Search Results

Search found 5946 results on 238 pages for 'heavy bytes'.

Page 136/238 | < Previous Page | 132 133 134 135 136 137 138 139 140 141 142 143  | Next Page >

  • Where to find information about ubuntu compatible or certified hardware/PC models

    - by Halkinn
    I am buying a new desktop PC in early 2013, anyway this question should apply to someone intending to buy a new laptop/ultrabook as well. This machine is not meant for gaming, and if I ocasionally do it, I can survive with minimum graphics. However I may need some heavy multimedia edition or multitasking at times, so basically my greatest priority is a good processor, after that perhaps average graphic card (if onboards are not enough, I am still not informed enough about that), at least 4GB of RAM with possibility of expansion. I know there are some PC models specially designed to ship with Ubuntu, which is the OS I use the most these days. However, most people around me use Windows and some software with unsupported versions for Linux and not having a Windows license becomes a bit problematic. Given that, I would like to find information about which PC models or even manufacters currently on the market have the best compatibility with Ubuntu, I am still undecided between building my own desktop or buying a pre-made model, so I would like to find information both for certified models and certified hardware or even Ubuntu partners that may work closely with Canonical. Where to find this information in order to make sure that I will have a good experience with Ubuntu on my new PC in the years to come?

    Read the article

  • What's the best way to use requestAnimationFrame and fixed frame rates

    - by m90
    I recently got into using the HTML5-requestAnimationFrame-API a lot on animation-heavy websites, especially after seeing the Jank Busters talk. This seems to work pretty well and really improve performance in many cases. Yet one question still persists for me: When wanting to use an animation that is NOT entirely calculated (think spritesheets for example) you will have to aim for a fixed frame rate. Of course one could go back to use setInterval again, but maybe there are other ways to tackle this. The two ways I could think of using requestAnimationFrame with a fixed frame rate are: var fps = 25; //frames per second function animate(){ //actual drawing goes here setTimeout(function(){ requestAnimationFrame(animate); }, 1000 / fps) } animate(); or var fps = 25; //frames per second var lastExecution = new Date().getTime(); function animate(){ var now = new Date().getTime(); if ((now - lastExecution) > (1000 / fps)){ //do actual drawing lastExecution = new Date().getTime(); } requestAnimationFrame(animate); } animate(); Personally, I'd opt for the second option (the first one feels like cheating), yet it seems to be more buggy in certain situations. Is this approach really worth it (especially at low frame rates like 12.5)? Are there things to be improved? Is there another way to tackle this?

    Read the article

  • Simple (and fast) dices physics

    - by Markus von Broady
    I'm programming a throw of 5 dices in Actionscript 3 + AwayPhysics (BulletPhysics port). I had a lot of fun tweaking frictions, masses etc. and in the end I found best results with more physics ticks per frame. Currently I use 10 ticks per frame (1/60 s) and it's OK, though I see a difference in plus for 20 ticks. Even though it's only 5 cubes (dices) in a box (or a floor with 3 walls really) I can't simulate 20 ticks in a frame and keep FPS at 60 on a medium-aged PC. That's why I decided to precompute frames for animation, finishing it in around 1700 ticks in 2 seconds. The flash player is freezed for these 2 seconds, and I'm afraid that this result will be more of a 5 seconds or even more, if I'll simulate multi-threading and compute frames in background of some other heavy processes and CPU drawing (dices is only a part of this game). Because I want both players to see dices roll in same way, I can't compute physics when having free resources, and build a buffer for at least one throw of each type (where type is number of dices thrown). I'm afraid players will see a "preparing dices........." message too often and for too long. I think the only solution to this problem is replacing PhysicsEngine with something simpler, or creating own physicsEngine. Do You have any formulas for cube-cube and cube-wall collision detection, and for calculating how their angular and linear velocities should change after a collision occurs?

    Read the article

  • 2 year cis degree and in school for computer science what can I do?

    - by chame1eon
    Hi I am 29 and have a recent 2 cis year degree from a community college , an A+ certification , and meager experience with web stuff ( Java , Javascript , php ) while in my 1 year help desk internship. In all the programming classes I was able to blow through the homework easily even while other students were panicking and dropping. I think I have managed to avoid the most atrocious noob/self taught mistakes ( spaghetti code etc) by just doing research before starting something and trying to keep good design in mind. Even so I'd have to make heavy use of references to crawl through even simple projects that would result in fully finished useful applications. I need a job now and I am tired of the slow pace of the classes and would love to get any kind of practical experience I could. The problem is that I am not sure what I should be trying to do. I have a very strong preference for application programming or at least anything light on design and preferably pretty low level. If I can't do that then anything technology related , for example help desk would be better than nothing. I live near Raleigh NC. Am I qualified for anything that could contribute to coding (C++ or Java ) experience or even web development though I don't really like it. Would web development experience help. If not is there anything I could read or do that could help? Is the help desk my only choice? If it is, are there any relatively quick certifications or anything similar that would help while I am waiting? Sorry about the long multi-part question. Thanks for reading.

    Read the article

  • SEO Blog Indexing : Dot Wordpress Versus a Registered Domain?

    - by rumspringa00
    I've used Wordpress for a few of my client's sites, mostly small businesses and ecommerce sites. I have found through Google Analytics as well as the All in One Webmaster plugin that when it comes to social media, using Wordpress is a surefire way of getting your site indexed by Google and occasionally Bing and Yahoo. Since I am a heavy WP user, I'd like to contribute by registering a dot Wordpress domain for my portfolio. When using a WP installation concurrently with a WP domain, e.g. myportfolio.wordpress.com, will the site be more or less likely to be indexed rather a generic myportfolio.com domain? I've seen mixed opinions where people seem to favor a WP domain for URL output where others say that it's a moot point, and that Google will not favor a WP domain over a dot com domain as long as your meta tags are updated and content is keyword optimized. I tend to disagree and believe a WP domian would more likely be indexed and output more URLs over an individual, laconic domain like myportfolio.com. Am I wrong? Thanks in advance!

    Read the article

  • Acer aspire v3 771G ubuntu 13.04

    - by Jos
    Gooday, i have this acer and i have alot of boot problems (i suspect windows 8) and now i want to try ubuntu but when i use an usb to "try" ubuntu after the boot i get a black screen. now ive read some of the forums and i found something about NOMODESET i have not tried this as i dont know what this does exactly. now i have found this wiki entry https://wiki.ubuntu.com/Bumblebee , i am by far no programmer and always reading all those commands have always kept me of linux because im scared i will !@#$ things up. is there anyway i can go to NOMODESET in the ubuntu "trial" and can i also include the bumblebee futures (coding?) and in how many ways wil this affect my laptops perfomance? reading the bumblebee entry its seems to be something about nvidia optimus and i dont reallt care much for the power saving, but will it affect any performance? im not a heavy pc gamer but i like tho do some gaming and streaming and such also on a rather big TV in wich this laptop already has it flaws in some games not running properly on 65" if this doesn't work or u advise me not to do this what else can i do to fix windows 8 or either some other linux version? i thankyou in advance

    Read the article

  • How do audio based games such as Audiosurf and Beat Hazard work?

    - by The Communist Duck
    Note: I am not asking how to make a clone of one of these. I am asking about how they work. I'm sure everyone's seen the games where you use your own music files (or provided ones) and the games produce levels based on them, such as Audiosurf and Beat Hazard. Here is a video of Audiosurf in action, to show what I mean. If you provide a heavy metal song, you would get a completely different set of obstacles, enemies, and game experience from something like Vivaldi. What does interest me is how these games work. I do not know much about audio (well, data-side), but how do they process the song to understand when it is settling down or when it's speeding up? I guess they could just feed the pitch values (assuming those sorts of things exist in audio files) to form a level, but it wouldn't fully explain it. I'm either looking for an explanation, some links to articles about this sort of thing (I'm sure there's a term or terms for it), or even an open-source implementation of this kind of thing ;-) EDIT: After some searching and a little help, I found out about FFT (Fast Fourier Transform). This maybe a step in the right direction, but it is something that does not make any sense to me..or fits with my physics knowledge of waves.

    Read the article

  • How to embed woff fonts for iframe source pages?

    - by Mon
    I am trying to make and embed a slideshow (of text, photo, audio, video, etc) in my site (HTML5) by loading webpages consecutively inside an iframe embedded in my first page. Most or all of the frame source pages, i.e. pages loaded inside first iframe are mine, but located in many different places. All of these pages are in an Indic language. Although I can use UTF-8 charset and lang="" declaration and that's probably enough functionally, but I also want to embed my preferred Indic unicode font in WOFF format via CSS3 @font-face rule , so the size and look of the text is uniform and the way I want it - throughout the slideshow. Problem is, there are many many pages in the slideshow all located in various places with many more linked pages, and it is next to impossible, or at least would be extremely tedious, to embed my custom WOFF font in every single page (which will also require separate css and uploading of fonts in every single instance). Besides, this may make the slideshow very heavy, sluggish and cumbersome for the user, since it will have to load the custom Indic font again and again everytime a new page is loaded in the iframe. I am not sure about this though. Is that how it works? I ask this, because I noticed that when I embedded my custom WOFF font in the 'first' page, it did not have any effect on the pages loaded inside the iframe. If I embed the font in some of the pages in the iframe, the next pages still don't get my font. Is there a way to embed my custom WOFF font only once, preferably in the first page where the first iframe is, and pass its effect on to all the pages embedded / loaded through the iframe and make their text show up as per my initially embedded woff font - without embedding my font in every single of them? Please help!

    Read the article

  • C++ Parallel Asynchonous task

    - by Doodlemeat
    I am currently building a randomly generated terrain game where terrain is created automatically around the player. I am experiencing lag when the generated process is active, as I am running quite heavy tasks with post-processing and creating physics bodies. Then I came to mind using a parallel asynchronous task to do the post-processing for me. But I have no idea how I am going to do that. I have searched for C++ std::async but I believe that is not what I want. In the examples I found, a task returned something. I want the task to change objects in the main program. This is what I want: // Main program // Chunks that needs to be processed. // NOTE! These chunks are already generated, but need post-processing only! std::vector<Chunk*> unprocessedChunks; And then my task could look something like this, running like a loop constantly checking if there is chunks to process. // Asynced task if(unprocessedChunks.size() > 0) { processChunk(unprocessedChunks.pop()); } I know it's not far from easy as I wrote it, but it would be a huge help for me if you could push me at the right direction. In Java, I could type something like this: asynced_task = startAsyncTask(new PostProcessTask()); And that task would run until I do this: asynced_task.cancel();

    Read the article

  • Creating dynamic plots

    - by geoff92
    I'm completely new to web programming but I do have a programming background. I'd like to create a site that allows users to visit, enter some specifications into a form, submit the form, and then receive a graph. I have a few questions about this, only because I'm pretty ignorant: Is there a good framework I should start in? I know a lot of java, I'm okay with python, and I learned Ruby in the past. I figure I might use ruby on rails only because I hear of it so often and I think I've also heard it's easy. If anyone has some other recommendation, please suggest. The user will be entering data into a form. I'm guessing the request they'll be making should be one of a GET request, right? Because I don't intend for any of the data they're entering to modify my server (in fact, I don't intend on having a database). The data the user inputs will be used to perform calculations involving lots of matrices. I've written this functionality in python. If I use ruby on rails, should it be instead written in Ruby? Somewhere I've heard that you can either place the load of the work on your server or on the client's computer. Since the code performs heavy math, which option is preferable? How do I alter the setup to either make the client do the work or my server? Should I be using a "cgi-bin"? In the code that I have now, I use matplotlib, a python library, and then "show" the plot in order to see the graph. I specify the x and y limits, but I am able to "drag" the graph in order to see more data within the plot window. Ultimately, I want a graph to be shown on my site with the drag functionality. Is this possible? What if the client drags the graph so far, more computations must be made? Thanks!

    Read the article

  • Extended display - nightmare

    - by user206343
    I have been struggling for quite a while, and I hope one of you can shed some lights on my issue. I am using Xubuntu 13.10 (Ubuntu 12.04LTS behaves the same way, higher version wouldn't install, LinuxMint didn't install, Fedora didn't install). I am trying to set extend display for two dell monitors 1900x1200. It works great when in mirror mode, but I just cannot extend the display. Either one monitor goes to sleep and the other is unresponsive, or both work but are unusable. This is a link to the picture of my monitors in mirror mode This is link showing what happens after I try to extend the desktop I get the same results if I use aRandr or the built in configuration utility. I have an ATI Radeon X300 card. I cannot use proprietary Catalyst drivers (I would have to use the legacy ones, which would force me into using much older version of the OS). Extension is possible with Windows. I am hoping someone can come up with tweaks that would allow me to run an extended desktop. I truly love Xubuntu (and Ubuntu, unfortunately, Unity is a bit too heavy for my old PC, and I have to run in 2D mode, so 12.04 is as high as I can go). I have tried everything I could find online, but nothing worked thus far. I believe some configuration or something I am missing might work. Please, if you have any idea, do not hesitate. Thanks guys.

    Read the article

  • Session memory – who’s this guy named Max and what’s he doing with my memory?

    - by extended_events
    SQL Server MVP Jonathan Kehayias (blog) emailed me a question last week when he noticed that the total memory used by the buffers for an event session was larger than the value he specified for the MAX_MEMORY option in the CREATE EVENT SESSION DDL. The answer here seems like an excellent subject for me to kick-off my new “401 – Internals” tag that identifies posts where I pull back the curtains a bit and let you peek into what’s going on inside the extended events engine. In a previous post (Option Trading: Getting the most out of the event session options) I explained that we use a set of buffers to store the event data before  we write the event data to asynchronous targets. The MAX_MEMORY along with the MEMORY_PARTITION_MODE defines how big each buffer will be. Theoretically, that means that I can predict the size of each buffer using the following formula: max memory / # of buffers = buffer size If it was that simple I wouldn’t be writing this post. I’ll take “boundary” for 64K Alex For a number of reasons that are beyond the scope of this blog, we create event buffers in 64K chunks. The result of this is that the buffer size indicated by the formula above is rounded up to the next 64K boundary and that is the size used to create the buffers. If you think visually, this means that the graph of your max_memory option compared to the actual buffer size that results will look like a set of stairs rather than a smooth line. You can see this behavior by looking at the output of dm_xe_sessions, specifically the fields related to the buffer sizes, over a range of different memory inputs: Note: This test was run on a 2 core machine using per_cpu partitioning which results in 5 buffers. (Seem my previous post referenced above for the math behind buffer count.) input_memory_kb total_regular_buffers regular_buffer_size total_buffer_size 637 5 130867 654335 638 5 130867 654335 639 5 130867 654335 640 5 196403 982015 641 5 196403 982015 642 5 196403 982015 This is just a segment of the results that shows one of the “jumps” between the buffer boundary at 639 KB and 640 KB. You can verify the size boundary by doing the math on the regular_buffer_size field, which is returned in bytes: 196403 – 130867 = 65536 bytes 65536 / 1024 = 64 KB The relationship between the input for max_memory and when the regular_buffer_size is going to jump from one 64K boundary to the next is going to change based on the number of buffers being created. The number of buffers is dependent on the partition mode you choose. If you choose any partition mode other than NONE, the number of buffers will depend on your hardware configuration. (Again, see the earlier post referenced above.) With the default partition mode of none, you always get three buffers, regardless of machine configuration, so I generated a “range table” for max_memory settings between 1 KB and 4096 KB as an example. start_memory_range_kb end_memory_range_kb total_regular_buffers regular_buffer_size total_buffer_size 1 191 NULL NULL NULL 192 383 3 130867 392601 384 575 3 196403 589209 576 767 3 261939 785817 768 959 3 327475 982425 960 1151 3 393011 1179033 1152 1343 3 458547 1375641 1344 1535 3 524083 1572249 1536 1727 3 589619 1768857 1728 1919 3 655155 1965465 1920 2111 3 720691 2162073 2112 2303 3 786227 2358681 2304 2495 3 851763 2555289 2496 2687 3 917299 2751897 2688 2879 3 982835 2948505 2880 3071 3 1048371 3145113 3072 3263 3 1113907 3341721 3264 3455 3 1179443 3538329 3456 3647 3 1244979 3734937 3648 3839 3 1310515 3931545 3840 4031 3 1376051 4128153 4032 4096 3 1441587 4324761 As you can see, there are 21 “steps” within this range and max_memory values below 192 KB fall below the 64K per buffer limit so they generate an error when you attempt to specify them. Max approximates True as memory approaches 64K The upshot of this is that the max_memory option does not imply a contract for the maximum memory that will be used for the session buffers (Those of you who read Take it to the Max (and beyond) know that max_memory is really only referring to the event session buffer memory.) but is more of an estimate of total buffer size to the nearest higher multiple of 64K times the number of buffers you have. The maximum delta between your initial max_memory setting and the true total buffer size occurs right after you break through a 64K boundary, for example if you set max_memory = 576 KB (see the green line in the table), your actual buffer size will be closer to 767 KB in a non-partitioned event session. You get “stepped up” for every 191 KB block of initial max_memory which isn’t likely to cause a problem for most machines. Things get more interesting when you consider a partitioned event session on a computer that has a large number of logical CPUs or NUMA nodes. Since each buffer gets “stepped up” when you break a boundary, the delta can get much larger because it’s multiplied by the number of buffers. For example, a machine with 64 logical CPUs will have 160 buffers using per_cpu partitioning or if you have 8 NUMA nodes configured on that machine you would have 24 buffers when using per_node. If you’ve just broken through a 64K boundary and get “stepped up” to the next buffer size you’ll end up with total buffer size approximately 10240 KB and 1536 KB respectively (64K * # of buffers) larger than max_memory value you might think you’re getting. Using per_cpu partitioning on large machine has the most impact because of the large number of buffers created. If the amount of memory being used by your system within these ranges is important to you then this is something worth paying attention to and considering when you configure your event sessions. The DMV dm_xe_sessions is the tool to use to identify the exact buffer size for your sessions. In addition to the regular buffers (read: event session buffers) you’ll also see the details for large buffers if you have configured MAX_EVENT_SIZE. The “buffer steps” for any given hardware configuration should be static within each partition mode so if you want to have a handy reference available when you configure your event sessions you can use the following code to generate a range table similar to the one above that is applicable for your specific machine and chosen partition mode. DECLARE @buf_size_output table (input_memory_kb bigint, total_regular_buffers bigint, regular_buffer_size bigint, total_buffer_size bigint) DECLARE @buf_size int, @part_mode varchar(8) SET @buf_size = 1 -- Set to the begining of your max_memory range (KB) SET @part_mode = 'per_cpu' -- Set to the partition mode for the table you want to generate WHILE @buf_size <= 4096 -- Set to the end of your max_memory range (KB) BEGIN     BEGIN TRY         IF EXISTS (SELECT * from sys.server_event_sessions WHERE name = 'buffer_size_test')             DROP EVENT SESSION buffer_size_test ON SERVER         DECLARE @session nvarchar(max)         SET @session = 'create event session buffer_size_test on server                         add event sql_statement_completed                         add target ring_buffer                         with (max_memory = ' + CAST(@buf_size as nvarchar(4)) + ' KB, memory_partition_mode = ' + @part_mode + ')'         EXEC sp_executesql @session         SET @session = 'alter event session buffer_size_test on server                         state = start'         EXEC sp_executesql @session         INSERT @buf_size_output (input_memory_kb, total_regular_buffers, regular_buffer_size, total_buffer_size)             SELECT @buf_size, total_regular_buffers, regular_buffer_size, total_buffer_size FROM sys.dm_xe_sessions WHERE name = 'buffer_size_test'     END TRY     BEGIN CATCH         INSERT @buf_size_output (input_memory_kb)             SELECT @buf_size     END CATCH     SET @buf_size = @buf_size + 1 END DROP EVENT SESSION buffer_size_test ON SERVER SELECT MIN(input_memory_kb) start_memory_range_kb, MAX(input_memory_kb) end_memory_range_kb, total_regular_buffers, regular_buffer_size, total_buffer_size from @buf_size_output group by total_regular_buffers, regular_buffer_size, total_buffer_size Thanks to Jonathan for an interesting question and a chance to explore some of the details of Extended Event internals. - Mike

    Read the article

  • bluetooth not working on Ubuntu 13.10

    - by iacopo
    I upgrated ubuntu from 13.4 to 13.10 and my bluetooth stopped working. When I open bluetooth I'm able to put it ON but the visibility doesn't show anything and didn't detect any device. when I: dmesg | grep Blue [ 2.046249] usb 3-1: Product: Bluetooth V2.0 Dongle [ 2.046252] usb 3-1: Manufacturer: Bluetooth v2.0 [ 15.255710] Bluetooth: Core ver 2.16 [ 15.255748] Bluetooth: HCI device and connection manager initialized [ 15.255759] Bluetooth: HCI socket layer initialized [ 15.255765] Bluetooth: L2CAP socket layer initialized [ 15.255776] Bluetooth: SCO socket layer initialized [ 20.110379] Bluetooth: BNEP (Ethernet Emulation) ver 1.3 [ 20.110386] Bluetooth: BNEP filters: protocol multicast [ 20.110400] Bluetooth: BNEP socket layer initialized [ 20.120635] Bluetooth: RFCOMM TTY layer initialized [ 20.120656] Bluetooth: RFCOMM socket layer initialized [ 20.120660] Bluetooth: RFCOMM ver 1.11 when I digit: lsusb Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 002 Device 002: ID 0bc2:2300 Seagate RSS LLC Expansion Portable Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 006 Device 002: ID 0e6a:6001 Megawin Technology Co., Ltd GEMBIRD Flexible keyboard KB-109F-B-DE Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 005 Device 002: ID 13ee:0001 MosArt Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 003 Device 002: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode) Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub when I: hciconfig -a hci0: Type: BR/EDR Bus: USB BD Address: 00:1B:10:00:2A:EC ACL MTU: 1017:8 SCO MTU: 64:0 DOWN RX bytes:457 acl:0 sco:0 events:16 errors:0 TX bytes:68 acl:0 sco:0 commands:16 errors:0 Features: 0xff 0xff 0x8d 0xfe 0x9b 0xf9 0x00 0x80 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3 Link policy: Link mode: SLAVE ACCEPT when I digit: rfkill list 0: phy0: Wireless LAN Soft blocked: yes Hard blocked: no 1: hci0: Bluetooth Soft blocked: no Hard blocked: no when I digit: sudo gedit /etc/bluetooth/main.conf [General] # List of plugins that should not be loaded on bluetoothd startup #DisablePlugins = network,input # Default adaper name # %h - substituted for hostname # %d - substituted for adapter id Name = %h-%d # Default device class. Only the major and minor device class bits are # considered. Class = 0x000100 # How long to stay in discoverable mode before going back to non-discoverable # The value is in seconds. Default is 180, i.e. 3 minutes. # 0 = disable timer, i.e. stay discoverable forever DiscoverableTimeout = 0 # How long to stay in pairable mode before going back to non-discoverable # The value is in seconds. Default is 0. # 0 = disable timer, i.e. stay pairable forever PairableTimeout = 0 # Use some other page timeout than the controller default one # which is 16384 (10 seconds). PageTimeout = 8192 # Automatic connection for bonded devices driven by platform/user events. # If a platform plugin uses this mechanism, automatic connections will be # enabled during the interval defined below. Initially, this feature # intends to be used to establish connections to ATT channels. AutoConnectTimeout = 60 # What value should be assumed for the adapter Powered property when # SetProperty(Powered, ...) hasn't been called yet. Defaults to true InitiallyPowered = true # Remember the previously stored Powered state when initializing adapters RememberPowered = false # Use vendor id source (assigner), vendor, product and version information for # DID profile support. The values are separated by ":" and assigner, VID, PID # and version. # Possible vendor id source values: bluetooth, usb (defaults to usb) #DeviceID = bluetooth:1234:5678:abcd # Do reverse service discovery for previously unknown devices that connect to # us. This option is really only needed for qualification since the BITE tester # doesn't like us doing reverse SDP for some test cases (though there could in # theory be other useful purposes for this too). Defaults to true. ReverseServiceDiscovery = true # Enable name resolving after inquiry. Set it to 'false' if you don't need # remote devices name and want shorter discovery cycle. Defaults to 'true'. NameResolving = true # Enable runtime persistency of debug link keys. Default is false which # makes debug link keys valid only for the duration of the connection # that they were created for. DebugKeys = false # Enable the GATT functionality. Default is false EnableGatt = false when I digit: dmesg | grep Bluetooth [ 2.013041] usb 3-1: Product: Bluetooth V2.0 Dongle [ 2.013049] usb 3-1: Manufacturer: Bluetooth v2.0 [ 13.798293] Bluetooth: Core ver 2.16 [ 13.798338] Bluetooth: HCI device and connection manager initialized [ 13.798352] Bluetooth: HCI socket layer initialized [ 13.798357] Bluetooth: L2CAP socket layer initialized [ 13.798368] Bluetooth: SCO socket layer initialized [ 20.184162] Bluetooth: BNEP (Ethernet Emulation) ver 1.3 [ 20.184173] Bluetooth: BNEP filters: protocol multicast [ 20.184197] Bluetooth: BNEP socket layer initialized [ 20.238947] Bluetooth: RFCOMM TTY layer initialized [ 20.238983] Bluetooth: RFCOMM socket layer initialized [ 20.239018] Bluetooth: RFCOMM ver 1.11 When I digit: uname -a Linux casa-desktop 3.11.0-13-generic #20-Ubuntu SMP Wed Oct 23 07:38:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux When I digit: lsmod Module Size Used by parport_pc 32701 0 rfcomm 69070 4 bnep 19564 2 ppdev 17671 0 ip6t_REJECT 12910 1 xt_hl 12521 6 ip6t_rt 13507 3 nf_conntrack_ipv6 18938 9 nf_defrag_ipv6 34616 1 nf_conntrack_ipv6 ipt_REJECT 12541 1 xt_LOG 17718 8 xt_limit 12711 11 xt_tcpudp 12884 32 xt_addrtype 12635 4 nf_conntrack_ipv4 15012 9 nf_defrag_ipv4 12729 1 nf_conntrack_ipv4 xt_conntrack 12760 18 ip6table_filter 12815 1 ip6_tables 27025 1 ip6table_filter nf_conntrack_netbios_ns 12665 0 nf_conntrack_broadcast 12589 1 nf_conntrack_netbios_ns nf_nat_ftp 12741 0 nf_nat 26653 1 nf_nat_ftp kvm_amd 59958 0 nf_conntrack_ftp 18608 1 nf_nat_ftp kvm 431315 1 kvm_amd nf_conntrack 91736 8 nf_nat_ftp,nf_conntrack_netbios_ns,nf_nat,xt_conntrack,nf_conntrack_broadcast,nf_conntrack_ftp,nf_conntrack_ipv4,nf_conntrack_ipv6 iptable_filter 12810 1 crct10dif_pclmul 14289 0 crc32_pclmul 13113 0 ip_tables 27239 1 iptable_filter snd_hda_codec_realtek 55704 1 ghash_clmulni_intel 13259 0 aesni_intel 55624 0 aes_x86_64 17131 1 aesni_intel snd_hda_codec_hdmi 41117 1 x_tables 34059 13 ip6table_filter,xt_hl,ip_tables,xt_tcpudp,xt_limit,xt_conntrack,xt_LOG,iptable_filter,ip6t_rt,ipt_REJECT,ip6_tables,xt_addrtype,ip6t_REJECT lrw 13257 1 aesni_intel snd_hda_intel 48171 5 gf128mul 14951 1 lrw glue_helper 13990 1 aesni_intel ablk_helper 13597 1 aesni_intel joydev 17377 0 cryptd 20329 3 ghash_clmulni_intel,aesni_intel,ablk_helper snd_hda_codec 188738 3 snd_hda_codec_realtek,snd_hda_codec_hdmi,snd_hda_intel arc4 12608 2 snd_hwdep 13602 1 snd_hda_codec rt2800pci 18690 0 snd_pcm 102033 3 snd_hda_codec_hdmi,snd_hda_codec,snd_hda_intel radeon 1402449 3 rt2800lib 79963 1 rt2800pci btusb 28267 0 rt2x00pci 13287 1 rt2800pci rt2x00mmio 13603 1 rt2800pci snd_page_alloc 18710 2 snd_pcm,snd_hda_intel rt2x00lib 55238 4 rt2x00pci,rt2800lib,rt2800pci,rt2x00mmio snd_seq_midi 13324 0 mac80211 596969 3 rt2x00lib,rt2x00pci,rt2800lib snd_seq_midi_event 14899 1 snd_seq_midi ttm 83995 1 radeon snd_rawmidi 30095 1 snd_seq_midi cfg80211 479757 2 mac80211,rt2x00lib drm_kms_helper 52651 1 radeon snd_seq 61560 2 snd_seq_midi_event,snd_seq_midi bluetooth 371880 12 bnep,btusb,rfcomm microcode 23518 0 eeprom_93cx6 13344 1 rt2800pci snd_seq_device 14497 3 snd_seq,snd_rawmidi,snd_seq_midi crc_ccitt 12707 1 rt2800lib snd_timer 29433 2 snd_pcm,snd_seq snd 69141 21 snd_hda_codec_realtek,snd_hwdep,snd_timer,snd_hda_codec_hdmi,snd_pcm,snd_seq,snd_rawmidi,snd_hda_codec,snd_hda_intel,snd_seq_device,snd_seq_midi psmouse 97626 0 drm 296739 5 ttm,drm_kms_helper,radeon k10temp 13126 0 soundcore 12680 1 snd serio_raw 13413 0 i2c_algo_bit 13413 1 radeon i2c_piix4 22106 0 video 19318 0 mac_hid 13205 0 lp 17759 0 parport 42299 3 lp,ppdev,parport_pc hid_generic 12548 0 usbhid 53014 0 hid 105818 2 hid_generic,usbhid pata_acpi 13038 0 usb_storage 62062 1 r8169 67341 0 sdhci_pci 18985 0 sdhci 42630 1 sdhci_pci mii 13934 1 r8169 pata_atiixp 13242 0 ohci_pci 13561 0 ahci 25819 2 libahci 31898 1 ahci Someone can help me?

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • T-SQL Tuesday #31 - Logging Tricks with CONTEXT_INFO

    - by Most Valuable Yak (Rob Volk)
    This month's T-SQL Tuesday is being hosted by Aaron Nelson [b | t], fellow Atlantan (the city in Georgia, not the famous sunken city, or the resort in the Bahamas) and covers the topic of logging (the recording of information, not the harvesting of trees) and maintains the fine T-SQL Tuesday tradition begun by Adam Machanic [b | t] (the SQL Server guru, not the guy who fixes cars, check the spelling again, there will be a quiz later). This is a trick I learned from Fernando Guerrero [b | t] waaaaaay back during the PASS Summit 2004 in sunny, hurricane-infested Orlando, during his session on Secret SQL Server (not sure if that's the correct title, and I haven't used parentheses in this paragraph yet).  CONTEXT_INFO is a neat little feature that's existed since SQL Server 2000 and perhaps even earlier.  It lets you assign data to the current session/connection, and maintains that data until you disconnect or change it.  In addition to the CONTEXT_INFO() function, you can also query the context_info column in sys.dm_exec_sessions, or even sysprocesses if you're still running SQL Server 2000, if you need to see it for another session. While you're limited to 128 bytes, one big advantage that CONTEXT_INFO has is that it's independent of any transactions.  If you've ever logged to a table in a transaction and then lost messages when it rolled back, you can understand how aggravating it can be.  CONTEXT_INFO also survives across multiple SQL batches (GO separators) in the same connection, so for those of you who were going to suggest "just log to a table variable, they don't get rolled back":  HA-HA, I GOT YOU!  Since GO starts a new batch all variable declarations are lost. Here's a simple example I recently used at work.  I had to test database mirroring configurations for disaster recovery scenarios and measure the network throughput.  I also needed to log how long it took for the script to run and include the mirror settings for the database in question.  I decided to use AdventureWorks as my database model, and Adam Machanic's Big Adventure script to provide a fairly large workload that's repeatable and easily scalable.  My test would consist of several copies of AdventureWorks running the Big Adventure script while I mirrored the databases (or not). Since Adam's script contains several batches, I decided CONTEXT_INFO would have to be used.  As it turns out, I only needed to grab the start time at the beginning, I could get the rest of the data at the end of the process.   The code is pretty small: declare @time binary(128)=cast(getdate() as binary(8)) set context_info @time   ... rest of Big Adventure code ...   go use master; insert mirror_test(server,role,partner,db,state,safety,start,duration) select @@servername, mirroring_role_desc, mirroring_partner_instance, db_name(database_id), mirroring_state_desc, mirroring_safety_level_desc, cast(cast(context_info() as binary(8)) as datetime), datediff(s,cast(cast(context_info() as binary(8)) as datetime),getdate()) from sys.database_mirroring where db_name(database_id) like 'Adv%';   I declared @time as a binary(128) since CONTEXT_INFO is defined that way.  I couldn't convert GETDATE() to binary(128) as it would pad the first 120 bytes as 0x00.  To keep the CAST functions simple and avoid using SUBSTRING, I decided to CAST GETDATE() as binary(8) and let SQL Server do the implicit conversion.  It's not the safest way perhaps, but it works on my machine. :) As I mentioned earlier, you can query system views for sessions and get their CONTEXT_INFO.  With a little boilerplate code this can be used to monitor long-running procedures, in case you need to kill a process, or are just curious  how long certain parts take.  In this example, I added code to Adam's Big Adventure script to set CONTEXT_INFO messages at strategic places I want to monitor.  (His code is in UPPERCASE as it was in the original, mine is all lowercase): declare @msg binary(128) set @msg=cast('Altering bigProduct.ProductID' as binary(128)) set context_info @msg go ALTER TABLE bigProduct ALTER COLUMN ProductID INT NOT NULL GO set context_info 0x0 go declare @msg1 binary(128) set @msg1=cast('Adding pk_bigProduct Constraint' as binary(128)) set context_info @msg1 go ALTER TABLE bigProduct ADD CONSTRAINT pk_bigProduct PRIMARY KEY (ProductID) GO set context_info 0x0 go declare @msg2 binary(128) set @msg2=cast('Altering bigTransactionHistory.TransactionID' as binary(128)) set context_info @msg2 go ALTER TABLE bigTransactionHistory ALTER COLUMN TransactionID INT NOT NULL GO set context_info 0x0 go declare @msg3 binary(128) set @msg3=cast('Adding pk_bigTransactionHistory Constraint' as binary(128)) set context_info @msg3 go ALTER TABLE bigTransactionHistory ADD CONSTRAINT pk_bigTransactionHistory PRIMARY KEY NONCLUSTERED(TransactionID) GO set context_info 0x0 go declare @msg4 binary(128) set @msg4=cast('Creating IX_ProductId_TransactionDate Index' as binary(128)) set context_info @msg4 go CREATE NONCLUSTERED INDEX IX_ProductId_TransactionDate ON bigTransactionHistory(ProductId,TransactionDate) INCLUDE(Quantity,ActualCost) GO set context_info 0x0   This doesn't include the entire script, only those portions that altered a table or created an index.  One annoyance is that SET CONTEXT_INFO requires a literal or variable, you can't use an expression.  And since GO starts a new batch I need to declare a variable in each one.  And of course I have to use CAST because it won't implicitly convert varchar to binary.  And even though context_info is a nullable column, you can't SET CONTEXT_INFO NULL, so I have to use SET CONTEXT_INFO 0x0 to clear the message after the statement completes.  And if you're thinking of turning this into a UDF, you can't, although a stored procedure would work. So what does all this aggravation get you?  As the code runs, if I want to see which stage the session is at, I can run the following (assuming SPID 51 is the one I want): select CAST(context_info as varchar(128)) from sys.dm_exec_sessions where session_id=51   Since SQL Server 2005 introduced the new system and dynamic management views (DMVs) there's not as much need for tagging a session with these kinds of messages.  You can get the session start time and currently executing statement from them, and neatly presented if you use Adam's sp_whoisactive utility (and you absolutely should be using it).  Of course you can always use xp_cmdshell, a CLR function, or some other tricks to log information outside of a SQL transaction.  All the same, I've used this trick to monitor long-running reports at a previous job, and I still think CONTEXT_INFO is a great feature, especially if you're still using SQL Server 2000 or want to supplement your instrumentation.  If you'd like an exercise, consider adding the system time to the messages in the last example, and an automated job to query and parse it from the system tables.  That would let you track how long each statement ran without having to run Profiler. #TSQL2sDay

    Read the article

  • SortedDictionary and SortedList

    - by Simon Cooper
    Apart from Dictionary<TKey, TValue>, there's two other dictionaries in the BCL - SortedDictionary<TKey, TValue> and SortedList<TKey, TValue>. On the face of it, these two classes do the same thing - provide an IDictionary<TKey, TValue> interface where the iterator returns the items sorted by the key. So what's the difference between them, and when should you use one rather than the other? (as in my previous post, I'll assume you have some basic algorithm & datastructure knowledge) SortedDictionary We'll first cover SortedDictionary. This is implemented as a special sort of binary tree called a red-black tree. Essentially, it's a binary tree that uses various constraints on how the nodes of the tree can be arranged to ensure the tree is always roughly balanced (for more gory algorithmical details, see the wikipedia link above). What I'm concerned about in this post is how the .NET SortedDictionary is actually implemented. In .NET 4, behind the scenes, the actual implementation of the tree is delegated to a SortedSet<KeyValuePair<TKey, TValue>>. One example tree might look like this: Each node in the above tree is stored as a separate SortedSet<T>.Node object (remember, in a SortedDictionary, T is instantiated to KeyValuePair<TKey, TValue>): class Node { public bool IsRed; public T Item; public SortedSet<T>.Node Left; public SortedSet<T>.Node Right; } The SortedSet only stores a reference to the root node; all the data in the tree is accessed by traversing the Left and Right node references until you reach the node you're looking for. Each individual node can be physically stored anywhere in memory; what's important is the relationship between the nodes. This is also why there is no constructor to SortedDictionary or SortedSet that takes an integer representing the capacity; there are no internal arrays that need to be created and resized. This may seen trivial, but it's an important distinction between SortedDictionary and SortedList that I'll cover later on. And that's pretty much it; it's a standard red-black tree. Plenty of webpages and datastructure books cover the algorithms behind the tree itself far better than I could. What's interesting is the comparions between SortedDictionary and SortedList, which I'll cover at the end. As a side point, SortedDictionary has existed in the BCL ever since .NET 2. That means that, all through .NET 2, 3, and 3.5, there has been a bona-fide sorted set class in the BCL (called TreeSet). However, it was internal, so it couldn't be used outside System.dll. Only in .NET 4 was this class exposed as SortedSet. SortedList Whereas SortedDictionary didn't use any backing arrays, SortedList does. It is implemented just as the name suggests; two arrays, one containing the keys, and one the values (I've just used random letters for the values): The items in the keys array are always guarenteed to be stored in sorted order, and the value corresponding to each key is stored in the same index as the key in the values array. In this example, the value for key item 5 is 'z', and for key item 8 is 'm'. Whenever an item is inserted or removed from the SortedList, a binary search is run on the keys array to find the correct index, then all the items in the arrays are shifted to accomodate the new or removed item. For example, if the key 3 was removed, a binary search would be run to find the array index the item was at, then everything above that index would be moved down by one: and then if the key/value pair {7, 'f'} was added, a binary search would be run on the keys to find the index to insert the new item, and everything above that index would be moved up to accomodate the new item: If another item was then added, both arrays would be resized (to a length of 10) before the new item was added to the arrays. As you can see, any insertions or removals in the middle of the list require a proportion of the array contents to be moved; an O(n) operation. However, if the insertion or removal is at the end of the array (ie the largest key), then it's only O(log n); the cost of the binary search to determine it does actually need to be added to the end (excluding the occasional O(n) cost of resizing the arrays to fit more items). As a side effect of using backing arrays, SortedList offers IList Keys and Values views that simply use the backing keys or values arrays, as well as various methods utilising the array index of stored items, which SortedDictionary does not (and cannot) offer. The Comparison So, when should you use one and not the other? Well, here's the important differences: Memory usage SortedDictionary and SortedList have got very different memory profiles. SortedDictionary... has a memory overhead of one object instance, a bool, and two references per item. On 64-bit systems, this adds up to ~40 bytes, not including the stored item and the reference to it from the Node object. stores the items in separate objects that can be spread all over the heap. This helps to keep memory fragmentation low, as the individual node objects can be allocated wherever there's a spare 60 bytes. In contrast, SortedList... has no additional overhead per item (only the reference to it in the array entries), however the backing arrays can be significantly larger than you need; every time the arrays are resized they double in size. That means that if you add 513 items to a SortedList, the backing arrays will each have a length of 1024. To conteract this, the TrimExcess method resizes the arrays back down to the actual size needed, or you can simply assign list.Capacity = list.Count. stores its items in a continuous block in memory. If the list stores thousands of items, this can cause significant problems with Large Object Heap memory fragmentation as the array resizes, which SortedDictionary doesn't have. Performance Operations on a SortedDictionary always have O(log n) performance, regardless of where in the collection you're adding or removing items. In contrast, SortedList has O(n) performance when you're altering the middle of the collection. If you're adding or removing from the end (ie the largest item), then performance is O(log n), same as SortedDictionary (in practice, it will likely be slightly faster, due to the array items all being in the same area in memory, also called locality of reference). So, when should you use one and not the other? As always with these sort of things, there are no hard-and-fast rules. But generally, if you: need to access items using their index within the collection are populating the dictionary all at once from sorted data aren't adding or removing keys once it's populated then use a SortedList. But if you: don't know how many items are going to be in the dictionary are populating the dictionary from random, unsorted data are adding & removing items randomly then use a SortedDictionary. The default (again, there's no definite rules on these sort of things!) should be to use SortedDictionary, unless there's a good reason to use SortedList, due to the bad performance of SortedList when altering the middle of the collection.

    Read the article

  • T-SQL Tuesday #31 - Logging Tricks with CONTEXT_INFO

    - by Most Valuable Yak (Rob Volk)
    This month's T-SQL Tuesday is being hosted by Aaron Nelson [b | t], fellow Atlantan (the city in Georgia, not the famous sunken city, or the resort in the Bahamas) and covers the topic of logging (the recording of information, not the harvesting of trees) and maintains the fine T-SQL Tuesday tradition begun by Adam Machanic [b | t] (the SQL Server guru, not the guy who fixes cars, check the spelling again, there will be a quiz later). This is a trick I learned from Fernando Guerrero [b | t] waaaaaay back during the PASS Summit 2004 in sunny, hurricane-infested Orlando, during his session on Secret SQL Server (not sure if that's the correct title, and I haven't used parentheses in this paragraph yet).  CONTEXT_INFO is a neat little feature that's existed since SQL Server 2000 and perhaps even earlier.  It lets you assign data to the current session/connection, and maintains that data until you disconnect or change it.  In addition to the CONTEXT_INFO() function, you can also query the context_info column in sys.dm_exec_sessions, or even sysprocesses if you're still running SQL Server 2000, if you need to see it for another session. While you're limited to 128 bytes, one big advantage that CONTEXT_INFO has is that it's independent of any transactions.  If you've ever logged to a table in a transaction and then lost messages when it rolled back, you can understand how aggravating it can be.  CONTEXT_INFO also survives across multiple SQL batches (GO separators) in the same connection, so for those of you who were going to suggest "just log to a table variable, they don't get rolled back":  HA-HA, I GOT YOU!  Since GO starts a new batch all variable declarations are lost. Here's a simple example I recently used at work.  I had to test database mirroring configurations for disaster recovery scenarios and measure the network throughput.  I also needed to log how long it took for the script to run and include the mirror settings for the database in question.  I decided to use AdventureWorks as my database model, and Adam Machanic's Big Adventure script to provide a fairly large workload that's repeatable and easily scalable.  My test would consist of several copies of AdventureWorks running the Big Adventure script while I mirrored the databases (or not). Since Adam's script contains several batches, I decided CONTEXT_INFO would have to be used.  As it turns out, I only needed to grab the start time at the beginning, I could get the rest of the data at the end of the process.   The code is pretty small: declare @time binary(128)=cast(getdate() as binary(8)) set context_info @time   ... rest of Big Adventure code ...   go use master; insert mirror_test(server,role,partner,db,state,safety,start,duration) select @@servername, mirroring_role_desc, mirroring_partner_instance, db_name(database_id), mirroring_state_desc, mirroring_safety_level_desc, cast(cast(context_info() as binary(8)) as datetime), datediff(s,cast(cast(context_info() as binary(8)) as datetime),getdate()) from sys.database_mirroring where db_name(database_id) like 'Adv%';   I declared @time as a binary(128) since CONTEXT_INFO is defined that way.  I couldn't convert GETDATE() to binary(128) as it would pad the first 120 bytes as 0x00.  To keep the CAST functions simple and avoid using SUBSTRING, I decided to CAST GETDATE() as binary(8) and let SQL Server do the implicit conversion.  It's not the safest way perhaps, but it works on my machine. :) As I mentioned earlier, you can query system views for sessions and get their CONTEXT_INFO.  With a little boilerplate code this can be used to monitor long-running procedures, in case you need to kill a process, or are just curious  how long certain parts take.  In this example, I added code to Adam's Big Adventure script to set CONTEXT_INFO messages at strategic places I want to monitor.  (His code is in UPPERCASE as it was in the original, mine is all lowercase): declare @msg binary(128) set @msg=cast('Altering bigProduct.ProductID' as binary(128)) set context_info @msg go ALTER TABLE bigProduct ALTER COLUMN ProductID INT NOT NULL GO set context_info 0x0 go declare @msg1 binary(128) set @msg1=cast('Adding pk_bigProduct Constraint' as binary(128)) set context_info @msg1 go ALTER TABLE bigProduct ADD CONSTRAINT pk_bigProduct PRIMARY KEY (ProductID) GO set context_info 0x0 go declare @msg2 binary(128) set @msg2=cast('Altering bigTransactionHistory.TransactionID' as binary(128)) set context_info @msg2 go ALTER TABLE bigTransactionHistory ALTER COLUMN TransactionID INT NOT NULL GO set context_info 0x0 go declare @msg3 binary(128) set @msg3=cast('Adding pk_bigTransactionHistory Constraint' as binary(128)) set context_info @msg3 go ALTER TABLE bigTransactionHistory ADD CONSTRAINT pk_bigTransactionHistory PRIMARY KEY NONCLUSTERED(TransactionID) GO set context_info 0x0 go declare @msg4 binary(128) set @msg4=cast('Creating IX_ProductId_TransactionDate Index' as binary(128)) set context_info @msg4 go CREATE NONCLUSTERED INDEX IX_ProductId_TransactionDate ON bigTransactionHistory(ProductId,TransactionDate) INCLUDE(Quantity,ActualCost) GO set context_info 0x0   This doesn't include the entire script, only those portions that altered a table or created an index.  One annoyance is that SET CONTEXT_INFO requires a literal or variable, you can't use an expression.  And since GO starts a new batch I need to declare a variable in each one.  And of course I have to use CAST because it won't implicitly convert varchar to binary.  And even though context_info is a nullable column, you can't SET CONTEXT_INFO NULL, so I have to use SET CONTEXT_INFO 0x0 to clear the message after the statement completes.  And if you're thinking of turning this into a UDF, you can't, although a stored procedure would work. So what does all this aggravation get you?  As the code runs, if I want to see which stage the session is at, I can run the following (assuming SPID 51 is the one I want): select CAST(context_info as varchar(128)) from sys.dm_exec_sessions where session_id=51   Since SQL Server 2005 introduced the new system and dynamic management views (DMVs) there's not as much need for tagging a session with these kinds of messages.  You can get the session start time and currently executing statement from them, and neatly presented if you use Adam's sp_whoisactive utility (and you absolutely should be using it).  Of course you can always use xp_cmdshell, a CLR function, or some other tricks to log information outside of a SQL transaction.  All the same, I've used this trick to monitor long-running reports at a previous job, and I still think CONTEXT_INFO is a great feature, especially if you're still using SQL Server 2000 or want to supplement your instrumentation.  If you'd like an exercise, consider adding the system time to the messages in the last example, and an automated job to query and parse it from the system tables.  That would let you track how long each statement ran without having to run Profiler. #TSQL2sDay

    Read the article

  • How to configure TATA Photon+ EC1261 HUAWEI

    - by user3215
    I'm running ubuntu 10.04. I have a newly purchased TATA Photon+ Internet connection which supports Windows and Mac. On the Internet I found a article saying that it could be configured on Linux. I followed the steps to install it on Ubuntu from this link. I am still not able to get online, and need some help. Also, it is very slow, but I was told that I would see speeds up to 3.1MB. I dont have wvdial installed and cannot install it from apt as I'm not connected to internet Booting from windows I dowloaded "wvdial" .deb package and tried to install on ubuntu but it's ended with dependency problem. Automatically, don't know how, I got connected to internet only for once. Immediately I installed wvdial package after this I followed the tutorials(I could not browse and upload the files here) . From then it's showing that the device is connected in the network connections but no internet connection. Once I disable the device, it won't show as connected again and I'll have to restart my system. Sometimes the device itself not detected(wondering if there is any command to re-read the all devices). output of wvdialconf /etc/wvdial.cof: #wvdialconf /etc/wvdial.conf Editing `/etc/wvdial.conf'. Scanning your serial ports for a modem. ttyS0<*1>: ATQ0 V1 E1 -- failed with 2400 baud, next try: 9600 baud ttyS0<*1>: ATQ0 V1 E1 -- failed with 9600 baud, next try: 115200 baud ttyS0<*1>: ATQ0 V1 E1 -- and failed too at 115200, giving up. Modem Port Scan<*1>: S1 S2 S3 WvModem<*1>: Cannot get information for serial port. ttyUSB0<*1>: ATQ0 V1 E1 -- failed with 2400 baud, next try: 9600 baud ttyUSB0<*1>: ATQ0 V1 E1 -- failed with 9600 baud, next try: 9600 baud ttyUSB0<*1>: ATQ0 V1 E1 -- and failed too at 115200, giving up. WvModem<*1>: Cannot get information for serial port. ttyUSB1<*1>: ATQ0 V1 E1 -- failed with 2400 baud, next try: 9600 baud ttyUSB1<*1>: ATQ0 V1 E1 -- failed with 9600 baud, next try: 9600 baud ttyUSB1<*1>: ATQ0 V1 E1 -- and failed too at 115200, giving up. WvModem<*1>: Cannot get information for serial port. ttyUSB2<*1>: ATQ0 V1 E1 -- OK ttyUSB2<*1>: ATQ0 V1 E1 Z -- OK ttyUSB2<*1>: ATQ0 V1 E1 S0=0 -- OK ttyUSB2<*1>: ATQ0 V1 E1 S0=0 &C1 -- OK ttyUSB2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 -- OK ttyUSB2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 -- OK ttyUSB2<*1>: Modem Identifier: ATI -- Manufacturer: +GMI: HUAWEI TECHNOLOGIES CO., LTD ttyUSB2<*1>: Speed 9600: AT -- OK ttyUSB2<*1>: Max speed is 9600; that should be safe. ttyUSB2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 -- OK Found a modem on /dev/ttyUSB2. Modem configuration written to /etc/wvdial.conf. ttyUSB2<Info>: Speed 9600; init "ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0" output of wvdial: #wvdial --> WvDial: Internet dialer version 1.60 --> Cannot get information for serial port. --> Initializing modem. --> Sending: ATZ ATZ OK --> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 OK --> Sending: AT+CRM=1 AT+CRM=1 OK --> Modem initialized. --> Sending: ATDT#777 --> Waiting for carrier. ATDT#777 CONNECT --> Carrier detected. Starting PPP immediately. --> Starting pppd at Sat Oct 16 15:30:47 2010 --> Pid of pppd: 5681 --> Using interface ppp0 --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> local IP address 14.96.147.104 --> pppd: (u;[08]@s;[08]`{;[08] --> remote IP address 172.29.161.223 --> pppd: (u;[08]@s;[08]`{;[08] --> primary DNS address 121.40.152.90 --> pppd: (u;[08]@s;[08]`{;[08] --> secondary DNS address 121.40.152.100 --> pppd: (u;[08]@s;[08]`{;[08] Output of log message /var/log/messages: Oct 16 15:29:44 avyakta-desktop pppd[5119]: secondary DNS address 121.242.190.180 Oct 16 15:29:58 desktop pppd[5119]: Terminating on signal 15 Oct 16 15:29:58 desktop pppd[5119]: Connect time 0.3 minutes. Oct 16 15:29:58 desktop pppd[5119]: Sent 0 bytes, received 177 bytes. Oct 16 15:29:58 desktop pppd[5119]: Connection terminated. Oct 16 15:30:47 desktop pppd[5681]: pppd 2.4.5 started by root, uid 0 Oct 16 15:30:47 desktop pppd[5681]: Using interface ppp0 Oct 16 15:30:47 desktop pppd[5681]: Connect: ppp0 <--> /dev/ttyUSB2 Oct 16 15:30:47 desktop pppd[5681]: CHAP authentication succeeded Oct 16 15:30:47 desktop pppd[5681]: CHAP authentication succeeded Oct 16 15:30:48 desktop pppd[5681]: local IP address 14.96.147.104 Oct 16 15:30:48 desktop pppd[5681]: remote IP address 172.29.161.223 Oct 16 15:30:48 desktop pppd[5681]: primary DNS address 121.40.152.90 Oct 16 15:30:48 desktop pppd[5681]: secondary DNS address 121.40.152.100 EDIT 1 : I tried the following sudo stop network-manager sudo killall modem-manager sudo /usr/sbin/modem-manager --debug > ~/mm.log 2>&1 & sudo /usr/sbin/NetworkManager --no-daemon > ~/nm.log 2>&1 & Output of mm.log: #vim ~/mm.log: ** Message: Loaded plugin Option High-Speed ** Message: Loaded plugin Option ** Message: Loaded plugin Huawei ** Message: Loaded plugin Longcheer ** Message: Loaded plugin AnyData ** Message: Loaded plugin ZTE ** Message: Loaded plugin Ericsson MBM ** Message: Loaded plugin Sierra ** Message: Loaded plugin Generic ** Message: Loaded plugin Gobi ** Message: Loaded plugin Novatel ** Message: Loaded plugin Nokia ** Message: Loaded plugin MotoC Output of nm.log: #vim ~/nm.log: NetworkManager: <info> starting... NetworkManager: <info> modem-manager is now available NetworkManager: SCPlugin-Ifupdown: init! NetworkManager: SCPlugin-Ifupdown: update_system_hostname NetworkManager: SCPluginIfupdown: guessed connection type (eth0) = 802-3-ethernet NetworkManager: SCPlugin-Ifupdown: update_connection_setting_from_if_block: name:eth0, type:802-3-ethernet, id:Ifupdown (eth0), uuid: 681b428f-beaf-8932-dce4-678ed5bae28e NetworkManager: SCPlugin-Ifupdown: addresses count: 1 NetworkManager: SCPlugin-Ifupdown: No dns-nameserver configured in /etc/network/interfaces NetworkManager: nm-ifupdown-connection.c.119 - invalid connection read from /etc/network/interfaces: (1) addresses NetworkManager: SCPluginIfupdown: management mode: unmanaged NetworkManager: SCPlugin-Ifupdown: devices added (path: /sys/devices/pci0000:00/0000:00:14.4/0000:02:02.0/net/eth1, iface: eth1) NetworkManager: SCPlugin-Ifupdown: device added (path: /sys/devices/pci0000:00/0000:00:14.4/0000:02:02.0/net/eth1, iface: eth1): no ifupdown configuration found. NetworkManager: SCPlugin-Ifupdown: devices added (path: /sys/devices/virtual/net/lo, iface: lo) @

    Read the article

  • laptop crashed: why?

    - by sds
    my linux (ubuntu 12.04) laptop crashed, and I am trying to figure out why. # last sds pts/4 :0 Tue Sep 4 10:01 still logged in sds pts/3 :0 Tue Sep 4 10:00 still logged in reboot system boot 3.2.0-29-generic Tue Sep 4 09:43 - 11:23 (01:40) sds pts/8 :0 Mon Sep 3 14:23 - crash (19:19) this seems to indicate a crash at 09:42 (= 14:23+19:19). as per another question, I looked at /var/log: auth.log: Sep 4 09:17:02 t520sds CRON[32744]: pam_unix(cron:session): session closed for user root Sep 4 09:43:17 t520sds lightdm: pam_unix(lightdm:session): session opened for user lightdm by (uid=0) no messages file syslog: Sep 4 09:24:19 t520sds kernel: [219104.819975] CPU0: Package power limit normal Sep 4 09:43:16 t520sds kernel: imklog 5.8.6, log source = /proc/kmsg started. kern.log: Sep 4 09:24:19 t520sds kernel: [219104.819969] CPU1: Package power limit normal Sep 4 09:24:19 t520sds kernel: [219104.819971] CPU2: Package power limit normal Sep 4 09:24:19 t520sds kernel: [219104.819974] CPU3: Package power limit normal Sep 4 09:24:19 t520sds kernel: [219104.819975] CPU0: Package power limit normal Sep 4 09:43:16 t520sds kernel: imklog 5.8.6, log source = /proc/kmsg started. Sep 4 09:43:16 t520sds kernel: [ 0.000000] Initializing cgroup subsys cpuset Sep 4 09:43:16 t520sds kernel: [ 0.000000] Initializing cgroup subsys cpu I had a computation running until 9:24, but the system crashed 18 minutes later! kern.log has many pages of these: Sep 4 09:43:16 t520sds kernel: [ 0.000000] total RAM covered: 8086M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 64K num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 128K num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 256K num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 512K num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 1M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 2M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 4M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 8M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 16M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] *BAD*gran_size: 64K chunk_size: 32M num_reg: 10 lose cover RAM: -16M Sep 4 09:43:16 t520sds kernel: [ 0.000000] *BAD*gran_size: 64K chunk_size: 64M num_reg: 10 lose cover RAM: -16M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 128M num_reg: 10 lose cover RAM: 0G Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 256M num_reg: 10 lose cover RAM: 0G Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 512M num_reg: 10 lose cover RAM: 0G Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 1G num_reg: 10 lose cover RAM: 0G Sep 4 09:43:16 t520sds kernel: [ 0.000000] *BAD*gran_size: 64K chunk_size: 2G num_reg: 10 lose cover RAM: -1G does this mean that my RAM is bad?! it also says Sep 4 09:43:16 t520sds kernel: [ 2.944123] EXT4-fs (sda1): INFO: recovery required on readonly filesystem Sep 4 09:43:16 t520sds kernel: [ 2.944126] EXT4-fs (sda1): write access will be enabled during recovery Sep 4 09:43:16 t520sds kernel: [ 3.088001] firewire_core: created device fw0: GUID f0def1ff8fbd7dff, S400 Sep 4 09:43:16 t520sds kernel: [ 8.929243] EXT4-fs (sda1): orphan cleanup on readonly fs Sep 4 09:43:16 t520sds kernel: [ 8.929249] EXT4-fs (sda1): ext4_orphan_cleanup: deleting unreferenced inode 658984 ... Sep 4 09:43:16 t520sds kernel: [ 9.343266] EXT4-fs (sda1): ext4_orphan_cleanup: deleting unreferenced inode 525343 Sep 4 09:43:16 t520sds kernel: [ 9.343270] EXT4-fs (sda1): 56 orphan inodes deleted Sep 4 09:43:16 t520sds kernel: [ 9.343271] EXT4-fs (sda1): recovery complete Sep 4 09:43:16 t520sds kernel: [ 9.645799] EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null) does this mean my HD is bad? As per FaultyHardware, I tried smartctl -l selftest, which uncovered no errors: smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.2.0-30-generic] (local build) Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net === START OF INFORMATION SECTION === Model Family: Seagate Momentus 7200.4 Device Model: ST9500420AS Serial Number: 5VJE81YK LU WWN Device Id: 5 000c50 0440defe3 Firmware Version: 0003LVM1 User Capacity: 500,107,862,016 bytes [500 GB] Sector Size: 512 bytes logical/physical Device is: In smartctl database [for details use: -P show] ATA Version is: 8 ATA Standard is: ATA-8-ACS revision 4 Local Time is: Mon Sep 10 16:40:04 2012 EDT SMART support is: Available - device has SMART capability. SMART support is: Enabled === START OF READ SMART DATA SECTION === SMART overall-health self-assessment test result: PASSED See vendor-specific Attribute list for marginal Attributes. General SMART Values: Offline data collection status: (0x82) Offline data collection activity was completed without error. Auto Offline Data Collection: Enabled. Self-test execution status: ( 0) The previous self-test routine completed without error or no self-test has ever been run. Total time to complete Offline data collection: ( 0) seconds. Offline data collection capabilities: (0x7b) SMART execute Offline immediate. Auto Offline data collection on/off support. Suspend Offline collection upon new command. Offline surface scan supported. Self-test supported. Conveyance Self-test supported. Selective Self-test supported. SMART capabilities: (0x0003) Saves SMART data before entering power-saving mode. Supports SMART auto save timer. Error logging capability: (0x01) Error logging supported. General Purpose Logging supported. Short self-test routine recommended polling time: ( 1) minutes. Extended self-test routine recommended polling time: ( 109) minutes. Conveyance self-test routine recommended polling time: ( 2) minutes. SCT capabilities: (0x103b) SCT Status supported. SCT Error Recovery Control supported. SCT Feature Control supported. SCT Data Table supported. SMART Attributes Data Structure revision number: 10 Vendor Specific SMART Attributes with Thresholds: ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE 1 Raw_Read_Error_Rate 0x000f 117 099 034 Pre-fail Always - 162843537 3 Spin_Up_Time 0x0003 100 100 000 Pre-fail Always - 0 4 Start_Stop_Count 0x0032 100 100 020 Old_age Always - 571 5 Reallocated_Sector_Ct 0x0033 100 100 036 Pre-fail Always - 0 7 Seek_Error_Rate 0x000f 069 060 030 Pre-fail Always - 17210154023 9 Power_On_Hours 0x0032 095 095 000 Old_age Always - 174362787320258 10 Spin_Retry_Count 0x0013 100 100 097 Pre-fail Always - 0 12 Power_Cycle_Count 0x0032 100 100 020 Old_age Always - 571 184 End-to-End_Error 0x0032 100 100 099 Old_age Always - 0 187 Reported_Uncorrect 0x0032 100 100 000 Old_age Always - 0 188 Command_Timeout 0x0032 100 100 000 Old_age Always - 1 189 High_Fly_Writes 0x003a 100 100 000 Old_age Always - 0 190 Airflow_Temperature_Cel 0x0022 061 043 045 Old_age Always In_the_past 39 (0 11 44 26) 191 G-Sense_Error_Rate 0x0032 100 100 000 Old_age Always - 84 192 Power-Off_Retract_Count 0x0032 100 100 000 Old_age Always - 20 193 Load_Cycle_Count 0x0032 099 099 000 Old_age Always - 2434 194 Temperature_Celsius 0x0022 039 057 000 Old_age Always - 39 (0 15 0 0) 195 Hardware_ECC_Recovered 0x001a 041 041 000 Old_age Always - 162843537 196 Reallocated_Event_Count 0x000f 095 095 030 Pre-fail Always - 4540 (61955, 0) 197 Current_Pending_Sector 0x0012 100 100 000 Old_age Always - 0 198 Offline_Uncorrectable 0x0010 100 100 000 Old_age Offline - 0 199 UDMA_CRC_Error_Count 0x003e 200 200 000 Old_age Always - 0 254 Free_Fall_Sensor 0x0032 100 100 000 Old_age Always - 0 SMART Error Log Version: 1 No Errors Logged SMART Self-test log structure revision number 1 Num Test_Description Status Remaining LifeTime(hours) LBA_of_first_error # 1 Extended offline Completed without error 00% 4545 - SMART Selective self-test log data structure revision number 1 SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS 1 0 0 Not_testing 2 0 0 Not_testing 3 0 0 Not_testing 4 0 0 Not_testing 5 0 0 Not_testing Selective self-test flags (0x0): After scanning selected spans, do NOT read-scan remainder of disk. If Selective self-test is pending on power-up, resume after 0 minute delay. Googling for the messages proved inconclusive, I can't even figure out whether the messages are routine or catastrophic. So, what do I do now?

    Read the article

  • ?12c database ????Adaptive Execution Plans ????????

    - by Liu Maclean(???)
    12c R1 ????SQL??????- Adaptive Execution Plans ????????,???????optimizer ??????(runtime)???????????????, ????????????????????? SQL???????? ????????????, ?????????????????????????????????????????????????????????????adaptive plan ????????????????????????????????????,?????subplan???????????????????? ??????, ???????? ???????????????,?????????, ?????? ???????????????”???”????, ???????????????????buffer ???????  ????????????,?????,??????????????????? ???optimizer ?????????????????????????,?????????????????????????????????????????plan???? ??12C?????????????, ???????????????????,?????? ???????????? ????????????2???: Dynamic Plans????: ???????????????????????;??????,???optimizer??????????subplans??????????????, ???????????????????,?????????????? Reoptimization????: ?Dynamic Plans????,Reoptimization??????????????????????Reoptimization??,?????????????????????????,??reoptimization????? OPTIMIZER_ADAPTIVE_REPORTING_ONLY ???? report-only????????????????TRUE,?????????report-only????,???????????????,??????????????? Dynamic Plans ??????????????,????????????????????????, ?????????????,???????????,????????????????????????????????????????? ?????????????final plan??????????????default plan, ??final plan?default plan???????,????????????? subplan ???????????????,???????????????????????? ??????,???????statistics collector ?buffer???????????statistics collector?????????????????,???????????????????????????? ?????????????????????????????????????????,??????????,?????????????? ???????????,???????buffer???? ???????????????,?????????????????????????????,??????buffer,??????final plan? ????????,???????????????????????,????????????????? ?V$SQL??????IS_RESOLVED_DYNAMIC_PLAN??????????final plan???default plan? ??????dynamic plan ???????SQL PLAN directives?????? declare cursor PLAN_DIRECTIVE_IDS is select directive_id from DBA_SQL_PLAN_DIRECTIVES; begin for z in PLAN_DIRECTIVE_IDS loop DBMS_SPD.DROP_SQL_PLAN_DIRECTIVE(z.directive_id); end loop; end; / explain plan for select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id; select * from table(dbms_xplan.display()); Plan hash value: 1255158658 www.askmaclean.com ------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 4 | 128 | 7 (0)| 00:00:01 | | 1 | NESTED LOOPS | | | | | | | 2 | NESTED LOOPS | | 4 | 128 | 7 (0)| 00:00:01 | |* 3 | TABLE ACCESS FULL | ORDER_ITEMS | 4 | 48 | 3 (0)| 00:00:01 | |* 4 | INDEX UNIQUE SCAN | PRODUCT_INFORMATION_PK | 1 | | 0 (0)| 00:00:01 | | 5 | TABLE ACCESS BY INDEX ROWID| PRODUCT_INFORMATION | 1 | 20 | 1 (0)| 00:00:01 | ------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 3 - filter("O"."UNIT_PRICE"=15 AND "QUANTITY">1) 4 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") alter session set events '10053 trace name context forever,level 1'; OR alter session set events 'trace[SQL_Plan_Directive] disk highest'; select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id; ---------------------------------------------------------------+-----------------------------------+ | Id | Operation | Name | Rows | Bytes | Cost | Time | ---------------------------------------------------------------+-----------------------------------+ | 0 | SELECT STATEMENT | | | | 7 | | | 1 | HASH JOIN | | 4 | 128 | 7 | 00:00:01 | | 2 | NESTED LOOPS | | | | | | | 3 | NESTED LOOPS | | 4 | 128 | 7 | 00:00:01 | | 4 | STATISTICS COLLECTOR | | | | | | | 5 | TABLE ACCESS FULL | ORDER_ITEMS | 4 | 48 | 3 | 00:00:01 | | 6 | INDEX UNIQUE SCAN | PRODUCT_INFORMATION_PK| 1 | | 0 | | | 7 | TABLE ACCESS BY INDEX ROWID | PRODUCT_INFORMATION | 1 | 20 | 1 | 00:00:01 | | 8 | TABLE ACCESS FULL | PRODUCT_INFORMATION | 1 | 20 | 1 | 00:00:01 | ---------------------------------------------------------------+-----------------------------------+ Predicate Information: ---------------------- 1 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") 5 - filter(("O"."UNIT_PRICE"=15 AND "QUANTITY">1)) 6 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID") ===================================== SPD: BEGIN context at statement level ===================================== Stmt: ******* UNPARSED QUERY IS ******* SELECT /*+ OPT_ESTIMATE (@"SEL$1" JOIN ("P"@"SEL$1" "O"@"SEL$1") ROWS=13.000000 ) OPT_ESTIMATE (@"SEL$1" TABLE "O"@"SEL$1" ROWS=13.000000 ) */ "P"."PRODUCT_NAME" "PRODUCT_NAME" FROM "OE"."ORDER_ITEMS" "O","OE"."PRODUCT_INFORMATION" "P" WHERE "O"."UNIT_PRICE"=15 AND "O"."QUANTITY">1 AND "P"."PRODUCT_ID"="O"."PRODUCT_ID" Objects referenced in the statement PRODUCT_INFORMATION[P] 92194, type = 1 ORDER_ITEMS[O] 92197, type = 1 Objects in the hash table Hash table Object 92197, type = 1, ownerid = 6573730143572393221: No Dynamic Sampling Directives for the object Hash table Object 92194, type = 1, ownerid = 17822962561575639002: No Dynamic Sampling Directives for the object Return code in qosdInitDirCtx: ENBLD =================================== SPD: END context at statement level =================================== ======================================= SPD: BEGIN context at query block level ======================================= Query Block SEL$1 (#0) Return code in qosdSetupDirCtx4QB: NOCTX ===================================== SPD: END context at query block level ===================================== SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92197, objtyp = 1, vecsize = 6, colvec = [4, 5, ], fid = 2896834833840853267 SPD: Inserted felem, fid=2896834833840853267, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = YES, keep = YES SPD: qosdCreateFindingSingTab retCode = CREATED, fid = 2896834833840853267 SPD: qosdCreateDirCmp retCode = CREATED, fid = 2896834833840853267 SPD: Return code in qosdDSDirSetup: NOCTX, estType = TABLE SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = JOIN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SKIP_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = JOIN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_SCAN SPD: Return code in qosdDSDirSetup: NOCTX, estType = INDEX_FILTER SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92197, objtyp = 1, vecsize = 6, colvec = [4, 5, ], fid = 2896834833840853267 SPD: Modified felem, fid=2896834833840853267, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = YES, keep = YES SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92194, objtyp = 1, vecsize = 2, colvec = [1, ], fid = 5618517328604016300 SPD: Modified felem, fid=5618517328604016300, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO SPD: Generating finding id: type = 1, reason = 1, objcnt = 1, obItr = 0, objid = 92194, objtyp = 1, vecsize = 2, colvec = [1, ], fid = 1142802697078608149 SPD: Modified felem, fid=1142802697078608149, ftype = 1, freason = 1, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO SPD: Generating finding id: type = 1, reason = 2, objcnt = 2, obItr = 0, objid = 92194, objtyp = 1, vecsize = 0, obItr = 1, objid = 92197, objtyp = 1, vecsize = 0, fid = 1437680122701058051 SPD: Modified felem, fid=1437680122701058051, ftype = 1, freason = 2, dtype = 0, dstate = 0, dflag = 0, ver = NO, keep = NO select * from table(dbms_xplan.display_cursor(format=>'report')) ; ????report????adaptive plan Adaptive plan: ------------- This cursor has an adaptive plan, but adaptive plans are enabled for reporting mode only.  The plan that would be executed if adaptive plans were enabled is displayed below. ------------------------------------------------------------------------------------------ | Id  | Operation          | Name                | Rows  | Bytes | Cost (%CPU)| Time     | ------------------------------------------------------------------------------------------ |   0 | SELECT STATEMENT   |                     |       |       |     7 (100)|          | |*  1 |  HASH JOIN         |                     |     4 |   128 |     7   (0)| 00:00:01 | |*  2 |   TABLE ACCESS FULL| ORDER_ITEMS         |     4 |    48 |     3   (0)| 00:00:01 | |   3 |   TABLE ACCESS FULL| PRODUCT_INFORMATION |     1 |    20 |     1   (0)| 00:00:01 | ------------------------------------------------------------------------------------------ SQL> select SQL_ID,IS_RESOLVED_DYNAMIC_PLAN,sql_text from v$SQL WHERE SQL_TEXT like '%MALCEAN%' and sql_text not like '%like%'; SQL_ID IS -------------------------- -- SQL_TEXT -------------------------------------------------------------------------------- 6ydj1bn1bng17 Y select /*MALCEAN*/ product_name from oe.order_items o, oe.product_information p where o.unit_price=15 and quantity>1 and p.product_id=o.product_id ???? explain plan for ????default plan, ??????optimizer???final plan,??V$SQL.IS_RESOLVED_DYNAMIC_PLAN???Y,????????????? DBA_SQL_PLAN_DIRECTIVES?????????????SQL PLAN DIRECTIVES, ???12c? ???MMON?????DML ???column usage??????????,????SMON??? MMON????SGA??PLAN DIRECTIVES??? ?????DBMS_SPD.flush_sql_plan_directive???? select directive_id,type,reason from DBA_SQL_PLAN_DIRECTIVES / DIRECTIVE_ID TYPE REASON ----------------------------------- -------------------------------- ----------------------------- 10321283028317893030 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE 4757086536465754886 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE 16085268038103121260 DYNAMIC_SAMPLING JOIN CARDINALITY MISESTIMATE SQL> set pages 9999 SQL> set lines 300 SQL> col state format a5 SQL> col subobject_name format a11 SQL> col col_name format a11 SQL> col object_name format a13 SQL> select d.directive_id, o.object_type, o.object_name, o.subobject_name col_name, d.type, d.state, d.reason 2 from dba_sql_plan_directives d, dba_sql_plan_dir_objects o 3 where d.DIRECTIVE_ID=o.DIRECTIVE_ID 4 and o.object_name in ('ORDER_ITEMS') 5 order by d.directive_id; DIRECTIVE_ID OBJECT_TYPE OBJECT_NAME COL_NAME TYPE STATE REASON ------------ ------------ ------------- ----------- -------------------------------- ----- ------------------------------------- --- 1.8156E+19 COLUMN ORDER_ITEMS UNIT_PRICE DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1.8156E+19 TABLE ORDER_ITEMS DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1.8156E+19 COLUMN ORDER_ITEMS QUANTITY DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE DBA_SQL_PLAN_DIRECTIVES????? _BASE_OPT_DIRECTIVE ? _BASE_OPT_FINDING SELECT d.dir_own#, d.dir_id, d.f_id, decode(type, 1, 'DYNAMIC_SAMPLING', 'UNKNOWN'), decode(state, 1, 'NEW', 2, 'MISSING_STATS', 3, 'HAS_STATS', 4, 'CANDIDATE', 5, 'PERMANENT', 6, 'DISABLED', 'UNKNOWN'), decode(bitand(flags, 1), 1, 'YES', 'NO'), cast(d.created as timestamp), cast(d.last_modified as timestamp), -- Please see QOSD_DAYS_TO_UPDATE and QOSD_PLUS_SECONDS for more details -- about 6.5 cast(d.last_used as timestamp) - NUMTODSINTERVAL(6.5, 'day') FROM sys.opt_directive$ d ??dbms_spd??? SQL PLAN DIRECTIVES, SQL PLAN DIRECTIVES???retention ???53?: Package: DBMS_SPD This package provides subprograms for managing Sql Plan Directives(SPD). SPD are objects generated automatically by Oracle server. For example, if server detects that the single table cardinality estimated by optimizer is off from the actual number of rows returned when accessing the table, it will automatically create a directive to do dynamic sampling for the table. When any Sql statement referencing the table is compiled, optimizer will perform dynamic sampling for the table to get more accurate estimate. Notes: DBMSL_SPD is a invoker-rights package. The invoker requires ADMINISTER SQL MANAGEMENT OBJECT privilege for executing most of the subprograms of this package. Also the subprograms commit the current transaction (if any), perform the operation and commit it again. DBA view dba_sql_plan_directives shows all the directives created in the system and the view dba_sql_plan_dir_objects displays the objects that are included in the directives. -- Default value for SPD_RETENTION_WEEKS SPD_RETENTION_WEEKS_DEFAULT CONSTANT varchar2(4) := '53'; | STATE : NEW : Newly created directive. | : MISSING_STATS : The directive objects do not | have relevant stats. | : HAS_STATS : The objects have stats. | : PERMANENT : A permanent directive. Server | evaluated effectiveness and these | directives are useful. | | AUTO_DROP : YES : Directive will be dropped | automatically if not | used for SPD_RETENTION_WEEKS. | This is the default behavior. | NO : Directive will not be dropped | automatically. Procedure: flush_sql_plan_directive This procedure allows manually flushing the Sql Plan directives that are automatically recorded in SGA memory while executing sql statements. The information recorded in SGA are periodically flushed by oracle background processes. This procedure just provides a way to flush the information manually. ????”_optimizer_dynamic_plans”(enable dynamic plans)????????,???TRUE??DYNAMIC PLAN? ???FALSE???????????? ????,Dynamic Plan????????????Nested Loop?Hash Join???case ,????????Nested loop???????????HASH JOIN,?HASH JOIN????????????????? ????????subplan?????,???? pass?? ?join method???,?????STATISTICS COLLECTOR???cardinality?,???????HASH JOIN?????Nested Loop,????????????subplan?????access path; ???????Sales??????????????????,????HASH JOIN,??SUBPLAN??customers?????????;?????Nested Loop,???????cust_id?????Range Scan+Access by Rowid? Cardinality feedback Cardinality feedback????????11.2????,????????re-optimization???;  ???????????,Cardinality feedback?????????????????????????? ???????????????????,?????????????????,??????????Cardinality feedback????????????? ????????????????????????? ??????????????Cardinality feedback ??: ????????,???????????,??????????,????????????????selectivity ??? ????????????: ??????,?????????????????????????????????,??????????????????? ????????????????????????????????????????,?????????????????????????? ?????????,???????????????,?????????? ??????????Cardinality ????,??????join Cardinality ????????? Cardinality feedback???????cursor?,?Cursor???aged out????? SELECT /*+ gather_plan_statistics */ product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id Plan hash value: 1553478007 ---------------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | OMem | 1Mem | Used-Mem | ---------------------------------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 13 |00:00:00.01 | 24 | 20 | | | | |* 1 | HASH JOIN | | 1 | 4 | 13 |00:00:00.01 | 24 | 20 | 2061K| 2061K| 429K (0)| |* 2 | TABLE ACCESS FULL| ORDER_ITEMS | 1 | 4 | 13 |00:00:00.01 | 7 | 6 | | | | | 3 | TABLE ACCESS FULL| PRODUCT_INFORMATION | 1 | 1 | 288 |00:00:00.01 | 17 | 14 | | | | ---------------------------------------------------------------------------------------------------------------------------------------- SELECT /*+ gather_plan_statistics */ product_name FROM order_items o, product_information p WHERE o.unit_price = 15 AND quantity > 1 AND p.product_id = o.product_id Plan hash value: 1553478007 ------------------------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 13 |00:00:00.01 | 24 | | | | |* 1 | HASH JOIN | | 1 | 13 | 13 |00:00:00.01 | 24 | 2061K| 2061K| 413K (0)| |* 2 | TABLE ACCESS FULL| ORDER_ITEMS | 1 | 13 | 13 |00:00:00.01 | 7 | | | | | 3 | TABLE ACCESS FULL| PRODUCT_INFORMATION | 1 | 288 | 288 |00:00:00.01 | 17 | | | | ------------------------------------------------------------------------------------------------------------------------------- Note ----- - statistics feedback used for this statement SQL> select count(*) from v$SQL where SQL_ID='cz0hg2zkvd10y'; COUNT(*) ---------- 2 SQL>select sql_ID,USE_FEEDBACK_STATS FROM V$SQL_SHARED_CURSOR where USE_FEEDBACK_STATS ='Y'; SQL_ID U ------------- - cz0hg2zkvd10y Y ????????Cardinality feedback????,???????????????????????????,????????????order_items???????? ????2??????plan hash value??(??????????),?????2????child cursor??????gather_plan_statistics???actual : A-ROWS  estimate :E-ROWS????????? Automatic Re-optimization ???dynamic plan, Re-optimization???????????????  ?  ??????????????? ????????????????????????????????  ???????????,??????????????, ???????????????????? ???????????  Re-optimization??, ????????????????????? Re-optimization????dynamic plan??????????  dynamic plan????????????????????, ???????????????????? ????,??????????join order ??????????????,?????????????join order????? ??????,????????Re-optimization, ??Re-optimization ??????????????????? ?Oracle database 12c?,join statistics?????????????????????,??????????????????????Re-optimization???????????adaptive cursor sharing????? ????????????????,???????????? ????? ???????statistics collectors ????????????????????Re-optimization??????2?????????????,???????????????? ??????????????Re-optimization?????,?????????????????????? ???v$SQL??????IS_REOPTIMIZABLE?????????????????????Re-optimization,??????????Re-optimization???,?????Re-optimization ,???????reporting????? IS_REOPTIMIZABLE VARCHAR2(1) This columns shows whether the next execution matching this child cursor will trigger a reoptimization. The values are:   Y: If the next execution will trigger a reoptimization R: If the child cursor contains reoptimization information, but will not trigger reoptimization because the cursor was compiled in reporting mode N: If the child cursor has no reoptimization information ??1: select plan_table_output from table (dbms_xplan.display_cursor('gwf99gfnm0t7g',NULL,'ALLSTATS LAST')); SQL_ID  gwf99gfnm0t7g, child number 0 ------------------------------------- SELECT /*+ SFTEST gather_plan_statistics */ o.order_id, v.product_name FROM  orders o,   ( SELECT order_id, product_name FROM order_items o, product_information p     WHERE  p.product_id = o.product_id AND list_price < 50 AND min_price < 40  ) v WHERE o.order_id = v.order_id Plan hash value: 1906736282 ------------------------------------------------------------------------------------------------------------------------------------------- | Id  | Operation             | Name                | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem | ------------------------------------------------------------------------------------------------------------------------------------------- |   0 | SELECT STATEMENT      |                     |      1 |        |    269 |00:00:00.02 |    1336 |     18 |       |       |          | |   1 |  NESTED LOOPS         |                     |      1 |      1 |    269 |00:00:00.02 |    1336 |     18 |       |       |          | |   2 |   MERGE JOIN CARTESIAN|                     |      1 |      4 |   9135 |00:00:00.02 |      34 |     15 |       |       |          | |*  3 |    TABLE ACCESS FULL  | PRODUCT_INFORMATION |      1 |      1 |     87 |00:00:00.01 |      33 |     14 |       |       |          | |   4 |    BUFFER SORT        |                     |     87 |    105 |   9135 |00:00:00.01 |       1 |      1 |  4096 |  4096 | 4096  (0)| |   5 |     INDEX FULL SCAN   | ORDER_PK            |      1 |    105 |    105 |00:00:00.01 |       1 |      1 |       |       |          | |*  6 |   INDEX UNIQUE SCAN   | ORDER_ITEMS_UK      |   9135 |      1 |    269 |00:00:00.01 |    1302 |      3 |       |       |          | ------------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ---------------------------------------------------    3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))    6 - access("O"."ORDER_ID"="ORDER_ID" AND "P"."PRODUCT_ID"="O"."PRODUCT_ID") SQL_ID  gwf99gfnm0t7g, child number 1 ------------------------------------- SELECT /*+ SFTEST gather_plan_statistics */ o.order_id, v.product_name FROM  orders o,   ( SELECT order_id, product_name FROM order_items o, product_information p     WHERE  p.product_id = o.product_id AND list_price < 50 AND min_price < 40  ) v WHERE o.order_id = v.order_id Plan hash value: 35479787 -------------------------------------------------------------------------------------------------------------------------------------------- | Id  | Operation              | Name                | Starts | E-Rows | A-Rows |   A-Time   | Buffers | Reads  |  OMem |  1Mem | Used-Mem | -------------------------------------------------------------------------------------------------------------------------------------------- |   0 | SELECT STATEMENT       |                     |      1 |        |    269 |00:00:00.01 |      63 |      3 |       |       |          | |   1 |  NESTED LOOPS          |                     |      1 |    269 |    269 |00:00:00.01 |      63 |      3 |       |       |          | |*  2 |   HASH JOIN            |                     |      1 |    313 |    269 |00:00:00.01 |      42 |      3 |  1321K|  1321K| 1234K (0)| |*  3 |    TABLE ACCESS FULL   | PRODUCT_INFORMATION |      1 |     87 |     87 |00:00:00.01 |      16 |      0 |       |       |          | |   4 |    INDEX FAST FULL SCAN| ORDER_ITEMS_UK      |      1 |    665 |    665 |00:00:00.01 |      26 |      3 |       |       |          | |*  5 |   INDEX UNIQUE SCAN    | ORDER_PK            |    269 |      1 |    269 |00:00:00.01 |      21 |      0 |       |       |          | -------------------------------------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): ---------------------------------------------------    2 - access("P"."PRODUCT_ID"="O"."PRODUCT_ID")    3 - filter(("MIN_PRICE"<40 AND "LIST_PRICE"<50))    5 - access("O"."ORDER_ID"="ORDER_ID") Note -----    - statistics feedback used for this statement    SQL> select IS_REOPTIMIZABLE,child_number FROM V$SQL  A where A.SQL_ID='gwf99gfnm0t7g'; IS CHILD_NUMBER -- ------------ Y             0 N             1    1* select child_number,other_xml From v$SQL_PLAN  where SQL_ID='gwf99gfnm0t7g' and other_xml is not nul SQL> / CHILD_NUMBER OTHER_XML ------------ --------------------------------------------------------------------------------            1 <other_xml><info type="cardinality_feedback">yes</info><info type="db_version">1              2.1.0.1</info><info type="parse_schema"><![CDATA["OE"]]></info><info type="plan_              hash">35479787</info><info type="plan_hash_2">3382491761</info><outline_data><hi              nt><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]></hint><hint><![CDATA[OPTIMIZER_FEATUR              ES_ENABLE('12.1.0.1')]]></hint><hint><![CDATA[DB_VERSION('12.1.0.1')]]></hint><h              int><![CDATA[ALL_ROWS]]></hint><hint><![CDATA[OUTLINE_LEAF(@"SEL$F5BB74E1")]]></              hint><hint><![CDATA[MERGE(@"SEL$2")]]></hint><hint><![CDATA[OUTLINE(@"SEL$1")]]>              </hint><hint><![CDATA[OUTLINE(@"SEL$2")]]></hint><hint><![CDATA[FULL(@"SEL$F5BB7              4E1" "P"@"SEL$2")]]></hint><hint><![CDATA[INDEX_FFS(@"SEL$F5BB74E1" "O"@"SEL$2"              ("ORDER_ITEMS"."ORDER_ID" "ORDER_ITEMS"."PRODUCT_ID"))]]></hint><hint><![CDATA[I              NDEX(@"SEL$F5BB74E1" "O"@"SEL$1" ("ORDERS"."ORDER_ID"))]]></hint><hint><![CDATA[              LEADING(@"SEL$F5BB74E1" "P"@"SEL$2" "O"@"SEL$2" "O"@"SEL$1")]]></hint><hint><![C              DATA[USE_HASH(@"SEL$F5BB74E1" "O"@"SEL$2")]]></hint><hint><![CDATA[USE_NL(@"SEL$              F5BB74E1" "O"@"SEL$1")]]></hint></outline_data></other_xml>            0 <other_xml><info type="db_version">12.1.0.1</info><info type="parse_schema"><![C              DATA["OE"]]></info><info type="plan_hash">1906736282</info><info type="plan_hash              _2">2579473118</info><outline_data><hint><![CDATA[IGNORE_OPTIM_EMBEDDED_HINTS]]>              </hint><hint><![CDATA[OPTIMIZER_FEATURES_ENABLE('12.1.0.1')]]></hint><hint><![CD              ATA[DB_VERSION('12.1.0.1')]]></hint><hint><![CDATA[ALL_ROWS]]></hint><hint><![CD              ATA[OUTLINE_LEAF(@"SEL$F5BB74E1")]]></hint><hint><![CDATA[MERGE(@"SEL$2")]]></hi              nt><hint><![CDATA[OUTLINE(@"SEL$1")]]></hint><hint><![CDATA[OUTLINE(@"SEL$2")]]>              </hint><hint><![CDATA[FULL(@"SEL$F5BB74E1" "P"@"SEL$2")]]></hint><hint><![CDATA[              INDEX(@"SEL$F5BB74E1" "O"@"SEL$1" ("ORDERS"."ORDER_ID"))]]></hint><hint><![CDATA              [INDEX(@"SEL$F5BB74E1" "O"@"SEL$2" ("ORDER_ITEMS"."ORDER_ID" "ORDER_ITEMS"."PROD              UCT_ID"))]]></hint><hint><![CDATA[LEADING(@"SEL$F5BB74E1" "P"@"SEL$2" "O"@"SEL$1              " "O"@"SEL$2")]]></hint><hint><![CDATA[USE_MERGE_CARTESIAN(@"SEL$F5BB74E1" "O"@"              SEL$1")]]></hint><hint><![CDATA[USE_NL(@"SEL$F5BB74E1" "O"@"SEL$2")]]></hint></o              utline_data></other_xml> ??2: SELECT /*+gather_plan_statistics*/ * FROM customers WHERE cust_state_province='CA' AND country_id='US'; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID b74nw722wjvy3, child number 0 ------------------------------------- select /*+gather_plan_statistics*/ * from customers where CUST_STATE_PROVINCE='CA' and country_id='US' Plan hash value: 1683234692 -------------------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | -------------------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | 14 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 8 | 29 |00:00:00.01 | 17 | 14 | -------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US')) SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE FROM V$SQL WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%'; SQL_ID CHILD_NUMBER SQL_TEXT I ------------- ------------ ----------- - b74nw722wjvy3 0 select /*+g Y ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE; SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME, o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID AND o.OWNER IN ('SH') ORDER BY 1,2,3,4,5; DIR_ID OWNER OBJECT_NAME COL_NAME OBJECT TYPE STATE REASON ----------------------- ----- ------------- ----------- ------ ---------------- ----- ------------------------ 1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE 1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY PROVINCE MISESTIMATE 1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING NEW SINGLE TABLE CARDINALITY MISESTIMATE SELECT /*+gather_plan_statistics*/ * FROM customers WHERE cust_state_province='CA' AND country_id='US'; ELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID b74nw722wjvy3, child number 1 ------------------------------------- select /*+gather_plan_statistics*/ * from customers where CUST_STATE_PROVINCE='CA' and country_id='US' Plan hash value: 1683234692 ----------------------------------------------------------------------------------------- | Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | ----------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 29 |00:00:00.01 | 17 | |* 1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 29 | 29 |00:00:00.01 | 17 | ----------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='CA' AND "COUNTRY_ID"='US')) Note ----- - cardinality feedback used for this statement SELECT SQL_ID, CHILD_NUMBER, SQL_TEXT, IS_REOPTIMIZABLE FROM V$SQL WHERE SQL_TEXT LIKE 'SELECT /*+gather_plan_statistics*/%'; SQL_ID CHILD_NUMBER SQL_TEXT I ------------- ------------ ----------- - b74nw722wjvy3 0 select /*+g Y ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' b74nw722wjvy3 1 select /*+g N ather_plan_ statistics* / * from cu stomers whe re CUST_STA TE_PROVINCE ='CA' and c ountry_id=' US' SELECT /*+gather_plan_statistics*/ CUST_EMAIL FROM CUSTOMERS WHERE CUST_STATE_PROVINCE='MA' AND COUNTRY_ID='US'; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>'ALLSTATS LAST')); PLAN_TABLE_OUTPUT ------------------------------------- SQL_ID 3tk6hj3nkcs2u, child number 0 ------------------------------------- Select /*+gather_plan_statistics*/ cust_email From customers Where cust_state_province='MA' And country_id='US' Plan hash value: 1683234692 ------------------------------------------------------------------------------- |Id | Operation | Name | Starts|E-Rows|A-Rows| A-Time |Buffers| ------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | | 2 |00:00:00.01| 16 | |*1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 2| 2 |00:00:00.01| 16 | ----------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(("CUST_STATE_PROVINCE"='MA' AND "COUNTRY_ID"='US')) Note ----- - dynamic sampling used for this statement (level=2) - 1 Sql Plan Directive used for this statement EXEC DBMS_SPD.FLUSH_SQL_PLAN_DIRECTIVE; SELECT TO_CHAR(d.DIRECTIVE_ID) dir_id, o.OWNER, o.OBJECT_NAME, o.SUBOBJECT_NAME col_name, o.OBJECT_TYPE, d.TYPE, d.STATE, d.REASON FROM DBA_SQL_PLAN_DIRECTIVES d, DBA_SQL_PLAN_DIR_OBJECTS o WHERE d.DIRECTIVE_ID=o.DIRECTIVE_ID AND o.OWNER IN ('SH') ORDER BY 1,2,3,4,5; DIR_ID OW OBJECT_NA COL_NAME OBJECT TYPE STATE REASON ------------------- -- --------- ---------- ------- --------------- ------------- ------------------------ 1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY MISESTIMATE 1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY PROVINCE MISESTIMATE 1484026771529551585 SH CUSTOMERS TABLE DYNAMIC_SAMPLING MISSING_STATS SINGLE TABLE CARDINALITY MISESTIMATE

    Read the article

  • Parsing concatenated, non-delimited XML messages from TCP-stream using C#

    - by thaller
    I am trying to parse XML messages which are send to my C# application over TCP. Unfortunately, the protocol can not be changed and the XML messages are not delimited and no length prefix is used. Moreover the character encoding is not fixed but each message starts with an XML declaration <?xml>. The question is, how can i read one XML message at a time, using C#. Up to now, I tried to read the data from the TCP stream into a byte array and use it through a MemoryStream. The problem is, the buffer might contain more than one XML messages or the first message may be incomplete. In these cases, I get an exception when trying to parse it with XmlReader.Read or XmlDocument.Load, but unfortunately the XmlException does not really allow me to distinguish the problem (except parsing the localized error string). I tried using XmlReader.Read and count the number of Element and EndElement nodes. That way I know when I am finished reading the first, entire XML message. However, there are several problems. If the buffer does not yet contain the entire message, how can I distinguish the XmlException from an actually invalid, non-well-formed message? In other words, if an exception is thrown before reading the first root EndElement, how can I decide whether to abort the connection with error, or to collect more bytes from the TCP stream? If no exception occurs, the XmlReader is positioned at the start of the root EndElement. Casting the XmlReader to IXmlLineInfo gives me the current LineNumber and LinePosition, however it is not straight forward to get the byte position where the EndElement really ends. In order to do that, I would have to convert the byte array into a string (with the encoding specified in the XML declaration), seek to LineNumber,LinePosition and convert that back to the byte offset. I try to do that with StreamReader.ReadLine, but the stream reader gives no public access to the current byte position. All this seams very inelegant and non robust. I wonder if you have ideas for a better solution. Thank you. EDIT: I looked around and think that the situation is as follows (I might be wrong, corrections are welcome): I found no method so that the XmlReader can continue parsing a second XML message (at least not, if the second message has an XmlDeclaration). XmlTextReader.ResetState could do something similar, but for that I would have to assume the same encoding for all messages. Therefor I could not connect the XmlReader directly to the TcpStream. After closing the XmlReader, the buffer is not positioned at the readers last position. So it is not possible to close the reader and use a new one to continue with the next message. I guess the reason for this is, that the reader could not successfully seek on every possible input stream. When XmlReader throws an exception it can not be determined whether it happened because of an premature EOF or because of a non-wellformed XML. XmlReader.EOF is not set in case of an exception. As workaround I derived my own MemoryBuffer, which returns the very last byte as a single byte. This way I know that the XmlReader was really interested in the last byte and the following exception is likely due to a truncated message (this is kinda sloppy, in that it might not detect every non-wellformed message. However, after appending more bytes to the buffer, sooner or later the error will be detected. I could cast my XmlReader to the IXmlLineInfo interface, which gives access to the LineNumber and the LinePosition of the current node. So after reading the first message I remember these positions and use it to truncate the buffer. Here comes the really sloppy part, because I have to use the character encoding to get the byte position. I am sure you could find test cases for the code below where it breaks (e.g. internal elements with mixed encoding). But up to now it worked for all my tests. The parser class follows here -- may it be useful (I know, its very far from perfect...) class XmlParser { private byte[] buffer = new byte[0]; public int Length { get { return buffer.Length; } } // Append new binary data to the internal data buffer... public XmlParser Append(byte[] buffer2) { if (buffer2 != null && buffer2.Length > 0) { // I know, its not an efficient way to do this. // The EofMemoryStream should handle a List<byte[]> ... byte[] new_buffer = new byte[buffer.Length + buffer2.Length]; buffer.CopyTo(new_buffer, 0); buffer2.CopyTo(new_buffer, buffer.Length); buffer = new_buffer; } return this; } // MemoryStream which returns the last byte of the buffer individually, // so that we know that the buffering XmlReader really locked at the last // byte of the stream. // Moreover there is an EOF marker. private class EofMemoryStream: Stream { public bool EOF { get; private set; } private MemoryStream mem_; public override bool CanSeek { get { return false; } } public override bool CanWrite { get { return false; } } public override bool CanRead { get { return true; } } public override long Length { get { return mem_.Length; } } public override long Position { get { return mem_.Position; } set { throw new NotSupportedException(); } } public override void Flush() { mem_.Flush(); } public override long Seek(long offset, SeekOrigin origin) { throw new NotSupportedException(); } public override void SetLength(long value) { throw new NotSupportedException(); } public override void Write(byte[] buffer, int offset, int count) { throw new NotSupportedException(); } public override int Read(byte[] buffer, int offset, int count) { count = Math.Min(count, Math.Max(1, (int)(Length - Position - 1))); int nread = mem_.Read(buffer, offset, count); if (nread == 0) { EOF = true; } return nread; } public EofMemoryStream(byte[] buffer) { mem_ = new MemoryStream(buffer, false); EOF = false; } protected override void Dispose(bool disposing) { mem_.Dispose(); } } // Parses the first xml message from the stream. // If the first message is not yet complete, it returns null. // If the buffer contains non-wellformed xml, it ~should~ throw an exception. // After reading an xml message, it pops the data from the byte array. public Message deserialize() { if (buffer.Length == 0) { return null; } Message message = null; Encoding encoding = Message.default_encoding; //string xml = encoding.GetString(buffer); using (EofMemoryStream sbuffer = new EofMemoryStream (buffer)) { XmlDocument xmlDocument = null; XmlReaderSettings settings = new XmlReaderSettings(); int LineNumber = -1; int LinePosition = -1; bool truncate_buffer = false; using (XmlReader xmlReader = XmlReader.Create(sbuffer, settings)) { try { // Read to the first node (skipping over some element-types. // Don't use MoveToContent here, because it would skip the // XmlDeclaration too... while (xmlReader.Read() && (xmlReader.NodeType==XmlNodeType.Whitespace || xmlReader.NodeType==XmlNodeType.Comment)) { }; // Check for XML declaration. // If the message has an XmlDeclaration, extract the encoding. switch (xmlReader.NodeType) { case XmlNodeType.XmlDeclaration: while (xmlReader.MoveToNextAttribute()) { if (xmlReader.Name == "encoding") { encoding = Encoding.GetEncoding(xmlReader.Value); } } xmlReader.MoveToContent(); xmlReader.Read(); break; } // Move to the first element. xmlReader.MoveToContent(); // Read the entire document. xmlDocument = new XmlDocument(); xmlDocument.Load(xmlReader.ReadSubtree()); } catch (XmlException e) { // The parsing of the xml failed. If the XmlReader did // not yet look at the last byte, it is assumed that the // XML is invalid and the exception is re-thrown. if (sbuffer.EOF) { return null; } throw e; } { // Try to serialize an internal data structure using XmlSerializer. Type type = null; try { type = Type.GetType("my.namespace." + xmlDocument.DocumentElement.Name); } catch (Exception e) { // No specialized data container for this class found... } if (type == null) { message = new Message(); } else { // TODO: reuse the serializer... System.Xml.Serialization.XmlSerializer ser = new System.Xml.Serialization.XmlSerializer(type); message = (Message)ser.Deserialize(new XmlNodeReader(xmlDocument)); } message.doc = xmlDocument; } // At this point, the first XML message was sucessfully parsed. // Remember the lineposition of the current end element. IXmlLineInfo xmlLineInfo = xmlReader as IXmlLineInfo; if (xmlLineInfo != null && xmlLineInfo.HasLineInfo()) { LineNumber = xmlLineInfo.LineNumber; LinePosition = xmlLineInfo.LinePosition; } // Try to read the rest of the buffer. // If an exception is thrown, another xml message appears. // This way the xml parser could tell us that the message is finished here. // This would be prefered as truncating the buffer using the line info is sloppy. try { while (xmlReader.Read()) { } } catch { // There comes a second message. Needs workaround for trunkating. truncate_buffer = true; } } if (truncate_buffer) { if (LineNumber < 0) { throw new Exception("LineNumber not given. Cannot truncate xml buffer"); } // Convert the buffer to a string using the encoding found before // (or the default encoding). string s = encoding.GetString(buffer); // Seek to the line. int char_index = 0; while (--LineNumber > 0) { // Recognize \r , \n , \r\n as newlines... char_index = s.IndexOfAny(new char[] {'\r', '\n'}, char_index); // char_index should not be -1 because LineNumber>0, otherwise an RangeException is // thrown, which is appropriate. char_index++; if (s[char_index-1]=='\r' && s.Length>char_index && s[char_index]=='\n') { char_index++; } } char_index += LinePosition - 1; var rgx = new System.Text.RegularExpressions.Regex(xmlDocument.DocumentElement.Name + "[ \r\n\t]*\\>"); System.Text.RegularExpressions.Match match = rgx.Match(s, char_index); if (!match.Success || match.Index != char_index) { throw new Exception("could not find EndElement to truncate the xml buffer."); } char_index += match.Value.Length; // Convert the character offset back to the byte offset (for the given encoding). int line1_boffset = encoding.GetByteCount(s.Substring(0, char_index)); // remove the bytes from the buffer. buffer = buffer.Skip(line1_boffset).ToArray(); } else { buffer = new byte[0]; } } return message; } }

    Read the article

  • 'rsync' is not recognized as an internal or external command, operable program or batch file

    - by user1688269
    I am VERY new to rsync and cygwin and I'm pretty sure I've installed everything correctly. I am trying to (for now) just rsync two Windows XP Laptops to tranfer files across from the one to the other to get a feel of it before I tackle bigger projects. This is the code I try use to transfer the files but I always get the same error. $ rsync -zrptL -v -e 'ssh -p 222' /tmp/rawr/ [email protected]:/tmp/play [email protected]'s password: 'rsync' is not recognized as an internal or external command, operable program or batch file. rsync: connection unexpectedly closed (0 bytes received so far) [sender] rsync error: error in rsync protocol data stream (code 12) at /home/lapo/package/rsync-3.0.9-1/src/rsync-3.0.9/io.c(605) [sender=3.0.9] What could be the problem? I am really stuck at the moment.

    Read the article

  • rsync on QNAP NAS fails recently

    - by user192702
    I have been using rsync to copy a large backup file from a remote host to my QNAP NAS. It's been working fine until recently. It seems like almost every time when it executes it's giving a time out after 15s. Following is what I have captured in the log. Any ideas? 2013-11-10 23:10:01 HKT - Executing: rsync -t -v -e ssh [email protected]:/home/backup/backup/backup_file-11102013* /share/homes/backup/backup/web/database [receiver] io timeout after 10 seconds -- exiting rsync error: timeout in data send/receive (code 30) at io.c(140) [receiver=3.0.7] rsync: connection unexpectedly closed (73 bytes received so far) [generator] rsync error: error in rsync protocol data stream (code 12) at io.c(601) [generator=3.0.7] 2013-11-10 23:10:15 HKT - Done rsync

    Read the article

< Previous Page | 132 133 134 135 136 137 138 139 140 141 142 143  | Next Page >