:0:0:0: [sdc] Unhandled error code [52803.346748] sd 2:0:0:0: [sdc] [52803.346750] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.346752] sd 2:0:0:0: [sdc] CDB: [52803.346754] Read(10): 28 00 07 1a c1 0f 00 00 08 00 [52803.349939] sd 2:0:0:0: [sdc] Unhandled error code [52803.349942] sd 2:0:0:0: [sdc] [52803.349944] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.349946] sd 2:0:0:0: [sdc] CDB: [52803.349948] Read(10): 28 00 00 67 64 9f 00 00 08 00 [52803.350147] sd 2:0:0:0: [sdc] Unhandled error code [52803.350150] sd 2:0:0:0: [sdc] [52803.350152] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.350154] sd 2:0:0:0: [sdc] CDB: [52803.350155] Read(10): 28 00 00 67 64 97 00 00 08 00 [52803.351302] sd 2:0:0:0: [sdc] Unhandled error code [52803.351305] sd 2:0:0:0: [sdc] [52803.351307] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.351309] sd 2:0:0:0: [sdc] CDB: [52803.351311] Read(10): 28 00 00 a4 1d cf 00 00 08 00 [52803.351894] sd 2:0:0:0: [sdc] Unhandled error code [52803.351897] sd 2:0:0:0: [sdc] [52803.351899] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.351901] sd 2:0:0:0: [sdc] CDB: [52803.351902] Read(10): 28 00 00 67 67 3f 00 00 08 00 [52803.353163] sd 2:0:0:0: [sdc] Unhandled error code [52803.353166] sd 2:0:0:0: [sdc] [52803.353168] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.353170] sd 2:0:0:0: [sdc] CDB: [52803.353172] Read(10): 28 00 00 67 64 ef 00 00 08 00 [52803.353917] sd 2:0:0:0: [sdc] Unhandled error code [52803.353920] sd 2:0:0:0: [sdc] [52803.353922] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.353924] sd 2:0:0:0: [sdc] CDB: [52803.353925] Read(10): 28 00 00 67 65 17 00 00 08 00 [52803.354484] sd 2:0:0:0: [sdc] Unhandled error code [52803.354487] sd 2:0:0:0: [sdc] [52803.354489] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.354491] sd 2:0:0:0: [sdc] CDB: [52803.354492] Read(10): 28 00 07 1a d8 9f 00 00 08 00 [52803.355005] sd 2:0:0:0: [sdc] Unhandled error code [52803.355010] sd 2:0:0:0: [sdc] [52803.355013] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.355017] sd 2:0:0:0: [sdc] CDB: [52803.355019] Read(10): 28 00 00 67 65 3f 00 00 08 00 [52803.355293] sd 2:0:0:0: [sdc] Unhandled error code [52803.355298] sd 2:0:0:0: [sdc] [52803.355301] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.355305] sd 2:0:0:0: [sdc] CDB: [52803.355308] Read(10): 28 00 00 a4 20 27 00 00 08 00 [52803.355575] sd 2:0:0:0: [sdc] Unhandled error code [52803.355580] sd 2:0:0:0: [sdc] [52803.355583] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.355587] sd 2:0:0:0: [sdc] CDB: [52803.355589] Read(10): 28 00 00 5d dc 67 00 00 08 00 [52803.356647] sd 2:0:0:0: [sdc] Unhandled error code [52803.356650] sd 2:0:0:0: [sdc] [52803.356652] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.356654] sd 2:0:0:0: [sdc] CDB: [52803.356655] Read(10): 28 00 07 1a dd 3f 00 00 08 00 [52803.357108] sd 2:0:0:0: [sdc] Unhandled error code [52803.357111] sd 2:0:0:0: [sdc] [52803.357113] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.357115] sd 2:0:0:0: [sdc] CDB: [52803.357116] Read(10): 28 00 00 67 65 97 00 00 08 00 [52803.357298] sd 2:0:0:0: [sdc] Unhandled error code [52803.357300] sd 2:0:0:0: [sdc] [52803.357302] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.357304] sd 2:0:0:0: [sdc] CDB: [52803.357306] Read(10): 28 00 07 1a 04 d7 00 00 08 00 [52803.360374] sd 2:0:0:0: [sdc] Unhandled error code [52803.360377] sd 2:0:0:0: [sdc] [52803.360379] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.360382] sd 2:0:0:0: [sdc] CDB: [52803.360383] Read(10): 28 00 00 67 65 b7 00 00 08 00 [52803.360581] sd 2:0:0:0: [sdc] Unhandled error code [52803.360584] sd 2:0:0:0: [sdc] [52803.360586] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.360588] sd 2:0:0:0: [sdc] CDB: [52803.360589] Read(10): 28 00 00 67 65 c7 00 00 08 00 [52803.361352] sd 2:0:0:0: [sdc] Unhandled error code [52803.361355] sd 2:0:0:0: [sdc] [52803.361357] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.361359] sd 2:0:0:0: [sdc] CDB: [52803.361360] Read(10): 28 00 09 bd e1 af 00 00 08 00 [52803.362096] sd 2:0:0:0: [sdc] Unhandled error code [52803.362099] sd 2:0:0:0: [sdc] [52803.362101] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.362103] sd 2:0:0:0: [sdc] CDB: [52803.362104] Read(10): 28 00 07 0a 64 e7 00 00 08 00 [52803.362555] sd 2:0:0:0: [sdc] Unhandled error code [52803.362558] sd 2:0:0:0: [sdc] [52803.362560] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.362562] sd 2:0:0:0: [sdc] CDB: [52803.362563] Read(10): 28 00 00 67 65 d7 00 00 08 00 [52803.362747] sd 2:0:0:0: [sdc] Unhandled error code [52803.362750] sd 2:0:0:0: [sdc] [52803.362752] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.362754] sd 2:0:0:0: [sdc] CDB: [52803.362755] Read(10): 28 00 01 4c 12 6f 00 00 08 00 [52803.362977] sd 2:0:0:0: [sdc] Unhandled error code [52803.362980] sd 2:0:0:0: [sdc] [52803.362982] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.362984] sd 2:0:0:0: [sdc] CDB: [52803.362985] Read(10): 28 00 03 85 43 7f 00 00 08 00 [52803.365197] sd 2:0:0:0: [sdc] Unhandled error code [52803.365200] sd 2:0:0:0: [sdc] [52803.365202] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.365204] sd 2:0:0:0: [sdc] CDB: [52803.365206] Read(10): 28 00 07 15 46 4f 00 00 08 00 [52803.365524] sd 2:0:0:0: [sdc] Unhandled error code [52803.365527] sd 2:0:0:0: [sdc] [52803.365528] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.365531] sd 2:0:0:0: [sdc] CDB: [52803.365532] Read(10): 28 00 07 11 78 8f 00 00 08 00 [52803.369355] sd 2:0:0:0: [sdc] Unhandled error code [52803.369360] sd 2:0:0:0: [sdc] [52803.369362] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.369365] sd 2:0:0:0: [sdc] CDB: [52803.369366] Read(10): 28 00 09 bd e2 8f 00 00 08 00 [52803.370806] sd 2:0:0:0: [sdc] Unhandled error code [52803.370809] sd 2:0:0:0: [sdc] [52803.370811] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.370814] sd 2:0:0:0: [sdc] CDB: [52803.370815] Read(10): 28 00 07 1a c6 37 00 00 08 00 [52803.371630] sd 2:0:0:0: [sdc] Unhandled error code [52803.371634] sd 2:0:0:0: [sdc] [52803.371636] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.371639] sd 2:0:0:0: [sdc] CDB: [52803.371640] Read(10): 28 00 00 67 66 57 00 00 08 00 [52803.371863] sd 2:0:0:0: [sdc] Unhandled error code [52803.371867] sd 2:0:0:0: [sdc] [52803.371868] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.371871] sd 2:0:0:0: [sdc] CDB: [52803.371872] Read(10): 28 00 00 64 0b df 00 00 08 00 [52803.373467] sd 2:0:0:0: [sdc] Unhandled error code [52803.373470] sd 2:0:0:0: [sdc] [52803.373472] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.373474] sd 2:0:0:0: [sdc] CDB: [52803.373476] Read(10): 28 00 00 60 83 7f 00 00 08 00 [52803.373655] sd 2:0:0:0: [sdc] Unhandled error code [52803.373658] sd 2:0:0:0: [sdc] [52803.373660] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.373662] sd 2:0:0:0: [sdc] CDB: [52803.373663] Read(10): 28 00 00 60 83 7f 00 00 08 00 [52803.374063] sd 2:0:0:0: [sdc] Unhandled error code [52803.374066] sd 2:0:0:0: [sdc] [52803.374068] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.374070] sd 2:0:0:0: [sdc] CDB: [52803.374071] Read(10): 28 00 08 db d5 5f 00 00 08 00 [52803.374602] sd 2:0:0:0: [sdc] Unhandled error code [52803.374605] sd 2:0:0:0: [sdc] [52803.374607] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.374609] sd 2:0:0:0: [sdc] CDB: [52803.374611] Read(10): 28 00 07 1a bf a7 00 00 08 00 [52803.375259] sd 2:0:0:0: [sdc] Unhandled error code [52803.375264] sd 2:0:0:0: [sdc] [52803.375267] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.375270] sd 2:0:0:0: [sdc] CDB: [52803.375272] Read(10): 28 00 00 67 66 87 00 00 08 00 [52803.375515] sd 2:0:0:0: [sdc] Unhandled error code [52803.375520] sd 2:0:0:0: [sdc] [52803.375522] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.375526] sd 2:0:0:0: [sdc] CDB: [52803.375527] Read(10): 28 00 00 62 54 8f 00 00 08 00 [52803.378506] sd 2:0:0:0: [sdc] Unhandled error code [52803.378513] sd 2:0:0:0: [sdc] [52803.378516] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.378520] sd 2:0:0:0: [sdc] CDB: [52803.378522] Read(10): 28 00 00 67 66 bf 00 00 08 00 [52803.381048] sd 2:0:0:0: [sdc] Unhandled error code [52803.381054] sd 2:0:0:0: [sdc] [52803.381057] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.381061] sd 2:0:0:0: [sdc] CDB: [52803.381063] Read(10): 28 00 00 60 ae 77 00 00 08 00 [52803.381238] sd 2:0:0:0: [sdc] Unhandled error code [52803.381242] sd 2:0:0:0: [sdc] [52803.381245] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.381248] sd 2:0:0:0: [sdc] CDB: [52803.381250] Read(10): 28 00 00 60 ae 77 00 00 08 00 [52803.381382] sd 2:0:0:0: [sdc] Unhandled error code [52803.381386] sd 2:0:0:0: [sdc] [52803.381388] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.381392] sd 2:0:0:0: [sdc] CDB: [52803.381394] Read(10): 28 00 00 60 ae 77 00 00 08 00 [52803.381569] sd 2:0:0:0: [sdc] Unhandled error code [52803.381573] sd 2:0:0:0: [sdc] [52803.381575] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.381579] sd 2:0:0:0: [sdc] CDB: [52803.381581] Read(10): 28 00 00 60 ae 77 00 00 08 00 [52803.382295] sd 2:0:0:0: [sdc] Unhandled error code [52803.382300] sd 2:0:0:0: [sdc] [52803.382302] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.382306] sd 2:0:0:0: [sdc] CDB: [52803.382307] Read(10): 28 00 00 67 6a 87 00 00 08 00 [52803.382552] sd 2:0:0:0: [sdc] Unhandled error code [52803.382556] sd 2:0:0:0: [sdc] [52803.382558] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.382562] sd 2:0:0:0: [sdc] CDB: [52803.382564] Read(10): 28 00 00 67 6a af 00 00 08 00 [52803.382794] sd 2:0:0:0: [sdc] Unhandled error code [52803.382798] sd 2:0:0:0: [sdc] [52803.382801] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.382804] sd 2:0:0:0: [sdc] CDB: [52803.382806] Read(10): 28 00 00 67 6a c7 00 00 08 00 [52803.383269] sd 2:0:0:0: [sdc] Unhandled error code [52803.383274] sd 2:0:0:0: [sdc] [52803.383277] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.383280] sd 2:0:0:0: [sdc] CDB: [52803.383282] Read(10): 28 00 00 67 6a f7 00 00 08 00 [52803.383556] sd 2:0:0:0: [sdc] Unhandled error code [52803.383560] sd 2:0:0:0: [sdc] [52803.383563] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.383566] sd 2:0:0:0: [sdc] CDB: [52803.383568] Read(10): 28 00 00 67 6b 2f 00 00 08 00 [52803.386185] sd 2:0:0:0: [sdc] Unhandled error code [52803.386191] sd 2:0:0:0: [sdc] [52803.386194] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.386198] sd 2:0:0:0: [sdc] CDB: [52803.386200] Read(10): 28 00 01 4c 1b bf 00 00 08 00 [52803.386454] sd 2:0:0:0: [sdc] Unhandled error code [52803.386458] sd 2:0:0:0: [sdc] [52803.386461] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.386465] sd 2:0:0:0: [sdc] CDB: [52803.386467] Read(10): 28 00 07 1a b4 1f 00 00 08 00 [52803.388320] sd 2:0:0:0: [sdc] Unhandled error code [52803.388324] sd 2:0:0:0: [sdc] [52803.388326] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.388328] sd 2:0:0:0: [sdc] CDB: [52803.388329] Read(10): 28 00 09 bd de 17 00 00 08 00 [52803.388836] sd 2:0:0:0: [sdc] Unhandled error code [52803.388838] sd 2:0:0:0: [sdc] [52803.388839] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.388841] sd 2:0:0:0: [sdc] CDB: [52803.388842] Read(10): 28 00 07 57 9f ff 00 00 08 00 [52803.389124] sd 2:0:0:0: [sdc] Unhandled error code [52803.389126] sd 2:0:0:0: [sdc] [52803.389127] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.389129] sd 2:0:0:0: [sdc] CDB: [52803.389130] Read(10): 28 00 00 67 6b 8f 00 00 08 00 [52803.389244] sd 2:0:0:0: [sdc] Unhandled error code [52803.389246] sd 2:0:0:0: [sdc] [52803.389248] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.389249] sd 2:0:0:0: [sdc] CDB: [52803.389250] Read(10): 28 00 07 e9 ee ff 00 00 08 00 [52803.390386] sd 2:0:0:0: [sdc] Unhandled error code [52803.390389] sd 2:0:0:0: [sdc] [52803.390390] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.390392] sd 2:0:0:0: [sdc] CDB: [52803.390393] Read(10): 28 00 07 1a be 0f 00 00 08 00 [52803.390682] sd 2:0:0:0: [sdc] Unhandled error code [52803.390685] sd 2:0:0:0: [sdc] [52803.390686] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.390688] sd 2:0:0:0: [sdc] CDB: [52803.390689] Read(10): 28 00 00 67 6b e7 00 00 08 00 [52803.390804] sd 2:0:0:0: [sdc] Unhandled error code [52803.390806] sd 2:0:0:0: [sdc] [52803.390808] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.390809] sd 2:0:0:0: [sdc] CDB: [52803.390810] Read(10): 28 00 07 ed 17 bf 00 00 08 00 [52803.391449] sd 2:0:0:0: [sdc] Unhandled error code [52803.391451] sd 2:0:0:0: [sdc] [52803.391452] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.391454] sd 2:0:0:0: [sdc] CDB: [52803.391455] Read(10): 28 00 09 bd e5 9f 00 00 08 00 [52803.391956] sd 2:0:0:0: [sdc] Unhandled error code [52803.391958] sd 2:0:0:0: [sdc] [52803.391960] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.391961] sd 2:0:0:0: [sdc] CDB: [52803.391962] Read(10): 28 00 00 b5 86 a7 00 00 08 00 [52803.392293] sd 2:0:0:0: [sdc] Unhandled error code [52803.392295] sd 2:0:0:0: [sdc] [52803.392296] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.392298] sd 2:0:0:0: [sdc] CDB: [52803.392299] Read(10): 28 00 07 18 bf bf 00 00 08 00 [52803.392843] sd 2:0:0:0: [sdc] Unhandled error code [52803.392845] sd 2:0:0:0: [sdc] [52803.392846] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.392848] sd 2:0:0:0: [sdc] CDB: [52803.392849] Read(10): 28 00 00 60 b3 1f 00 00 08 00 [52803.392929] sd 2:0:0:0: [sdc] Unhandled error code [52803.392931] sd 2:0:0:0: [sdc] [52803.392932] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.392934] sd 2:0:0:0: [sdc] CDB: [52803.392935] Read(10): 28 00 00 60 b3 1f 00 00 08 00 [52803.393057] sd 2:0:0:0: [sdc] Unhandled error code [52803.393059] sd 2:0:0:0: [sdc] [52803.393060] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393062] sd 2:0:0:0: [sdc] CDB: [52803.393063] Read(10): 28 00 00 60 83 9f 00 00 08 00 [52803.393286] sd 2:0:0:0: [sdc] Unhandled error code [52803.393288] sd 2:0:0:0: [sdc] [52803.393289] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393291] sd 2:0:0:0: [sdc] CDB: [52803.393292] Read(10): 28 00 00 67 6b bf 00 00 08 00 [52803.393720] sd 2:0:0:0: [sdc] Unhandled error code [52803.393722] sd 2:0:0:0: [sdc] [52803.393723] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393725] sd 2:0:0:0: [sdc] CDB: [52803.393725] Read(10): 28 00 00 60 b2 17 00 00 08 00 [52803.393806] sd 2:0:0:0: [sdc] Unhandled error code [52803.393808] sd 2:0:0:0: [sdc] [52803.393809] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393810] sd 2:0:0:0: [sdc] CDB: [52803.393811] Read(10): 28 00 00 60 b2 17 00 00 08 00 [52803.393892] sd 2:0:0:0: [sdc] Unhandled error code [52803.393894] sd 2:0:0:0: [sdc] [52803.393895] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393896] sd 2:0:0:0: [sdc] CDB: [52803.393897] Read(10): 28 00 00 60 b2 17 00 00 08 00 [52803.393974] sd 2:0:0:0: [sdc] Unhandled error code [52803.393976] sd 2:0:0:0: [sdc] [52803.393977] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393978] sd 2:0:0:0: [sdc] CDB: [52803.393979] Read(10): 28 00 00 60 b2 17 00 00 08 00 [52803.394298] sd 2:0:0:0: [sdc] Unhandled error code [52803.394300] sd 2:0:0:0: [sdc] [52803.394302] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.394303] sd 2:0:0:0: [sdc] CDB: [52803.394304] Read(10): 28 00 00 5d a6 a7 00 00 08 00 [52803.395577] sd 2:0:0:0: [sdc] Unhandled error code [52803.395580] sd 2:0:0:0: [sdc] [52803.395582] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.395584] sd 2:0:0:0: [sdc] CDB: [52803.395585] Read(10): 28 00 00 00 01 9f 00 00 08 00 [52803.395721] sd 2:0:0:0: [sdc] Unhandled error code [52803.395724] sd 2:0:0:0: [sdc] [52803.395725] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.395726] sd 2:0:0:0: [sdc] CDB: [52803.395727] Read(10): 28 00 00 00 01 67 00 00 08 00 [52803.395843] sd 2:0:0:0: [sdc] Unhandled error code [52803.395845] sd 2:0:0:0: [sdc] [52803.395846] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.395847] sd 2:0:0:0: [sdc] CDB: [52803.395848] Read(10): 28 00 02 a8 33 77 00 00 08 00 [52803.395960] sd 2:0:0:0: [sdc] Unhandled error code [52803.395962] sd 2:0:0:0: [sdc] [52803.395963] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.395965] sd 2:0:0:0: [sdc] CDB: [52803.395965] Read(10): 28 00 00 b5 ae 7f 00 00 08 00 [52803.396077] sd 2:0:0:0: [sdc] Unhandled error code [52803.396079] sd 2:0:0:0: [sdc] [52803.396080] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396082] sd 2:0:0:0: [sdc] CDB: [52803.396083] Read(10): 28 00 00 63 64 bf 00 00 08 00 [52803.396193] sd 2:0:0:0: [sdc] Unhandled error code [52803.396195] sd 2:0:0:0: [sdc] [52803.396196] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396198] sd 2:0:0:0: [sdc] CDB: [52803.396199] Read(10): 28 00 07 1a e2 e7 00 00 08 00 [52803.396313] sd 2:0:0:0: [sdc] Unhandled error code [52803.396315] sd 2:0:0:0: [sdc] [52803.396316] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396318] sd 2:0:0:0: [sdc] CDB: [52803.396319] Read(10): 28 00 07 1a b9 87 00 00 08 00 [52803.396435] sd 2:0:0:0: [sdc] Unhandled error code [52803.396437] sd 2:0:0:0: [sdc] [52803.396438] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396439] sd 2:0:0:0: [sdc] CDB: [52803.396441] Read(10): 28 00 02 ce 8e df 00 00 08 00 [52803.396555] sd 2:0:0:0: [sdc] Unhandled error code [52803.396557] sd 2:0:0:0: [sdc] [52803.396558] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396560] sd 2:0:0:0: [sdc] CDB: [52803.396561] Read(10): 28 00 0e 66 6d f7 00 00 08 00 [52803.396769] sd 2:0:0:0: [sdc] Unhandled error code [52803.396770] sd 2:0:0:0: [sdc] [52803.396772] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396773] sd 2:0:0:0: [sdc] CDB: [52803.396774] Read(10): 28 00 07 1a e4 2f 00 00 08 00 [52803.396886] sd 2:0:0:0: [sdc] Unhandled error code [52803.396888] sd 2:0:0:0: [sdc] [52803.396889] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396890] sd 2:0:0:0: [sdc] CDB: [52803.396891] Read(10): 28 00 00 63 d4 3f 00 00 08 00 [52803.397002] sd 2:0:0:0: [sdc] Unhandled error code [52803.397004] sd 2:0:0:0: [sdc] [52803.397005] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.397007] sd 2:0:0:0: [sdc] CDB: [52803.397007] Read(10): 28 00 07 1a e4 1f 00 00 08 00 [52803.400074] sd 2:0:0:0: [sdc] Unhandled error code [52803.400078] sd 2:0:0:0: [sdc] [52803.400079] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400081] sd 2:0:0:0: [sdc] CDB: [52803.400082] Read(10): 28 00 07 16 c7 5f 00 00 08 00 [52803.400318] sd 2:0:0:0: [sdc] Unhandled error code [52803.400320] sd 2:0:0:0: [sdc] [52803.400322] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400323] sd 2:0:0:0: [sdc] CDB: [52803.400324] Read(10): 28 00 00 60 01 87 00 00 08 00 [52803.400408] sd 2:0:0:0: [sdc] Unhandled error code [52803.400410] sd 2:0:0:0: [sdc] [52803.400412] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400413] sd 2:0:0:0: [sdc] CDB: [52803.400414] Read(10): 28 00 00 60 01 0f 00 00 08 00 [52803.400564] sd 2:0:0:0: [sdc] Unhandled error code [52803.400566] sd 2:0:0:0: [sdc] [52803.400568] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400569] sd 2:0:0:0: [sdc] CDB: [52803.400570] Read(10): 28 00 00 5d d1 d7 00 00 08 00 [52803.400841] sd 2:0:0:0: [sdc] Unhandled error code [52803.400843] sd 2:0:0:0: [sdc] [52803.400844] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400846] sd 2:0:0:0: [sdc] CDB: [52803.400847] Read(10): 28 00 07 1a e3 47 00 00 08 00 [52803.401151] sd 2:0:0:0: [sdc] Unhandled error code [52803.401153] sd 2:0:0:0: [sdc] [52803.401155] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.401156] sd 2:0:0:0: [sdc] CDB: [52803.401157] Read(10): 28 00 07 1a b9 1f 00 00 08 00 [52803.401310] sd 2:0:0:0: [sdc] Unhandled error code [52803.401312] sd 2:0:0:0: [sdc] [52803.401313] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.401315] sd 2:0:0:0: [sdc] CDB: [52803.401316] Read(10): 28 00 00 a4 1b 57 00 00 08 00 [52803.401877] sd 2:0:0:0: [sdc] Unhandled error code [52803.401879] sd 2:0:0:0: [sdc] [52803.401880] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.401881] sd 2:0:0:0: [sdc] CDB: [52803.401882] Read(10): 28 00 0e 66 35 47 00 00 08 00 [52803.402032] sd 2:0:0:0: [sdc] Unhandled error code [52803.402033] sd 2:0:0:0: [sdc] [52803.402034] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402036] sd 2:0:0:0: [sdc] CDB: [52803.402037] Read(10): 28 00 06 30 69 ff 00 00 08 00 [52803.402148] sd 2:0:0:0: [sdc] Unhandled error code [52803.402150] sd 2:0:0:0: [sdc] [52803.402151] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402153] sd 2:0:0:0: [sdc] CDB: [52803.402154] Read(10): 28 00 09 bd d8 77 00 00 08 00 [52803.402263] sd 2:0:0:0: [sdc] Unhandled error code [52803.402265] sd 2:0:0:0: [sdc] [52803.402266] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402267] sd 2:0:0:0: [sdc] CDB: [52803.402268] Read(10): 28 00 00 5d ff 77 00 00 08 00 [52803.402376] sd 2:0:0:0: [sdc] Unhandled error code [52803.402378] sd 2:0:0:0: [sdc] [52803.402379] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402381] sd 2:0:0:0: [sdc] CDB: [52803.402382] Read(10): 28 00 00 5d ff 7f 00 00 08 00 [52803.402490] sd 2:0:0:0: [sdc] Unhandled error code [52803.402492] sd 2:0:0:0: [sdc] [52803.402493] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402495] sd 2:0:0:0: [sdc] CDB: [52803.402496] Read(10): 28 00 00 00 01 2f 00 00 08 00 [52803.402602] sd 2:0:0:0: [sdc] Unhandled error code [52803.402604] sd 2:0:0:0: [sdc] [52803.402605] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402607] sd 2:0:0:0: [sdc] CDB: [52803.402608] Read(10): 28 00 00 b5 ac 8f 00 00 08 00 [52803.402715] sd 2:0:0:0: [sdc] Unhandled error code [52803.402717] sd 2:0:0:0: [sdc] [52803.402719] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402720] sd 2:0:0:0: [sdc] CDB: [52803.402721] Read(10): 28 00 00 e1 18 ff 00 00 08 00 [52803.402829] sd 2:0:0:0: [sdc] Unhandled error code [52803.402831] sd 2:0:0:0: [sdc] [52803.402833] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402834] sd 2:0:0:0: [sdc] CDB: [52803.402835] Read(10): 28 00 09 bd ea cf 00 00 08 00 [52803.403999] sd 2:0:0:0: [sdc] Unhandled error code [52803.404001] sd 2:0:0:0: [sdc] [52803.404003] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.404005] sd 2:0:0:0: [sdc] CDB: [52803.404006] Read(10): 28 00 07 1a b8 f7 00 00 08 00 [52832.950225] sd 2:0:0:0: [sdc] Unhandled error code [52832.950230] sd 2:0:0:0: [sdc] [52832.950233] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52832.950235] sd 2:0:0:0: [sdc] CDB: [52832.950237] Write(10): 2a 00 00 60 bf 7f 00 00 08 00 [52832.950247] blk_update_request: 1077 callbacks suppressed [52832.950250] end_request: I/O error, dev sdc, sector 6340479 [52832.950253] quiet_error: 1077 callbacks suppressed [52832.950256] Buffer I/O error on device sdc1, logical block 792552 [52832.950258] lost page write due to I/O error on sdc1 [52832.950269] sd 2:0:0:0: [sdc] Unhandled error code [52832.950272] sd 2:0:0:0: [sdc] [52832.950273] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52832.950276] sd 2:0:0:0: [sdc] CDB: [52832.950277] Write(10): 2a 00 01 a5 f1 4f 00 00 08 00 [52832.950285] end_request: I/O error, dev sdc, sector 27652431 [52832.950287] Buffer I/O error on device sdc1, logical block 3456546 [52832.950289] lost page write due to I/O error on sdc1

    Read the article

  • Use Extension method to write cleaner code

    - by Fredrik N
    This blog post will show you step by step to refactoring some code to be more readable (at least what I think). Patrik Löwnedahl gave me some of the ideas when we where talking about making code much cleaner. The following is an simple application that will have a list of movies (Normal and Transfer). The task of the application is to calculate the total sum of each movie and also display the price of each movie. class Program { enum MovieType { Normal, Transfer } static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } else if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } } private static IEnumerable<MovieType> GetMovies() { return new List<MovieType>() { MovieType.Normal, MovieType.Transfer, MovieType.Normal }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the code above I’m using an enum, a good way to add types (isn’t it ;)). I also use one foreach loop to calculate the price, the loop has a condition statement to check what kind of movie is added to the list of movies. I want to reuse the foreach only to increase performance and let it do two things (isn’t that smart of me?! ;)). First of all I can admit, I’m not a big fan of enum. Enum often results in ugly condition statements and can be hard to maintain (if a new type is added we need to check all the code in our app to see if we use the enum somewhere else). I don’t often care about pre-optimizations when it comes to write code (of course I have performance in mind). I rather prefer to use two foreach to let them do one things instead of two. So based on what I don’t like and Martin Fowler’s Refactoring catalog, I’m going to refactoring this code to what I will call a more elegant and cleaner code. First of all I’m going to use Split Loop to make sure the foreach will do one thing not two, it will results in two foreach (Don’t care about performance here, if the results will results in bad performance, you can refactoring later, but computers are so fast to day, so iterating through a list is not often so time consuming.) Note: The foreach actually do four things, will come to is later. var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies) { if (movie == MovieType.Normal) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } } foreach (var movie in movies) { if (movie == MovieType.Transfer) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To remove the condition statement we can use the Where extension method added to the IEnumerable<T> and is located in the System.Linq namespace: foreach (var movie in movies.Where( m => m == MovieType.Normal)) { totalPriceOfNormalMovie += 2; Console.WriteLine("$2"); } foreach (var movie in movies.Where( m => m == MovieType.Transfer)) { totalPriceOfTransferMovie += 3; Console.WriteLine("$3"); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code will still do two things, calculate the total price, and display the price of the movie. I will not take care of it at the moment, instead I will focus on the enum and try to remove them. One way to remove enum is by using the Replace Conditional with Polymorphism. So I will create two classes, one base class called Movie, and one called MovieTransfer. The Movie class will have a property called Price, the Movie will now hold the price:   public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The following code has no enum and will use the new Movie classes instead: class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = 0; int totalPriceOfTransferMovie = 0; foreach (var movie in movies.Where( m => m is Movie)) { totalPriceOfNormalMovie += movie.Price; Console.WriteLine(movie.Price); } foreach (var movie in movies.Where( m => m is MovieTransfer)) { totalPriceOfTransferMovie += movie.Price; Console.WriteLine(movie.Price); } } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If you take a look at the foreach now, you can see it still actually do two things, calculate the price and display the price. We can do some more refactoring here by using the Sum extension method to calculate the total price of the movies:   static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfNormalMovie = movies.Where(m => m is Movie) .Sum(m => m.Price); int totalPriceOfTransferMovie = movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); foreach (var movie in movies.Where( m => m is Movie)) Console.WriteLine(movie.Price); foreach (var movie in movies.Where( m => m is MovieTransfer)) Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now when the Movie object will hold the price, there is no need to use two separate foreach to display the price of the movies in the list, so we can use only one instead: foreach (var movie in movies) Console.WriteLine(movie.Price); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we want to increase the Maintainability index we can use the Extract Method to move the Sum of the prices into two separate methods. The name of the method will explain what we are doing: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); foreach (var movie in movies) Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now to the last thing, I love the ForEach method of the List<T>, but the IEnumerable<T> doesn’t have it, so I created my own ForEach extension, here is the code of the ForEach extension method: public static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I will now replace the foreach by using this ForEach method: static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(m => Console.WriteLine(m.Price)); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ForEach on the movies will now display the price of the movie, but maybe we want to display the name of the movie etc, so we can use Extract Method by moving the lamdba expression into a method instead, and let the method explains what we are displaying: movies.ForEach(DisplayMovieInfo); private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now the refactoring is done! Here is the complete code:   class Program { static void Main(string[] args) { var movies = GetMovies(); int totalPriceOfMovie = TotalPriceOfMovie(movies); int totalPriceOfTransferMovie = TotalPriceOfMovieTransfer(movies); movies.ForEach(DisplayMovieInfo); } private static void DisplayMovieInfo(Movie movie) { Console.WriteLine(movie.Price); } private static int TotalPriceOfMovieTransfer(IEnumerable<Movie> movies) { return movies.Where(m => m is MovieTransfer) .Sum(m => m.Price); } private static int TotalPriceOfMovie(IEnumerable<Movie> movies) { return movies.Where(m => m is Movie) .Sum(m => m.Price); } private static IEnumerable<Movie> GetMovies() { return new List<Movie>() { new Movie(), new MovieTransfer(), new Movie() }; } } public class Movie { public virtual int Price { get { return 2; } } } public class MovieTransfer : Movie { public override int Price { get { return 3; } } } pulbic static class LoopExtensions { public static void ForEach<T>(this IEnumerable<T> values, Action<T> action) { Contract.Requires(values != null); Contract.Requires(action != null); foreach (var v in values) action(v); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I think the new code is much cleaner than the first one, and I love the ForEach extension on the IEnumerable<T>, I can use it for different kind of things, for example: movies.Where(m => m is Movie) .ForEach(DoSomething); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } By using the Where and ForEach extension method, some if statements can be removed and will make the code much cleaner. But the beauty is in the eye of the beholder. What would you have done different, what do you think will make the first example in the blog post look much cleaner than my results, comments are welcome! If you want to know when I will publish a new blog post, you can follow me on twitter: http://www.twitter.com/fredrikn

    Read the article

  • Grandparent – Parent – Child Reports in SQL Developer

    - by thatjeffsmith
    You’ll never see one of these family stickers on my car, but I promise not to judge…much. Parent – Child reports are pretty straightforward in Oracle SQL Developer. You have a ‘parent’ report, and then one or more ‘child’ reports which are based off of a value in a selected row or value from the parent. If you need a quick tutorial to get up to speed on the subject, go ahead and take 5 minutes Shortly before I left for vacation 2 weeks agao, I got an interesting question from one of my Twitter Followers: @thatjeffsmith any luck with the #Oracle awr reports in #SQLDeveloper?This is easy with multi generation parent>child Done in #dbvisualizer — Ronald Rood (@Ik_zelf) August 26, 2012 Now that I’m back from vacation, I can tell Ronald and everyone else that the answer is ‘Yes!’ And here’s how Time to Get Out Your XML Editor Don’t have one? That’s OK, SQL Developer can edit XML files. While the Reporting interface doesn’t surface the ability to create multi-generational reports, the underlying code definitely supports it. We just need to hack away at the XML that powers a report. For this example I’m going to start simple. A query that brings back DEPARTMENTs, then EMPLOYEES, then JOBs. We can build the first two parts of the report using the report editor. A Parent-Child report in Oracle SQL Developer (Departments – Employees) Save the Report to XML Once you’ve generated the XML file, open it with your favorite XML editor. For this example I’ll be using the build-it XML editor in SQL Developer. SQL Developer Reports in their raw XML glory! Right after the PDF element in the XML document, we can start a new ‘child’ report by inserting a DISPLAY element. I just copied and pasted the existing ‘display’ down so I wouldn’t have to worry about screwing anything up. Note I also needed to change the ‘master’ name so it wouldn’t confuse SQL Developer when I try to import/open a report that has the same name. Also I needed to update the binds tags to reflect the names from the child versus the original parent report. This is pretty easy to figure out on your own actually – I mean I’m no real developer and I got it pretty quick. <?xml version="1.0" encoding="UTF-8" ?> <displays> <display id="92857fce-0139-1000-8006-7f0000015340" type="" style="Table" enable="true"> <name><![CDATA[Grandparent]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.departments]]></sql> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Parent]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.employees where department_id = EPARTMENT_ID]]></sql> <binds> <bind id="DEPARTMENT_ID"> <prompt><![CDATA[DEPARTMENT_ID]]></prompt> <tooltip><![CDATA[DEPARTMENT_ID]]></tooltip> <value><![CDATA[NULL_VALUE]]></value> </bind> </binds> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Child]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.jobs where job_id = :JOB_ID]]></sql> <binds> <bind id="JOB_ID"> <prompt><![CDATA[JOB_ID]]></prompt> <tooltip><![CDATA[JOB_ID]]></tooltip> <value><![CDATA[NULL_VALUE]]></value> </bind> </binds> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> </display> </display> </display> </displays> Save the file and ‘Open Report…’ You’ll see your new report name in the tree. You just need to double-click it to open it. Here’s what it looks like running A 3 generation family Now Let’s Build an AWR Text Report Ronald wanted to have the ability to query AWR snapshots and generate the AWR reports. That requires a few inputs, including a START and STOP snapshot ID. That basically tells AWR what time period to use for generating the report. And here’s where it gets tricky. We’ll need to use aliases for the SNAP_ID column. Since we’re using the same column name from 2 different queries, we need to use different bind variables. Fortunately for us, SQL Developer’s clever enough to use the column alias as the BIND. Here’s what I mean: Grandparent Query SELECT snap_id start1, begin_interval_time, end_interval_time FROM dba_hist_snapshot ORDER BY 1 asc Parent Query SELECT snap_id stop1, begin_interval_time, end_interval_time, :START1 carry FROM dba_hist_snapshot WHERE snap_id > :START1 ORDER BY 1 asc And here’s where it gets even trickier – you can’t reference a bind from outside the parent query. My grandchild report can’t reference a value from the grandparent report. So I just carry the selected value down to the parent. In my parent query SELECT you see the ‘:START1′ at the end? That’s making that value available to me when I use it in my grandchild query. To complicate things a bit further, I can’t have a column name with a ‘:’ in it, or SQL Developer will get confused when I try to reference the value of the variable with the ‘:’ – and ‘::Name’ doesn’t work. But that’s OK, just alias it. Grandchild Query Select Output From Table(Dbms_Workload_Repository.Awr_Report_Text(1298953802, 1,:CARRY, :STOP1)); Ok, and the last trick – I hard-coded my report to use my database’s DB_ID and INST_ID into the AWR package call. Now a smart person could figure out a way to make that work on any database, but I got lazy and and ran out of time. But this should be far enough for you to take it from here. Here’s what my report looks like now: Caution: don’t run this if you haven’t licensed Enterprise Edition with Diagnostic Pack. The Raw XML for this AWR Report <?xml version="1.0" encoding="UTF-8" ?> <displays> <display id="927ba96c-0139-1000-8001-7f0000015340" type="" style="Table" enable="true"> <name><![CDATA[AWR Start Stop Report Final]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[SELECT snap_id start1, begin_interval_time, end_interval_time FROM dba_hist_snapshot ORDER BY 1 asc]]></sql> </query> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Stop SNAP_ID]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[SELECT snap_id stop1, begin_interval_time, end_interval_time, :START1 carry FROM dba_hist_snapshot WHERE snap_id > :START1 ORDER BY 1 asc]]></sql> </query> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[AWR Report]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[Select Output From Table(Dbms_Workload_Repository.Awr_Report_Text(1298953802, 1,:CARRY, :STOP1 ))]]></sql> </query> </display> </display> </display> </displays> Should We Build Support for Multiple Levels of Reports into the User Interface? Let us know! A comment here or a suggestion on our SQL Developer Exchange might help your case!

    Read the article

  • How to deploy the advanced search page using Module in SharePoint 2013

    - by ybbest
    Today, I’d like to show you how to deploy your custom advanced search page using module in Visual Studio 2012.Using a module is the way how SharePoint deploy all the publishing pages to the search centre. Browse to the template under 15 hive of SharePoint2013, then go to the SearchCenterFiles under Features(as shown below).Then open the Files.xml it shows how SharePoint using module to deploy advanced search.You can download the solution here. Now I am going to show you how to deploy your custom advanced search page.The feature is located  in the C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15\TEMPLATE\FEATURES\SearchCenterFiles . To deploy SharePoint advanced Search pages, you need to do the following: 1. Create SharePoint2013 project and then create a module item. 2. Find how Out of box SharePoint deploy the Advanced Search Page from Files.xml and copy and paste it into the elements.xml <File Url="advanced.aspx" Type="GhostableInLibrary"> <Property Name="PublishingPageLayout" Value="~SiteCollection/_catalogs/masterpage/AdvancedSearchLayout.aspx, $Resources:Microsoft.Office.Server.Search,SearchCenterAdvancedSearchTitle;" /> <Property Name="Title" Value="$Resources:Microsoft.Office.Server.Search,Search_Advanced_Page_Title;" /> <Property Name="ContentType" Value="$Resources:Microsoft.Office.Server.Search,contenttype_welcomepage_name;" /> <AllUsersWebPart WebPartZoneID="MainZone" WebPartOrder="1"> <![CDATA[ <WebPart xmlns="http://schemas.microsoft.com/WebPart/v2"> <Assembly>Microsoft.Office.Server.Search, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c</Assembly> <TypeName>Microsoft.Office.Server.Search.WebControls.AdvancedSearchBox</TypeName> <Title>$Resources:Microsoft.Office.Server.Search,AdvancedSearch_Webpart_Title;</Title> <Description>$Resources:Microsoft.Office.Server.Search,AdvancedSearch_Webpart_Description;</Description> <FrameType>None</FrameType> <AllowMinimize>true</AllowMinimize> <AllowRemove>true</AllowRemove> <IsVisible>true</IsVisible> <SearchResultPageURL xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">results.aspx</SearchResultPageURL> <TextQuerySectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">$Resources:Microsoft.Office.Server.Search,AdvancedSearch_FindDocsWith_Title;</TextQuerySectionLabelText> <ShowAndQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowAndQueryTextBox> <ShowPhraseQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowPhraseQueryTextBox> <ShowOrQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowOrQueryTextBox> <ShowNotQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowNotQueryTextBox> <ScopeSectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">$Resources:Microsoft.Office.Server.Search,AdvancedSearch_NarrowSearch_Title;</ScopeSectionLabelText> <ShowLanguageOptions xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowLanguageOptions> <ShowResultTypePicker xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowResultTypePicker> <ShowPropertiesSection xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowPropertiesSection> <PropertiesSectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">$Resources:Microsoft.Office.Server.Search,AdvancedSearch_AddPropRestrictions_Title;</PropertiesSectionLabelText> </WebPart> ]]> </AllUsersWebPart> </File> 3. Customize your SharePoint advanced Search Page by modifying the Advanced Search Box and Export the webpart and copy the webpart file to the elements under module. 4. Export the web part and copy the content of the web part file to the elements.xml in the module. <File Path="AdvancedSearchPage\advanced.aspx" Url="employeeAdvanced.aspx" Type="GhostableInLibrary"> <Property Name="PublishingPageLayout" Value="~SiteCollection/_catalogs/masterpage/AdvancedSearchLayout.aspx, $Resources:Microsoft.Office.Server.Search,SearchCenterAdvancedSearchTitle;" /> <Property Name="Title" Value="$Resources:Microsoft.Office.Server.Search,Search_Advanced_Page_Title;" /> <Property Name="ContentType" Value="$Resources:Microsoft.Office.Server.Search,contenttype_welcomepage_name;" /> <AllUsersWebPart WebPartZoneID="MainZone" WebPartOrder="1"> <![CDATA[ <WebPart xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://schemas.microsoft.com/WebPart/v2"> <Title>Advanced Search Box</Title> <FrameType>None</FrameType> <Description>Displays parameterized search options based on properties and combinations of words.</Description> <IsIncluded>true</IsIncluded> <ZoneID>MainZone</ZoneID> <PartOrder>1</PartOrder> <FrameState>Normal</FrameState> <Height /> <Width /> <AllowRemove>true</AllowRemove> <AllowZoneChange>true</AllowZoneChange> <AllowMinimize>true</AllowMinimize> <AllowConnect>true</AllowConnect> <AllowEdit>true</AllowEdit> <AllowHide>true</AllowHide> <IsVisible>true</IsVisible> <DetailLink /> <HelpLink /> <HelpMode>Modeless</HelpMode> <Dir>Default</Dir> <PartImageSmall /> <MissingAssembly>Cannot import this Web Part.</MissingAssembly> <PartImageLarge /> <IsIncludedFilter /> <Assembly>Microsoft.Office.Server.Search, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c</Assembly> <TypeName>Microsoft.Office.Server.Search.WebControls.AdvancedSearchBox</TypeName> <SearchResultPageURL xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">results.aspx</SearchResultPageURL> <TextQuerySectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">Find documents that have...</TextQuerySectionLabelText> <ShowAndQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowAndQueryTextBox> <AndQueryTextBoxLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowPhraseQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowPhraseQueryTextBox> <PhraseQueryTextBoxLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowOrQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowOrQueryTextBox> <OrQueryTextBoxLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowNotQueryTextBox xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowNotQueryTextBox> <NotQueryTextBoxLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ScopeSectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">Narrow the search...</ScopeSectionLabelText> <ShowScopes xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">false</ShowScopes> <ScopeLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <DisplayGroup xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">Advanced Search</DisplayGroup> <ShowLanguageOptions xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">false</ShowLanguageOptions> <LanguagesLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowResultTypePicker xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowResultTypePicker> <ResultTypeLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox" /> <ShowPropertiesSection xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">true</ShowPropertiesSection> <PropertiesSectionLabelText xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">Add property restrictions...</PropertiesSectionLabelText> <Properties xmlns="urn:schemas-microsoft-com:AdvancedSearchBox">&lt;root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;  &lt;LangDefs&gt;    &lt;LangDef DisplayName="Arabic" LangID="ar"/&gt;    &lt;LangDef DisplayName="Bengali" LangID="bn"/&gt;    &lt;LangDef DisplayName="Bulgarian" LangID="bg"/&gt;    &lt;LangDef DisplayName="Catalan" LangID="ca"/&gt;    &lt;LangDef DisplayName="Simplified Chinese" LangID="zh-cn"/&gt;    &lt;LangDef DisplayName="Traditional Chinese" LangID="zh-tw"/&gt;    &lt;LangDef DisplayName="Croatian" LangID="hr"/&gt;    &lt;LangDef DisplayName="Czech" LangID="cs"/&gt;    &lt;LangDef DisplayName="Danish" LangID="da"/&gt;    &lt;LangDef DisplayName="Dutch" LangID="nl"/&gt;    &lt;LangDef DisplayName="English" LangID="en"/&gt;    &lt;LangDef DisplayName="Finnish" LangID="fi"/&gt;    &lt;LangDef DisplayName="French" LangID="fr"/&gt;    &lt;LangDef DisplayName="German" LangID="de"/&gt;    &lt;LangDef DisplayName="Greek" LangID="el"/&gt;    &lt;LangDef DisplayName="Gujarati" LangID="gu"/&gt;    &lt;LangDef DisplayName="Hebrew" LangID="he"/&gt;    &lt;LangDef DisplayName="Hindi" LangID="hi"/&gt;    &lt;LangDef DisplayName="Hungarian" LangID="hu"/&gt;    &lt;LangDef DisplayName="Icelandic" LangID="is"/&gt;    &lt;LangDef DisplayName="Indonesian" LangID="id"/&gt;    &lt;LangDef DisplayName="Italian" LangID="it"/&gt;    &lt;LangDef DisplayName="Japanese" LangID="ja"/&gt;    &lt;LangDef DisplayName="Kannada" LangID="kn"/&gt;    &lt;LangDef DisplayName="Korean" LangID="ko"/&gt;    &lt;LangDef DisplayName="Latvian" LangID="lv"/&gt;    &lt;LangDef DisplayName="Lithuanian" LangID="lt"/&gt;    &lt;LangDef DisplayName="Malay" LangID="ms"/&gt;    &lt;LangDef DisplayName="Malayalam" LangID="ml"/&gt;    &lt;LangDef DisplayName="Marathi" LangID="mr"/&gt;    &lt;LangDef DisplayName="Norwegian" LangID="no"/&gt;    &lt;LangDef DisplayName="Polish" LangID="pl"/&gt;    &lt;LangDef DisplayName="Portuguese" LangID="pt"/&gt;    &lt;LangDef DisplayName="Punjabi" LangID="pa"/&gt;    &lt;LangDef DisplayName="Romanian" LangID="ro"/&gt;    &lt;LangDef DisplayName="Russian" LangID="ru"/&gt;    &lt;LangDef DisplayName="Slovak" LangID="sk"/&gt;    &lt;LangDef DisplayName="Slovenian" LangID="sl"/&gt;    &lt;LangDef DisplayName="Spanish" LangID="es"/&gt;    &lt;LangDef DisplayName="Swedish" LangID="sv"/&gt;    &lt;LangDef DisplayName="Tamil" LangID="ta"/&gt;    &lt;LangDef DisplayName="Telugu" LangID="te"/&gt;    &lt;LangDef DisplayName="Thai" LangID="th"/&gt;    &lt;LangDef DisplayName="Turkish" LangID="tr"/&gt;    &lt;LangDef DisplayName="Ukrainian" LangID="uk"/&gt;    &lt;LangDef DisplayName="Urdu" LangID="ur"/&gt;    &lt;LangDef DisplayName="Vietnamese" LangID="vi"/&gt;  &lt;/LangDefs&gt;  &lt;Languages&gt;    &lt;Language LangRef="en"/&gt;    &lt;Language LangRef="fr"/&gt;    &lt;Language LangRef="de"/&gt;    &lt;Language LangRef="ja"/&gt;    &lt;Language LangRef="zh-cn"/&gt;    &lt;Language LangRef="es"/&gt;    &lt;Language LangRef="zh-tw"/&gt;  &lt;/Languages&gt;  &lt;PropertyDefs&gt;    &lt;PropertyDef Name="Path" DataType="url" DisplayName="URL"/&gt;    &lt;PropertyDef Name="Size" DataType="integer" DisplayName="Size (bytes)"/&gt;    &lt;PropertyDef Name="Write" DataType="datetime" DisplayName="Last Modified Date"/&gt;    &lt;PropertyDef Name="FileName" DataType="text" DisplayName="Name"/&gt;    &lt;PropertyDef Name="Description" DataType="text" DisplayName="Description"/&gt;    &lt;PropertyDef Name="Title" DataType="text" DisplayName="Title"/&gt;    &lt;PropertyDef Name="Author" DataType="text" DisplayName="Author"/&gt;    &lt;PropertyDef Name="DocSubject" DataType="text" DisplayName="Subject"/&gt;    &lt;PropertyDef Name="DocKeywords" DataType="text" DisplayName="Keywords"/&gt;    &lt;PropertyDef Name="DocComments" DataType="text" DisplayName="Comments"/&gt;    &lt;PropertyDef Name="CreatedBy" DataType="text" DisplayName="Created By"/&gt;    &lt;PropertyDef Name="ModifiedBy" DataType="text" DisplayName="Last Modified By"/&gt;    &lt;PropertyDef Name="EmployeeNumber" DataType="text" DisplayName="EmployeeNumber"/&gt;    &lt;PropertyDef Name="EmployeeId" DataType="text" DisplayName="EmployeeId"/&gt;    &lt;PropertyDef Name="EmployeeFirstName" DataType="text" DisplayName="EmployeeFirstName"/&gt;    &lt;PropertyDef Name="EmployeeLastName" DataType="text" DisplayName="EmployeeLastName"/&gt;  &lt;/PropertyDefs&gt;  &lt;ResultTypes&gt;    &lt;ResultType DisplayName="Employee Document" Name="default"&gt;      &lt;KeywordQuery/&gt;      &lt;PropertyRef Name="EmployeeNumber" /&gt;      &lt;PropertyRef Name="EmployeeId" /&gt;      &lt;PropertyRef Name="EmployeeFirstName" /&gt;      &lt;PropertyRef Name="EmployeeLastName" /&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="All Results"&gt;      &lt;KeywordQuery/&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="Documents" Name="documents"&gt;      &lt;KeywordQuery&gt;IsDocument="True"&lt;/KeywordQuery&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="DocComments"/&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="DocKeywords"/&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="DocSubject"/&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;      &lt;PropertyRef Name="Title"/&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="Word Documents" Name="worddocuments"&gt;      &lt;KeywordQuery&gt;FileExtension="doc" OR FileExtension="docx" OR FileExtension="dot" OR FileExtension="docm" OR FileExtension="odt"&lt;/KeywordQuery&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="DocComments"/&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="DocKeywords"/&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="DocSubject"/&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;      &lt;PropertyRef Name="Title"/&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="Excel Documents" Name="exceldocuments"&gt;      &lt;KeywordQuery&gt;FileExtension="xls" OR FileExtension="xlsx" OR FileExtension="xlsm" OR FileExtension="xlsb" OR FileExtension="ods"&lt;/KeywordQuery&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="DocComments"/&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="DocKeywords"/&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="DocSubject"/&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;      &lt;PropertyRef Name="Title"/&gt;    &lt;/ResultType&gt;    &lt;ResultType DisplayName="PowerPoint Presentations" Name="presentations"&gt;      &lt;KeywordQuery&gt;FileExtension="ppt" OR FileExtension="pptx" OR FileExtension="pptm" OR FileExtension="odp"&lt;/KeywordQuery&gt;      &lt;PropertyRef Name="Author" /&gt;      &lt;PropertyRef Name="DocComments"/&gt;      &lt;PropertyRef Name="Description" /&gt;      &lt;PropertyRef Name="DocKeywords"/&gt;      &lt;PropertyRef Name="FileName" /&gt;      &lt;PropertyRef Name="Size" /&gt;      &lt;PropertyRef Name="DocSubject"/&gt;      &lt;PropertyRef Name="Path" /&gt;      &lt;PropertyRef Name="Write" /&gt;      &lt;PropertyRef Name="CreatedBy" /&gt;      &lt;PropertyRef Name="ModifiedBy" /&gt;      &lt;PropertyRef Name="Title"/&gt;    &lt;/ResultType&gt;  &lt;/ResultTypes&gt;&lt;/root&gt;</Properties> </WebPart> ]]> </AllUsersWebPart> </File> 5.Deploy your custom solution and you will have a custom advanced search page.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

< Previous Page | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018  | Next Page >