Search Results

Search found 11531 results on 462 pages for 'cpu cache'.

Page 119/462 | < Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >

  • iPhone Safari Web Application not using cache at all?

    - by Liuyi Sun
    Hi, guys, I've been developing an iphone web application for a while, and encountered a weird problem: when open the web app in safari(with safari chrome, not starting it from home screen), safari can generate proper "If-Not-Modified-Since" and "If-None-Matches", so the server simply gives 304 Not Modified to speed up the process. however, when starting the app from home screen, safari seems to forget these two headers, and server always replies with 200 OK... any ideas for this?

    Read the article

  • Fast inter-process (inter-threaded) communications IPC on large multi-cpu system.

    - by IPC
    What would be the fastest portable bi-directional communication mechanism for inter-process communication where threads from one application need to communicate to multiple threads in another application on the same computer, and the communicating threads can be on different physical CPUs). I assume that it would involve a shared memory and a circular buffer and shared synchronization mechanisms. But shared mutexes are very expensive (and there are limited number of them too) to synchronize when threads are running on different physical CPUs.

    Read the article

  • Core Data strategy using in memory cache, or no core data at all?

    - by randombits
    I have a user interface where the user can check off a bunch of items from a tableview, almost like a todo list. The items are populated from a Core Data stack. I need to be able to take all of the items they're clicking through and put them into a "temporary" shopping cart. Once they're in the shopping cart, users can go through the list and remove the items, or just submit them to a server. The thing is, the selected items are temporary just like an internet based shopping cart. It's nothing something that gets persisted once the application closes. Once the view is no longer in display, I can assume that the shopping cart is safe to discard. What's the best way to approach this? Since the user is essentially clicking on instances that map back to a Core Data entity .. should I setup a different persistence store such as in memory and add that store to my managed object context?

    Read the article

  • Can I use a static var to "cache" the result? C++

    - by flyout
    I am using a function that returns a char*, and right now I am getting the compiler warning "returning address of local variable or temporary", so I guess I will have to use a static var for the return, my question is can I make something like if(var already set) return var else do function and return var? This is my function: char * GetUID() { TCHAR buf[20]; StringCchPrintf(buf, 20*sizeof(char), TEXT("%s"), someFunction()); return buf; } And this is what I want to do: char * GetUID() { static TCHAR buf[20]; if(strlen(buf)!=0) return buf; StringCchPrintf(buf, 20*sizeof(char), TEXT("%s"), someFunction()); return buf; } Is this a well use of static vars? And should I use ZeroMemory(&buf, 20*sizeof(char))? I removed it because if I use it above the if(strlen...) my TCHAR length is never 0, should I use it below?

    Read the article

  • Is it possible to cache all the data in a SQL Server CE database using LinqToSql?

    - by DanM
    I'm using LinqToSql to query a small, simple SQL Server CE database. I've noticed that any operations involving sub-properties are disappointingly slow. For example, if I have a Customer table that is referenced by an Order table, LinqToSql will automatically create an EntitySet<Order> property. This is a nice convenience, allowing me to do things like Customer.Order.Where(o => o.ProductName = "Stopwatch"), but for some reason, SQL Server CE hangs up pretty bad when I try to do stuff like this. One of my queries, which isn't really that complicated takes 3-4 seconds to complete. I can get the speed up to acceptable, even fast, if I just grab the two tables individually and convert them to List<Customer> and List<Order>, then join then manually with my own query, but this is throwing out a lot of what makes LinqToSql so appealing. So, I'm wondering if I can somehow get the whole database into RAM and just query that way, then occasionally save it. Is this possible? How? If not, is there anything else I can do to boost the performance besides resorting to doing all the joins manually? Note: My database in its initial state is about 250K and I don't expect it to grow to more than 1-2Mb. So, loading the data into RAM certainly wouldn't be a problem from a memory point of view. Update Here are the table definitions for the example I used in my question: create table Order ( Id int identity(1, 1) primary key, ProductName ntext null ) create table Customer ( Id int identity(1, 1) primary key, OrderId int null references Order (Id) )

    Read the article

  • ASP.NET - How can I cache user details for the duration of their visit?

    - by rockinthesixstring
    I've built a Repository that gets user details Public Function GetUserByOpenID(ByVal openid As String) As User Implements IUserRepository.GetUserByOpenID Dim user = (From u In dc.Users Where u.OpenID = openid Select u).FirstOrDefault Return user End Function And I'd like to be able to pull those details down IF the user is logged in AND IF the cached data is null. What is the best way to create a User object that contains all of the users details, and persist it across the entire site for the duration of their visit? I Was trying this in my Global.asax, but I'm not really happy using Session variables. I'd rather have a single object with all the details inside. Private Sub BaseGlobal_AcquireRequestState(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.AcquireRequestState If Session("UserName") Is Nothing AndAlso User.Identity.IsAuthenticated Then Dim repo As UrbanNow.Core.IUserRepository = New UrbanNow.Core.UserRepository Dim _user As New UrbanNow.Core.User _user = repo.GetUserByOpenID(User.Identity.Name) Session("UserName") = _user.UserName() Session("UserID") = _user.ID End If End Sub

    Read the article

  • Ruby on Rails: temporarily update an attribute into cache without saving it?

    - by randombits
    I have a bit of code that depicts this hypothetical setup below. A class Foo which contains many Bars. Bar belongs to one and only one Foo. At some point, Foo can do a finite loop that lapses 2+ iterations. In that loop, something like the following happens: bar = Bar.find_where_in_use_is_zero bar.in_use = 1 Basically what find_where_in_use_is_zero does something like this in as far as SQL goes: SELECT * from bars WHERE in_use = 0 Now the problem I'm facing is that I cannot run the following line of code after bar.in_use =1 is invoked: bar.save The reason is clear, I'm still looping and the new Foo hasn't been created, so we don't have a foo_id to put into bars.foo_id. Even if I set to allow foo_id to be NULL, we have a problem where one of the bars can fail validation and the existing one was saved to the database. In my application, that doesn't work. The entire request is atomic, either all succeeds or fails together. What happens next, is that in my loop, I have the potential to select the same exact bar that I did on a previous iteration of the loop since the in_use flag will not be set to 1 until @foo.save is called. Is there anyway to work around this condition and temporarily set the in_use attribute to 1 for subsequent iterations of the loop so that I retrieve an available bar instance?

    Read the article

  • Unity not Working 14.04

    - by Back.Slash
    I am using Ubuntu 14.04 LTS x64. I did a sudo apt-get upgrade yesterday and restarted my PC. Now my taskbar and panel are missing. When I try to restart Unity using unity --replace Then I get error: unity-panel-service stop/waiting compiz (core) - Info: Loading plugin: core compiz (core) - Info: Starting plugin: core unity-panel-service start/running, process 3906 compiz (core) - Info: Loading plugin: ccp compiz (core) - Info: Starting plugin: ccp compizconfig - Info: Backend : gsettings compizconfig - Info: Integration : true compizconfig - Info: Profile : unity compiz (core) - Info: Loading plugin: composite compiz (core) - Info: Starting plugin: composite compiz (core) - Info: Loading plugin: opengl compiz (core) - Info: Unity is fully supported by your hardware. compiz (core) - Info: Unity is fully supported by your hardware. compiz (core) - Info: Starting plugin: opengl libGL error: dlopen /usr/lib/x86_64-linux-gnu/dri/i965_dri.so failed (/usr/lib/x86_64-linux-gnu/dri/i965_dri.so: undefined symbol: _glapi_tls_Dispatch) libGL error: dlopen ${ORIGIN}/dri/i965_dri.so failed (${ORIGIN}/dri/i965_dri.so: cannot open shared object file: No such file or directory) libGL error: dlopen /usr/lib/dri/i965_dri.so failed (/usr/lib/dri/i965_dri.so: cannot open shared object file: No such file or directory) libGL error: unable to load driver: i965_dri.so libGL error: driver pointer missing libGL error: failed to load driver: i965 libGL error: dlopen /usr/lib/x86_64-linux-gnu/dri/swrast_dri.so failed (/usr/lib/x86_64-linux-gnu/dri/swrast_dri.so: undefined symbol: _glapi_tls_Dispatch) libGL error: dlopen ${ORIGIN}/dri/swrast_dri.so failed (${ORIGIN}/dri/swrast_dri.so: cannot open shared object file: No such file or directory) libGL error: dlopen /usr/lib/dri/swrast_dri.so failed (/usr/lib/dri/swrast_dri.so: cannot open shared object file: No such file or directory) libGL error: unable to load driver: swrast_dri.so libGL error: failed to load driver: swrast compiz (core) - Info: Loading plugin: compiztoolbox compiz (core) - Info: Starting plugin: compiztoolbox compiz (core) - Info: Loading plugin: decor compiz (core) - Info: Starting plugin: decor compiz (core) - Info: Loading plugin: vpswitch compiz (core) - Info: Starting plugin: vpswitch compiz (core) - Info: Loading plugin: snap compiz (core) - Info: Starting plugin: snap compiz (core) - Info: Loading plugin: mousepoll compiz (core) - Info: Starting plugin: mousepoll compiz (core) - Info: Loading plugin: resize compiz (core) - Info: Starting plugin: resize compiz (core) - Info: Loading plugin: place compiz (core) - Info: Starting plugin: place compiz (core) - Info: Loading plugin: move compiz (core) - Info: Starting plugin: move compiz (core) - Info: Loading plugin: wall compiz (core) - Info: Starting plugin: wall compiz (core) - Info: Loading plugin: grid compiz (core) - Info: Starting plugin: grid compiz (core) - Info: Loading plugin: regex compiz (core) - Info: Starting plugin: regex compiz (core) - Info: Loading plugin: imgpng compiz (core) - Info: Starting plugin: imgpng compiz (core) - Info: Loading plugin: session compiz (core) - Info: Starting plugin: session I/O warning : failed to load external entity "/home/sumeet/.compiz/session/10de541a813cc1a8fc140170575114755000000020350005" compiz (core) - Info: Loading plugin: gnomecompat compiz (core) - Info: Starting plugin: gnomecompat compiz (core) - Info: Loading plugin: animation compiz (core) - Info: Starting plugin: animation compiz (core) - Info: Loading plugin: fade compiz (core) - Info: Starting plugin: fade compiz (core) - Info: Loading plugin: unitymtgrabhandles compiz (core) - Info: Starting plugin: unitymtgrabhandles compiz (core) - Info: Loading plugin: workarounds compiz (core) - Info: Starting plugin: workarounds compiz (core) - Info: Loading plugin: scale compiz (core) - Info: Starting plugin: scale compiz (core) - Info: Loading plugin: expo compiz (core) - Info: Starting plugin: expo compiz (core) - Info: Loading plugin: ezoom compiz (core) - Info: Starting plugin: ezoom compiz (core) - Info: Loading plugin: unityshell compiz (core) - Info: Starting plugin: unityshell WARN 2014-06-02 18:46:23 unity.glib.dbus.server GLibDBusServer.cpp:579 Can't register object 'org.gnome.Shell' yet as we don't have a connection, waiting for it... ERROR 2014-06-02 18:46:23 unity.debug.interface DebugDBusInterface.cpp:216 Unable to load entry point in libxpathselect: libxpathselect.so.1.4: cannot open shared object file: No such file or directory compiz (unityshell) - Error: GL_ARB_vertex_buffer_object not supported ERROR 2014-06-02 18:46:23 unity.shell.compiz unityshell.cpp:3850 Impossible to delete the unity locked stamp file compiz (core) - Error: Plugin initScreen failed: unityshell compiz (core) - Error: Failed to start plugin: unityshell compiz (core) - Info: Unloading plugin: unityshell X Error of failed request: BadWindow (invalid Window parameter) Major opcode of failed request: 3 (X_GetWindowAttributes) Resource id in failed request: 0x3e000c9 Serial number of failed request: 10115 Current serial number in output stream: 10116 Any help would be highly appreciated. EDIT : My PC configuration description: Portable Computer product: Dell System XPS L502X (System SKUNumber) vendor: Dell Inc. version: 0.1 serial: 1006ZP1 width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: administrator_password=unknown boot=normal chassis=portable family=HuronRiver System frontpanel_password=unknown keyboard_password=unknown power-on_password=unknown sku=System SKUNumber uuid=44454C4C-3000-1030-8036-B1C04F5A5031 *-core description: Motherboard product: 0YR8NN vendor: Dell Inc. physical id: 0 version: A00 serial: .1006ZP1.CN4864314C0560. slot: Part Component *-firmware description: BIOS vendor: Dell Inc. physical id: 0 version: A11 date: 05/29/2012 size: 128KiB capacity: 2496KiB capabilities: pci pnp upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy360 int13floppy1200 int13floppy720 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot smartbattery biosbootspecification netboot *-cpu description: CPU product: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz vendor: Intel Corp. physical id: 19 bus info: cpu@0 version: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz serial: Not Supported by CPU slot: CPU size: 800MHz capacity: 800MHz width: 64 bits clock: 100MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx lahf_lm ida arat epb xsaveopt pln pts dtherm tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=4 threads=8 *-cache:0 description: L1 cache physical id: 1a slot: L1-Cache size: 64KiB capacity: 64KiB capabilities: synchronous internal write-through data *-cache:1 description: L2 cache physical id: 1b slot: L2-Cache size: 256KiB capacity: 256KiB capabilities: synchronous internal write-through data *-cache:2 description: L3 cache physical id: 1c slot: L3-Cache size: 6MiB capacity: 6MiB capabilities: synchronous internal write-back unified *-memory description: System Memory physical id: 1d slot: System board or motherboard size: 6GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: M471B5273DH0-CH9 vendor: Samsung physical id: 0 serial: 450F1160 slot: ChannelA-DIMM0 size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: HMT325S6BFR8C-H9 vendor: Hynix/Hyundai physical id: 1 serial: 0CA0E8E2 slot: ChannelB-DIMM0 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-pci description: Host bridge product: 2nd Generation Core Processor Family DRAM Controller vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 09 width: 32 bits clock: 33MHz *-pci:0 description: PCI bridge product: Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port vendor: Intel Corporation physical id: 1 bus info: pci@0000:00:01.0 version: 09 width: 32 bits clock: 33MHz capabilities: pci pm msi pciexpress normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:3000(size=4096) memory:f0000000-f10fffff ioport:c0000000(size=301989888) *-generic UNCLAIMED description: Unassigned class product: Illegal Vendor ID vendor: Illegal Vendor ID physical id: 0 bus info: pci@0000:01:00.0 version: ff width: 32 bits clock: 66MHz capabilities: bus_master vga_palette cap_list configuration: latency=255 maxlatency=255 mingnt=255 resources: memory:f0000000-f0ffffff memory:c0000000-cfffffff memory:d0000000-d1ffffff ioport:3000(size=128) memory:f1000000-f107ffff *-display description: VGA compatible controller product: 2nd Generation Core Processor Family Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 09 width: 64 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:52 memory:f1400000-f17fffff memory:e0000000-efffffff ioport:4000(size=64) *-communication description: Communication controller product: 6 Series/C200 Series Chipset Family MEI Controller #1 vendor: Intel Corporation physical id: 16 bus info: pci@0000:00:16.0 version: 04 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: driver=mei_me latency=0 resources: irq:50 memory:f1c05000-f1c0500f *-usb:0 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 vendor: Intel Corporation physical id: 1a bus info: pci@0000:00:1a.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:16 memory:f1c09000-f1c093ff *-multimedia description: Audio device product: 6 Series/C200 Series Chipset Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:53 memory:f1c00000-f1c03fff *-pci:1 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode cap_list configuration: driver=pcieport resources: irq:16 *-pci:2 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 memory:f1b00000-f1bfffff *-network description: Wireless interface product: Centrino Wireless-N 1030 [Rainbow Peak] vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: mon.wlan0 version: 34 serial: bc:77:37:14:47:e5 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list logical wireless ethernet physical configuration: broadcast=yes driver=iwlwifi driverversion=3.13.0-27-generic firmware=18.168.6.1 latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:51 memory:f1b00000-f1b01fff *-pci:3 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 4 vendor: Intel Corporation physical id: 1c.3 bus info: pci@0000:00:1c.3 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:19 memory:f1a00000-f1afffff *-usb description: USB controller product: uPD720200 USB 3.0 Host Controller vendor: NEC Corporation physical id: 0 bus info: pci@0000:04:00.0 version: 04 width: 64 bits clock: 33MHz capabilities: pm msi msix pciexpress xhci bus_master cap_list configuration: driver=xhci_hcd latency=0 resources: irq:19 memory:f1a00000-f1a01fff *-pci:4 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 5 vendor: Intel Corporation physical id: 1c.4 bus info: pci@0000:00:1c.4 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 memory:f1900000-f19fffff *-pci:5 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 6 vendor: Intel Corporation physical id: 1c.5 bus info: pci@0000:00:1c.5 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 ioport:2000(size=4096) ioport:f1800000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:06:00.0 logical name: eth0 version: 06 serial: 14:fe:b5:a3:ac:40 size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=full firmware=rtl_nic/rtl8168e-2.fw ip=172.19.167.151 latency=0 link=yes multicast=yes port=MII speed=1Gbit/s resources: irq:49 ioport:2000(size=256) memory:f1804000-f1804fff memory:f1800000-f1803fff *-usb:1 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:23 memory:f1c08000-f1c083ff *-isa description: ISA bridge product: HM67 Express Chipset Family LPC Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: driver=lpc_ich latency=0 resources: irq:0 *-ide:0 description: IDE interface product: 6 Series/C200 Series Chipset Family 4 port SATA IDE Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 05 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:40b8(size=8) ioport:40cc(size=4) ioport:40b0(size=8) ioport:40c8(size=4) ioport:4090(size=16) ioport:4080(size=16) *-serial UNCLAIMED description: SMBus product: 6 Series/C200 Series Chipset Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:f1c04000-f1c040ff ioport:efa0(size=32) *-ide:1 description: IDE interface product: 6 Series/C200 Series Chipset Family 2 port SATA IDE Controller vendor: Intel Corporation physical id: 1f.5 bus info: pci@0000:00:1f.5 version: 05 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:40a8(size=8) ioport:40c4(size=4) ioport:40a0(size=8) ioport:40c0(size=4) ioport:4070(size=16) ioport:4060(size=16) *-scsi:0 physical id: 1 logical name: scsi0 capabilities: emulated *-disk description: ATA Disk product: SAMSUNG HN-M640M physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 2AR1 serial: S2T3J1KBC00006 size: 596GiB (640GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sectorsize=512 signature=6b746d91 *-volume:0 description: Windows NTFS volume physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 version: 3.1 serial: 0272-3e7f size: 348MiB capacity: 350MiB capabilities: primary bootable ntfs initialized configuration: clustersize=4096 created=2013-09-18 12:20:45 filesystem=ntfs label=System Reserved modified_by_chkdsk=true mounted_on_nt4=true resize_log_file=true state=dirty upgrade_on_mount=true *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 116GiB capacity: 116GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume:0 description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 6037MiB capabilities: nofs *-logicalvolume:1 description: Linux filesystem partition physical id: 6 logical name: /dev/sda6 logical name: / capacity: 110GiB configuration: mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,data=ordered state=mounted *-volume:2 description: Windows NTFS volume physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 logical name: /media/os version: 3.1 serial: 4e7853ec-5555-a74d-82e0-9f49798d3772 size: 156GiB capacity: 156GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2013-09-19 09:19:00 filesystem=ntfs label=OS mount.fstype=fuseblk mount.options=ro,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other,blksize=4096 state=mounted *-volume:3 description: Windows NTFS volume physical id: 4 bus info: scsi@0:0.0.0,4 logical name: /dev/sda4 logical name: /media/data version: 3.1 serial: 7666d55f-e1bf-e645-9791-2a1a31b24b9a size: 322GiB capacity: 322GiB capabilities: primary ntfs initialized configuration: clustersize=4096 created=2013-09-17 23:27:01 filesystem=ntfs label=Data modified_by_chkdsk=true mount.fstype=fuseblk mount.options=rw,nosuid,nodev,relatime,user_id=0,group_id=0,allow_other,blksize=4096 mounted_on_nt4=true resize_log_file=true state=mounted upgrade_on_mount=true *-scsi:1 physical id: 2 logical name: scsi1 capabilities: emulated *-cdrom description: DVD-RAM writer product: DVD+-RW GT32N vendor: HL-DT-ST physical id: 0.0.0 bus info: scsi@1:0.0.0 logical name: /dev/cdrom logical name: /dev/sr0 version: A201 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-battery product: DELL vendor: SANYO physical id: 1 version: 2008 serial: 1.0 slot: Rear capacity: 57720mWh configuration: voltage=11.1V `

    Read the article

  • Oracle Coherence & Oracle Service Bus: REST API Integration

    - by Nino Guarnacci
    This post aims to highlight one of the features found in Oracle Coherence which allows it to be easily added and integrated inside a wider variety of projects.  The features in question are the REST API exposed by the Coherence nodes, with which you can interact in the wider mode in memory data grid.Oracle Coherence and Oracle Service Bus are natively integrated through a feature found in the Oracle Service Bus, which allows you to use the coherence grid cache during the configuration phase of a business service. This feature allows you to use an intermediate layer of cache to retrieve the answers from previous invocations of the same service, without necessarily having to invoke the real business service again. Directly from the web console of Oracle Service Bus, you can decide the policies of eviction of the objects / answers and define the discriminating parameters that identify their uniqueness.The coherence REST APIs, however, allow you to integrate both products for other necessities enabling realization of new architectures design.  Consider coherence’s node as a simple service which interoperates through the stardard services and in particular REST (with JSON and XML). Thinking of coherence as a company’s shared service, able to have an implementation of a centralized “map and reduce” which you can access  by a huge variety of protocols (transport and envelopes).An amazing step forward for those who still imagine connectors and code. This type of integration does not require writing custom code or complex implementation to be self-supported. The added value is made unique by the incredible value of both products independently, and still more out of their simple and robust integration.As already mentioned this scenario discovers a hidden new door behind the columns of these two products. The door leads to new ideas and perspectives for enterprise architectures that increasingly wink to next-generation applications: simple and dynamic, perhaps towards the mobile and web 2.0.Below, a small and simple demo useful to demonstrate how easily is to integrate these two products using the Coherence REST API. This demo is also intended to imagine new enterprise architectures using this approach.The idea is to create a centralized system of alerting, fed easily from any company’s application, regardless of the technology with which they were built . Then use a representation standard protocol: RSS, using a service exposed by the service bus; So you can browse and search only the alerts that you are interested on, by category, author, title, date, etc etc.. The steps needed to implement this system are very simple and very few. Here they are listed below and described to be easily replicated within your environment. I would remind you that the demo is only meant to demonstrate how easily is to integrate Oracle Coherence and the Oracle Service Bus, and stimulate your imagination to new technological approaches.1) Install the two products: In this demo used (if necessary, consult the installation guides of 2 products)  - Oracle Service Bus ver. 11.1.1.5.0 http://www.oracle.com/technetwork/middleware/service-bus/downloads/index.html - Oracle Coherence ver. 3.7.1 http://www.oracle.com/technetwork/middleware/coherence/downloads/index.html 2) Because you choose to create a centralized alerting system, we need to define a structure type containing some alerting attributes useful to preserve and organize the information of the various alerts sent by the different applications. Here, then it was built a java class named Alert containing the canonical properties of an alarm information:- Title- Description- System- Time- Severity 3) Therefore, we need to create two configuration files for the coherence node, in order to save the Alert objects within the grid, through the rest/http protocol (more than the native API for Java, C + +, C,. Net). Here are the two minimal configuration files for Coherence:coherence-rest-config.xml resty-server-config.xml This minimum configuration allows me to use a distributed cache named "alerts" that can  also be accessed via http - rest on the host "localhost" over port "8080", objects are of type “oracle.cohsb.Alert”. 4) Below  a simple Java class that represents the type of alert messages: 5) At this point we just need to startup our coherence node, able to listen on http protocol to manage the “alerts” cache, which will receive incoming XML or JSON objects of type Alert. Remember to include in the classpath of the coherence node, the Alert java class and the following coherence libraries and configuration files:  At this point, just run the coherence class node “com.tangosol.net.DefaultCacheServer”advising you to set the following parameters:-Dtangosol.coherence.log.level=9 -Dtangosol.coherence.log=stdout -Dtangosol.coherence.cacheconfig=[PATH_TO_THE_FILE]\resty-server-config.xml 6) Let's create a procedure to test our configuration of Coherence and in order to insert some custom alerts in our cache. The technology with which you want to achieve this functionality is fully not considerable: Javascript, Python, Ruby, Scala, C + +, Java.... Because the protocol to communicate with Coherence is simply HTTP / JSON or XML. For this little demo i choose Java: A method to send/put the alert to the cache: A method to query and view the content of the cache: Finally the main method that execute our methods:  No special library added in the classpath for our class (json struct static defined), when it will be executed, it asks some information such as title, description,... in order to compose and send an alert to the cache and then it will perform an inquiry, to the same cache. At this point, a good exercise at this point, may be to create the same procedure using other technologies, such as a simple html page containing some JavaScript code, and then using Python, Ruby, and so on.7) Now we are ready to start configuring the Oracle Service Bus in order to integrate the two products. First integrate the internal alerting system of Oracle Service Bus with our centralized alerting system based on coherence node. This ensures that by monitoring, or directly from within our Proxy Message Flow, we can throw alerts and save them directly into the Coherence node. To do this I choose to use the jms technology, natively present inside the Oracle Weblogic / Service Bus. Access to the Oracle WebLogic Administration console and create and configure a new JMS connection factory and a new jms destination (queue). Now we should create a new resource of type “alert destination” within our Oracle Service Bus project. The new “alert destination” resource should be configured using the newly created connection factory jms and jms destination. Finally, in order to withdraw the message alert enqueued in our JMS destination and send it to our coherence node, we just need to create a new business service and proxy service within our Oracle Service Bus project.Our business service is responsible for sending a message to our REST service Coherence using as a method action: PUT Finally our proxy service have to collect all messages enqueued on the destination, execute an xquery transformation on those messages  in order to translate them into valid XML / alert objects useful to be sent to our coherence service, through the newly created business service. The message flow pipeline containing the xquery transformation: Incredibly,  we just did a basic first integration between the native alerting system of Oracle Service Bus and our centralized alerting system by simply configuring our coherence node without developing anything.It's time to test it out. To do this I create a proxy service able to generate an alert using our "alert destination", whenever the proxy is invoked. After some invocation to our proxy that generates fake alerts, we could open an Internet browser and type the URL  http://localhost: 8080/alerts/  so we could see what has been inserted within the coherence node. 8) We are ready for the final step.  We would create a new message flow, that can be used to search and display the results in standard mode. To do this I choosen the standard representation of RSS, to display a formatted result on a huge variety of devices such as readers for the iPhone and Android. The inquiry may be defined already at the time of the request able to return only feed / items related to our needs. To do this we need to create a new business service, a new proxy service, and finally a new XQuery Transformation to take care of translating the collection of alerts that will be return from our coherence node in a nicely formatted RSS standard document.So we start right from this resource (xquery), which has the task of transforming a collection of alerts / xml returned from the node coherence in a type well-formatted feed RSS 2.0 our new business service that will search the alerts on our coherence node using the Rest API. And finally, our last resource, the proxy service that will be exposed as an RSS / feeds to various mobile devices and traditional web readers, in which we will intercept any search query, and transform the result returned by the business service in an RSS feed 2.0. The message flow with the transformation phase (Alert TO Feed Items): Finally some little tricks to follow during the routing to the business service, - check for any queries present in the url to require a subset of alerts  - the http header "Accept" to help get an answer XML instead of JSON: In our little demo we also static added some coherence parameters to the request:sort=time:desc;start=0;count=100I would like to get from Coherence that the results will be sorted by date, and starting from 1 up to a maximum of 100.Done!!Just incredible, our centralized alerting system is ready. Inheriting all the qualities and capabilities of the two products involved Oracle Coherence & Oracle Service Bus: - RASP (Reliability, Availability, Scalability, Performance)Now try to use your mobile device, or a normal Internet browser by accessing the RSS just published: Some urls you may test: Search for the last 100 alerts : http://localhost:7001/alarmsSearch for alerts that do not have time set to null (time is not null):http://localhost:7001/alarms?q=time+is+not+nullSearch for alerts that the system property is “Web Browser” (system = ‘Web Browser’):http://localhost:7001/alarms?q=system+%3D+%27Web+Browser%27Search for alerts that the system property is “Web Browser” and the severity property is “Fatal” and the title property contain the word “Javascript”  (system = ‘Web Broser’ and severity = ‘Fatal’ and title like ‘%Javascript%’)http://localhost:8080/alerts?q=system+%3D+%27Web+Browser%27+AND+severity+%3D+%27Fatal%27+AND+title+LIKE+%27%25Javascript%25%27 To compose more complex queries about your need I would suggest you to read the chapter in the coherence documentation inherent the Cohl language (Coherence Query Language) http://download.oracle.com/docs/cd/E24290_01/coh.371/e22837/api_cq.htm . Some useful links: - Oracle Coherence REST API Documentation http://download.oracle.com/docs/cd/E24290_01/coh.371/e22839/rest_intro.htm - Oracle Service Bus Documentation http://download.oracle.com/docs/cd/E21764_01/soa.htm#osb - REST explanation from Wikipedia http://en.wikipedia.org/wiki/Representational_state_transfer At this URL could be downloaded the whole materials of this demo http://blogs.oracle.com/slc/resource/cosb/coh-sb-demo.zip Author: Nino Guarnacci.

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • Windows Azure Evolution &ndash; Welcome to VS2012

    - by Shaun
    When the Microsoft released the first preview version of Windows 8 and Visual Studio, many people in the community were asking if the windows azure tool is available to it. The answer was “NO”. Microsoft promised that the windows azure tool will only support the Visual Studio 2010 but when the 2012 was final released, windows azure tool should be work. But now alone with the new windows azure platform was published we got the latest Windows Azure SDK 1.7, which is compatible to the Visual Studio 2012 RC.   You can retrieve the latest version of the Windows Azure SDK through Web Platform Installer, which I think it’s the easiest and simplest way to download and install, since besides the SDK itself it also needs some other components. To download the latest windows azure SDK from Web Platform Installer, just go to the windows azure website and clicked the Develop, .NET and click the blue “install” button. Then you need to select which version of Visual Studio you want to use, Visual Studio 2010 or Visual Studio 2012 RC. After selected the current version you will download an EXE file. This file will lead you to install the Web Platform Installer 4.0 (if you haven’t installed) and the latest windows azure SDK. You can see the version name is June 2012, 1.7. Finally the WebPI will detect the dependent components you need to download and begin to install. But if you want to challenge yourself you can download the components and install them manually. The standalone installations are listed in this page with the instruction on how to install them with necessary pre-requirements.   Once you finished the installation you can open the Visual Studio 2012 RC and as usual, it need to be run as administrator. If you clicked the New Project link from the start page, navigated to Cloud category you will find that there no project template available. Is there anything wrong? So, if you changed the target framework from the default .NET 4.5 to .NET 4 you will see the azure project template. This is because, currently the windows azure instance does not support .NET 4.5. After clicked OK you will see the role creation window, which is similar as what you have seen before. But there are some new role templates in this SDK. Firstly you will have ASP.NET MVC 4 web role available, which means you can create ASP.NET MVC 4 applications for internet, intranet, mobile and WebAPI on the cloud. Then there are two new worker role templates, “Cache Worker Role” and “Worker Role with Service Bus Queue”. “Worker Role with Service Bus Queue” is a worker role which had added necessary references to access the Windows Azure Service Bus Queue. It also have some basic sample code in the worker role class which could read messages from the queue when started. The “Cache Worker Role” is a worker role which has the in-memory distributed cache feature enabled by default. This feature is different than the Windows Azure Caching. It allows the role instance to use its memory as a in-memory distributed cache clusters. By using this feature you can have one or more worker roles as some dedicate cache clusters. Alternatively, you can make part of your web role and worker role’s memory as the cache clusters as well. Let’s just create an ASP.NET MVC 4 Web Role, and click F5 to run it under the local emulator. If you have been working with azure for a while you should know that I need to setup the local storage emulator before running locally if it’s a fresh azure SDK installation. But in this version when we started our azure project the Visual Studio will check if the storage emulator had been initialized. If not, it will run the initializer automatically. And as you can see, in this version the storage emulator relies on the SQL Server 2012 Local DB feature. It will create the emulator database and tables in the default local database. You can set the storage emulator to use a standard SQL Server default instance by using the command “dsinit /instance:.”. The “dsinit” tool now is located at %PROGRAM FILES%\Microsoft SDKs\Windows Azure\Emulator\devstore After the Visual Studio complied and deployed the package our website should be shown in the browser. This is the MVC 4 Web Role home page on my Windows 8 machine in IE10. Another thing you might notice is that, in this version the compute emulator utilizes IIS Express to host the web roles instead of the full IIS. You can add breakpoint in the code and debug, and you can use the local storage emulator to test your code for accessing the storage service. All of them are same as what your are doing now on SDK 1.6. You can switch to use IIS to run your web role in local emulator. Just open the windows azure porject property windows, in the Web page select “Use IIS Web Server”. For more information about this please have a look on Nuno’s blog post. In the role property page in Visual Studio there’s no massive changes. You can configure your role settings such as the endpoints, certificates and local storage, etc.. One thing was added is the Caching tab. Here you can specify enable the caching feature or not, and how much memory you want to use as the cache cluster. I will introduce more details about it in the future posts. The publish and package feature are also no change. You can publish your project to azure directly through Visual Studio 2012, while you can create the package and upload manually. Below is the SDK version of my deployment which is 1.7.30602.1703 in the developer portal.   Summary In this post I introduced about the new Windows Azure SDK 1.7 especially on how it works on the latest Visual Studio 2012 RC. There’s no significant changes in the visual studio tool in this version but some small enhancement such as ASP.NET MVC 4, Cache Worker Role, using SQL 2012 Local DB and IIS Express, etc..   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Real tortoises keep it slow and steady. How about the backups?

    - by Maria Zakourdaev
      … Four tortoises were playing in the backyard when they decided they needed hibiscus flower snacks. They pooled their money and sent the smallest tortoise out to fetch the snacks. Two days passed and there was no sign of the tortoise. "You know, she is taking a lot of time", said one of the tortoises. A little voice from just out side the fence said, "If you are going to talk that way about me I won't go." Is it too much to request from the quite expensive 3rd party backup tool to be a way faster than the SQL server native backup? Or at least save a respectable amount of storage by producing a really smaller backup files?  By saying “really smaller”, I mean at least getting a file in half size. After Googling the internet in an attempt to understand what other “sql people” are using for database backups, I see that most people are using one of three tools which are the main players in SQL backup area:  LiteSpeed by Quest SQL Backup by Red Gate SQL Safe by Idera The feedbacks about those tools are truly emotional and happy. However, while reading the forums and blogs I have wondered, is it possible that many are accustomed to using the above tools since SQL 2000 and 2005.  This can easily be understood due to the fact that a 300GB database backup for instance, using regular a SQL 2005 backup statement would have run for about 3 hours and have produced ~150GB file (depending on the content, of course).  Then you take a 3rd party tool which performs the same backup in 30 minutes resulting in a 30GB file leaving you speechless, you run to management persuading them to buy it due to the fact that it is definitely worth the price. In addition to the increased speed and disk space savings you would also get backup file encryption and virtual restore -  features that are still missing from the SQL server. But in case you, as well as me, don’t need these additional features and only want a tool that performs a full backup MUCH faster AND produces a far smaller backup file (like the gain you observed back in SQL 2005 days) you will be quite disappointed. SQL Server backup compression feature has totally changed the market picture. Medium size database. Take a look at the table below, check out how my SQL server 2008 R2 compares to other tools when backing up a 300GB database. It appears that when talking about the backup speed, SQL 2008 R2 compresses and performs backup in similar overall times as all three other tools. 3rd party tools maximum compression level takes twice longer. Backup file gain is not that impressive, except the highest compression levels but the price that you pay is very high cpu load and much longer time. Only SQL Safe by Idera was quite fast with it’s maximum compression level but most of the run time have used 95% cpu on the server. Note that I have used two types of destination storage, SATA 11 disks and FC 53 disks and, obviously, on faster storage have got my backup ready in half time. Looking at the above results, should we spend money, bother with another layer of complexity and software middle-man for the medium sized databases? I’m definitely not going to do so.  Very large database As a next phase of this benchmark, I have moved to a 6 terabyte database which was actually my main backup target. Note, how multiple files usage enables the SQL Server backup operation to use parallel I/O and remarkably increases it’s speed, especially when the backup device is heavily striped. SQL Server supports a maximum of 64 backup devices for a single backup operation but the most speed is gained when using one file per CPU, in the case above 8 files for a 2 Quad CPU server. The impact of additional files is minimal.  However, SQLsafe doesn’t show any speed improvement between 4 files and 8 files. Of course, with such huge databases every half percent of the compression transforms into the noticeable numbers. Saving almost 470GB of space may turn the backup tool into quite valuable purchase. Still, the backup speed and high CPU are the variables that should be taken into the consideration. As for us, the backup speed is more critical than the storage and we cannot allow a production server to sustain 95% cpu for such a long time. Bottomline, 3rd party backup tool developers, we are waiting for some breakthrough release. There are a few unanswered questions, like the restore speed comparison between different tools and the impact of multiple backup files on restore operation. Stay tuned for the next benchmarks.    Benchmark server: SQL Server 2008 R2 sp1 2 Quad CPU Database location: NetApp FC 15K Aggregate 53 discs Backup statements: No matter how good that UI is, we need to run the backup tasks from inside of SQL Server Agent to make sure they are covered by our monitoring systems. I have used extended stored procedures (command line execution also is an option, I haven’t noticed any impact on the backup performance). SQL backup LiteSpeed SQL Backup SQL safe backup database <DBNAME> to disk= '\\<networkpath>\par1.bak' , disk= '\\<networkpath>\par2.bak', disk= '\\<networkpath>\par3.bak' with format, compression EXECUTE master.dbo.xp_backup_database @database = N'<DBName>', @backupname= N'<DBName> full backup', @desc = N'Test', @compressionlevel=8, @filename= N'\\<networkpath>\par1.bak', @filename= N'\\<networkpath>\par2.bak', @filename= N'\\<networkpath>\par3.bak', @init = 1 EXECUTE master.dbo.sqlbackup '-SQL "BACKUP DATABASE <DBNAME> TO DISK= ''\\<networkpath>\par1.sqb'', DISK= ''\\<networkpath>\par2.sqb'', DISK= ''\\<networkpath>\par3.sqb'' WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 4, INIT"' EXECUTE master.dbo.xp_ss_backup @database = 'UCMSDB', @filename = '\\<networkpath>\par1.bak', @backuptype = 'Full', @compressionlevel = 4, @backupfile = '\\<networkpath>\par2.bak', @backupfile = '\\<networkpath>\par3.bak' If you still insist on using 3rd party tools for the backups in your production environment with maximum compression level, you will definitely need to consider limiting cpu usage which will increase the backup operation time even more: RedGate : use THREADPRIORITY option ( values 0 – 6 ) LiteSpeed : use  @throttle ( percentage, like 70%) SQL safe :  the only thing I have found was @Threads option.   Yours, Maria

    Read the article

  • Bitnami redmine error SVN

    - by Evgeniy
    I'm installing the Bitnami Redmine stack (redmine + subversion). Firstly I install configure and test it locally (Ubuntu 14.04 LTS). And everything is OK. I install Bitnami stack on server (Red Hat 4.4.7-4) and configure SVN. I commit files into SVN and connect project into Redmine with SVN repository, but when I try see it Rredmine displays 404 error. In the Redmine log file I see the following errors: Started GET "/redmine/projects/web-user-panel/repository" for 127.0.0.1 at 2014-04-24 11:34:20 +0300 Processing by RepositoriesController#show as HTML Parameters: {"id"=>"web-user-panel"} Current user: user (id=13) Error parsing svn output: #<REXML::ParseException: No close tag for /lists/list> /var/www/html/redmine/ruby/lib/ruby/1.9.1/rexml/parsers/treeparser.rb:28:in `parse' /var/www/html/redmine/ruby/lib/ruby/1.9.1/rexml/document.rb:245:in `build' /var/www/html/redmine/ruby/lib/ruby/1.9.1/rexml/document.rb:43:in `initialize' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/xml_mini/rexml.rb:30:in `new' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/xml_mini/rexml.rb:30:in `parse' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/xml_mini.rb:80:in `parse' /var/www/html/redmine/apps/redmine/htdocs/lib/redmine/scm/adapters/abstract_adapter.rb:313:in `parse_xml' /var/www/html/redmine/apps/redmine/htdocs/lib/redmine/scm/adapters/subversion_adapter.rb:106:in `block in entries' /var/www/html/redmine/apps/redmine/htdocs/lib/redmine/scm/adapters/abstract_adapter.rb:258:in `call' /var/www/html/redmine/apps/redmine/htdocs/lib/redmine/scm/adapters/abstract_adapter.rb:258:in `block in shellout' /var/www/html/redmine/apps/redmine/htdocs/lib/redmine/scm/adapters/abstract_adapter.rb:255:in `popen' /var/www/html/redmine/apps/redmine/htdocs/lib/redmine/scm/adapters/abstract_adapter.rb:255:in `shellout' /var/www/html/redmine/apps/redmine/htdocs/lib/redmine/scm/adapters/abstract_adapter.rb:212:in `shellout' /var/www/html/redmine/apps/redmine/htdocs/lib/redmine/scm/adapters/subversion_adapter.rb:100:in `entries' /var/www/html/redmine/apps/redmine/htdocs/app/models/repository.rb:198:in `scm_entries' /var/www/html/redmine/apps/redmine/htdocs/app/models/repository.rb:203:in `entries' /var/www/html/redmine/apps/redmine/htdocs/app/controllers/repositories_controller.rb:116:in `show' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal/implicit_render.rb:4:in `send_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/abstract_controller/base.rb:167:in `process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal/rendering.rb:10:in `process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/abstract_controller/callbacks.rb:18:in `block in process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/callbacks.rb:491:in `_run__2883861927089110970__process_action__2542827355008294621__callbacks' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/callbacks.rb:405:in `__run_callback' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/callbacks.rb:385:in `_run_process_action_callbacks' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/callbacks.rb:81:in `run_callbacks' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/abstract_controller/callbacks.rb:17:in `process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal/rescue.rb:29:in `process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal/instrumentation.rb:30:in `block in process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/notifications.rb:123:in `block in instrument' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/notifications/instrumenter.rb:20:in `instrument' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/notifications.rb:123:in `instrument' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal/instrumentation.rb:29:in `process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal/params_wrapper.rb:207:in `process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activerecord-3.2.17/lib/active_record/railties/controller_runtime.rb:18:in `process_action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/abstract_controller/base.rb:121:in `process' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/abstract_controller/rendering.rb:45:in `process' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal.rb:203:in `dispatch' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal/rack_delegation.rb:14:in `dispatch' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_controller/metal.rb:246:in `block in action' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/routing/route_set.rb:73:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/routing/route_set.rb:73:in `dispatch' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/routing/route_set.rb:36:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/journey-1.0.4/lib/journey/router.rb:68:in `block in call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/journey-1.0.4/lib/journey/router.rb:56:in `each' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/journey-1.0.4/lib/journey/router.rb:56:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/routing/route_set.rb:608:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-openid-1.3.1/lib/rack/openid.rb:98:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/best_standards_support.rb:17:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/etag.rb:23:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/conditionalget.rb:25:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/head.rb:14:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/params_parser.rb:21:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/flash.rb:242:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/session/abstract/id.rb:210:in `context' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/session/abstract/id.rb:205:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/cookies.rb:341:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activerecord-3.2.17/lib/active_record/query_cache.rb:64:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activerecord-3.2.17/lib/active_record/connection_adapters/abstract/connection_pool.rb:479:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/callbacks.rb:28:in `block in call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/callbacks.rb:405:in `_run__1805290955544829105__call__1486932417638469082__callbacks' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/callbacks.rb:405:in `__run_callback' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/callbacks.rb:385:in `_run_call_callbacks' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/callbacks.rb:81:in `run_callbacks' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/callbacks.rb:27:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/remote_ip.rb:31:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/debug_exceptions.rb:16:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/show_exceptions.rb:56:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/railties-3.2.17/lib/rails/rack/logger.rb:32:in `call_app' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/railties-3.2.17/lib/rails/rack/logger.rb:16:in `block in call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/tagged_logging.rb:22:in `tagged' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/railties-3.2.17/lib/rails/rack/logger.rb:16:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/request_id.rb:22:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/methodoverride.rb:21:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/runtime.rb:17:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/activesupport-3.2.17/lib/active_support/cache/strategy/local_cache.rb:72:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/lock.rb:15:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/actionpack-3.2.17/lib/action_dispatch/middleware/static.rb:63:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-cache-1.2/lib/rack/cache/context.rb:136:in `forward' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-cache-1.2/lib/rack/cache/context.rb:245:in `fetch' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-cache-1.2/lib/rack/cache/context.rb:185:in `lookup' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-cache-1.2/lib/rack/cache/context.rb:66:in `call!' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-cache-1.2/lib/rack/cache/context.rb:51:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/railties-3.2.17/lib/rails/engine.rb:484:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/railties-3.2.17/lib/rails/application.rb:231:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/railties-3.2.17/lib/rails/railtie/configurable.rb:30:in `method_missing' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/builder.rb:134:in `call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/urlmap.rb:64:in `block in call' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/urlmap.rb:49:in `each' /var/www/html/redmine/apps/redmine/htdocs/vendor/bundle/ruby/1.9.1/gems/rack-1.4.5/lib/rack/urlmap.rb:49:in `call' /var/www/html/redmine/ruby/lib/ruby/gems/1.9.1/gems/passenger-4.0.40/lib/phusion_passenger/rack/thread_handler_extension.rb:74:in `process_request' /var/www/html/redmine/ruby/lib/ruby/gems/1.9.1/gems/passenger-4.0.40/lib/phusion_passenger/request_handler/thread_handler.rb:141:in `accept_and_process_next_request' /var/www/html/redmine/ruby/lib/ruby/gems/1.9.1/gems/passenger-4.0.40/lib/phusion_passenger/request_handler/thread_handler.rb:109:in `main_loop' /var/www/html/redmine/ruby/lib/ruby/gems/1.9.1/gems/passenger-4.0.40/lib/phusion_passenger/request_handler.rb:448:in `block (3 levels) in start_threads' ... No close tag for /lists/list Line: 4 Position: 93 Last 80 unconsumed characters: Output was: <?xml version="1.0" encoding="UTF-8"?> <lists> <list path="svn://127.0.0.1/voxysuser"> Rendered common/error.html.erb within layouts/base (0.1ms) Completed 404 Not Found in 69.1ms (Views: 15.1ms | ActiveRecord: 3.0ms) How can I resolve this problem? I googled it, but similar problem fixed should be fixed 3 years ago. I'm installing the latest Bitnami Redmine 2.5.1-1 stack. UPDATE Well, I found next way. If I use the http protocol it works fine, but I should remove access for svn by web. That's why I create virtual host on localhost and get info from svn use 127.0.0.1 IP. <VirtualHost 127.0.0.1:8000> <Location /repo> DAV svn SVNPath "PATH_TO_MY_REPOSITORY" </Location> And this it work good.

    Read the article

  • SQL SERVER – Signal Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Signal Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Signal Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Signal Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the Signalwait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the Signal wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the Signal wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Single Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Single Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Single Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Single Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the single wait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the single wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the single wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Diagnose PC Hardware Problems with an Ubuntu Live CD

    - by Trevor Bekolay
    So your PC randomly shuts down or gives you the blue screen of death, but you can’t figure out what’s wrong. The problem could be bad memory or hardware related, and thankfully the Ubuntu Live CD has some tools to help you figure it out. Test your RAM with memtest86+ RAM problems are difficult to diagnose—they can range from annoying program crashes, or crippling reboot loops. Even if you’re not having problems, when you install new RAM it’s a good idea to thoroughly test it. The Ubuntu Live CD includes a tool called Memtest86+ that will do just that—test your computer’s RAM! Unlike many of the Live CD tools that we’ve looked at so far, Memtest86+ has to be run outside of a graphical Ubuntu session. Fortunately, it only takes a few keystrokes. Note: If you used UNetbootin to create an Ubuntu flash drive, then memtest86+ will not be available. We recommend using the Universal USB Installer from Pendrivelinux instead (persistence is possible with Universal USB Installer, but not mandatory). Boot up your computer with a Ubuntu Live CD or USB drive. You will be greeted with this screen: Use the down arrow key to select the Test memory option and hit Enter. Memtest86+ will immediately start testing your RAM. If you suspect that a certain part of memory is the problem, you can select certain portions of memory by pressing “c” and changing that option. You can also select specific tests to run. However, the default settings of Memtest86+ will exhaustively test your memory, so we recommend leaving the settings alone. Memtest86+ will run a variety of tests that can take some time to complete, so start it running before you go to bed to give it adequate time. Test your CPU with cpuburn Random shutdowns – especially when doing computationally intensive tasks – can be a sign of a faulty CPU, power supply, or cooling system. A utility called cpuburn can help you determine if one of these pieces of hardware is the problem. Note: cpuburn is designed to stress test your computer – it will run it fast and cause the CPU to heat up, which may exacerbate small problems that otherwise would be minor. It is a powerful diagnostic tool, but should be used with caution. Boot up your computer with a Ubuntu Live CD or USB drive, and choose to run Ubuntu from the CD or USB drive. When the desktop environment loads up, open the Synaptic Package Manager by clicking on the System menu in the top-left of the screen, then selecting Administration, and then Synaptic Package Manager. Cpuburn is in the universe repository. To enable the universe repository, click on Settings in the menu at the top, and then Repositories. Add a checkmark in the box labeled “Community-maintained Open Source software (universe)”. Click close. In the main Synaptic window, click the Reload button. After the package list has reloaded and the search index has been rebuilt, enter “cpuburn” in the Quick search text box. Click the checkbox in the left column, and select Mark for Installation. Click the Apply button near the top of the window. As cpuburn installs, it will caution you about the possible dangers of its use. Assuming you wish to take the risk (and if your computer is randomly restarting constantly, it’s probably worth it), open a terminal window by clicking on the Applications menu in the top-left of the screen and then selection Applications > Terminal. Cpuburn includes a number of tools to test different types of CPUs. If your CPU is more than six years old, see the full list; for modern AMD CPUs, use the terminal command burnK7 and for modern Intel processors, use the terminal command burnP6 Our processor is an Intel, so we ran burnP6. Once it started up, it immediately pushed the CPU up to 99.7% total usage, according to the Linux utility “top”. If your computer is having a CPU, power supply, or cooling problem, then your computer is likely to shutdown within ten or fifteen minutes. Because of the strain this program puts on your computer, we don’t recommend leaving it running overnight – if there’s a problem, it should crop up relatively quickly. Cpuburn’s tools, including burnP6, have no interface; once they start running, they will start driving your CPU until you stop them. To stop a program like burnP6, press Ctrl+C in the terminal window that is running the program. Conclusion The Ubuntu Live CD provides two great testing tools to diagnose a tricky computer problem, or to stress test a new computer. While they are advanced tools that should be used with caution, they’re extremely useful and easy enough that anyone can use them. Similar Articles Productive Geek Tips Reset Your Ubuntu Password Easily from the Live CDCreate a Persistent Bootable Ubuntu USB Flash DriveAdding extra Repositories on UbuntuHow to Share folders with your Ubuntu Virtual Machine (guest)Building a New Computer – Part 3: Setting it Up TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Have Fun Editing Photo Editing with Citrify Outlook Connector Upgrade Error Gadfly is a cool Twitter/Silverlight app Enable DreamScene in Windows 7 Microsoft’s “How Do I ?” Videos Home Networks – How do they look like & the problems they cause

    Read the article

  • How to enable HTTP response caching in Spring Boot

    - by Samuli Kärkkäinen
    I have implemented a REST server using Spring Boot 1.0.2. I'm having trouble preventing Spring from setting HTTP headers that disable HTTP caching. My controller is as following: @Controller public class MyRestController { @RequestMapping(value = "/someUrl", method = RequestMethod.GET) public @ResponseBody ResponseEntity<String> myMethod( HttpServletResponse httpResponse) throws SQLException { return new ResponseEntity<String>("{}", HttpStatus.OK); } } All HTTP responses contain the following headers: Cache-Control: no-cache, no-store, max-age=0, must-revalidate Expires: 0 Pragma: no-cache I've tried the following to remove or change those headers: Call setCacheSeconds(-1) in the controller. Call httpResponse.setHeader("Cache-Control", "max-age=123") in the controller. Define @Bean that returns WebContentInterceptor for which I've called setCacheSeconds(-1). Set property spring.resources.cache-period to -1 or a positive value in application.properties. None of the above have had any effect. How do I disable or change these headers for all or individual requests in Spring Boot?

    Read the article

  • SQL SERVER – SSMS: Top Object and Batch Execution Statistics Reports

    - by Pinal Dave
    The month of June till mid of July has been the fever of sports. First, it was Wimbledon Tennis and then the Soccer fever was all over. There is a huge number of fan followers and it is great to see the level at which people sometimes worship these sports. Being an Indian, I cannot forget to mention the India tour of England later part of July. Following these sports and as the events unfold to the finals, there are a number of ways the statisticians can slice and dice the numbers. Cue from soccer I can surely say there is a team performance against another team and then there is individual member fairs against a particular opponent. Such statistics give us a fair idea to how a team in the past or in the recent past has fared against each other, head-to-head stats during World cup and during other neutral venue games. All these statistics are just pointers. In reality, they don’t reflect the calibre of the current team because the individuals who performed in each of these games are totally different (Typical example being the Brazil Vs Germany semi-final match in FIFA 2014). So at times these numbers are misleading. It is worth investigating and get the next level information. Similar to these statistics, SQL Server Management studio is also equipped with a number of reports like a) Object Execution Statistics report and b) Batch Execution Statistics reports. As discussed in the example, the team scorecard is like the Batch Execution statistics and individual stats is like Object Level statistics. The analogy can be taken only this far, trust me there is no correlation between SQL Server functioning and playing sports – It is like I think about diet all the time except while I am eating. Performance – Batch Execution Statistics Let us view the first report which can be invoked from Server Node -> Reports -> Standard Reports -> Performance – Batch Execution Statistics. Most of the values that are displayed in this report come from the DMVs sys.dm_exec_query_stats and sys.dm_exec_sql_text(sql_handle). This report contains 3 distinctive sections as outline below.   Section 1: This is a graphical bar graph representation of Average CPU Time, Average Logical reads and Average Logical Writes for individual batches. The Batch numbers are indicative and the details of individual batch is available in section 3 (detailed below). Section 2: This represents a Pie chart of all the batches by Total CPU Time (%) and Total Logical IO (%) by batches. This graphical representation tells us which batch consumed the highest CPU and IO since the server started, provided plan is available in the cache. Section 3: This is the section where we can find the SQL statements associated with each of the batch Numbers. This also gives us the details of Average CPU / Average Logical Reads and Average Logical Writes in the system for the given batch with object details. Expanding the rows, I will also get the # Executions and # Plans Generated for each of the queries. Performance – Object Execution Statistics The second report worth a look is Object Execution statistics. This is a similar report as the previous but turned on its head by SQL Server Objects. The report has 3 areas to look as above. Section 1 gives the Average CPU, Average IO bar charts for specific objects. The section 2 is a graphical representation of Total CPU by objects and Total Logical IO by objects. The final section details the various objects in detail with the Avg. CPU, IO and other details which are self-explanatory. At a high-level both the reports are based on queries on two DMVs (sys.dm_exec_query_stats and sys.dm_exec_sql_text) and it builds values based on calculations using columns in them: SELECT * FROM    sys.dm_exec_query_stats s1 CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS s2 WHERE   s2.objectid IS NOT NULL AND DB_NAME(s2.dbid) IS NOT NULL ORDER BY  s1.sql_handle; This is one of the simplest form of reports and in future blogs we will look at more complex reports. I truly hope that these reports can give DBAs and developers a hint about what is the possible performance tuning area. As a closing point I must emphasize that all above reports pick up data from the plan cache. If a particular query has consumed a lot of resources earlier, but plan is not available in the cache, none of the above reports would show that bad query. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Reports

    Read the article

  • hosting environment for delivering FLVs [closed]

    - by Gotys
    What would be the ideal hardware setup for pushing lots of bandwith on a tube site? We have ever-expanding cloud storage where users upload the movies, then we have these web-delivery machines which cache the FLV files on its local harddrives and deliver them to users. Each cache machine can deliver 1200 mbits/s , if it has SAS 8 harddrives. Such a cache machine costs us $550/month for 8x160gb -- so each machine can cache only 160GB at any given time. If we want to cache more then 160gb , we need to add another machine..another $550/month..etc. This is very un-economical so I am wondering if we have any experts here who can figure out a better setup. I've been looking into "gluster FS", but I am not sure if this thing can push a lot of bandwith. Any ideas highly appreciated. Thank you!

    Read the article

  • python: variable not getting defined after several conditionals

    - by Protean
    For some reason this program is saying that 'switch' is not defined. What is going on? #PYTHON 3.1.1 class mysrt: def __init__(self): self.DATA = open('ORDER.txt', 'r') self.collect = 0 cache1 = str(self.DATA.readlines()) cache2 = [] for i in range(len(cache1)): if cache1[i] == '*': if self.collect == 0: self.collect = 1 elif self.collect == 1: self.collect = 0 elif self.collect == 1: cache2.append(cache1[i]) self.ORDER = cache2 self.ARRAY = [] self.GLOBALi = 0 self.GLOBALmax = range(len(self.ORDER)) self.GLOBALc = [] self.GLOBALl = [] def sorter(self, array): CACHE_LIST_1 = [] CACHE_LIST_2 = [] i = 0 for ORDERi in range(len(self.ORDER)): for ARRAYi in range(len(array)): CACHE = array[ARRAYi] if CACHE[self.GLOBALi] == self.ORDER[ORDERi]: CACHE_LIST_1.append(CACHE) else: CACHE_LIST_2.append(CACHE) for i in range(len(CACHE_LIST_1)): if CACHE_LIST_1[0] == CACHE_LIST_1[i] or range(len(CACHE_LIST_1)) == 1: switch = 1 print ('1') else: switch = 0 print ('0') break if switch == 1: self.GLOBALl += CACHE_LIST_1 + self.GLOBALc self.GLOBALi = 0 self.GLOBALc = [] else: self.GLOBALi += 1 self.GLOBALc += CACHE_LIST_2 mysrt.sorter(CACHE) return (self.GLOBALl) #GLOBALi =0 # if range(len(self.GLOBALc)) =! range(len(self.ARRAY)) array = ['ape', 'cow','dog','bat'] ORDER_FILE = [] mysort = mysrt() print (mysort.sorter(array))

    Read the article

  • Man pages not finding entry

    - by Mike
    So, I'm not sure what is going on with my system (ubuntu 12.04), but my man pages do not seem to be working. I try man gcc and get the following response No manual entry for gcc See 'man 7 undocumented' for help when manual pages are not available. However I see the man entry in /usr/share/man/man1/gcc.1.gz Here is what my /etc/manpath.config file looks like # manpath.config # # This file is used by the man-db package to configure the man and cat paths. # It is also used to provide a manpath for those without one by examining # their PATH environment variable. For details see the manpath(5) man page. # # Lines beginning with `#' are comments and are ignored. Any combination of # tabs or spaces may be used as `whitespace' separators. # # There are three mappings allowed in this file: # -------------------------------------------------------- # MANDATORY_MANPATH manpath_element # MANPATH_MAP path_element manpath_element # MANDB_MAP global_manpath [relative_catpath] #--------------------------------------------------------- # every automatically generated MANPATH includes these fields # #MANDATORY_MANPATH /usr/src/pvm3/man # MANDATORY_MANPATH /usr/man MANDATORY_MANPATH /usr/share/man MANDATORY_MANPATH /usr/local/share/man #--------------------------------------------------------- # set up PATH to MANPATH mapping # ie. what man tree holds man pages for what binary directory. # # *PATH* -> *MANPATH* # MANPATH_MAP /bin /usr/share/man MANPATH_MAP /usr/bin /usr/share/man MANPATH_MAP /sbin /usr/share/man MANPATH_MAP /usr/sbin /usr/share/man MANPATH_MAP /usr/local/bin /usr/local/man MANPATH_MAP /usr/local/bin /usr/local/share/man MANPATH_MAP /usr/local/sbin /usr/local/man MANPATH_MAP /usr/local/sbin /usr/local/share/man MANPATH_MAP /usr/X11R6/bin /usr/X11R6/man MANPATH_MAP /usr/bin/X11 /usr/X11R6/man MANPATH_MAP /usr/games /usr/share/man MANPATH_MAP /opt/bin /opt/man MANPATH_MAP /opt/sbin /opt/man #--------------------------------------------------------- # For a manpath element to be treated as a system manpath (as most of those # above should normally be), it must be mentioned below. Each line may have # an optional extra string indicating the catpath associated with the # manpath. If no catpath string is used, the catpath will default to the # given manpath. # # You *must* provide all system manpaths, including manpaths for alternate # operating systems, locale specific manpaths, and combinations of both, if # they exist, otherwise the permissions of the user running man/mandb will # be used to manipulate the manual pages. Also, mandb will not initialise # the database cache for any manpaths not mentioned below unless explicitly # requested to do so. # # In a per-user configuration file, this directive only controls the # location of catpaths and the creation of database caches; it has no effect # on privileges. # # Any manpaths that are subdirectories of other manpaths must be mentioned # *before* the containing manpath. E.g. /usr/man/preformat must be listed # before /usr/man. # # *MANPATH* -> *CATPATH* # MANDB_MAP /usr/man /var/cache/man/fsstnd MANDB_MAP /usr/share/man /var/cache/man MANDB_MAP /usr/local/man /var/cache/man/oldlocal MANDB_MAP /usr/local/share/man /var/cache/man/local MANDB_MAP /usr/X11R6/man /var/cache/man/X11R6 MANDB_MAP /opt/man /var/cache/man/opt # #--------------------------------------------------------- # Program definitions. These are commented out by default as the value # of the definition is already the default. To change: uncomment a # definition and modify it. # #DEFINE pager pager -s #DEFINE cat cat #DEFINE tr tr '\255\267\264\327' '\055\157\047\170' #DEFINE grep grep #DEFINE troff groff -mandoc #DEFINE nroff nroff -mandoc #DEFINE eqn eqn #DEFINE neqn neqn #DEFINE tbl tbl #DEFINE col col #DEFINE vgrind vgrind #DEFINE refer refer #DEFINE grap grap #DEFINE pic pic -S # #DEFINE compressor gzip -c7 #--------------------------------------------------------- # Misc definitions: same as program definitions above. # #DEFINE whatis_grep_flags -i #DEFINE apropos_grep_flags -iEw #DEFINE apropos_regex_grep_flags -iE #--------------------------------------------------------- # Section names. Manual sections will be searched in the order listed here; # the default is 1, n, l, 8, 3, 0, 2, 5, 4, 9, 6, 7. Multiple SECTION # directives may be given for clarity, and will be concatenated together in # the expected way. # If a particular extension is not in this list (say, 1mh), it will be # displayed with the rest of the section it belongs to. The effect of this # is that you only need to explicitly list extensions if you want to force a # particular order. Sections with extensions should usually be adjacent to # their main section (e.g. "1 1mh 8 ..."). # SECTION 1 n l 8 3 2 3posix 3pm 3perl 5 4 9 6 7 # #--------------------------------------------------------- # Range of terminal widths permitted when displaying cat pages. If the # terminal falls outside this range, cat pages will not be created (if # missing) or displayed. # #MINCATWIDTH 80 #MAXCATWIDTH 80 # # If CATWIDTH is set to a non-zero number, cat pages will always be # formatted for a terminal of the given width, regardless of the width of # the terminal actually being used. This should generally be within the # range set by MINCATWIDTH and MAXCATWIDTH. # #CATWIDTH 0 # #--------------------------------------------------------- # Flags. # NOCACHE keeps man from creating cat pages. #NOCACHE Thanks for any help (p.s. even 'man man' fails) Edit: When I run ls -l /usr/share/man/man1/gcc* I get the following output lrwxrwxrwx 1 root root 12 May 27 15:41 /usr/share/man/man1/gcc.1.gz -> gcc-4.6.1.gz -rw-r--r-- 1 root root 217776 Apr 15 17:34 /usr/share/man/man1/gcc-4.6.1.gz

    Read the article

< Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >