Search Results

Search found 124582 results on 4984 pages for 'net code'.

Page 15/4984 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • Asp.net override Membership settings at runtime (asp.net mvc)

    - by minal
    I had an application that hooked onto 1 single database. The app now needs to hook into multiple databases. What we want to do is, using the same application/domain/hostname/virtual dir give the user the option on the login screen to select the "App/Database" they want to connect into. Each database has the App tables/data/procs/etc as well as the aspnet membership/roles stuff. When the user enters the username/password and selects (select list) the application, I want to validate the user against the selected applications database. Presently the database connection string for membership services is saved in the web.config. Is there any way I can override this at login time? Also, I need the "remember me" function to work smoothly as well. How does this work when the user comes back to the app in 5 hours... This process should be able to identify the user and application and log in appropriately.

    Read the article

  • log4net not logging with a mixture of .net 1.1 and .net 3.5

    - by Jim P
    Hi All, I have an iis server on a windows 2003 production machine that will not log using log4net in the .net3.5 web application. Log4net works fine in the 1.1 apps using log4net version 1.2.9.0 and but not the 3.5 web app. The logging works fine in a development and staging environment but not in production. It does not error and I receive no events logged in the event viewer and don't know where to look next. I have tried both versions of log4net (1.2.9.0 and 1.2.10.0) and both work in development and staging but not in production. For testing purposes I have created just a single page application that just echos back the time when the page is hit and also is supposed to log to my logfile using log4net. Here is my web.config file: <configSections> <!-- LOG4NET Configuration --> <section name="log4net" type="log4net.Config.Log4NetConfigurationSectionHandler,log4net" requirePermission="false" /> </configSections> <log4net debug="true"> <appender name="RollingFileAppender" type="log4net.Appender.RollingFileAppender"> <param name="File" value="D:\DIF\Logs\TestApp\TestApp_"/> <param name="AppendToFile" value="true"/> <param name="RollingStyle" value="Date"/> <param name="DatePattern" value="yyyyMMdd\.\l\o\g"/> <param name="StaticLogFileName" value="false"/> <layout type="log4net.Layout.PatternLayout"> <param name="ConversionPattern" value="%date{HH:mm:ss} %C::%M [%-5level] - %message%newline"/> </layout> </appender> <root> <level value="ALL"/> <appender-ref ref="RollingFileAppender"/> </root> </log4net> Here is my log4net initialization: // Logging for the application private static ILog mlog = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); protected void Application_Start(object sender, EventArgs e) { try { // Start the configuration of the Logging XmlConfigurator.Configure(); mlog.Info("Started logging for the TestApp Application."); } catch (Exception ex) { throw; } } Any help would be greatly appreciated. Thanks, Jim

    Read the article

  • How to tell wether Code Access Security is allowed in library code

    - by Sander Rijken
    in .NET 4 Code Access Security (CAS) is deprecated. Whenever you call a method that implicitly uses it, it fails with a NotSupportedException, that can be resolved with a configuration switch that makes it fall back to the old behavior. We have a common library that's used in both .NET 3.5 and .NET 4, so we need to be able to tell wether or not we should use the CAS method. For example, in .NET 3.5 I should call: Assembly.Load(string, Evidence); Whereas in .NET 4 I want to call Assembly.Load(string); Calling Load(string, Evidence) throws a NotSupportedException. Ofcourse this works, but I'd like to know if there's a better method: try { asm = Assembly.Load(someString, someEvidence); } catch(NotSupportedException) { asm = Assembly.Load(someString); }

    Read the article

  • ASP.NET VB.NET GridView adding anchor tag to a cell

    - by user3036965
    I have an GridView control with some data in the first cell throughout the column. Ineed to make that cell data into a hyperlink (anchor tag) like the following. <a href=""myPage.aspx?r=" & strParam & """>" & strData & "</a>" Can anyone advise on the most effective way to do this? I am using a datatable and then assigning the datatable to the gridview. Any advice would be greatly appreciated. I need to use the Sub GridView1_RowDataBound(ByVal sender As Object, ByVal e As GridViewRowEventArgs). So I could add a hyperlink whatabout getting the parameters into the RowDataBound event is where my skills are falling down. Thank you

    Read the article

  • Beware when using .NET's named pipes in a windows forms application

    - by FransBouma
    Yesterday a user of our .net ORM Profiler tool reported that he couldn't get the snapshot recording from code feature working in a windows forms application. Snapshot recording in code means you start recording profile data from within the profiled application, and after you're done you save the snapshot as a file which you can open in the profiler UI. When using a console application it worked, but when a windows forms application was used, the snapshot was always empty: nothing was recorded. Obviously, I wondered why that was, and debugged a little. Here's an example piece of code to record the snapshot. This piece of code works OK in a console application, but results in an empty snapshot in a windows forms application: var snapshot = new Snapshot(); snapshot.Record(); using(var ctx = new ORMProfilerTestDataContext()) { var customers = ctx.Customers.Where(c => c.Country == "USA").ToList(); } InterceptorCore.Flush(); snapshot.Stop(); string error=string.Empty; if(!snapshot.IsEmpty) { snapshot.SaveToFile(@"c:\temp\generatortest\test2\blaat.opsnapshot", out error); } if(!string.IsNullOrEmpty(error)) { Console.WriteLine("Save error: {0}", error); } (the Console.WriteLine doesn't do anything in a windows forms application, but you get the idea). ORM Profiler uses named pipes: the interceptor (referenced and initialized in your application, the application to profile) sends data over the named pipe to a listener, which when receiving a piece of data begins reading it, asynchronically, and when properly read, it will signal observers that new data has arrived so they can store it in a repository. In this case, the snapshot will be the observer and will store the data in its own repository. The reason the above code doesn't work in windows forms is because windows forms is a wrapper around Win32 and its WM_* message based system. Named pipes in .NET are wrappers around Windows named pipes which also work with WM_* messages. Even though we use BeginRead() on the named pipe (which spawns a thread to read the data from the named pipe), nothing is received by the named pipe in the windows forms application, because it doesn't handle the WM_* messages in its message queue till after the method is over, as the message pump of a windows forms application is handled by the only thread of the windows forms application, so it will handle WM_* messages when the application idles. The fix is easy though: add Application.DoEvents(); right before snapshot.Stop(). Application.DoEvents() forces the windows forms application to process all WM_* messages in its message queue at that moment: all messages for the named pipe are then handled, the .NET code of the named pipe wrapper will react on that and the whole process will complete as if nothing happened. It's not that simple to just say 'why didn't you use a worker thread to create the snapshot here?', because a thread doesn't get its own message pump: the messages would still be posted to the window's message pump. A hidden form would create its own message pump, so the additional thread should also create a window to get the WM_* messages of the named pipe posted to a different message pump than the one of the main window. This WM_* messages pain is not something you want to be confronted with when using .NET and its libraries. Unfortunately, the way they're implemented, a lot of APIs are leaky abstractions, they bleed the characteristics of the OS objects they hide away through to the .NET code. Be aware of that fact when using them :)

    Read the article

  • AppFabric OutputCaching for ASP.NET Web API

    - by cibrax
    ASP.NET Web API does not provide any output caching capabilities out of the box other than the ones you would traditionally find in the ASP.NET caching module. Fortunately, Filip wrote a very nice library that you can use to decorate your Web API controller methods with an [OutputCaching] attribute, which is similar to the one you can find in ASP.NET MVC. This library provides a way to configure different persistence storages for the cached data, which uses memory by default. As part of this post, I will show how you can implement your own persistence provider for AppFabric in order to support distributed caching on web applications running on premises. Read more here  

    Read the article

  • ASP.NET 4.0 meta tags and Search engine optimisation

    - by nikolaosk
    I am thinking to create a new series of posts regarding ASP.NET and SEO (Search Engine Optimisation). I am going to start with this post , talking about some new features that make our asp.net apps more SEO friendly. At the end of the day, there is no point having a great application and somehow "scare" the search engines away. This is going to be a short post so let's quickly have a look at meta keywords and ASP.NET 4.0. Meta keywords and description are important elements of a page and make it...(read more)

    Read the article

  • Validating Data Using Data Annotation Attributes in ASP.NET MVC

    - by bipinjoshi
    The data entered by the end user in various form fields must be validated before it is saved in the database. Developers often use validation HTML helpers provided by ASP.NET MVC to perform the input validations. Additionally, you can also use data annotation attributes from the System.ComponentModel.DataAnnotations namespace to perform validations at the model level. Data annotation attributes are attached to the properties of the model class and enforce some validation criteria. They are capable of performing validation on the server side as well as on the client side. This article discusses the basics of using these attributes in an ASP.NET MVC application.http://www.bipinjoshi.net/articles/0a53f05f-b58c-47b1-a544-f032f5cfca58.aspx       

    Read the article

  • How to access HTML elements from server side code in an asp.net website

    - by nikolaosk
    In this post I will demonstrate with a hands on example how HTML elements in an .aspx page can be processed exactly like standard ASP.Net server controls. Basically how to make them accessible from server side code. 1) Launch Visual Studio 2010/2008/2005. (express editions will work fine). Create a new empty website and choose a suitable name for it. Choose VB as the development language. 2) Add a new item in your site, a web form. Leave the default name. 3) Let's say that we want to change the background...(read more)

    Read the article

  • Learning MVC for a JSP Resource and ASP.Net WebForms Resource

    - by Lijo
    Statement from a colleque: - "People with ASP.Net WebForms skills should be able to learn it easily as the fundamental concept is same.” Consider two people –one from JSP background and other from ASP.Net WebForms background. Now both need to learn ASP.Net MVC in RAZOR. Do you think the person from ASP.Net Webforms background has significant advantage over the person from JSP background? My feeling is – it is equally difficult for JSP person and ASP.Net Webforms person to learn MVC with RAZOR. What is your take on it? Any statistics that you can provide for this?

    Read the article

  • Unit testing ASP.NET Web API controllers that rely on the UrlHelper

    - by cibrax
    UrlHelper is the class you can use in ASP.NET Web API to automatically infer links from the routing table without hardcoding anything. For example, the following code uses the helper to infer the location url for a new resource,public HttpResponseMessage Post(User model) { var response = Request.CreateResponse(HttpStatusCode.Created, user); var link = Url.Link("DefaultApi", new { id = id, controller = "Users" }); response.Headers.Location = new Uri(link); return response; } That code uses a previously defined route “DefaultApi”, which you might configure in the HttpConfiguration object (This is the route generated by default when you create a new Web API project). The problem with UrlHelper is that it requires from some initialization code before you can invoking it from a unit test (for testing the Post method in this example). If you don’t initialize the HttpConfiguration and Request instances associated to the controller from the unit test, it will fail miserably. After digging into the ASP.NET Web API source code a little bit, I could figure out what the requirements for using the UrlHelper are. It relies on the routing table configuration, and a few properties you need to add to the HttpRequestMessage. The following code illustrates what’s needed,var controller = new UserController(); controller.Configuration = new HttpConfiguration(); var route = controller.Configuration.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var routeData = new HttpRouteData(route, new HttpRouteValueDictionary { { "id", "1" }, { "controller", "Users" } } ); controller.Request = new HttpRequestMessage(HttpMethod.Post, "http://localhost:9091/"); controller.Request.Properties.Add(HttpPropertyKeys.HttpConfigurationKey, controller.Configuration); controller.Request.Properties.Add(HttpPropertyKeys.HttpRouteDataKey, routeData);  The HttpRouteData instance should be initialized with the route values you will use in the controller method (“id” and “controller” in this example). Once you have correctly setup all those properties, you shouldn’t have any problem to use the UrlHelper. There is no need to mock anything else. Enjoy!!.

    Read the article

  • Sample Code and Slides from DevConnection Germany

    - by Stephen Walther
    Thank you everyone who came to my three talks this week at DevConnections Germany!  I really enjoyed my time in Karlsruhe. Here are the slides and sample code for the three talks:   jQuery Templates In this talk, I discuss how you can take advantage of jQuery templates when building both ASP.NET Web Forms and ASP.NET MVC applications. I demonstrate several advanced features of templates such as wrapped templates and remote templates. Download the slides Download the code   HTML5 In this talk, I discuss the features of HTML5 which matter most when building database-driven web applications. I demonstrate WebSockets, Web Workers, Web Storage, IndexedDB, and Offline Web Applications. Download the slides Download the code   jQuery + OData In this talk, I demonstrate how you can build entire web applications by taking advantage of jQuery and OData. I demonstrate how you can use jQuery and OData to both query and update database data. I also discuss two approaches for supporting validation. Download the slides Download the code

    Read the article

  • Which is more maintainable -- boolean assignment via if/else or boolean expression?

    - by Bret Walker
    Which would be considered more maintainable? if (a == b) c = true; else c = false; or c = (a == b); I've tried looking in Code Complete, but can't find an answer. I think the first is more readable (you can literally read it out loud), which I also think makes it more maintainable. The second one certainly makes more sense and reduces code, but I'm not sure it's as maintainable for C# developers (I'd expect to see this idiom more in, for example, Python).

    Read the article

  • Enum.HasFlag method in C# 4.0

    - by Jalpesh P. Vadgama
    Enums in dot net programming is a great facility and we all used it to increase code readability. In earlier version of .NET framework we don’t have any method anything that will check whether a value is assigned to it or not. In C# 4.0 we have new static method called HasFlag which will check that particular value is assigned or not. Let’s take an example for that. First I have created a enum called PaymentType which could have two values Credit Card or Debit Card. Just like following. public enum PaymentType { DebitCard=1, CreditCard=2 } Now We are going to assigned one of the value to this enum instance and then with the help of HasFlag method we are going to check whether particular value is assigned to enum or not like following. protected void Page_Load(object sender, EventArgs e) { PaymentType paymentType = PaymentType.CreditCard; if (paymentType.HasFlag(PaymentType.DebitCard)) { Response.Write("Process Debit Card"); } if (paymentType.HasFlag(PaymentType.CreditCard)) { Response.Write("Process Credit Card"); } } Now Let’s check out in browser as following. As expected it will print process Credit Card as we have assigned that value to enum. That’s it It’s so simple and cool. Stay tuned for more.. Happy Programming.. Technorati Tags: Enum,C#4.0,ASP.NET 4.0

    Read the article

  • ASP.NET MVC 3: Layouts and Sections with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: Introducing Razor (July 2nd) New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (Dec 16th) Layouts and Sections with Razor (Today) In today’s post I’m going to go into more details about how Layout pages work with Razor.  In particular, I’m going to cover how you can have multiple, non-contiguous, replaceable “sections” within a layout file – and enable views based on layouts to optionally “fill in” these different sections at runtime.  The Razor syntax for doing this is clean and concise. I’ll also show how you can dynamically check at runtime whether a particular layout section has been defined, and how you can provide alternate content (or even an alternate layout) in the event that a section isn’t specified within a view template.  This provides a powerful and easy way to customize the UI of your site and make it clean and DRY from an implementation perspective. What are Layouts? You typically want to maintain a consistent look and feel across all of the pages within your web-site/application.  ASP.NET 2.0 introduced the concept of “master pages” which helps enable this when using .aspx based pages or templates.  Razor also supports this concept with a feature called “layouts” – which allow you to define a common site template, and then inherit its look and feel across all the views/pages on your site. I previously discussed the basics of how layout files work with Razor in my ASP.NET MVC 3: Layouts with Razor blog post.  Today’s post will go deeper and discuss how you can define multiple, non-contiguous, replaceable regions within a layout file that you can then optionally “fill in” at runtime. Site Layout Scenario Let’s look at how we can implement a common site layout scenario with ASP.NET MVC 3 and Razor.  Specifically, we’ll implement some site UI where we have a common header and footer on all of our pages.  We’ll also add a “sidebar” section to the right of our common site layout.  On some pages we’ll customize the SideBar to contain content specific to the page it is included on: And on other pages (that do not have custom sidebar content) we will fall back and provide some “default content” to the sidebar: We’ll use ASP.NET MVC 3 and Razor to enable this customization in a nice, clean way.  Below are some step-by-step tutorial instructions on how to build the above site with ASP.NET MVC 3 and Razor. Part 1: Create a New Project with a Layout for the “Body” section We’ll begin by using the “File->New Project” menu command within Visual Studio to create a new ASP.NET MVC 3 Project.  We’ll create the new project using the “Empty” template option: This will create a new project that has no default controllers in it: Creating a HomeController We will then right-click on the “Controllers” folder of our newly created project and choose the “Add->Controller” context menu command.  This will bring up the “Add Controller” dialog: We’ll name the new controller we create “HomeController”.  When we click the “Add” button Visual Studio will add a HomeController class to our project with a default “Index” action method that returns a view: We won’t need to write any Controller logic to implement this sample – so we’ll leave the default code as-is.  Creating a View Template Our next step will be to implement the view template associated with the HomeController’s Index action method.  To implement the view template, we will right-click within the “HomeController.Index()” method and select the “Add View” command to create a view template for our home page: This will bring up the “Add View” dialog within Visual Studio.  We do not need to change any of the default settings within the above dialog (the name of the template was auto-populated to Index because we invoked the “Add View” context menu command within the Index method).  When we click the “Add” Button within the dialog, a Razor-based “Index.cshtml” view template will be added to the \Views\Home\ folder within our project.  Let’s add some simple default static content to it: Notice above how we don’t have an <html> or <body> section defined within our view template.  This is because we are going to rely on a layout template to supply these elements and use it to define the common site layout and structure for our site (ensuring that it is consistent across all pages and URLs within the site).  Customizing our Layout File Let’s open and customize the default “_Layout.cshtml” file that was automatically added to the \Views\Shared folder when we created our new project: The default layout file (shown above) is pretty basic and simply outputs a title (if specified in either the Controller or the View template) and adds links to a stylesheet and jQuery.  The call to “RenderBody()” indicates where the main body content of our Index.cshtml file will merged into the output sent back to the browser. Let’s modify the Layout template to add a common header, footer and sidebar to the site: We’ll then edit the “Site.css” file within the \Content folder of our project and add 4 CSS rules to it: And now when we run the project and browse to the home “/” URL of our project we’ll see a page like below: Notice how the content of the HomeController’s Index view template and the site’s Shared Layout template have been merged together into a single HTML response.  Below is what the HTML sent back from the server looks like: Part 2: Adding a “SideBar” Section Our site so far has a layout template that has only one “section” in it – what we call the main “body” section of the response.  Razor also supports the ability to add additional "named sections” to layout templates as well.  These sections can be defined anywhere in the layout file (including within the <head> section of the HTML), and allow you to output dynamic content to multiple, non-contiguous, regions of the final response. Defining the “SideBar” section in our Layout Let’s update our Layout template to define an additional “SideBar” section of content that will be rendered within the <div id=”sidebar”> region of our HTML.  We can do this by calling the RenderSection(string sectionName, bool required) helper method within our Layout.cshtml file like below:   The first parameter to the “RenderSection()” helper method specifies the name of the section we want to render at that location in the layout template.  The second parameter is optional, and allows us to define whether the section we are rendering is required or not.  If a section is “required”, then Razor will throw an error at runtime if that section is not implemented within a view template that is based on the layout file (which can make it easier to track down content errors).  If a section is not required, then its presence within a view template is optional, and the above RenderSection() code will render nothing at runtime if it isn’t defined. Now that we’ve made the above change to our layout file, let’s hit refresh in our browser and see what our Home page now looks like: Notice how we currently have no content within our SideBar <div> – that is because the Index.cshtml view template doesn’t implement our new “SideBar” section yet. Implementing the “SideBar” Section in our View Template Let’s change our home-page so that it has a SideBar section that outputs some custom content.  We can do that by opening up the Index.cshtml view template, and by adding a new “SiderBar” section to it.  We’ll do this using Razor’s @section SectionName { } syntax: We could have put our SideBar @section declaration anywhere within the view template.  I think it looks cleaner when defined at the top or bottom of the file – but that is simply personal preference.  You can include any content or code you want within @section declarations.  Notice above how I have a C# code nugget that outputs the current time at the bottom of the SideBar section.  I could have also written code that used ASP.NET MVC’s HTML/AJAX helper methods and/or accessed any strongly-typed model objects passed to the Index.cshtml view template. Now that we’ve made the above template changes, when we hit refresh in our browser again we’ll see that our SideBar content – that is specific to the Home Page of our site – is now included in the page response sent back from the server: The SideBar section content has been merged into the proper location of the HTML response : Part 3: Conditionally Detecting if a Layout Section Has Been Implemented Razor provides the ability for you to conditionally check (from within a layout file) whether a section has been defined within a view template, and enables you to output an alternative response in the event that the section has not been defined.  This provides a convenient way to specify default UI for optional layout sections.  Let’s modify our Layout file to take advantage of this capability.  Below we are conditionally checking whether the “SideBar” section has been defined without the view template being rendered (using the IsSectionDefined() method), and if so we render the section.  If the section has not been defined, then we now instead render some default content for the SideBar:  Note: You want to make sure you prefix calls to the RenderSection() helper method with a @ character – which will tell Razor to execute the HelperResult it returns and merge in the section content in the appropriate place of the output.  Notice how we wrote @RenderSection(“SideBar”) above instead of just RenderSection(“SideBar”).  Otherwise you’ll get an error. Above we are simply rendering an inline static string (<p>Default SideBar Content</p>) if the section is not defined.  A real-world site would more likely refactor this default content to be stored within a separate partial template (which we’d render using the Html.RenderPartial() helper method within the else block) or alternatively use the Html.Action() helper method within the else block to encapsulate both the logic and rendering of the default sidebar. When we hit refresh on our home-page, we will still see the same custom SideBar content we had before.  This is because we implemented the SideBar section within our Index.cshtml view template (and so our Layout rendered it): Let’s now implement a “/Home/About” URL for our site by adding a new “About” action method to our HomeController: The About() action method above simply renders a view back to the client when invoked.  We can implement the corresponding view template for this action by right-clicking within the “About()” method and using the “Add View” menu command (like before) to create a new About.cshtml view template.  We’ll implement the About.cshtml view template like below. Notice that we are not defining a “SideBar” section within it: When we browse the /Home/About URL we’ll see the content we supplied above in the main body section of our response, and the default SideBar content will rendered: The layout file determined at runtime that a custom SideBar section wasn’t present in the About.cshtml view template, and instead rendered the default sidebar content. One Last Tweak… Let’s suppose that at a later point we decide that instead of rendering default side-bar content, we just want to hide the side-bar entirely from pages that don’t have any custom sidebar content defined.  We could implement this change simply by making a small modification to our layout so that the sidebar content (and its surrounding HTML chrome) is only rendered if the SideBar section is defined.  The code to do this is below: Razor is flexible enough so that we can make changes like this and not have to modify any of our view templates (nor make change any Controller logic changes) to accommodate this.  We can instead make just this one modification to our Layout file and the rest happens cleanly.  This type of flexibility makes Razor incredibly powerful and productive. Summary Razor’s layout capability enables you to define a common site template, and then inherit its look and feel across all the views/pages on your site. Razor enables you to define multiple, non-contiguous, “sections” within layout templates that can be “filled-in” by view templates.  The @section {} syntax for doing this is clean and concise.  Razor also supports the ability to dynamically check at runtime whether a particular section has been defined, and to provide alternate content (or even an alternate layout) in the event that it isn’t specified.  This provides a powerful and easy way to customize the UI of your site - and make it clean and DRY from an implementation perspective. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Building an ASP.Net 4.5 Web forms application - part 3

    - by nikolaosk
    ?his is the third post in a series of posts on how to design and implement an ASP.Net 4.5 Web Forms store that sells posters on line.Make sure you read the first and second post in the series.In this new post I will keep making some minor changes in the Markup,CSS and Master page but there is no point in presenting them here. They are just minor changes to reflect the content and layout I want my site to have. What I need to do now is to add some more pages and start displaying properly data from my database.Having said that I will show you how to add more pages to the web application and present data.1) Launch Visual Studio and open your solution where your project lives2) Add a new web form item on the project.Make sure you include the Master Page.Name it PosterList.aspxHave a look at the picture below 3) In Site.Master add the following link to the master page so the user can navigate to it.You should only add the line in bold     <nav>                    <ul id="menu">                        <li><a runat="server" href="~/">Home</a></li>                        <li><a runat="server" href="~/About.aspx">About</a></li>                        <li><a runat="server" href="~/Contact.aspx">Contact</a></li>                          <li><a href="http://weblogs.asp.net/PosterList.aspx">Posters</a></li>                    </ul>                </nav> 4) Now we need to display categories from the database. We will use a ListView web server control.Inside the <div id="body"> add the following code. <section id="postercat">       <asp:ListView ID="categoryList"                          ItemType="PostersOnLine.DAL.PosterCategory"                         runat="server"                        SelectMethod="GetPosterCategories" >                        <ItemTemplate>                                                    <a href="http://weblogs.asp.net/PosterList.aspx?id=<%#: Item.PosterCategoryID %>">                            <%#: Item.PosterCategoryName %>                            </a>                            </b>                        </ItemTemplate>                        <ItemSeparatorTemplate> ----- </ItemSeparatorTemplate>                    </asp:ListView>             </section>        Let me explain what the code does.We have the ListView control that displays each poster category's name.It also includes a link to the PosterList.aspx page with a query-string value containing the ID of the category. We set the ItemType property in the ListView to the PosterCategory entity .We set the SelectMethod property to a method GetPosterCategories. Now we can use the data-binding expression Item (<%#: %>) that is available within the ItemTemplate . 5) Now we must write the GetPosterCategories method. In the Site.Master.cs file add the following code.This is just a simple function that returns the poster categories.        public IQueryable<PosterCategory> GetPosterCategories()        {            PosterContext ctx = new PosterContext();            IQueryable<PosterCategory> query = ctx.PosterCategories;            return query;        } 6) I just changed a few things in the Site.css file to style the new <section> HTML element that includes the ListView control.#postercat {  text-align: center; background-color: #85C465;}     7) Build and run your application. Everything should compile now. Have a look at the picture below.The links (poster categories) appear.?he ListView control when is called during the page lifecycle calls the GetPosterCategories() method.The method is executed and returns the poster categories that are bound to the control.  When I click on any of the poster category links, the PosterList.aspx page will show up with the appropriate Id that is the PosterCategoryID.Have a look at the picture below  We will add more data-enabled controls in the next post in the PosterList.aspx page. Some people are complaining the posts are too long so I will keep them short. Hope it helps!!!

    Read the article

  • Can't install chef, gem version conflict with net-ssh net-ssh-multi net-ssh-gateway

    - by Mojo
    Using rvm, and an empty gemset, I get this: $ gem install chef --no-ri --no-rdoc ERROR: While executing gem ... (Gem::DependencyError) Unable to resolve dependencies: chef requires net-ssh (~> 2.2.2); net-ssh-multi requires net-ssh (>= 2.6.5); net-ssh-gateway requires net-ssh (>= 2.6.5) I've tried resolving it by installing earlier versions of net-ssh-gateway and net-ssh-multi, but net-ssh-multi version 1.1 confounds me by installing 1.1.2.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Code Metrics: Number of IL Instructions

    - by DigiMortal
    In my previous posting about code metrics I introduced how to measure LoC (Lines of Code) in .NET applications. Now let’s take a step further and let’s take a look how to measure compiled code. This way we can somehow have a picture about what compiler produces. In this posting I will introduce you code metric called number of IL instructions. NB! Number of IL instructions is not something you can use to measure productivity of your team. If you want to get better idea about the context of this metric and LoC then please read my first posting about LoC. What are IL instructions? When code written in some .NET Framework language is compiled then compiler produces assemblies that contain byte code. These assemblies are executed later by Common Language Runtime (CLR) that is code execution engine of .NET Framework. The byte code is called Intermediate Language (IL) – this is more common language than C# and VB.NET by example. You can use ILDasm tool to convert assemblies to IL assembler so you can read them. As IL instructions are building blocks of all .NET Framework binary code these instructions are smaller and highly general – we don’t want very rich low level language because it executes slower than more general language. For every method or property call in some .NET Framework language corresponds set of IL instructions. There is no 1:1 relationship between line in high level language and line in IL assembler. There are more IL instructions than lines in C# code by example. How much instructions there are? I have no common answer because it really depends on your code. Here you can see some metrics from my current community project that is developed on SharePoint Server 2007. As average I have about 7 IL instructions per line of code. This is not metric you should use, it is just illustrative example so you can see the differences between numbers of lines and IL instructions. Why should I measure the number of IL instructions? Just take a look at chart above. Compiler does something that you cannot see – it compiles your code to IL. This is not intuitive process because you usually cannot say what is exactly the end result. You know it at greater plain but you don’t know it exactly. Therefore we can expect some surprises and that’s why we should measure the number of IL instructions. By example, you may find better solution for some method in your source code. It looks nice, it works nice and everything seems to be okay. But on server under load your fix may be way slower than previous code. Although you minimized the number of lines of code it ended up with increasing the number of IL instructions. How to measure the number of IL instructions? My choice is NDepend because Visual Studio is not able to measure this metric. Steps to make are easy. Open your NDepend project or create new and add all your application assemblies to project (you can also add Visual Studio solution to project). Run project analysis and wait until it is done. You can see over-all stats form global summary window. This is the same window I used to read the LoC and the number of IL instructions metrics for my chart. Meanwhile I made some changes to my code (enabled advanced caching for events and event registrations module) and then I ran code analysis again to get results for this section of this posting. NDepend is also able to tell you exactly what parts of code have problematically much IL instructions. The code quality section of CQL Query Explorer shows you how much problems there are with members in analyzed code. If you click on the line Methods too big (NbILInstructions) you can see all the problematic members of classes in CQL Explorer shown in image on right. In my case if have 10 methods that are too big and two of them have horrible number of IL instructions – just take a look at first two methods in this TOP10. Also note the query box. NDepend has easy and SQL-like query language to query code analysis results. You can modify these queries if you like and also you can define your own ones if default set is not enough for you. What is good result? As you can see from query window then the number of IL instructions per member should have maximally 200 IL instructions. Of course, like always, the less instructions you have, the better performing code you have. I don’t mean here little differences but big ones. By example, take a look at my first method in warnings list. The number of IL instructions it has is huge. And believe me – this method looks awful. Conclusion The number of IL instructions is useful metric when optimizing your code. For analyzing code at general level to find out too long methods you can use the number of LoC metric because it is more intuitive for you and you can therefore handle the situation more easily. Also you can use NDepend as code metrics tool because it has a lot of metrics to offer.

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 1

    - by rajbk
    This tutorial walks you through creating an report based on the Northwind sample database. You will add a client report definition file (RDLC), create a dataset for the RDLC, define queries using LINQ to Entities, design the report and add a ReportViewer web control to render the report in a ASP.NET web page. The report will have a chart control. Different results will be generated by changing filter criteria. At the end of the walkthrough, you should have a UI like the following.  From the UI below, a user is able to view the product list and can see a chart with the sum of Unit price for a given category. They can filter by Category and Supplier. The drop downs will auto post back when the selection is changed.  This demo uses Visual Studio 2010 RTM. This post is split into three parts. The last part has the sample code attached. Creating an ASP.NET report using Visual Studio 2010 - Part 2 Creating an ASP.NET report using Visual Studio 2010 - Part 3   Lets start by creating a new ASP.NET empty web application called “NorthwindReports” Creating the Data Access Layer (DAL) Add a web form called index.aspx to the root directory. You do this by right clicking on the NorthwindReports web project and selecting “Add item..” . Create a folder called “DAL”. We will store all our data access methods and any data transfer objects in here.   Right click on the DAL folder and add a ADO.NET Entity data model called Northwind. Select “Generate from database” and click Next. Create a connection to your database containing the Northwind sample database and click Next.   From the table list, select Categories, Products and Suppliers and click next. Our Entity data model gets created and looks like this:    Adding data transfer objects Right click on the DAL folder and add a ProductViewModel. Add the following code. This class contains properties we need to render our report. public class ProductViewModel { public int? ProductID { get; set; } public string ProductName { get; set; } public System.Nullable<decimal> UnitPrice { get; set; } public string CategoryName { get; set; } public int? CategoryID { get; set; } public int? SupplierID { get; set; } public bool Discontinued { get; set; } } Add a SupplierViewModel class. This will be used to render the supplier DropDownlist. public class SupplierViewModel { public string CompanyName { get; set; } public int SupplierID { get; set; } } Add a CategoryViewModel class. public class CategoryViewModel { public string CategoryName { get; set; } public int CategoryID { get; set; } } Create an IProductRepository interface. This will contain the signatures of all the methods we need when accessing the entity model.  This step is not needed but follows the repository pattern. interface IProductRepository { IQueryable<Product> GetProducts(); IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID); IQueryable<SupplierViewModel> GetSuppliers(); IQueryable<CategoryViewModel> GetCategories(); } Create a ProductRepository class that implements the IProductReposity above. The methods available in this class are as follows: GetProducts – returns an IQueryable of all products. GetProductsProjected – returns an IQueryable of ProductViewModel. The method filters all the products based on SupplierId and CategoryId if any. It then projects the result into the ProductViewModel. GetSuppliers() – returns an IQueryable of all suppliers projected into a SupplierViewModel GetCategories() – returns an IQueryable of all categories projected into a CategoryViewModel  public class ProductRepository : IProductRepository { /// <summary> /// IQueryable of all Products /// </summary> /// <returns></returns> public IQueryable<Product> GetProducts() { var dataContext = new NorthwindEntities(); var products = from p in dataContext.Products select p; return products; }   /// <summary> /// IQueryable of Projects projected /// into the ProductViewModel class /// </summary> /// <returns></returns> public IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID) { var projectedProducts = from p in GetProducts() select new ProductViewModel { ProductID = p.ProductID, ProductName = p.ProductName, UnitPrice = p.UnitPrice, CategoryName = p.Category.CategoryName, CategoryID = p.CategoryID, SupplierID = p.SupplierID, Discontinued = p.Discontinued }; // Filter on SupplierID if (supplierID.HasValue) { projectedProducts = projectedProducts.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { projectedProducts = projectedProducts.Where(a => a.CategoryID == categoryID); }   return projectedProducts; }     public IQueryable<SupplierViewModel> GetSuppliers() { var dataContext = new NorthwindEntities(); var suppliers = from s in dataContext.Suppliers select new SupplierViewModel { SupplierID = s.SupplierID, CompanyName = s.CompanyName }; return suppliers; }   public IQueryable<CategoryViewModel> GetCategories() { var dataContext = new NorthwindEntities(); var categories = from c in dataContext.Categories select new CategoryViewModel { CategoryID = c.CategoryID, CategoryName = c.CategoryName }; return categories; } } Your solution explorer should look like the following. Build your project and make sure you don’t get any errors. In the next part, we will see how to create the client report definition file using the Report Wizard.   Creating an ASP.NET report using Visual Studio 2010 - Part 2

    Read the article

  • New HTML 5 input types in ASP.Net 4.5 Developer Preview

    - by sreejukg
    Microsoft has released developer previews for Visual Studio 2011 and .Net framework 4.5. There are lots of new features available in the developer preview. One of the most interested things for web developers is the support introduced for new HTML 5 form controls. The following are the list of new controls available in HTML 5 email url number range Date pickers (date, month, week, time, datetime, datetime-local) search color Describing the functionality for these controls is not in the scope of this article. If you want to know about these controls, refer the below URLs http://msdn.microsoft.com/en-us/magazine/hh547102.aspx http://www.w3schools.com/html5/html5_form_input_types.asp ASP.Net 4.5 introduced more possible values to the Text Mode attribute to cater the above requirements. Let us evaluate these. I have created a project in Visual Studio 2011 developer preview, and created a page named “controls.aspx”. In the page I placed on Text box control from the toolbox Now select the control and go to the properties pane, look at the TextMode attribute. Now you can see more options are added here than prior versions of ASP.Net. I just selected Email as TextMode. I added one button to submit my page. The screen shot of the page in Visual Studio 2011 designer is as follows See the corresponding markup <form id="form1" runat="server">     <div>         Enter your email:         <asp:TextBox ID="TextBox1" runat="server" TextMode="Email"></asp:TextBox     </div>     <asp:Button ID="Button1" runat="server" Text="Submit" /> </form> Now let me run this page, IE 9 do not have the support for new form fields. I browsed the page using Firefox and the page appears as below. From the source of the rendered page, I saw the below markup for my email textbox <input name="TextBox1" type="email" id="TextBox1" /> Try to enter an invalid email and you will see the browser will ask you to enter a valid one by default. When rendered in non-supported browsers, these fields are behaving just as normal text boxes. So make sure you are using validation controls with these fields. See the browser support compatability matrix with these controls with various browser vendors. ASP.Net 4.5 introduced the support for these new form controls. You can build interactive forms using the newly added controls, keeping in mind that you need to validate the data for non-supported browsers.

    Read the article

  • ASP.NET MVC Case Studies

    - by shiju
     The below are the some of the case studies of ASP.NET MVC Jwaala - Online Banking Solution Benefits after ASP.NET MVC Replaces Ruby on Rails, Linux http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?casestudyid=4000006675 Stack Overflow - Developers See Faster Web Coding, Better Performance with Model-View-Controller http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?casestudyid=4000006676 Kelley Blue Book - Pioneer Provider of Vehicle-Pricing Information Uses Technology to Expand Reach http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?casestudyid=4000006272 

    Read the article

  • ASP.NET and HTML5 Local Storage

    - by Stephen Walther
    My favorite feature of HTML5, hands-down, is HTML5 local storage (aka DOM storage). By taking advantage of HTML5 local storage, you can dramatically improve the performance of your data-driven ASP.NET applications by caching data in the browser persistently. Think of HTML5 local storage like browser cookies, but much better. Like cookies, local storage is persistent. When you add something to browser local storage, it remains there when the user returns to the website (possibly days or months later). Importantly, unlike the cookie storage limitation of 4KB, you can store up to 10 megabytes in HTML5 local storage. Because HTML5 local storage works with the latest versions of all modern browsers (IE, Firefox, Chrome, Safari), you can start taking advantage of this HTML5 feature in your applications right now. Why use HTML5 Local Storage? I use HTML5 Local Storage in the JavaScript Reference application: http://Superexpert.com/JavaScriptReference The JavaScript Reference application is an HTML5 app that provides an interactive reference for all of the syntax elements of JavaScript (You can read more about the application and download the source code for the application here). When you open the application for the first time, all of the entries are transferred from the server to the browser (all 300+ entries). All of the entries are stored in local storage. When you open the application in the future, only changes are transferred from the server to the browser. The benefit of this approach is that the application performs extremely fast. When you click the details link to view details on a particular entry, the entry details appear instantly because all of the entries are stored on the client machine. When you perform key-up searches, by typing in the filter textbox, matching entries are displayed very quickly because the entries are being filtered on the local machine. This approach can have a dramatic effect on the performance of any interactive data-driven web application. Interacting with data on the client is almost always faster than interacting with the same data on the server. Retrieving Data from the Server In the JavaScript Reference application, I use Microsoft WCF Data Services to expose data to the browser. WCF Data Services generates a REST interface for your data automatically. Here are the steps: Create your database tables in Microsoft SQL Server. For example, I created a database named ReferenceDB and a database table named Entities. Use the Entity Framework to generate your data model. For example, I used the Entity Framework to generate a class named ReferenceDBEntities and a class named Entities. Expose your data through WCF Data Services. I added a WCF Data Service to my project and modified the data service class to look like this:   using System.Data.Services; using System.Data.Services.Common; using System.Web; using JavaScriptReference.Models; namespace JavaScriptReference.Services { [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class EntryService : DataService<ReferenceDBEntities> { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { config.UseVerboseErrors = true; config.SetEntitySetAccessRule("*", EntitySetRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } // Define a change interceptor for the Products entity set. [ChangeInterceptor("Entries")] public void OnChangeEntries(Entry entry, UpdateOperations operations) { if (!HttpContext.Current.Request.IsAuthenticated) { throw new DataServiceException("Cannot update reference unless authenticated."); } } } }     The WCF data service is named EntryService. Notice that it derives from DataService<ReferenceEntitites>. Because it derives from DataService<ReferenceEntities>, the data service exposes the contents of the ReferenceEntitiesDB database. In the code above, I defined a ChangeInterceptor to prevent un-authenticated users from making changes to the database. Anyone can retrieve data through the service, but only authenticated users are allowed to make changes. After you expose data through a WCF Data Service, you can use jQuery to retrieve the data by performing an Ajax call. For example, I am using an Ajax call that looks something like this to retrieve the JavaScript entries from the EntryService.svc data service: $.ajax({ dataType: "json", url: “/Services/EntryService.svc/Entries”, success: function (result) { var data = callback(result["d"]); } });     Notice that you must unwrap the data using result[“d”]. After you unwrap the data, you have a JavaScript array of the entries. I’m transferring all 300+ entries from the server to the client when the application is opened for the first time. In other words, I transfer the entire database from the server to the client, once and only once, when the application is opened for the first time. The data is transferred using JSON. Here is a fragment: { "d" : [ { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(1)", "type": "ReferenceDBModel.Entry" }, "Id": 1, "Name": "Global", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "object", "ShortDescription": "Contains global variables and functions", "FullDescription": "<p>\nThe Global object is determined by the host environment. In web browsers, the Global object is the same as the windows object.\n</p>\n<p>\nYou can use the keyword <code>this</code> to refer to the Global object when in the global context (outside of any function).\n</p>\n<p>\nThe Global object holds all global variables and functions. For example, the following code demonstrates that the global <code>movieTitle</code> variable refers to the same thing as <code>window.movieTitle</code> and <code>this.movieTitle</code>.\n</p>\n<pre>\nvar movieTitle = \"Star Wars\";\nconsole.log(movieTitle === this.movieTitle); // true\nconsole.log(movieTitle === window.movieTitle); // true\n</pre>\n", "LastUpdated": "634298578273756641", "IsDeleted": false, "OwnerId": null }, { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(2)", "type": "ReferenceDBModel.Entry" }, "Id": 2, "Name": "eval(string)", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "function", "ShortDescription": "Evaluates and executes JavaScript code dynamically", "FullDescription": "<p>\nThe following code evaluates and executes the string \"3+5\" at runtime.\n</p>\n<pre>\nvar result = eval(\"3+5\");\nconsole.log(result); // returns 8\n</pre>\n<p>\nYou can rewrite the code above like this:\n</p>\n<pre>\nvar result;\neval(\"result = 3+5\");\nconsole.log(result);\n</pre>", "LastUpdated": "634298580913817644", "IsDeleted": false, "OwnerId": 1 } … ]} I worried about the amount of time that it would take to transfer the records. According to Google Chome, it takes about 5 seconds to retrieve all 300+ records on a broadband connection over the Internet. 5 seconds is a small price to pay to avoid performing any server fetches of the data in the future. And here are the estimated times using different types of connections using Fiddler: Notice that using a modem, it takes 33 seconds to download the database. 33 seconds is a significant chunk of time. So, I would not use the approach of transferring the entire database up front if you expect a significant portion of your website audience to connect to your website with a modem. Adding Data to HTML5 Local Storage After the JavaScript entries are retrieved from the server, the entries are stored in HTML5 local storage. Here’s the reference documentation for HTML5 storage for Internet Explorer: http://msdn.microsoft.com/en-us/library/cc197062(VS.85).aspx You access local storage by accessing the windows.localStorage object in JavaScript. This object contains key/value pairs. For example, you can use the following JavaScript code to add a new item to local storage: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You can use the Google Chrome Storage tab in the Developer Tools (hit CTRL-SHIFT I in Chrome) to view items added to local storage: After you add an item to local storage, you can read it at any time in the future by using the window.localStorage.getItem() method: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You only can add strings to local storage and not JavaScript objects such as arrays. Therefore, before adding a JavaScript object to local storage, you need to convert it into a JSON string. In the JavaScript Reference application, I use a wrapper around local storage that looks something like this: function Storage() { this.get = function (name) { return JSON.parse(window.localStorage.getItem(name)); }; this.set = function (name, value) { window.localStorage.setItem(name, JSON.stringify(value)); }; this.clear = function () { window.localStorage.clear(); }; }   If you use the wrapper above, then you can add arbitrary JavaScript objects to local storage like this: var store = new Storage(); // Add array to storage var products = [ {name:"Fish", price:2.33}, {name:"Bacon", price:1.33} ]; store.set("products", products); // Retrieve items from storage var products = store.get("products");   Modern browsers support the JSON object natively. If you need the script above to work with older browsers then you should download the JSON2.js library from: https://github.com/douglascrockford/JSON-js The JSON2 library will use the native JSON object if a browser already supports JSON. Merging Server Changes with Browser Local Storage When you first open the JavaScript Reference application, the entire database of JavaScript entries is transferred from the server to the browser. Two items are added to local storage: entries and entriesLastUpdated. The first item contains the entire entries database (a big JSON string of entries). The second item, a timestamp, represents the version of the entries. Whenever you open the JavaScript Reference in the future, the entriesLastUpdated timestamp is passed to the server. Only records that have been deleted, updated, or added since entriesLastUpdated are transferred to the browser. The OData query to get the latest updates looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated%20gt%20634301199890494792L) If you remove URL encoding, the query looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated gt 634301199890494792L) This query returns only those entries where the value of LastUpdated > 634301199890494792 (the version timestamp). The changes – new JavaScript entries, deleted entries, and updated entries – are merged with the existing entries in local storage. The JavaScript code for performing the merge is contained in the EntriesHelper.js file. The merge() method looks like this:   merge: function (oldEntries, newEntries) { // concat (this performs the add) oldEntries = oldEntries || []; var mergedEntries = oldEntries.concat(newEntries); // sort this.sortByIdThenLastUpdated(mergedEntries); // prune duplicates (this performs the update) mergedEntries = this.pruneDuplicates(mergedEntries); // delete mergedEntries = this.removeIsDeleted(mergedEntries); // Sort this.sortByName(mergedEntries); return mergedEntries; },   The contents of local storage are then updated with the merged entries. I spent several hours writing the merge() method (much longer than I expected). I found two resources to be extremely useful. First, I wrote extensive unit tests for the merge() method. I wrote the unit tests using server-side JavaScript. I describe this approach to writing unit tests in this blog entry. The unit tests are included in the JavaScript Reference source code. Second, I found the following blog entry to be super useful (thanks Nick!): http://nicksnettravels.builttoroam.com/post/2010/08/03/OData-Synchronization-with-WCF-Data-Services.aspx One big challenge that I encountered involved timestamps. I originally tried to store an actual UTC time as the value of the entriesLastUpdated item. I quickly discovered that trying to work with dates in JSON turned out to be a big can of worms that I did not want to open. Next, I tried to use a SQL timestamp column. However, I learned that OData cannot handle the timestamp data type when doing a filter query. Therefore, I ended up using a bigint column in SQL and manually creating the value when a record is updated. I overrode the SaveChanges() method to look something like this: public override int SaveChanges(SaveOptions options) { var changes = this.ObjectStateManager.GetObjectStateEntries( EntityState.Modified | EntityState.Added | EntityState.Deleted); foreach (var change in changes) { var entity = change.Entity as IEntityTracking; if (entity != null) { entity.LastUpdated = DateTime.Now.Ticks; } } return base.SaveChanges(options); }   Notice that I assign Date.Now.Ticks to the entity.LastUpdated property whenever an entry is modified, added, or deleted. Summary After building the JavaScript Reference application, I am convinced that HTML5 local storage can have a dramatic impact on the performance of any data-driven web application. If you are building a web application that involves extensive interaction with data then I recommend that you take advantage of this new feature included in the HTML5 standard.

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >