Search Results

Search found 27973 results on 1119 pages for 'power point vba'.

Page 116/1119 | < Previous Page | 112 113 114 115 116 117 118 119 120 121 122 123  | Next Page >

  • Dependency injection: At what point am I allowed to create a new object?

    - by Gaz_Edge
    I am refactoring a PHP application, and I am trying to do has much dependency injection (DI) as possible. I feel like I've got a good grasp of how it works, and I can certainly see my classes becoming a lot leaner and more robust. I'm refactoring so that I can inject a dependency rather than create a new object within the class, but at some point I am going to have to create some objects, that is, use the dreaded new keyword. The problem I have now run into is at what point can I actually create new objects? It's looking like I'll end up at a top level class, creating loads of new objects as there is no where else to go. This feels wrong. I've read some blogs that use factory classes to create all the objects, and then you inject the factory into other classes. You can then call the factory methods, and the factory creates the new object for you. My concern with doing this is now my factory classes are going to be a new free-for-all! I guess this may be OK as they are factory classes, but are there some rules to stick to when using a factory pattern and DI, or am I going way off the mark here?

    Read the article

  • Dependency Injection: What point am I allowed to create a new object?

    - by Gaz_Edge
    I am refactoring a php application and I am trying to do has much dependency injection as possible. I feel like I've got a good grasp of how it works, and I can certainly see my classes becoming a lot leaner and more robust. Im refactoring so that I can inject a dependency rather than create a new object within the class, but at some point I am going to have to create some objects i.e. use the dreaded new keyword. The problem I have now run into is at what point can I actually create new objects? Its looking like I'll end up at a top level class, creating loads of new objects as there is no where else to go. This feels wrong. I've read some blogs that use factory classes to create all the objects, and then you inject the factory into other classes. You can then call the factory methods, and the factory creates the new object for you. My concern with doing this is now my factory classes are going to be a new free-for-all! I guess this may be ok as they are factory classes, but are there some rules to stick to when using factory pattern and DI, or am I going way off the mark here.

    Read the article

  • SPARC T4-4 Beats 8-CPU IBM POWER7 on TPC-H @3000GB Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered a world record TPC-H @3000GB benchmark result for systems with four processors. This result beats eight processor results from IBM (POWER7) and HP (x86). The SPARC T4-4 server also delivered better performance per core than these eight processor systems from IBM and HP. Comparisons below are based upon system to system comparisons, highlighting Oracle's complete software and hardware solution. This database world record result used Oracle's Sun Storage 2540-M2 arrays (rotating disk) connected to a SPARC T4-4 server running Oracle Solaris 11 and Oracle Database 11g Release 2 demonstrating the power of Oracle's integrated hardware and software solution. The SPARC T4-4 server based configuration achieved a TPC-H scale factor 3000 world record for four processor systems of 205,792 QphH@3000GB with price/performance of $4.10/QphH@3000GB. The SPARC T4-4 server with four SPARC T4 processors (total of 32 cores) is 7% faster than the IBM Power 780 server with eight POWER7 processors (total of 32 cores) on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 36% better in price performance compared to the IBM Power 780 server on the TPC-H @3000GB Benchmark. The SPARC T4-4 server is 29% faster than the IBM Power 780 for data loading. The SPARC T4-4 server is up to 3.4 times faster than the IBM Power 780 server for the Refresh Function. The SPARC T4-4 server with four SPARC T4 processors is 27% faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 52% faster than the HP ProLiant DL980 G7 server for data loading. The SPARC T4-4 server is up to 3.2 times faster than the HP ProLiant DL980 G7 for the Refresh Function. The SPARC T4-4 server achieved a peak IO rate from the Oracle database of 17 GB/sec. This rate was independent of the storage used, as demonstrated by the TPC-H @3000TB benchmark which used twelve Sun Storage 2540-M2 arrays (rotating disk) and the TPC-H @1000TB benchmark which used four Sun Storage F5100 Flash Array devices (flash storage). [*] The SPARC T4-4 server showed linear scaling from TPC-H @1000GB to TPC-H @3000GB. This demonstrates that the SPARC T4-4 server can handle the increasingly larger databases required of DSS systems. [*] The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase. [*] The TPC believes that comparisons of results published with different scale factors are misleading and discourages such comparisons. Performance Landscape The table lists the leading TPC-H @3000GB results for non-clustered systems. TPC-H @3000GB, Non-Clustered Systems System Processor P/C/T – Memory Composite(QphH) $/perf($/QphH) Power(QppH) Throughput(QthH) Database Available SPARC Enterprise M9000 3.0 GHz SPARC64 VII+ 64/256/256 – 1024 GB 386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11 SPARC T4-4 3.0 GHz SPARC T4 4/32/256 – 1024 GB 205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12 SPARC Enterprise M9000 2.88 GHz SPARC64 VII 32/128/256 – 512 GB 198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10 IBM Power 780 4.1 GHz POWER7 8/32/128 – 1024 GB 192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64/128 – 512 GB 162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10 P/C/T = Processors, Cores, Threads QphH = the Composite Metric (bigger is better) $/QphH = the Price/Performance metric in USD (smaller is better) QppH = the Power Numerical Quantity QthH = the Throughput Numerical Quantity The following table lists data load times and refresh function times during the power run. TPC-H @3000GB, Non-Clustered Systems Database Load & Database Refresh System Processor Data Loading(h:m:s) T4Advan RF1(sec) T4Advan RF2(sec) T4Advan SPARC T4-4 3.0 GHz SPARC T4 04:08:29 1.0x 67.1 1.0x 39.5 1.0x IBM Power 780 4.1 GHz POWER7 05:51:50 1.5x 147.3 2.2x 133.2 3.4x HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 08:35:17 2.1x 173.0 2.6x 126.3 3.2x Data Loading = database load time RF1 = power test first refresh transaction RF2 = power test second refresh transaction T4 Advan = the ratio of time to T4 time Complete benchmark results found at the TPC benchmark website http://www.tpc.org. Configuration Summary and Results Hardware Configuration: SPARC T4-4 server 4 x SPARC T4 3.0 GHz processors (total of 32 cores, 128 threads) 1024 GB memory 8 x internal SAS (8 x 300 GB) disk drives External Storage: 12 x Sun Storage 2540-M2 array storage, each with 12 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 Enterprise Edition Audited Results: Database Size: 3000 GB (Scale Factor 3000) TPC-H Composite: 205,792.0 QphH@3000GB Price/performance: $4.10/QphH@3000GB Available: 05/31/2012 Total 3 year Cost: $843,656 TPC-H Power: 190,325.1 TPC-H Throughput: 222,515.9 Database Load Time: 4:08:29 Benchmark Description The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC. TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system. The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor. Key Points and Best Practices Twelve Sun Storage 2540-M2 arrays were used for the benchmark. Each Sun Storage 2540-M2 array contains 12 15K RPM drives and is connected to a single dual port 8Gb FC HBA using 2 ports. Each Sun Storage 2540-M2 array showed 1.5 GB/sec for sequential read operations and showed linear scaling, achieving 18 GB/sec with twelve Sun Storage 2540-M2 arrays. These were stand alone IO tests. The peak IO rate measured from the Oracle database was 17 GB/sec. Oracle Solaris 11 11/11 required very little system tuning. Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric in which to compare systems. The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle Database parallel processes. Six Sun Storage 2540-M2 arrays were mirrored to another six Sun Storage 2540-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays. The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.) See Also Transaction Processing Performance Council (TPC) Home Page Ideas International Benchmark Page SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Sun Storage 2540-M2 Array oracle.com OTN Disclosure Statement TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

    Read the article

  • Optimized OCR black/white pixel algorithm

    - by eagle
    I am writing a simple OCR solution for a finite set of characters. That is, I know the exact way all 26 letters in the alphabet will look like. I am using C# and am able to easily determine if a given pixel should be treated as black or white. I am generating a matrix of black/white pixels for every single character. So for example, the letter I (capital i), might look like the following: 01110 00100 00100 00100 01110 Note: all points, which I use later in this post, assume that the top left pixel is (0, 0), bottom right pixel is (4, 4). 1's represent black pixels, and 0's represent white pixels. I would create a corresponding matrix in C# like this: CreateLetter("I", new List<List<bool>>() { new List<bool>() { false, true, true, true, false }, new List<bool>() { false, false, true, false, false }, new List<bool>() { false, false, true, false, false }, new List<bool>() { false, false, true, false, false }, new List<bool>() { false, true, true, true, false } }); I know I could probably optimize this part by using a multi-dimensional array instead, but let's ignore that for now, this is for illustrative purposes. Every letter is exactly the same dimensions, 10px by 11px (10px by 11px is the actual dimensions of a character in my real program. I simplified this to 5px by 5px in this posting since it is much easier to "draw" the letters using 0's and 1's on a smaller image). Now when I give it a 10px by 11px part of an image to analyze with OCR, it would need to run on every single letter (26) on every single pixel (10 * 11 = 110) which would mean 2,860 (26 * 110) iterations (in the worst case) for every single character. I was thinking this could be optimized by defining the unique characteristics of every character. So, for example, let's assume that the set of characters only consists of 5 distinct letters: I, A, O, B, and L. These might look like the following: 01110 00100 00100 01100 01000 00100 01010 01010 01010 01000 00100 01110 01010 01100 01000 00100 01010 01010 01010 01000 01110 01010 00100 01100 01110 After analyzing the unique characteristics of every character, I can significantly reduce the number of tests that need to be performed to test for a character. For example, for the "I" character, I could define it's unique characteristics as having a black pixel in the coordinate (3, 0) since no other characters have that pixel as black. So instead of testing 110 pixels for a match on the "I" character, I reduced it to a 1 pixel test. This is what it might look like for all these characters: var LetterI = new OcrLetter() { Name = "I", BlackPixels = new List<Point>() { new Point (3, 0) } } var LetterA = new OcrLetter() { Name = "A", WhitePixels = new List<Point>() { new Point(2, 4) } } var LetterO = new OcrLetter() { Name = "O", BlackPixels = new List<Point>() { new Point(3, 2) }, WhitePixels = new List<Point>() { new Point(2, 2) } } var LetterB = new OcrLetter() { Name = "B", BlackPixels = new List<Point>() { new Point(3, 1) }, WhitePixels = new List<Point>() { new Point(3, 2) } } var LetterL = new OcrLetter() { Name = "L", BlackPixels = new List<Point>() { new Point(1, 1), new Point(3, 4) }, WhitePixels = new List<Point>() { new Point(2, 2) } } This is challenging to do manually for 5 characters and gets much harder the greater the amount of letters that are added. You also want to guarantee that you have the minimum set of unique characteristics of a letter since you want it to be optimized as much as possible. I want to create an algorithm that will identify the unique characteristics of all the letters and would generate similar code to that above. I would then use this optimized black/white matrix to identify characters. How do I take the 26 letters that have all their black/white pixels filled in (e.g. the CreateLetter code block) and convert them to an optimized set of unique characteristics that define a letter (e.g. the new OcrLetter() code block)? And how would I guarantee that it is the most efficient definition set of unique characteristics (e.g. instead of defining 6 points as the unique characteristics, there might be a way to do it with 1 or 2 points, as the letter "I" in my example was able to). An alternative solution I've come up with is using a hash table, which will reduce it from 2,860 iterations to 110 iterations, a 26 time reduction. This is how it might work: I would populate it with data similar to the following: Letters["01110 00100 00100 00100 01110"] = "I"; Letters["00100 01010 01110 01010 01010"] = "A"; Letters["00100 01010 01010 01010 00100"] = "O"; Letters["01100 01010 01100 01010 01100"] = "B"; Now when I reach a location in the image to process, I convert it to a string such as: "01110 00100 00100 00100 01110" and simply find it in the hash table. This solution seems very simple, however, this still requires 110 iterations to generate this string for each letter. In big O notation, the algorithm is the same since O(110N) = O(2860N) = O(N) for N letters to process on the page. However, it is still improved by a constant factor of 26, a significant improvement (e.g. instead of it taking 26 minutes, it would take 1 minute). Update: Most of the solutions provided so far have not addressed the issue of identifying the unique characteristics of a character and rather provide alternative solutions. I am still looking for this solution which, as far as I can tell, is the only way to achieve the fastest OCR processing. I just came up with a partial solution: For each pixel, in the grid, store the letters that have it as a black pixel. Using these letters: I A O B L 01110 00100 00100 01100 01000 00100 01010 01010 01010 01000 00100 01110 01010 01100 01000 00100 01010 01010 01010 01000 01110 01010 00100 01100 01110 You would have something like this: CreatePixel(new Point(0, 0), new List<Char>() { }); CreatePixel(new Point(1, 0), new List<Char>() { 'I', 'B', 'L' }); CreatePixel(new Point(2, 0), new List<Char>() { 'I', 'A', 'O', 'B' }); CreatePixel(new Point(3, 0), new List<Char>() { 'I' }); CreatePixel(new Point(4, 0), new List<Char>() { }); CreatePixel(new Point(0, 1), new List<Char>() { }); CreatePixel(new Point(1, 1), new List<Char>() { 'A', 'B', 'L' }); CreatePixel(new Point(2, 1), new List<Char>() { 'I' }); CreatePixel(new Point(3, 1), new List<Char>() { 'A', 'O', 'B' }); // ... CreatePixel(new Point(2, 2), new List<Char>() { 'I', 'A', 'B' }); CreatePixel(new Point(3, 2), new List<Char>() { 'A', 'O' }); // ... CreatePixel(new Point(2, 4), new List<Char>() { 'I', 'O', 'B', 'L' }); CreatePixel(new Point(3, 4), new List<Char>() { 'I', 'A', 'L' }); CreatePixel(new Point(4, 4), new List<Char>() { }); Now for every letter, in order to find the unique characteristics, you need to look at which buckets it belongs to, as well as the amount of other characters in the bucket. So let's take the example of "I". We go to all the buckets it belongs to (1,0; 2,0; 3,0; ...; 3,4) and see that the one with the least amount of other characters is (3,0). In fact, it only has 1 character, meaning it must be an "I" in this case, and we found our unique characteristic. You can also do the same for pixels that would be white. Notice that bucket (2,0) contains all the letters except for "L", this means that it could be used as a white pixel test. Similarly, (2,4) doesn't contain an 'A'. Buckets that either contain all the letters or none of the letters can be discarded immediately, since these pixels can't help define a unique characteristic (e.g. 1,1; 4,0; 0,1; 4,4). It gets trickier when you don't have a 1 pixel test for a letter, for example in the case of 'O' and 'B'. Let's walk through the test for 'O'... It's contained in the following buckets: // Bucket Count Letters // 2,0 4 I, A, O, B // 3,1 3 A, O, B // 3,2 2 A, O // 2,4 4 I, O, B, L Additionally, we also have a few white pixel tests that can help: (I only listed those that are missing at most 2). The Missing Count was calculated as (5 - Bucket.Count). // Bucket Missing Count Missing Letters // 1,0 2 A, O // 1,1 2 I, O // 2,2 2 O, L // 3,4 2 O, B So now we can take the shortest black pixel bucket (3,2) and see that when we test for (3,2) we know it is either an 'A' or an 'O'. So we need an easy way to tell the difference between an 'A' and an 'O'. We could either look for a black pixel bucket that contains 'O' but not 'A' (e.g. 2,4) or a white pixel bucket that contains an 'O' but not an 'A' (e.g. 1,1). Either of these could be used in combination with the (3,2) pixel to uniquely identify the letter 'O' with only 2 tests. This seems like a simple algorithm when there are 5 characters, but how would I do this when there are 26 letters and a lot more pixels overlapping? For example, let's say that after the (3,2) pixel test, it found 10 different characters that contain the pixel (and this was the least from all the buckets). Now I need to find differences from 9 other characters instead of only 1 other character. How would I achieve my goal of getting the least amount of checks as possible, and ensure that I am not running extraneous tests?

    Read the article

  • Is the Observer pattern adequate for this kind of scenario?

    - by Omega
    I'm creating a simple game development framework with Ruby. There is a node system. A node is a game entity, and it has position. It can have children nodes (and one parent node). Children are always drawn relatively to their parent. Nodes have a @position field. Anyone can modify it. When such position is modified, the node must update its children accordingly to properly draw them relatively to it. @position contains a Point instance (a class with x and y properties, plus some other useful methods). I need to know when a node's @position's state changes, so I can tell the node to update its children. This is easy if the programmer does something like this: @node.position = Point.new(300,300) Because it is equivalent to calling this: # Code in the Node class def position=(newValue) @position = newValue update_my_children # <--- I know that the position changed end But, I'm lost when this happens: @node.position.x = 300 The only one that knows that the position changed is the Point instance stored in the @position property of the node. But I need the node to be notified! It was at this point that I considered the Observer pattern. Basically, Point is now observable. When a node's position property is given a new Point instance (through the assignment operator), it will stop observing the previous Point it had (if any), and start observing the new one. When a Point instance gets a state change, all observers (the node owning it) will be notified, so now my node can update its children when the position changes. A problem is when this happens: @someNode.position = @anotherNode.position This means that two nodes are observing the same point. If I change one of the node's position, the other would change as well. To fix this, when a position is assigned, I plan to create a new Point instance, copy the passed argument's x and y, and store my newly created point instead of storing the passed one. Another problem I fear is this: somePoint = @node.position somePoint.x = 500 This would, technically, modify @node's position. I'm not sure if anyone would be expecting that behavior. I'm under the impression that people see Point as some kind of primitive rather than an actual object. Is this approach even reasonable? Reasons I'm feeling skeptical: I've heard that the Observer pattern should be used with, well, many observers. Technically, in this scenario there is only one observer at a time. When assigning a node's position as another's (@someNode.position = @anotherNode.position), where I create a whole new instance rather than storing the passed point, it feels hackish, or even inefficient.

    Read the article

  • Why is cpu power management not working in Server 2012 with Hyper-V?

    - by Roland
    We've been using Server2008R2 with Hyper-V for a couple of years now and chose it at the time because of its ability to make use of Intel SpeedStep and AMD PowerNow! Now with Server 2012 and Hyper-V V3, all power management abilities seem to be gone. The CPUs are always at full speed and our servers need twice the energy as before while idling. (Yes, the CPU P-states are enabled in the BIOS) Is this by design? Is there a workaround to enable cpu power management again? Despite the great new features of Hyper-V 3, this would be a show-stopper for us since we are very concerned about energy consumption.

    Read the article

  • Is it really necessary to call /bin/sync twice before an unmanaged power-off?

    - by Jeremy Friesner
    Hi all, My company sells an "embedded device" which is implemented as a headless Linux box with ext4 on an internal SSD. Some of our users have a habit of doing a "save current settings" on this box, and then cutting power to the unit as soon as the unit reports that the save completed (ie two seconds later). This was causing occasional corruption of the saved files, as the data wouldn't always get flushed to the SSD before the power went out. So I tweaked my software to run /bin/sync immediately after writing the file (after closing the file handle but before notifying the user that the save completed). This appears to fix the issue, but my coworker says that one call to /bin/sync isn't sufficient, and that to be really safe I ought to run /bin/sync twice in a row. That sounds like paranoia to me... Perhaps a habit from earlier versions of Linux or unix whose sync utility didn't work reliably. Does his advice have merit, or should one call to /bin/sync suffice?

    Read the article

  • Does Wake-on-LAN from power state S5 require any OS configuration?

    - by TARehman
    I am configuring a HTPC which I would like to be able to power on using Wake-on-LAN, from the S5 state (full shutdown, still plugged in). The system is running Linux Mint 14 Cinnamon. I'm getting some conflicting information in my searching on the Net. I am not concerned with using WoL to change the state from standby or hibernate to on. Because of the current interface to our TV, the system must be either turned on or turned off. So, basically, this system will cycle from S0 to S5, and from S5 back to S0, and so on. Some tutorials suggest that I need to use ethtool to configure things after enabling WoL in my BIOS, but my understanding is that doing an S5 - S0 power on only requires the BIOS to be configured (since when the computer is in state S5, the OS hasn't even been loaded anyway). Can I use WoL with only the BIOS configured to go from state S5 to S0, or will I need to configure the OS as well?

    Read the article

  • How do I make a partition usable in windows 7 after power loss?

    - by user1306322
    A few days ago I was installing some software and power went down. When I rebooted, the partition to which the software was installed was not accessible. Disk manager shows that it's there, but doesn't show type, if it's healthy and gives me an error when trying to read its properties. The problem seems to be common after power loss, people recommend solving it by assigning a letter to the partition via DiskPart utility, but partition isn't listed in my case. I can access that partition with bootable OSs (like bootable Ubuntu or winXP) and all the files are there, but another installation of Windows 7 gives me the same results as the original. I could just copy all data to another disk if there was enough space, but unfortunately the size of partition I'm having problems with is 1.1TB. How do I regain access to the partition in my original Windows 7 installation without losing any data?

    Read the article

  • Can I run my MacBook in clamshell mode without being connected to power?

    - by kch
    Hi, At home, I run my MacBook in clamshell mode (closed lid, external display). This works fine when you're connected to the power adapter, but it doesn't work when running on battery. That's how it's supposed to be and Apple has some kb entry on the issue. But it's also lame. You can prevent the machine from sleeping when closed by running InsomniaX, but then it'll assume the builtin display is still active, so you end up with a two-display setup when you really only want the external. This is obviously less than ideal. So, is there any work around, hack, utility, black magic that I can use to make it run in clamshell mode while strictly on battery power? Also, bonus points for a solution that makes the AC status not affect the machine state at all. (Like, you know, it does normally, when not in clamshell.)

    Read the article

  • Computer only booting after POWER ON/OFF 10 times or more?

    - by Jan Gressmann
    Hi fellow geeks, recently my computer started to behave like an old car and won't start up anymore unless I flip the power switch repeatedly. What happens when I power it on: CPU fans spins briefly and very slowly, then it stops Same with GPU fan No BIOS beeps or HDD activity Screen stays black After turning it on and off for like 10 times, it'll eventually boot like normal and run smooth without any problems what-so-ever. But I'm worried it might eventually die completely. Anyone know the most common cause of this? Maybe I should just leave the computer powered on? :)

    Read the article

  • Find all A^x in a given range

    - by Austin Henley
    I need to find all monomials in the form AX that when evaluated falls within a range from m to n. It is safe to say that the base A is greater than 1, the power X is greater than 2, and only integers need to be used. For example, in the range 50 to 100, the solutions would be: 2^6 3^4 4^3 My first attempt to solve this was to brute force all combinations of A and X that make "sense." However this becomes too slow when used for very large numbers in a big range since these solutions are used in part of much more intensive processing. Here is the code: def monoSearch(min, max): base = 2 power = 3 while 1: while base**power < max: if base**power > min: print "Found " + repr(base) + "^" + repr(power) + " = " + repr(base**power) power = power + 1 base = base + 1 power = 3 if base**power > max: break I could remove one base**power by saving the value in a temporary variable but I don't think that would make a drastic effect. I also wondered if using logarithms would be better or if there was a closed form expression for this. I am open to any optimizations or alternatives to finding the solutions.

    Read the article

  • Distance between a line and a point in Objective-C ?

    - by micropsari
    Hello, I have 2 class : // point : (x, y) @interface ICPoint : NSObject { NSInteger x; NSInteger y; } // line : y= ax + b @interface ICLine : NSObject { float a; float b; } and this method: // return the distance between a line and a point -(NSInteger) distance:(ICPoint *)point { return fabs(-a*point.x +point.y - b) / sqrt(a*a + 1); } The formula seems right (based on wikipedia), but the results are wrong... why ? Thanks !

    Read the article

  • What is the start point in game development? Where to start?

    - by Dragon
    I understand, I'm not unique with such a question, there are a lot of questions like this one. But I hope you'll take a minute and maybe can give me a piece of advice. I have an idea to develop games, but I don't know where is the start point in game development. The learning curve isn't as straight as in learning of a programming language, but I want to give it a try. I have some experience with OOP and programming in general. I know (not too deep) C#, Java programming languages. I searched info on where to start, read a lot of blogs, forums and so on. Once I decided "stop wandering around, just start develop a game" and I started. At the moment I have a console version of very simple game (RPS - rock-paper-scissors) developed with C#. It has different modes: "player vs cpu" and "player vs player". Some time later I looked at the code and decided that it should be refactored or even redeveloped from the scratch. And I thought that time "GUI is what I need. I can add logic later." And now I'm here. I've already decided to make RPS with GUI, then make multiplayer and so on. I'm not thinking about 3D now, 2D is enough. It doesn't matter what language to use: C# or Java, I found frameworks for both - XNA (C#) and Slick (Java). Both are good for 2D game development. But I know nothing about sprites, how to bind objects on the screen and so on. You can say "you don't need it for such simple game like RPS", but RPS is the beginning, I have some ideas like "Tower Defense" game... you know, everybody has ideas, wishes.... and this knowledge is useful and in some way obligatory. So what is the start point to achieve my plans, ideas, wishes? Where to start? Is it possible to make game development learning curve a little bit straight? Or there're ways that amateur and game development beginners use for years? Thank you for you answers and advise in advance. P.S Sorry for that this post turned out an essay, but I tried to express my wish to start acting. Hope I managed to do it.

    Read the article

  • Will Beej's Guide to Network programming point me the right way to be able to make multiplayer games and a web broswer?

    - by Logan545
    I'm new to socket programming in C, and I've found the Beej's Guide to Networking programming. It looks fine and all, however, I just wanted to ask whether this tutorial will point me in the right direction in terms of network programming. I plan to build a game in opengl that will be multiplayer using c+ and possibly a web browser. I know this tutorial would by no means teach me how to do this, but would this be a good way to start off on my path?

    Read the article

  • Deux hackers mettent au point un robot capable de casser les codes PIN des smartphones Android en moins de 24 heures

    Deux hackers mettent au point un robot capable de casser les codes PIN des smartphones Android En moins de 24 heuresEn termes de sécurité, le mot de passe constitue la première barrière à laquelle doit souvent faire face un pirate informatique voulant s'approprier les informations confidentielles d'un utilisateur.D'après nos confrères de TheRegister, une récente étude réalisée par la firme de gestion des périphériques mobiles d'entreprise Fiberlink, révèle que 93 % des employés y ayant pris part utilisent un code PIN facilement cassable pour protéger leurs smartphones et tablettes tactiles.De plus en plus de personnes ont recours aux périphériques mobiles pour effectuer leurs travaux d'entrepris...

    Read the article

  • Windows Phone 8 : Microsoft fait le point sur les nouvelles APIs, outils et fonctionnalités de l'OS mobile pour les développeurs

    Windows Phone 8 : Microsoft fait le point sur les nouvelles APIs outils et fonctionnalités de l'OS mobile pour les développeurs Microsoft a officiellement présenté la nouvelle version de son système d'exploitation mobile Windows Phone 8 la semaine dernière, ainsi que ses nouvelles fonctionnalités pour les consommateurs. Qu'est-ce que l'OS apporte concrètement aux développeurs d'applications mobiles ? C'est la question à laquelle répond l'éditeur dans un nouveau billet de blog sur l'espace de communication dédié à l'OS. [IMG]http://ftp-developpez.com/gordon-fowler/WP8/WP8%20lancement/WindowsPhone8%20LockScreen.jpg[/IMG] Le nouvea...

    Read the article

  • Drawing a TextBox in an extended Glass Frame (C# w/o WPF)

    - by Lazlo
    I am trying to draw a TextBox on the extended glass frame of my form. I won't describe this technique, it's well-known. Here's an example for those who haven't heard of it: http://www.danielmoth.com/Blog/Vista-Glass-In-C.aspx The thing is, it is complex to draw over this glass frame. Since black is considered to be the 0-alpha color, anything black disappears. There are apparently ways of countering this problem: drawing complex GDI+ shapes are not affected by this alpha-ness. For example, this code can be used to draw a Label on glass (note: GraphicsPath is used instead of DrawString in order to get around the horrible ClearType problem): public class GlassLabel : Control { public GlassLabel() { this.BackColor = Color.Black; } protected override void OnPaint(PaintEventArgs e) { GraphicsPath font = new GraphicsPath(); font.AddString( this.Text, this.Font.FontFamily, (int)this.Font.Style, this.Font.Size, Point.Empty, StringFormat.GenericDefault); e.Graphics.SmoothingMode = SmoothingMode.HighQuality; e.Graphics.FillPath(new SolidBrush(this.ForeColor), font); } } Similarly, such an approach can be used to create a container on the glass area. Note the use of the polygons instead of the rectangle - when using the rectangle, its black parts are considered as alpha. public class GlassPanel : Panel { public GlassPanel() { this.BackColor = Color.Black; } protected override void OnPaint(PaintEventArgs e) { Point[] area = new Point[] { new Point(0, 1), new Point(1, 0), new Point(this.Width - 2, 0), new Point(this.Width - 1, 1), new Point(this.Width -1, this.Height - 2), new Point(this.Width -2, this.Height-1), new Point(1, this.Height -1), new Point(0, this.Height - 2) }; Point[] inArea = new Point[] { new Point(1, 1), new Point(this.Width - 1, 1), new Point(this.Width - 1, this.Height - 1), new Point(this.Width - 1, this.Height - 1), new Point(1, this.Height - 1) }; e.Graphics.FillPolygon(new SolidBrush(Color.FromArgb(240, 240, 240)), inArea); e.Graphics.DrawPolygon(new Pen(Color.FromArgb(55, 0, 0, 0)), area); base.OnPaint(e); } } Now my problem is: How can I draw a TextBox? After lots of Googling, I came up with the following solutions: Subclassing the TextBox's OnPaint method. This is possible, although I could not get it to work properly. It should involve painting some magic things I don't know how to do yet. Making my own custom TextBox, perhaps on a TextBoxBase. If anyone has good, valid and working examples, and thinks this could be a good overall solution, please tell me. Using BufferedPaintSetAlpha. (http://msdn.microsoft.com/en-us/library/ms649805.aspx). The downsides of this method may be that the corners of the textbox might look odd, but I can live with that. If anyone knows how to implement that method properly from a Graphics object, please tell me. I personally don't, but this seems the best solution so far. Thanks!

    Read the article

  • Manipulating columns of numbers in elisp

    - by ~unutbu
    I have text files with tables like this: Investment advisory and related fees receivable (161,570 ) (71,739 ) (73,135 ) Net purchases of trading investments (93,261 ) (30,701 ) (11,018 ) Other receivables 61,216 (10,352 ) (69,313 ) Restricted cash 20,658 (20,658 ) - Other current assets (39,643 ) 14,752 64 Other non-current assets 71,896 (26,639 ) (26,330 ) Since these are accounting numbers, parenthesized numbers indicate negative numbers. Dashes represent 0 or no number. I'd like to be able to mark a rectangular region such as third column above, call a function (format-column), and automatically have (-73135-11018-69313+64-26330)/1000 sitting in my kill-ring. Even better would be -73.135-11.018-69.313+0.064-26.330 but I couldn't figure out a way to transform 64 -- 0.064. This is what I've come up with: (defun format-column () "format accounting numbers in a rectangular column. format-column puts the result in the kill-ring" (interactive) (let ((p (point)) (m (mark)) ) (copy-rectangle-to-register 0 (min m p) (max m p) nil) (with-temp-buffer (insert-register 0) (goto-char (point-min)) (while (search-forward "-" nil t) (replace-match "" nil t)) (goto-char (point-min)) (while (search-forward "," nil t) (replace-match "" nil t)) (goto-char (point-min)) (while (search-forward ")" nil t) (replace-match "" nil t)) (goto-char (point-min)) (while (search-forward "(" nil t) (replace-match "-" nil t) (just-one-space) (delete-backward-char 1) ) (goto-char (point-min)) (while (search-forward "\n" nil t) (replace-match " " nil t)) (goto-char (point-min)) (kill-new (mapconcat 'identity (split-string (buffer-substring (point-min) (point-max))) "+")) (kill-region (point-min) (point-max)) (insert "(") (yank 2) (goto-char (point-min)) (while (search-forward "+-" nil t) (replace-match "-" nil t)) (goto-char (point-max)) (insert ")/1000") (kill-region (point-min) (point-max)) ) ) ) (global-set-key "\C-c\C-f" 'format-column) Although it seems to work, I'm sure this function is poorly coded. The repetitive calls to goto-char, search-forward, and replace-match and the switching from buffer to string and back to buffer seems ugly and inelegant. My entire approach may be wrong-headed, but I don't know enough elisp to make this more beautiful. Do you see a better way to write format-column, and/or could you make suggestions on how to improve this code?

    Read the article

  • Open XML SDK 2.0 - Split table to new power point slide when content flows off current slide

    - by amurra
    I have a bunch of data that I need to export from a website to a power point presentation and have been using Open XML SDK 2.0 to perform this task. I have a power point presentation that I am putting through Open XML SDK 2.0 Productivity Tool to generate the template code that I can use to recreate the export. On one of those slides I have a table and the requirement is to add data to that table and break that table across multiple slides if the table exceeds the bottom of the slide. The approach I have taken is to determine the height of the table and if it exceeds the height of the slide, move that new content into the next slide. I have read Bryan and Jones blog on adding repeating data to a power point slide, but my scenario is a little different. They use the following code: A.Table tbl = current.Slide.Descendants<A.Table>().First(); A.TableRow tr = new A.TableRow(); tr.Height = heightInEmu; tr.Append(CreateDrawingCell(imageRel + imageRelId)); tr.Append(CreateTextCell(category)); tr.Append(CreateTextCell(subcategory)); tr.Append(CreateTextCell(model)); tr.Append(CreateTextCell(price.ToString())); tbl.Append(tr); imageRelId++; This won't work for me since they know what height to set the table row to since it will be the height of the image, but when adding in different amounts of text I do not know the height ahead of time so I just set tr.Heightto a default value. Here is my attempt at figuring at the table height: A.Table tbl = tableSlide.Slide.Descendants<A.Table>().First(); A.TableRow tr = new A.TableRow(); tr.Height = 370840L; tr.Append(PowerPointUtilities.CreateTextCell("This"); tr.Append(PowerPointUtilities.CreateTextCell("is")); tr.Append(PowerPointUtilities.CreateTextCell("a")); tr.Append(PowerPointUtilities.CreateTextCell("test")); tr.Append(PowerPointUtilities.CreateTextCell("Test")); tbl.Append(tr); tableSlide.Slide.Save(); long tableHeight = PowerPointUtilities.TableHeight(tbl); Here are the helper methods: public static A.TableCell CreateTextCell(string text) { A.TableCell tableCell = new A.TableCell( new A.TextBody(new A.BodyProperties(), new A.Paragraph(new A.Run(new A.Text(text)))), new A.TableCellProperties()); return tableCell; } public static Int64Value TableHeight(A.Table table) { long height = 0; foreach (var row in table.Descendants<A.TableRow>() .Where(h => h.Height.HasValue)) { height += row.Height.Value; } return height; } This correctly adds the new table row to the existing table, but when I try and get the height of the table, it returns the original height and not the new height. The new height meaning the default height I initially set and not the height after a large amount of text has been inserted. It seems the height only gets readjusted when it is opened in power point. I have also tried accessing the height of the largest table cell in the row, but can't seem to find the right property to perform that task. My question is how do you determine the height of a dynamically added table row since it doesn't seem to update the height of the row until it is opened in power point? Any other ways to determine when to split content to another slide while using Open XML SDK 2.0? I'm open to any suggestion on a better approach someone might have taken since there isn't much documentation on this subject.

    Read the article

  • deepcopy and python - tips to avoid using it?

    - by blackkettle
    Hi, I have a very simple python routine that involves cycling through a list of roughly 20,000 latitude,longitude coordinates and calculating the distance of each point to a reference point. def compute_nearest_points( lat, lon, nPoints=5 ): """Find the nearest N points, given the input coordinates.""" points = session.query(PointIndex).all() oldNearest = [] newNearest = [] for n in xrange(nPoints): oldNearest.append(PointDistance(None,None,None,99999.0,99999.0)) newNearest.append(obj2) #This is almost certainly an inappropriate use of deepcopy # but how SHOULD I be doing this?!?! for point in points: distance = compute_spherical_law_of_cosines( lat, lon, point.avg_lat, point.avg_lon ) k = 0 for p in oldNearest: if distance < p.distance: newNearest[k] = PointDistance( point.point, point.kana, point.english, point.avg_lat, point.avg_lon, distance=distance ) break else: newNearest[k] = deepcopy(oldNearest[k]) k += 1 for j in range(k,nPoints-1): newNearest[j+1] = deepcopy(oldNearest[j]) oldNearest = deepcopy(newNearest) #We're done, now print the result for point in oldNearest: print point.station, point.english, point.distance return I initially wrote this in C, using the exact same approach, and it works fine there, and is basically instantaneous for nPoints<=100. So I decided to port it to python because I wanted to use SqlAlchemy to do some other stuff. I first ported it without the deepcopy statements that now pepper the method, and this caused the results to be 'odd', or partially incorrect, because some of the points were just getting copied as references(I guess? I think?) -- but it was still pretty nearly as fast as the C version. Now with the deepcopy calls added, the routine does it's job correctly, but it has incurred an extreme performance penalty, and now takes several seconds to do the same job. This seems like a pretty common job, but I'm clearly not doing it the pythonic way. How should I be doing this so that I still get the correct results but don't have to include deepcopy everywhere?

    Read the article

  • find a Stationary points Excel

    - by uv
    Hi, I am looking for a funcation in excel that will show my the Stationary points in th table. for exapmle A point is the lowest point on the table B point is the highest point - after point A C point is lowest point -after point B on the X there are point A,B and C, on the Y there are dates . I hope it is clear - i diddn't find the way to add the excel. Many thanks in advnce Uv

    Read the article

  • Friends, templates, overloading <<

    - by Crystal
    I'm trying to use friend functions to overload << and templates to get familiar with templates. I do not know what these compile errors are: Point.cpp:11: error: shadows template parm 'class T' Point.cpp:12: error: declaration of 'const Point<T>& T' for this file #include "Point.h" template <class T> Point<T>::Point() : xCoordinate(0), yCoordinate(0) {} template <class T> Point<T>::Point(T xCoordinate, T yCoordinate) : xCoordinate(xCoordinate), yCoordinate(yCoordinate) {} template <class T> std::ostream &operator<<(std::ostream &out, const Point<T> &T) { std::cout << "(" << T.xCoordinate << ", " << T.yCoordinate << ")"; return out; } My header looks like: #ifndef POINT_H #define POINT_H #include <iostream> template <class T> class Point { public: Point(); Point(T xCoordinate, T yCoordinate); friend std::ostream &operator<<(std::ostream &out, const Point<T> &T); private: T xCoordinate; T yCoordinate; }; #endif My header also gives the warning: Point.h:12: warning: friend declaration 'std::ostream& operator<<(std::ostream&, const Point<T>&)' declares a non-template function Which I was also unsure why. Any thoughts? Thanks.

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Why can't I connect to a Cisco wireless access point?

    - by spinlock
    I'm running a Lucid Netbook Remix on my Dell Inspiron 600m and I was not able to connect to the wireless network at the Hacker Dojo in Mountain View yesterday. There were plenty of other people on the network - MS, Mac, and Linux boxes - but my laptop would never get an ip address. I can connect to my home network, which is open, and I've never had a problem connecting at the coffee shop, which uses WPA. The Hacker Dojo is running WPA and we checked the password a number of times but got no love. Any ideas would be greatly appreciated. Additional Info: $iwlist eth1 scan eth1 Scan completed : Cell 01 - Address: EC:C8:82:FA:63:92 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:62 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 280ms ago Cell 02 - Address: 00:18:4D:24:08:61 ESSID:"Green Zone" Protocol:IEEE 802.11bg Mode:Master Frequency:2.417 GHz (Channel 2) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s 9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:23 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 11516ms ago Cell 03 - Address: 08:17:35:32:6E:13 ESSID:"\x00" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:71 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 2760ms ago Cell 04 - Address: EC:C8:82:FA:63:90 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:61 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 772ms ago Cell 05 - Address: 08:17:35:32:6E:11 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:65 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 3308ms ago Cell 06 - Address: 08:17:35:32:7E:31 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:88 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 1668ms ago Cell 07 - Address: 38:E7:D8:01:46:1E ESSID:"JWS_Incredible" Protocol:IEEE 802.11bg Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 500 kb/s; 54 Mb/s Quality:31 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK Extra: Last beacon: 2848ms ago Cell 08 - Address: 08:17:35:32:6E:10 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:67 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 7848ms ago Cell 09 - Address: 08:17:35:32:7E:30 ESSID:"HackerDojo" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:85 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 8300ms ago Cell 10 - Address: 08:17:35:32:6E:12 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.437 GHz (Channel 6) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:68 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 232ms ago Cell 11 - Address: 08:17:35:32:7E:32 ESSID:"HackerDojo-gwifi" Protocol:IEEE 802.11g Mode:Master Frequency:2.462 GHz (Channel 11) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:86 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 168ms ago Cell 12 - Address: EC:C8:82:FA:63:91 ESSID:"HackerDojo-Presenter" Protocol:IEEE 802.11g Mode:Master Frequency:2.412 GHz (Channel 1) Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 6 Mb/s; 9 Mb/s 11 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s Quality:62 Signal level:0 Noise level:0 IE: WPA Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : TKIP Authentication Suites (1) : PSK IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : TKIP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK Extra: Last beacon: 7408ms ago $iwconfig eth1 eth1 unassociated ESSID:"HackerDojo-gwifi" Nickname:"ipw2100" Mode:Managed Channel=0 Access Point: Not-Associated Bit Rate:0 kb/s Tx-Power:16 dBm Retry short limit:7 RTS thr:off Fragment thr:off Encryption key:off Power Management:off Link Quality:0 Signal level:0 Noise level:0 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

    Read the article

< Previous Page | 112 113 114 115 116 117 118 119 120 121 122 123  | Next Page >