Search Results

Search found 19923 results on 797 pages for 'instance variables'.

Page 150/797 | < Previous Page | 146 147 148 149 150 151 152 153 154 155 156 157  | Next Page >

  • Framework 4 Features: Support for Timed Jobs

    - by Anthony Shorten
    One of the new features of the Oracle Utilities Application Framework V4 is the ability for the batch framework to support Timed Batch. Traditionally batch is associated with set processing in the background in a fixed time frame. For example, billing customers. Over the last few versions their has been functionality required by the products required a more monitoring style batch process. The monitor is a batch process that looks for specific business events based upon record status or other pieces of data. For example, the framework contains a fact monitor (F1-FCTRN) that can be configured to look for specific status's or other conditions. The batch process then uses the instructions on the object to determine what to do. To support monitor style processing, you need to run the process regularly a number of times a day (for example, every ten minutes). Traditional batch could support this but it was not as optimal as expected (if you are a site using the old Workflow subsystem, you understand what I mean). The Batch framework was extended to add additional facilities to support times (and continuous batch which is another new feature for another blog entry). The new facilities include: The batch control now defines the job as Timed or Not Timed. Non-Timed batch are traditional batch jobs. The timer interval (the interval between executions) can be specified The timer can be made active or inactive. Only active timers are executed. Setting the Timer Active to inactive will stop the job at the next time interval. Setting the Timer Active to Active will start the execution of the timed job. You can specify the credentials, language to view the messages and an email address to send the a summary of the execution to. The email address is optional and requires an email server to be specified in the relevant feature configuration. You can specify the thread limits and commit intervals to be sued for the multiple executions. Once a timer job is defined it will be executed automatically by the Business Application Server process if the DEFAULT threadpool is active. This threadpool can be started using the online batch daemon (for non-production) or externally using the threadpoolworker utility. At that time any batch process with the Timer Active set to Active and Batch Control Type of Timed will begin executing. As Timed jobs are executed automatically then they do not appear in any external schedule or are managed by an external scheduler (except via the DEFAULT threadpool itself of course). Now, if the job has no work to do as the timer interval is being reached then that instance of the job is stopped and the next instance started at the timer interval. If there is still work to complete when the interval interval is reached, the instance will continue processing till the work is complete, then the instance will be stopped and the next instance scheduled for the next timer interval. One of the key ways of optimizing this processing is to set the timer interval correctly for the expected workload. This is an interesting new feature of the batch framework and we anticipate it will come in handy for specific business situations with the monitor processes.

    Read the article

  • MongoDB usage best practices

    - by andresv
    The project I'm working on uses MongoDB for some stuff so I'm creating some documents to help developers speedup the learning curve and also avoid mistakes and help them write clean & reliable code. This is my first version of it, so I'm pretty sure I will be adding more stuff to it, so stay tuned! C# Official driver notes The 10gen official MongoDB driver should always be referenced in projects by using NUGET. Do not manually download and reference assemblies in any project. C# driver quickstart guide: http://www.mongodb.org/display/DOCS/CSharp+Driver+Quickstart Reference links C# Language Center: http://www.mongodb.org/display/DOCS/CSharp+Language+Center MongoDB Server Documentation: http://www.mongodb.org/display/DOCS/Home MongoDB Server Downloads: http://www.mongodb.org/downloads MongoDB client drivers download: http://www.mongodb.org/display/DOCS/Drivers MongoDB Community content: http://www.mongodb.org/display/DOCS/CSharp+Community+Projects Tutorials Tutorial MongoDB con ASP.NET MVC - Ejemplo Práctico (Spanish):http://geeks.ms/blogs/gperez/archive/2011/12/02/tutorial-mongodb-con-asp-net-mvc-ejemplo-pr-225-ctico.aspx MongoDB and C#:http://www.codeproject.com/Articles/87757/MongoDB-and-C C# driver LINQ tutorial:http://www.mongodb.org/display/DOCS/CSharp+Driver+LINQ+Tutorial C# driver reference: http://www.mongodb.org/display/DOCS/CSharp+Driver+Tutorial Safe Mode Connection The C# driver supports two connection modes: safe and unsafe. Safe connection mode (only applies to methods that modify data in a database like Inserts, Deletes and Updates. While the current driver defaults to unsafe mode (safeMode == false) it's recommended to always enable safe mode, and force unsafe mode on specific things we know aren't critical. When safe mode is enabled, the driver internal code calls the MongoDB "getLastError" function to ensure the last operation is completed before returning control the the caller. For more information on using safe mode and their implicancies on performance and data reliability see: http://www.mongodb.org/display/DOCS/getLastError+Command If safe mode is not enabled, all data modification calls to the database are executed asynchronously (fire & forget) without waiting for the result of the operation. This mode could be useful for creating / updating non-critical data like performance counters, usage logging and so on. It's important to know that not using safe mode implies that data loss can occur without any notification to the caller. As with any wait operation, enabling safe mode also implies dealing with timeouts. For more information about C# driver safe mode configuration see: http://www.mongodb.org/display/DOCS/CSharp+getLastError+and+SafeMode The safe mode configuration can be specified at different levels: Connection string: mongodb://hostname/?safe=true Database: when obtaining a database instance using the server.GetDatabase(name, safeMode) method Collection: when obtaining a collection instance using the database.GetCollection(name, safeMode) method Operation: for example, when executing the collection.Insert(document, safeMode) method Some useful SafeMode article: http://stackoverflow.com/questions/4604868/mongodb-c-sharp-safemode-official-driver Exception Handling The driver ensures that an exception will be thrown in case of something going wrong, in case of using safe mode (as said above, when not using safe mode no exception will be thrown no matter what the outcome of the operation is). As explained here https://groups.google.com/forum/?fromgroups#!topic/mongodb-user/mS6jIq5FUiM there is no need to check for any returned value from a driver method inserting data. With updates the situation is similar to any other relational database: if an update command doesn't affect any records, the call will suceed anyway (no exception thrown) and you manually have to check for something like "records affected". For MongoDB, an Update operation will return an instance of the "SafeModeResult" class, and you can verify the "DocumentsAffected" property to ensure the intended document was indeed updated. Note: Please remember that an Update method might return a null instance instead of an "SafeModeResult" instance when safe mode is not enabled. Useful Community Articles Comments about how MongoDB works and how that might affect your application: http://ethangunderson.com/blog/two-reasons-to-not-use-mongodb/ FourSquare using MongoDB had serious scalability problems: http://mashable.com/2010/10/07/mongodb-foursquare/ Is MongoDB a replacement for Memcached? http://www.quora.com/Is-MongoDB-a-good-replacement-for-Memcached/answer/Rick-Branson MongoDB Introduction, shell, when not to use, maintenance, upgrade, backups, memory, sharding, etc: http://www.markus-gattol.name/ws/mongodb.html MongoDB Collection level locking support: https://jira.mongodb.org/browse/SERVER-1240 MongoDB performance tips: http://www.quora.com/MongoDB/What-are-some-best-practices-for-optimal-performance-of-MongoDB-particularly-for-queries-that-involve-multiple-documents Lessons learned migrating from SQL Server to MongoDB: http://www.wireclub.com/development/TqnkQwQ8CxUYTVT90/read MongoDB replication performance: http://benshepheard.blogspot.com.ar/2011/01/mongodb-replication-performance.html

    Read the article

  • How to Install Oracle Software on Remote Linux Server

    - by James Taylor
    It is becoming more common these days to install Oracle software on remote Linux servers. This issue has always existed but was generally resolved either by silent installs or by someone physically going to the server to install the software. This is becoming more difficult with the popular virtualisation and cloud deployment strategies. This post provides the steps involved to install Oracle Software using the GUI interface on a remote Linux server. There are many ways to achieve this, the way I resolve this issue is via Virtual Network Computing (VNC) as it is shipped with RedHat and OEL out of the box. For this post I’m using OEL 5 deployed on a OVM guest. If not already done so download and install a client version of VNC so you can connect to the server. There are many out there, for the purpose of this post I use UltraVNC. You can download a free version from http://www.uvnc.com/download/index.html By default VNC Server is installed in your RedHat and OEL OS, but it is not configured. The way VNC works is when started it creates a client instance for the user and binds it to a specific port. So if have an account on the Linux box you can setup a VNC Server session for that user, you don’t need to be root. For the purpose of this document I’m going to use oracle as the user to setup a VNC Session as this is the user I want use to install the software. However to start the VNC Service you must be root. As the root user run the following command: service vncserver start Starting VNC server: no displays configured                [  OK  ] Login to the Linux box as the user  you wan to install the Oracle software [oracle@lisa ~]$ Run the command to create a new VNC server instance for the oracle user: vncserver You will be ask to supply password information. This is what you will enter when connecting from your desktop client. This password is also independent of the actual Linux user password. The VNC Server is acting as a proxy to this instance. You will require a password to access your desktops. Password: Verify: xauth:  creating new authority file /home/oracle/.Xauthority New 'lisa.nz.oracle.com:1 (oracle)' desktop is lisa.nz.oracle.com:1 Creating default startup script /home/oracle/.vnc/xstartup Starting applications specified in /home/oracle/.vnc/xstartup Log file is /home/oracle/.vnc/lisa.nz.oracle.com:1.log As you can see a new instance lisa.nz.oracle.com:1 has been created. If you were to run the vncserver command again another instance lisa.nz.oracle.com:2 will be created. If you are going through a firewall you will need to ensure that the port 5901 (port 1) is open between your client desktop and the Linux Server. Depending on the options chosen at install time a firewall could be in place. The simplest way to disable this is using the command. You will need to be root. service iptables stop This will stop the firewall while you install. If you just want to add a port to the accepted lists use the firewall UI. You will need to be root. system-config-security-level Now you are ready to connect to the server via the VNC. Using the software installed in step one start the VNC Client. You should be prompted for the server and port. If connectivity is established, you will be prompted for the password entered in step 5. You should now be presented with a terminal screen ready to install software Go to the location of the oracle install software and start the Oracle Universal Installer

    Read the article

  • SQL SERVER – Guest Post – Glenn Berry – Wait Type – Day 26 of 28

    - by pinaldave
    Glenn Berry works as a Database Architect at NewsGator Technologies in Denver, CO. He is a SQL Server MVP, and has a whole collection of Microsoft certifications, including MCITP, MCDBA, MCSE, MCSD, MCAD, and MCTS. He is also an Adjunct Faculty member at University College – University of Denver, where he has been teaching since 2000. He is one wonderful blogger and often blogs at here. I am big fan of the Dynamic Management Views (DMV) scripts of Glenn. His script are extremely popular and the reality is that he has inspired me to start this series with his famous DMV which I have mentioned in very first  wait stats blog post (I had forgot to request his permission to re-use the script but when asked later on his whole hearty approved it). Here is is his excellent blog post on this subject of wait stats: Analyzing cumulative wait stats in SQL Server 2005 and above has become a popular and effective technique for diagnosing performance issues and further focusing your troubleshooting and diagnostic  efforts.  Rather than just guessing about what resource(s) that SQL Server is waiting on, you can actually find out by running a relatively simple DMV query. Once you know what resources that SQL Server is spending the most time waiting on, you can run more specific queries that focus on that resource to get a better idea what is causing the problem. I do want to throw out a few caveats about using wait stats as a diagnostic tool. First, they are most useful when your SQL Server instance is experiencing performance problems. If your instance is running well, with no indication of any resource pressure from other sources, then you should not worry that much about what the top wait types are. SQL Server will always be waiting on some resource, but many wait types are quite benign, and can be safely ignored. In spite of this, I quite often see experienced DBAs obsessing over the top wait type, even when their SQL Server instance is running extremely well. Second, I often see DBAs jump to the wrong conclusion based on seeing a particular well-known wait type. A good example is CXPACKET waits. People typically jump to the conclusion that high CXPACKET waits means that they should immediately change their instance-level MADOP setting to 1. This is not always the best solution. You need to consider your workload type, and look carefully for any important “missing” indexes that might be causing the query optimizer to use a parallel plan to compensate for the missing index. In this case, correcting the index problem is usually a better solution than changing MAXDOP, since you are curing the disease rather than just treating the symptom. Finally, you should get in the habit of clearing out your cumulative wait stats with the  DBCC SQLPERF(‘sys.dm_os_wait_stats’, CLEAR); command. This is especially important if you have made an configuration or index changes, or if your workload has changed recently. Otherwise, your cumulative wait stats will be polluted with the old stats from weeks or months ago (since the last time SQL Server was started or the stats were cleared).  If you make a change to your SQL Server instance, or add an index, you should clear out your wait stats, and then wait a while to see what your new top wait stats are. At any rate, enjoy Pinal Dave’s series on Wait Stats. This blog post has been written by Glenn Berry (Twitter | Blog) Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Problem with AssetManager while loading a Model type

    - by user1204548
    Today I've tried the AssetManager for the first time with .g3db files and I'm having some problems. Exception in thread "LWJGL Application" com.badlogic.gdx.utils.GdxRuntimeException: com.badlogic.gdx.utils.GdxRuntimeException: Couldn't load dependencies of asset: data/data at com.badlogic.gdx.assets.AssetManager.handleTaskError(AssetManager.java:508) at com.badlogic.gdx.assets.AssetManager.update(AssetManager.java:342) at com.lostchg.martagdx3d.MartaGame.render(MartaGame.java:78) at com.badlogic.gdx.Game.render(Game.java:46) at com.badlogic.gdx.backends.lwjgl.LwjglApplication.mainLoop(LwjglApplication.java:207) at com.badlogic.gdx.backends.lwjgl.LwjglApplication$1.run(LwjglApplication.java:114) Caused by: com.badlogic.gdx.utils.GdxRuntimeException: Couldn't load dependencies of asset: data/data at com.badlogic.gdx.assets.AssetLoadingTask.handleAsyncLoader(AssetLoadingTask.java:119) at com.badlogic.gdx.assets.AssetLoadingTask.update(AssetLoadingTask.java:89) at com.badlogic.gdx.assets.AssetManager.updateTask(AssetManager.java:445) at com.badlogic.gdx.assets.AssetManager.update(AssetManager.java:340) ... 4 more Caused by: com.badlogic.gdx.utils.GdxRuntimeException: com.badlogic.gdx.utils.GdxRuntimeException: Couldn't load file: data/data at com.badlogic.gdx.utils.async.AsyncResult.get(AsyncResult.java:31) at com.badlogic.gdx.assets.AssetLoadingTask.handleAsyncLoader(AssetLoadingTask.java:117) ... 7 more Caused by: com.badlogic.gdx.utils.GdxRuntimeException: Couldn't load file: data/data at com.badlogic.gdx.graphics.Pixmap.<init>(Pixmap.java:140) at com.badlogic.gdx.assets.loaders.TextureLoader.loadAsync(TextureLoader.java:72) at com.badlogic.gdx.assets.loaders.TextureLoader.loadAsync(TextureLoader.java:41) at com.badlogic.gdx.assets.AssetLoadingTask.call(AssetLoadingTask.java:69) at com.badlogic.gdx.assets.AssetLoadingTask.call(AssetLoadingTask.java:34) at com.badlogic.gdx.utils.async.AsyncExecutor$2.call(AsyncExecutor.java:49) at java.util.concurrent.FutureTask.run(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) at java.lang.Thread.run(Unknown Source) Caused by: com.badlogic.gdx.utils.GdxRuntimeException: File not found: data\data (Internal) at com.badlogic.gdx.files.FileHandle.read(FileHandle.java:132) at com.badlogic.gdx.files.FileHandle.length(FileHandle.java:586) at com.badlogic.gdx.files.FileHandle.readBytes(FileHandle.java:220) at com.badlogic.gdx.graphics.Pixmap.<init>(Pixmap.java:137) ... 9 more Why it tries to load that unexisting file? It seems that the AssetManager manages to load my .g3db file at first, because earlier the java console threw some errors related to the textures associated to the 3D scene having to be a power of 2. Relevant code: public void show() { ... assets = new AssetManager(); assets.load("data/levelprueba2.g3db", Model.class); loading = true; ... } private void doneLoading() { Model model = assets.get("data/levelprueba2.g3db", Model.class); for (int i = 0; i < model.nodes.size; i++) { String id = model.nodes.get(i).id; ModelInstance instance = new ModelInstance(model, id); Node node = instance.getNode(id); instance.transform.set(node.globalTransform); node.translation.set(0,0,0); node.scale.set(1,1,1); node.rotation.idt(); instance.calculateTransforms(); instances.add(instance); } loading = false; } public void render(float delta) { super.render(delta); if (loading && assets.update()) doneLoading(); ... } The error points to the line with the assets.update() method. Please, help! Sorry for my bad English and my amateurish doubts.

    Read the article

  • Database – Beginning with Cloud Database As A Service

    - by Pinal Dave
    I love my weekend projects. Everybody does different activities in their weekend – like traveling, reading or just nothing. Every weekend I try to do something creative and different in the database world. The goal is I learn something new and if I enjoy my learning experience I share with the world. This weekend, I decided to explore Cloud Database As A Service – Morpheus. In my career I have managed many databases in the cloud and I have good experience in managing them. I should highlight that today’s applications use multiple databases from SQL for transactions and analytics, NoSQL for documents, In-Memory for caching to Indexing for search.  Provisioning and deploying these databases often require extensive expertise and time.  Often these databases are also not deployed on the same infrastructure and can create unnecessary latency between the application layer and the databases.  Not to mention the different quality of service based on the infrastructure and the service provider where they are deployed. Moreover, there are additional problems that I have experienced with traditional database setup when hosted in the cloud: Database provisioning & orchestration Slow speed due to hardware issues Poor Monitoring Tools High network latency Now if you have a great software and expert network engineer, you can continuously work on above problems and overcome them. However, not every organization have the luxury to have top notch experts in the field. Now above issues are related to infrastructure, but there are a few more problems which are related to software/application as well. Here are the top three things which can be problems if you do not have application expert: Replication and Clustering Simple provisioning of the hard drive space Automatic Sharding Well, Morpheus looks like a product build by experts who have faced similar situation in the past. The product pretty much addresses all the pain points of developers and database administrators. What is different about Morpheus is that it offers a variety of databases from MySQL, MongoDB, ElasticSearch to Reddis as a service.  Thus users can pick and chose any combination of these databases.  All of them can be provisioned in a matter of minutes with a simple and intuitive point and click user interface.  The Morpheus cloud is built on Solid State Drives (SSD) and is designed for high-speed database transactions.  In addition it offers a direct link to Amazon Web Services to minimize latency between the application layer and the databases. Here are the few steps on how one can get started with Morpheus. Follow along with me.  First go to http://www.gomorpheus.com and register for a new and free account. Step 1: Signup It is very simple to signup for Morpheus. Step 2: Select your database   I use MySQL for my daily routine, so I have selected MySQL. Upon clicking on the big red button to add Instance, it prompted a dialogue of creating a new instance.   Step 3: Create User Now we just have to create a user in our portal which we will use to connect to a database hosted at Morpheus. Click on your database instance and it will bring you to User Screen. Over here you will notice once again a big red button to create a new user. I created a user with my first name.   Step 4: Configure your MySQL client I used MySQL workbench and connected to MySQL instance, which I had created with an IP address and user.   That’s it! You are connecting to MySQL instance. Now you can create your objects just like you would create on your local box. You will have all the features of the Morpheus when you are working with your database. Dashboard While working with Morpheus, I was most impressed with its dashboard. In future blog posts, I will write more about this feature.  Also with Morpheus you use the same process for provisioning and connecting with other databases: MongoDB, ElasticSearch and Reddis. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Replicating between Cloud and On-Premises using Oracle GoldenGate

    - by Ananth R. Tiru
    Do you have applications running on the cloud that you need to connect with the on premises systems. The most likely answer to this question is an astounding YES!  If so, then you understand the importance of keep the data fresh at all times across the cloud and on-premises environments. This is also one of the key focus areas for the new GoldenGate 12c release which we announced couple of week ago via a press release. Most enterprises have spent years avoiding the data “silos” that inhibit productivity. For example, an enterprise which has adopted a CRM strategy could be relying on an on-premises based marketing application used for developing and nurturing leads. At the same time it could be using a SaaS based Sales application to create opportunities and quotes. The sales and the marketing teams which use these systems need to be able to access and share the data in a reliable and cohesive way. This example can be extended to other applications areas such as HR, Supply Chain, and Finance and the demands the users place on getting a consistent view of the data. When it comes to moving data in hybrid environments some of the key requirements include minimal latency, reliability and security: Data must remain fresh. As data ages it becomes less relevant and less valuable—day-old data is often insufficient in today’s competitive landscape. Reliability must be guaranteed despite system or connectivity issues that can occur between the cloud and on-premises instances. Security is a key concern when replicating between cloud and on-premises instances. There are several options to consider when replicating between the cloud and on-premises instances. Option 1 – Secured network established between the cloud and on-premises A secured network is established between the cloud and on-premises which enables the applications (including replication software) running on the cloud and on-premises to have seamless connectivity to other applications irrespective of where they are physically located. Option 2 – Restricted network established between the cloud and on-premises A restricted network is established between the cloud and on-premises instances which enable certain ports (required by replication) be opened on both the cloud and on the on-premises instances and white lists the IP addresses of the cloud and on-premises instances. Option 3 – Restricted network access from on-premises and cloud through HTTP proxy This option can be considered when the ports required by the applications (including replication software) are not open and the cloud instance is not white listed on the on-premises instance. This option of tunneling through HTTP proxy may be only considered when proper security exceptions are obtained. Oracle GoldenGate Oracle GoldenGate is used for major Fortune 500 companies and other industry leaders worldwide to support mission-critical systems for data availability and integration. Oracle GoldenGate addresses the requirements for ensuring data consistency between cloud and on-premises instances, thus facilitating the business process to run effectively and reliably. The architecture diagram below illustrates the scenario where the cloud and the on-premises instance are connected using GoldenGate through a secured network In the above scenario, Oracle GoldenGate is installed and configured on both the cloud and the on-premises instances. On the cloud instance Oracle GoldenGate is installed and configured on the machine where the database instance can be accessed. Oracle GoldenGate can be configured for unidirectional or bi-directional replication between the cloud and on premises instances. The specific configuration details of Oracle GoldenGate processes will depend upon the option selected for establishing connectivity between the cloud and on-premises instances. The knowledge article (ID - 1588484.1) titled ' Replicating between Cloud and On-Premises using Oracle GoldenGate' discusses in detail the options for replicating between the cloud and on-premises instances. The article can be found on My Oracle Support. To learn more about Oracle GoldenGate 12c register for our launch webcast where we will go into these new features in more detail.   You may also want to download our white paper "Oracle GoldenGate 12c Release 1 New Features Overview" I would love to hear your requirements for replicating between on-premises and cloud instances, as well as your comments about the strategy discussed in the knowledge article to address your needs. Please post your comments in this blog or in the Oracle GoldenGate public forum - https://forums.oracle.com/community/developer/english/business_intelligence/system_management_and_integration/goldengate

    Read the article

  • Task scheduler ran a task twice

    - by Ross Buggins
    Update: This has now happened two days in a row. Update: XML of scheduled tasks and images now included. Two servers located in London, both Windows 2012, have a scheduled task set to run at 3pm Monday to Friday. This has been set up for the last 5 months without a problem. However, on Monday the 28th of August they both ran the scheduled task at 3pm and then again at 4pm. When it was first reported, I thought it was too much of a coincidence to be the day after the clocks had gone back an hour. However, I’m failing in being able to explain why it has happened and if it is related to the clock change at all. The relevant logs from one server (the logs for the other follow this pattern as well): Event 129 15:00:20 Task Scheduler launch task "\3pm", instance "C:\Program Files (x86)\PHP\v5.4\php.exe" with process ID 2388. Event 100 15:00:20 Task Scheduler started "{75a3590f-dec1-4dee-bd27-73d63a50a9d7}" instance of the "\3pm" task for user "x\y". Event 200 15:00:20 Task Scheduler launched action "C:\Program Files (x86)\PHP\v5.4\php.exe" in instance "{75a3590f-dec1-4dee-bd27-73d63a50a9d7}" of task "\3pm". Event 201 15:00:23 Task Scheduler successfully completed task "\3pm" , instance "{75a3590f-dec1-4dee-bd27-73d63a50a9d7}" , action "C:\Program Files (x86)\PHP\v5.4\php.exe" with return code 0. Event 129 16:00:20 Task Scheduler launch task "\3pm", instance "C:\Program Files (x86)\PHP\v5.4\php.exe" with process ID 1224. Event 100 16:00:20 Task Scheduler started "{3dd46ca9-c525-4796-86b5-5e513fd45f26}" instance of the "\3pm" task for user "x\y". Event 200 16:00:20 Task Scheduler launched action "C:\Program Files (x86)\PHP\v5.4\php.exe" in instance "{3dd46ca9-c525-4796-86b5-5e513fd45f26}" of task "\3pm". Event 201 16:00:23 Task Scheduler successfully completed task "\3pm" , instance "{3dd46ca9-c525-4796-86b5-5e513fd45f26}" , action "C:\Program Files (x86)\PHP\v5.4\php.exe" with return code 0. I've seen this question Scheduled task running twice from time to time which points to a bug at http://support.microsoft.com/kb/2461249 being the cause. However, this doesn't include Server 2012 in it's list of problem operating systems. I’m struggling to explain this, can anyone else? The XML export for the scheduled task is: <?xml version="1.0" encoding="UTF-16"?> <Task version="1.2" xmlns="http://schemas.microsoft.com/windows/2004/02/mit/task"> <RegistrationInfo> <Date>2013-04-16T14:04:17.4897806</Date> <Author>x\y</Author> </RegistrationInfo> <Triggers> <CalendarTrigger> <StartBoundary>2013-04-17T15:00:20</StartBoundary> <Enabled>true</Enabled> <ScheduleByWeek> <DaysOfWeek> <Monday /> <Tuesday /> <Wednesday /> <Thursday /> <Friday /> </DaysOfWeek> <WeeksInterval>1</WeeksInterval> </ScheduleByWeek> </CalendarTrigger> </Triggers> <Principals> <Principal id="Author"> <UserId>x\y</UserId> <LogonType>Password</LogonType> <RunLevel>LeastPrivilege</RunLevel> </Principal> </Principals> <Settings> <MultipleInstancesPolicy>IgnoreNew</MultipleInstancesPolicy> <DisallowStartIfOnBatteries>true</DisallowStartIfOnBatteries> <StopIfGoingOnBatteries>true</StopIfGoingOnBatteries> <AllowHardTerminate>true</AllowHardTerminate> <StartWhenAvailable>false</StartWhenAvailable> <RunOnlyIfNetworkAvailable>false</RunOnlyIfNetworkAvailable> <IdleSettings> <StopOnIdleEnd>true</StopOnIdleEnd> <RestartOnIdle>false</RestartOnIdle> </IdleSettings> <AllowStartOnDemand>true</AllowStartOnDemand> <Enabled>true</Enabled> <Hidden>false</Hidden> <RunOnlyIfIdle>false</RunOnlyIfIdle> <WakeToRun>false</WakeToRun> <ExecutionTimeLimit>P3D</ExecutionTimeLimit> <Priority>7</Priority> </Settings> <Actions Context="Author"> <Exec> <Command>"C:\Program Files (x86)\PHP\v5.4\php.exe"</Command> <Arguments>-f "c:\a.php"</Arguments> </Exec> </Actions> </Task> 29 October 17:00 - Update - Both servers have again run the scheduled task at 15:00 and 16:00. I've now updated the php file that is run by the scheduler to not actually do anything whilst I'm going through trying to solve this. I'm planning on restarting one server to see if this changes anything tomorrow. 30 October 08:25 - Update - When exporting the task XML I remembered that I hadn't included the fact that the scheduled task on second server was created by importing the XML of the task created on the first. The only difference between the two tasks is the path of the php file they are executing and the user account that they are running as.

    Read the article

  • Remove accents from String .NET

    - by developerit
    Private Const ACCENT As String = “ÀÁÂÃÄÅàáâãäåÒÓÔÕÖØòóôõöøÈÉÊËèéêëÌÍÎÏìíîïÙÚÛÜùúûüÿÑñÇç” Private Const SANSACCENT As String = “AAAAAAaaaaaaOOOOOOooooooEEEEeeeeIIIIiiiiUUUUuuuuyNnCc” Public Shared Function FormatForUrl(ByVal uriBase As String) As String If String.IsNullOrEmpty(uriBase) Then Return uriBase End If ‘// Declaration de variables Dim chaine As String = uriBase.Trim.Replace(” “, “-”) chaine = chaine.Replace(” “c, “-”c) chaine = chaine.Replace(“–”, “-”) chaine = chaine.Replace(“‘”c, String.Empty) chaine = chaine.Replace(“?”c, String.Empty) chaine = chaine.Replace(“#”c, String.Empty) chaine = chaine.Replace(“:”c, String.Empty) chaine = chaine.Replace(“;”c, String.Empty) ‘// Conversion des chaines en tableaux de caractŠres Dim tableauSansAccent As Char() = SANSACCENT.ToCharArray Dim tableauAccent As Char() = ACCENT.ToCharArray ‘// Pour chaque accent For i As Integer = 0 To ACCENT.Length – 1 ‘ // Remplacement de l’accent par son ‚quivalent sans accent dans la chaŒne de caractŠres chaine = chaine.Replace(tableauAccent(i).ToString(), tableauSansAccent(i).ToString()) Next ‘// Retour du resultat Return chaine End Function

    Read the article

  • Dynamic Type to do away with Reflection

    - by Rick Strahl
    The dynamic type in C# 4.0 is a welcome addition to the language. One thing I’ve been doing a lot with it is to remove explicit Reflection code that’s often necessary when you ‘dynamically’ need to walk and object hierarchy. In the past I’ve had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Here’s a really contrived example, but assume for a second, you’d want to dynamically retrieve a Page.Request.Url.AbsoluteUrl based on a Page instance in an ASP.NET Web Page request. The strongly typed version looks like this: string path = Page.Request.Url.AbsolutePath; Now assume for a second that Page wasn’t available as a strongly typed instance and all you had was an object reference to start with and you couldn’t cast it (right I said this was contrived :-)) If you’re using raw Reflection code to retrieve this you’d end up writing 3 sets of Reflection calls using GetValue(). Here’s some internal code I use to retrieve Property values as part of ReflectionUtils: /// <summary> /// Retrieve a property value from an object dynamically. This is a simple version /// that uses Reflection calls directly. It doesn't support indexers. /// </summary> /// <param name="instance">Object to make the call on</param> /// <param name="property">Property to retrieve</param> /// <returns>Object - cast to proper type</returns> public static object GetProperty(object instance, string property) { return instance.GetType().GetProperty(property, ReflectionUtils.MemberAccess).GetValue(instance, null); } If you want more control over properties and support both fields and properties as well as array indexers a little more work is required: /// <summary> /// Parses Properties and Fields including Array and Collection references. /// Used internally for the 'Ex' Reflection methods. /// </summary> /// <param name="Parent"></param> /// <param name="Property"></param> /// <returns></returns> private static object GetPropertyInternal(object Parent, string Property) { if (Property == "this" || Property == "me") return Parent; object result = null; string pureProperty = Property; string indexes = null; bool isArrayOrCollection = false; // Deal with Array Property if (Property.IndexOf("[") > -1) { pureProperty = Property.Substring(0, Property.IndexOf("[")); indexes = Property.Substring(Property.IndexOf("[")); isArrayOrCollection = true; } // Get the member MemberInfo member = Parent.GetType().GetMember(pureProperty, ReflectionUtils.MemberAccess)[0]; if (member.MemberType == MemberTypes.Property) result = ((PropertyInfo)member).GetValue(Parent, null); else result = ((FieldInfo)member).GetValue(Parent); if (isArrayOrCollection) { indexes = indexes.Replace("[", string.Empty).Replace("]", string.Empty); if (result is Array) { int Index = -1; int.TryParse(indexes, out Index); result = CallMethod(result, "GetValue", Index); } else if (result is ICollection) { if (indexes.StartsWith("\"")) { // String Index indexes = indexes.Trim('\"'); result = CallMethod(result, "get_Item", indexes); } else { // assume numeric index int index = -1; int.TryParse(indexes, out index); result = CallMethod(result, "get_Item", index); } } } return result; } /// <summary> /// Returns a property or field value using a base object and sub members including . syntax. /// For example, you can access: oCustomer.oData.Company with (this,"oCustomer.oData.Company") /// This method also supports indexers in the Property value such as: /// Customer.DataSet.Tables["Customers"].Rows[0] /// </summary> /// <param name="Parent">Parent object to 'start' parsing from. Typically this will be the Page.</param> /// <param name="Property">The property to retrieve. Example: 'Customer.Entity.Company'</param> /// <returns></returns> public static object GetPropertyEx(object Parent, string Property) { Type type = Parent.GetType(); int at = Property.IndexOf("."); if (at < 0) { // Complex parse of the property return GetPropertyInternal(Parent, Property); } // Walk the . syntax - split into current object (Main) and further parsed objects (Subs) string main = Property.Substring(0, at); string subs = Property.Substring(at + 1); // Retrieve the next . section of the property object sub = GetPropertyInternal(Parent, main); // Now go parse the left over sections return GetPropertyEx(sub, subs); } As you can see there’s a fair bit of code involved into retrieving a property or field value reliably especially if you want to support array indexer syntax. This method is then used by a variety of routines to retrieve individual properties including one called GetPropertyEx() which can walk the dot syntax hierarchy easily. Anyway with ReflectionUtils I can  retrieve Page.Request.Url.AbsolutePath using code like this: string url = ReflectionUtils.GetPropertyEx(Page, "Request.Url.AbsolutePath") as string; This works fine, but is bulky to write and of course requires that I use my custom routines. It’s also quite slow as the code in GetPropertyEx does all sorts of string parsing to figure out which members to walk in the hierarchy. Enter dynamic – way easier! .NET 4.0’s dynamic type makes the above really easy. The following code is all that it takes: object objPage = Page; // force to object for contrivance :) dynamic page = objPage; // convert to dynamic from untyped object string scriptUrl = page.Request.Url.AbsolutePath; The dynamic type assignment in the first two lines turns the strongly typed Page object into a dynamic. The first assignment is just part of the contrived example to force the strongly typed Page reference into an untyped value to demonstrate the dynamic member access. The next line then just creates the dynamic type from the Page reference which allows you to access any public properties and methods easily. It also lets you access any child properties as dynamic types so when you look at Intellisense you’ll see something like this when typing Request.: In other words any dynamic value access on an object returns another dynamic object which is what allows the walking of the hierarchy chain. Note also that the result value doesn’t have to be explicitly cast as string in the code above – the compiler is perfectly happy without the cast in this case inferring the target type based on the type being assigned to. The dynamic conversion automatically handles the cast when making the final assignment which is nice making for natural syntnax that looks *exactly* like the fully typed syntax, but is completely dynamic. Note that you can also use indexers in the same natural syntax so the following also works on the dynamic page instance: string scriptUrl = page.Request.ServerVariables["SCRIPT_NAME"]; The dynamic type is going to make a lot of Reflection code go away as it’s simply so much nicer to be able to use natural syntax to write out code that previously required nasty Reflection syntax. Another interesting thing about the dynamic type is that it actually works considerably faster than Reflection. Check out the following methods that check performance: void Reflection() { Stopwatch stop = new Stopwatch(); stop.Start(); for (int i = 0; i < reps; i++) { // string url = ReflectionUtils.GetProperty(Page,"Title") as string;// "Request.Url.AbsolutePath") as string; string url = Page.GetType().GetProperty("Title", ReflectionUtils.MemberAccess).GetValue(Page, null) as string; } stop.Stop(); Response.Write("Reflection: " + stop.ElapsedMilliseconds.ToString()); } void Dynamic() { Stopwatch stop = new Stopwatch(); stop.Start(); dynamic page = Page; for (int i = 0; i < reps; i++) { string url = page.Title; //Request.Url.AbsolutePath; } stop.Stop(); Response.Write("Dynamic: " + stop.ElapsedMilliseconds.ToString()); } The dynamic code runs in 4-5 milliseconds while the Reflection code runs around 200+ milliseconds! There’s a bit of overhead in the first dynamic object call but subsequent calls are blazing fast and performance is actually much better than manual Reflection. Dynamic is definitely a huge win-win situation when you need dynamic access to objects at runtime.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • WiX 3 Tutorial: Understanding main WXS and WXI file

    - by Mladen Prajdic
    In the previous post we’ve taken a look at the WiX solution/project structure and project properties. We’re still playing with our super SuperForm application and today we’ll take a look at the general parts of the main wxs file, SuperForm.wxs, and the wxi include file. For wxs file we’ll just go over the general description of what each part does in the code comments. The more detailed descriptions will be in future posts about features themselves. WXI include file Include files are exactly what their name implies. To include a wxi file into the wxs file you have to put the wxi at the beginning of each .wxs file you wish to include it in. If you’ve ever worked with C++ you can think of the include files as .h files. For example if you include SuperFormVariables.wxi into the SuperForm.wxs, the variables in the wxi won’t be seen in FilesFragment.wxs or RegistryFragment.wxs. You’d have to include it manually into those two wxs files too. For preprocessor variable $(var.VariableName) to be seen by every file in the project you have to include them in the WiX project properties->Build->“Define preprocessor variables” textbox. This is why I’ve chosen not to go this route because in multi developer teams not everyone has the same directory structure and having a single variable would mean each developer would have to checkout the wixproj file to edit the variable. This is pretty much unacceptable by my standards. This is why we’ve added a System Environment variable named SuperFormFilesDir as is shown in the previous Wix Tutorial post. Because the FilesFragment.wxs is autogenerated on every project build we don’t want to change it manually each time by adding the include wxi at the beginning of the file. This way we couldn’t recreate it in each pre-build event. <?xml version="1.0" encoding="utf-8"?><Include> <!-- Versioning. These have to be changed for upgrades. It's not enough to just include newer files. --> <?define MajorVersion="1" ?> <?define MinorVersion="0" ?> <?define BuildVersion="0" ?> <!-- Revision is NOT used by WiX in the upgrade procedure --> <?define Revision="0" ?> <!-- Full version number to display --> <?define VersionNumber="$(var.MajorVersion).$(var.MinorVersion).$(var.BuildVersion).$(var.Revision)" ?> <!-- Upgrade code HAS to be the same for all updates. Once you've chosen it don't change it. --> <?define UpgradeCode="YOUR-GUID-HERE" ?> <!-- Path to the resources directory. resources don't really need to be included in the project structure but I like to include them for for clarity --> <?define ResourcesDir="$(var.ProjectDir)\Resources" ?> <!-- The name of your application exe file. This will be used to kill the process when updating and creating the desktop shortcut --> <?define ExeProcessName="SuperForm.MainApp.exe" ?></Include> For now there’s no way to tell WiX in Visual Studio to have a wxi include file available to the whole project, so you have to include it in each file separately. Only variables set in “Define preprocessor variables” or System Environment variables are accessible to the whole project for now. The main WXS file: SuperForm.wxs We’ll only take a look at the general structure of the main SuperForm.wxs and not its the details. We’ll cover the details in future posts. The code comments should provide plenty info about what each part does in general. Basically there are 5 major parts. The update part, the conditions and actions part, the UI install sequence, the directory structure and the features we want to include. <?xml version="1.0" encoding="UTF-8"?><!-- Add xmlns:util namespace definition to be able to use stuff from WixUtilExtension dll--><Wix xmlns="http://schemas.microsoft.com/wix/2006/wi" xmlns:util="http://schemas.microsoft.com/wix/UtilExtension"> <!-- This is how we include wxi files --> <?include $(sys.CURRENTDIR)Includes\SuperFormVariables.wxi ?> <!-- Id="*" is to enable upgrading. * means that the product ID will be autogenerated on each build. Name is made of localized product name and version number. --> <Product Id="*" Name="!(loc.ProductName) $(var.VersionNumber)" Language="!(loc.LANG)" Version="$(var.VersionNumber)" Manufacturer="!(loc.ManufacturerName)" UpgradeCode="$(var.UpgradeCode)"> <!-- Define the minimum supported installer version (3.0) and that the install should be done for the whole machine not just the current user --> <Package InstallerVersion="300" Compressed="yes" InstallScope="perMachine"/> <Media Id="1" Cabinet="media1.cab" EmbedCab="yes" /> <!-- Upgrade settings. This will be explained in more detail in a future post --> <Upgrade Id="$(var.UpgradeCode)"> <UpgradeVersion OnlyDetect="yes" Minimum="$(var.VersionNumber)" IncludeMinimum="no" Property="NEWER_VERSION_FOUND" /> <UpgradeVersion Minimum="0.0.0.0" IncludeMinimum="yes" Maximum="$(var.VersionNumber)" IncludeMaximum="no" Property="OLDER_VERSION_FOUND" /> </Upgrade> <!-- Reference the global NETFRAMEWORK35 property to check if it exists --> <PropertyRef Id="NETFRAMEWORK35"/> <!-- Startup conditions that checks if .Net Framework 3.5 is installed or if we're running the OS higher than Windows XP SP2. If not the installation is aborted. By doing the (Installed OR ...) property means that this condition will only be evaluated if the app is being installed and not on uninstall or changing --> <Condition Message="!(loc.DotNetFrameworkNeeded)"> <![CDATA[Installed OR NETFRAMEWORK35]]> </Condition> <Condition Message="!(loc.AppNotSupported)"> <![CDATA[Installed OR ((VersionNT >= 501 AND ServicePackLevel >= 2) OR (VersionNT >= 502))]]> </Condition> <!-- This custom action in the InstallExecuteSequence is needed to stop silent install (passing /qb to msiexec) from going around it. --> <CustomAction Id="NewerVersionFound" Error="!(loc.SuperFormNewerVersionInstalled)" /> <InstallExecuteSequence> <!-- Check for newer versions with FindRelatedProducts and execute the custom action after it --> <Custom Action="NewerVersionFound" After="FindRelatedProducts"> <![CDATA[NEWER_VERSION_FOUND]]> </Custom> <!-- Remove the previous versions of the product --> <RemoveExistingProducts After="InstallInitialize"/> <!-- WixCloseApplications is a built in custom action that uses util:CloseApplication below --> <Custom Action="WixCloseApplications" Before="InstallInitialize" /> </InstallExecuteSequence> <!-- This will ask the user to close the SuperForm app if it's running while upgrading --> <util:CloseApplication Id="CloseSuperForm" CloseMessage="no" Description="!(loc.MustCloseSuperForm)" ElevatedCloseMessage="no" RebootPrompt="no" Target="$(var.ExeProcessName)" /> <!-- Use the built in WixUI_InstallDir GUI --> <UIRef Id="WixUI_InstallDir" /> <UI> <!-- These dialog references are needed for CloseApplication above to work correctly --> <DialogRef Id="FilesInUse" /> <DialogRef Id="MsiRMFilesInUse" /> <!-- Here we'll add the GUI logic for installation and updating in a future post--> </UI> <!-- Set the icon to show next to the program name in Add/Remove programs --> <Icon Id="SuperFormIcon.ico" SourceFile="$(var.ResourcesDir)\Exclam.ico" /> <Property Id="ARPPRODUCTICON" Value="SuperFormIcon.ico" /> <!-- Installer UI custom pictures. File names are made up. Add path to your pics. –> <!-- <WixVariable Id="WixUIDialogBmp" Value="MyAppLogo.jpg" /> <WixVariable Id="WixUIBannerBmp" Value="installBanner.jpg" /> --> <!-- the default directory structure --> <Directory Id="TARGETDIR" Name="SourceDir"> <Directory Id="ProgramFilesFolder"> <Directory Id="INSTALLLOCATION" Name="!(loc.ProductName)" /> </Directory> </Directory> <!-- Set the default install location to the value of INSTALLLOCATION (usually c:\Program Files\YourProductName) --> <Property Id="WIXUI_INSTALLDIR" Value="INSTALLLOCATION" /> <!-- Set the components defined in our fragment files that will be used for our feature --> <Feature Id="SuperFormFeature" Title="!(loc.ProductName)" Level="1"> <ComponentGroupRef Id="SuperFormFiles" /> <ComponentRef Id="cmpVersionInRegistry" /> <ComponentRef Id="cmpIsThisUpdateInRegistry" /> </Feature> </Product></Wix> For more info on what certain attributes mean you should look into the WiX Documentation.   WiX 3 tutorial by Mladen Prajdic navigation WiX 3 Tutorial: Solution/Project structure and Dev resources WiX 3 Tutorial: Understanding main wxs and wxi file WiX 3 Tutorial: Generating file/directory fragments with Heat.exe

    Read the article

  • UIViewController presentModalViewController: animated: doing nothing?

    - by ryyst
    Hi, I recently started a project, using Apple's Utility Application example project. In the example project, there's an info button that shows an instance of FlipSideView. If you know the Weather.app, you know what the button acts like. I then changed the MainWindow.xib to contain a scrollview in the middle of the window and a page-control view at the bottom of the window (again, like the Weather.app). The scrollview gets filled with instances of MainView. When I then clicked the info button, the FlipSideView would show, but only in the area that was previously filled by the MainView instance – this means that the page-control view on the bottom of the page still showed when the FlipSideView instance got loaded. So, I thought that I would simply add a UIViewController for the top-most window, which is the one declared inside the AppDelegate created along side with the project. So, I created a subclass of UIViewController, put an instance of it inside MainWindow.xib and connected it's view outlet to the UIWindow declared as window inside the app delegate. I also changed the button's action, so that it know sends a message to the MainWindowController instance. The message does get sent (I checked with NSLog() statements), but the FlipSideView doesn't get shown. Here's the relevant (?) code: FlipsideViewController *controller = [[FlipsideViewController alloc] initWithNibName:@"FlipsideView" bundle:nil]; controller.delegate = self; controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal; [self presentModalViewController:controller animated:YES]; [controller release]; Why's this not working? I've uploaded the entire project here for you to be able to see the whole thing. Thanks for help! -- Ry

    Read the article

  • Django - How best to handle ValidationErrors after form.save(commit=False)

    - by orokusaki
    This is a fragment of my code from a view: if form.is_valid(): instance = form.save(commit=False) try: instance.account = request.account instance.full_clean() except ValidationError, e: # Do something with the errors here... I don't know what the best thing to do here is, but I certainly don't want to do it 180 times. This is an utter mess. Who would want to handle validation errors manually in every view. If you're not modifying the instance after save(commit=False), you don't have to worry about this, but what about in my case where every model has a foreign key to account which is set behind the scenes and hidden from the user? Any help is really appreciated.

    Read the article

  • Inner synchronization on the same object as the outer synchronization

    - by Yaneeve
    Recently I attended a lecture concerning some design patterns: The following code had been displayed: public static Singleton getInstance() { if (instance == null) { synchronized(Singleton.class) { //1 Singleton inst = instance; //2 if (inst == null) { synchronized(Singleton.class) { //3 inst = new Singleton(); //4 } instance = inst; //5 } } } return instance; } taken from: Double-checked locking: Take two My question has nothing to do with the above mentioned pattern but with the synchronized block: Is there any benefit whatsoever to the double synchronization done in lines 1 & 3 with regards to the fact that the synchronize operation is done on the same Object?

    Read the article

  • Singleton by Jon Skeet clarification

    - by amutha
    public sealed class Singleton { Singleton() { } public static Singleton Instance { get { return Nested.instance; } } class Nested { // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit static Nested() { } internal static readonly Singleton instance = new Singleton(); } } I wish to implement Jon Skeet's Singleton pattern in my current application in C#. I have two doubts on the code 1) How is it possible to access the outer class inside nested class? I mean internal static readonly Singleton instance = new Singleton(); Is something called closure? 2) I did not get this comment // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit what does this comment suggest us?

    Read the article

  • In WCF How Can I add SAML 2.0 assertion to SOAP Header?

    - by Tone
    I'm trying to add the saml 2.0 assertion node from the soap header example below - I came across the samlassertion type in the .net framework but that looks like it is only for saml 1.1. <S:Header> <To xmlns="http://www.w3.org/2005/08/addressing">https://rs1.greenwaymedical.com:8181/CONNECTGateway/EntityService/NhincProxyXDRRequestSecured</To> <Action xmlns="http://www.w3.org/2005/08/addressing">tns:ProvideAndRegisterDocumentSet-bRequest_Request</Action> <ReplyTo xmlns="http://www.w3.org/2005/08/addressing"> <Address>http://www.w3.org/2005/08/addressing/anonymous</Address> </ReplyTo> <MessageID xmlns="http://www.w3.org/2005/08/addressing">uuid:662ee047-3437-4781-a8d2-ee91bc940ef0</MessageID> <wsse:Security S:mustUnderstand="1"> <wsu:Timestamp xmlns:ns17="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" xmlns:ns16="http://www.w3.org/2003/05/soap-envelope" wsu:Id="_1"> <wsu:Created>2010-05-26T03:51:57Z</wsu:Created> <wsu:Expires>2010-05-26T03:56:57Z</wsu:Expires> </wsu:Timestamp> <saml2:Assertion xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:exc14n="http://www.w3.org/2001/10/xml-exc-c14n#" xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion" xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" xmlns:xs="http://www.w3.org/2001/XMLSchema" ID="bd1ecf8d-a6d8-488d-9183-a11227c6a219" IssueInstant="2010-05-26T03:51:57.959Z" Version="2.0"> <saml2:Issuer Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">CN=SAML User,OU=SU,O=SAML User,L=Los Angeles,ST=CA,C=US</saml2:Issuer> <saml2:Subject> <saml2:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">UID=kskagerb</saml2:NameID> <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:holder-of-key"> <saml2:SubjectConfirmationData> <ds:KeyInfo> <ds:KeyValue> <ds:RSAKeyValue> <ds:Modulus>p4jUkEUg..gwO7U=</ds:Modulus> <ds:Exponent>AQAB</ds:Exponent> </ds:RSAKeyValue> </ds:KeyValue> </ds:KeyInfo> </saml2:SubjectConfirmationData> </saml2:SubjectConfirmation> </saml2:Subject> <saml2:AuthnStatement AuthnInstant="2009-04-16T13:15:39.000Z" SessionIndex="987"> <saml2:SubjectLocality Address="158.147.185.168" DNSName="cs.myharris.net"/> <saml2:AuthnContext> <saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:X509</saml2:AuthnContextClassRef> </saml2:AuthnContext> </saml2:AuthnStatement> <saml2:AttributeStatement> <saml2:Attribute Name="urn:oasis:names:tc:xspa:1.0:subject:subject-id"> <saml2:AttributeValue xmlns:ns6="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns7="http://www.w3.org/2001/XMLSchema" ns6:type="ns7:string">Karl S Skagerberg</saml2:AttributeValue> </saml2:Attribute> <saml2:Attribute Name="urn:oasis:names:tc:xspa:1.0:subject:organization"> <saml2:AttributeValue xmlns:ns6="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns7="http://www.w3.org/2001/XMLSchema" ns6:type="ns7:string">InternalTest2</saml2:AttributeValue> </saml2:Attribute> <saml2:Attribute Name="urn:oasis:names:tc:xspa:1.0:subject:organization-id"> <saml2:AttributeValue xmlns:ns6="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns7="http://www.w3.org/2001/XMLSchema" ns6:type="ns7:string">2.2</saml2:AttributeValue> </saml2:Attribute> <saml2:Attribute Name="urn:nhin:names:saml:homeCommunityId"> <saml2:AttributeValue xmlns:ns6="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns7="http://www.w3.org/2001/XMLSchema" ns6:type="ns7:string">2.16.840.1.113883.3.441</saml2:AttributeValue> </saml2:Attribute> <saml2:Attribute Name="urn:oasis:names:tc:xacml:2.0:subject:role"> <saml2:AttributeValue> <hl7:Role xmlns:hl7="urn:hl7-org:v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" code="307969004" codeSystem="2.16.840.1.113883.6.96" codeSystemName="SNOMED_CT" displayName="Public Health" xsi:type="hl7:CE"/> </saml2:AttributeValue> </saml2:Attribute> <saml2:Attribute Name="urn:oasis:names:tc:xspa:1.0:subject:purposeofuse"> <saml2:AttributeValue> <hl7:PurposeForUse xmlns:hl7="urn:hl7-org:v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" code="PUBLICHEALTH" codeSystem="2.16.840.1.113883.3.18.7.1" codeSystemName="nhin-purpose" displayName="Use or disclosure of Psychotherapy Notes" xsi:type="hl7:CE"/> </saml2:AttributeValue> </saml2:Attribute> <saml2:Attribute Name="urn:oasis:names:tc:xacml:2.0:resource:resource-id"> <saml2:AttributeValue xmlns:ns6="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns7="http://www.w3.org/2001/XMLSchema" ns6:type="ns7:string">500000000^^^&amp;1.1&amp;ISO</saml2:AttributeValue> </saml2:Attribute> </saml2:AttributeStatement> <saml2:AuthzDecisionStatement Decision="Permit" Resource="https://158.147.185.168:8181/SamlReceiveService/SamlProcessWS"> <saml2:Action Namespace="urn:oasis:names:tc:SAML:1.0:action:rwedc">Execute</saml2:Action> <saml2:Evidence> <saml2:Assertion ID="40df7c0a-ff3e-4b26-baeb-f2910f6d05a9" IssueInstant="2009-04-16T13:10:39.093Z" Version="2.0"> <saml2:Issuer Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">CN=SAML User,OU=Harris,O=HITS,L=Melbourne,ST=FL,C=US</saml2:Issuer> <saml2:Conditions NotBefore="2009-04-16T13:10:39.093Z" NotOnOrAfter="2009-12-31T12:00:00.000Z"/> <saml2:AttributeStatement> <saml2:Attribute Name="AccessConsentPolicy" NameFormat="http://www.hhs.gov/healthit/nhin"> <saml2:AttributeValue xmlns:ns6="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns7="http://www.w3.org/2001/XMLSchema" ns6:type="ns7:string">Claim-Ref-1234</saml2:AttributeValue> </saml2:Attribute> <saml2:Attribute Name="InstanceAccessConsentPolicy" NameFormat="http://www.hhs.gov/healthit/nhin"> <saml2:AttributeValue xmlns:ns6="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns7="http://www.w3.org/2001/XMLSchema" ns6:type="ns7:string">Claim-Instance-1</saml2:AttributeValue> </saml2:Attribute> </saml2:AttributeStatement> </saml2:Assertion> </saml2:Evidence> </saml2:AuthzDecisionStatement> <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> <ds:SignedInfo> <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> <ds:Reference URI="#bd1ecf8d-a6d8-488d-9183-a11227c6a219"> <ds:Transforms> <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> </ds:Transforms> <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> <ds:DigestValue>ONbZqPUyFVPMx4v9vvpJGNB4cao=</ds:DigestValue> </ds:Reference> </ds:SignedInfo> <ds:SignatureValue>Dm/aW5bB..pF93s=</ds:SignatureValue> <ds:KeyInfo> <ds:KeyValue> <ds:RSAKeyValue> <ds:Modulus>p4jUkEU..bzqgwO7U=</ds:Modulus> <ds:Exponent>AQAB</ds:Exponent> </ds:RSAKeyValue> </ds:KeyValue> </ds:KeyInfo> </ds:Signature> </saml2:Assertion> <ds:Signature xmlns:ns17="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512" xmlns:ns16="http://www.w3.org/2003/05/soap-envelope" Id="_2"> <ds:SignedInfo> <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"> <exc14n:InclusiveNamespaces PrefixList="wsse S"/> </ds:CanonicalizationMethod> <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> <ds:Reference URI="#_1"> <ds:Transforms> <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"> <exc14n:InclusiveNamespaces PrefixList="wsu wsse S"/> </ds:Transform> </ds:Transforms> <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> <ds:DigestValue> <Include xmlns="http://www.w3.org/2004/08/xop/include" href="cid:[email protected]"/> </ds:DigestValue> </ds:Reference> </ds:SignedInfo> <ds:SignatureValue> <Include xmlns="http://www.w3.org/2004/08/xop/include" href="cid:[email protected]"/> </ds:SignatureValue> <ds:KeyInfo> <wsse:SecurityTokenReference wsse11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0"> <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID">bd1ecf8d-a6d8-488d-9183-a11227c6a219</wsse:KeyIdentifier> </wsse:SecurityTokenReference> </ds:KeyInfo> </ds:Signature> </wsse:Security> </S:Header> I've been researching for days and cannot seem to come up with a straightforward way of doing this in WCF. The web service is running on Glassfish and is soap 1.1, I've tried using all the packaged wcf bindings but have not been able to get them to work. I started down the path of using a MessageInspector, and wrote one but then realized there must be a better way, surely WCF provides some way to insert saml 2.0 assertions. I've made the most progress writing a custom binding - i've been able to get the timestamp and signature nodes in the soap header, but cannot for the life of me figure out the saml assertion. Any ideas? public static System.ServiceModel.Channels.Binding BuildCONNECTCustomBinding() { TransportSecurityBindingElement transportSecurityBindingElement = SecurityBindingElement.CreateCertificateOverTransportBindingElement(MessageSecurityVersion.WSSecurity10WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10); TextMessageEncodingBindingElement textMessageEncodingBindingElement = new TextMessageEncodingBindingElement(MessageVersion.Soap11WSAddressing10, System.Text.Encoding.UTF8); HttpsTransportBindingElement httpsTransportBindingElement = new HttpsTransportBindingElement(); SecurityTokenReferenceType securityTokenReference = new SecurityTokenReferenceType(); BindingElementCollection bindingElementCollection = new BindingElementCollection(); bindingElementCollection.Add(transportSecurityBindingElement); bindingElementCollection.Add(textMessageEncodingBindingElement); bindingElementCollection.Add(httpsTransportBindingElement); CustomBinding cb = new CustomBinding(bindingElementCollection); cb.CreateBindingElements(); return cb; }

    Read the article

  • Passing multiple simple POST Values to ASP.NET Web API

    - by Rick Strahl
    A few weeks backs I posted a blog post  about what does and doesn't work with ASP.NET Web API when it comes to POSTing data to a Web API controller. One of the features that doesn't work out of the box - somewhat unexpectedly -  is the ability to map POST form variables to simple parameters of a Web API method. For example imagine you have this form and you want to post this data to a Web API end point like this via AJAX: <form> Name: <input type="name" name="name" value="Rick" /> Value: <input type="value" name="value" value="12" /> Entered: <input type="entered" name="entered" value="12/01/2011" /> <input type="button" id="btnSend" value="Send" /> </form> <script type="text/javascript"> $("#btnSend").click( function() { $.post("samples/PostMultipleSimpleValues?action=kazam", $("form").serialize(), function (result) { alert(result); }); }); </script> or you might do this more explicitly by creating a simple client map and specifying the POST values directly by hand:$.post("samples/PostMultipleSimpleValues?action=kazam", { name: "Rick", value: 1, entered: "12/01/2012" }, $("form").serialize(), function (result) { alert(result); }); On the wire this generates a simple POST request with Url Encoded values in the content:POST /AspNetWebApi/samples/PostMultipleSimpleValues?action=kazam HTTP/1.1 Host: localhost User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; rv:15.0) Gecko/20100101 Firefox/15.0.1 Accept: application/json Connection: keep-alive Content-Type: application/x-www-form-urlencoded; charset=UTF-8 X-Requested-With: XMLHttpRequest Referer: http://localhost/AspNetWebApi/FormPostTest.html Content-Length: 41 Pragma: no-cache Cache-Control: no-cachename=Rick&value=12&entered=12%2F10%2F2011 Seems simple enough, right? We are basically posting 3 form variables and 1 query string value to the server. Unfortunately Web API can't handle request out of the box. If I create a method like this:[HttpPost] public string PostMultipleSimpleValues(string name, int value, DateTime entered, string action = null) { return string.Format("Name: {0}, Value: {1}, Date: {2}, Action: {3}", name, value, entered, action); }You'll find that you get an HTTP 404 error and { "Message": "No HTTP resource was found that matches the request URI…"} Yes, it's possible to pass multiple POST parameters of course, but Web API expects you to use Model Binding for this - mapping the post parameters to a strongly typed .NET object, not to single parameters. Alternately you can also accept a FormDataCollection parameter on your API method to get a name value collection of all POSTed values. If you're using JSON only, using the dynamic JObject/JValue objects might also work. ModelBinding is fine in many use cases, but can quickly become overkill if you only need to pass a couple of simple parameters to many methods. Especially in applications with many, many AJAX callbacks the 'parameter mapping type' per method signature can lead to serious class pollution in a project very quickly. Simple POST variables are also commonly used in AJAX applications to pass data to the server, even in many complex public APIs. So this is not an uncommon use case, and - maybe more so a behavior that I would have expected Web API to support natively. The question "Why aren't my POST parameters mapping to Web API method parameters" is already a frequent one… So this is something that I think is fairly important, but unfortunately missing in the base Web API installation. Creating a Custom Parameter Binder Luckily Web API is greatly extensible and there's a way to create a custom Parameter Binding to provide this functionality! Although this solution took me a long while to find and then only with the help of some folks Microsoft (thanks Hong Mei!!!), it's not difficult to hook up in your own projects. It requires one small class and a GlobalConfiguration hookup. Web API parameter bindings allow you to intercept processing of individual parameters - they deal with mapping parameters to the signature as well as converting the parameters to the actual values that are returned. Here's the implementation of the SimplePostVariableParameterBinding class:public class SimplePostVariableParameterBinding : HttpParameterBinding { private const string MultipleBodyParameters = "MultipleBodyParameters"; public SimplePostVariableParameterBinding(HttpParameterDescriptor descriptor) : base(descriptor) { } /// <summary> /// Check for simple binding parameters in POST data. Bind POST /// data as well as query string data /// </summary> public override Task ExecuteBindingAsync(ModelMetadataProvider metadataProvider, HttpActionContext actionContext, CancellationToken cancellationToken) { // Body can only be read once, so read and cache it NameValueCollection col = TryReadBody(actionContext.Request); string stringValue = null; if (col != null) stringValue = col[Descriptor.ParameterName]; // try reading query string if we have no POST/PUT match if (stringValue == null) { var query = actionContext.Request.GetQueryNameValuePairs(); if (query != null) { var matches = query.Where(kv => kv.Key.ToLower() == Descriptor.ParameterName.ToLower()); if (matches.Count() > 0) stringValue = matches.First().Value; } } object value = StringToType(stringValue); // Set the binding result here SetValue(actionContext, value); // now, we can return a completed task with no result TaskCompletionSource<AsyncVoid> tcs = new TaskCompletionSource<AsyncVoid>(); tcs.SetResult(default(AsyncVoid)); return tcs.Task; } private object StringToType(string stringValue) { object value = null; if (stringValue == null) value = null; else if (Descriptor.ParameterType == typeof(string)) value = stringValue; else if (Descriptor.ParameterType == typeof(int)) value = int.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(Int32)) value = Int32.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(Int64)) value = Int64.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(decimal)) value = decimal.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(double)) value = double.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(DateTime)) value = DateTime.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(bool)) { value = false; if (stringValue == "true" || stringValue == "on" || stringValue == "1") value = true; } else value = stringValue; return value; } /// <summary> /// Read and cache the request body /// </summary> /// <param name="request"></param> /// <returns></returns> private NameValueCollection TryReadBody(HttpRequestMessage request) { object result = null; // try to read out of cache first if (!request.Properties.TryGetValue(MultipleBodyParameters, out result)) { // parsing the string like firstname=Hongmei&lastname=Ge result = request.Content.ReadAsFormDataAsync().Result; request.Properties.Add(MultipleBodyParameters, result); } return result as NameValueCollection; } private struct AsyncVoid { } }   The ExecuteBindingAsync method is fired for each parameter that is mapped and sent for conversion. This custom binding is fired only if the incoming parameter is a simple type (that gets defined later when I hook up the binding), so this binding never fires on complex types or if the first type is not a simple type. For the first parameter of a request the Binding first reads the request body into a NameValueCollection and caches that in the request.Properties collection. The request body can only be read once, so the first parameter request reads it and then caches it. Subsequent parameters then use the cached POST value collection. Once the form collection is available the value of the parameter is read, and the value is translated into the target type requested by the Descriptor. SetValue writes out the value to be mapped. Once you have the ParameterBinding in place, the binding has to be assigned. This is done along with all other Web API configuration tasks at application startup in global.asax's Application_Start:GlobalConfiguration.Configuration.ParameterBindingRules .Insert(0, (HttpParameterDescriptor descriptor) => { var supportedMethods = descriptor.ActionDescriptor.SupportedHttpMethods; // Only apply this binder on POST and PUT operations if (supportedMethods.Contains(HttpMethod.Post) || supportedMethods.Contains(HttpMethod.Put)) { var supportedTypes = new Type[] { typeof(string), typeof(int), typeof(decimal), typeof(double), typeof(bool), typeof(DateTime) }; if (supportedTypes.Where(typ => typ == descriptor.ParameterType).Count() > 0) return new SimplePostVariableParameterBinding(descriptor); } // let the default bindings do their work return null; });   The ParameterBindingRules.Insert method takes a delegate that checks which type of requests it should handle. The logic here checks whether the request is POST or PUT and whether the parameter type is a simple type that is supported. Web API calls this delegate once for each method signature it tries to map and the delegate returns null to indicate it's not handling this parameter, or it returns a new parameter binding instance - in this case the SimplePostVariableParameterBinding. Once the parameter binding and this hook up code is in place, you can now pass simple POST values to methods with simple parameters. The examples I showed above should now work in addition to the standard bindings. Summary Clearly this is not easy to discover. I spent quite a bit of time digging through the Web API source trying to figure this out on my own without much luck. It took Hong Mei at Micrsoft to provide a base example as I asked around so I can't take credit for this solution :-). But once you know where to look, Web API is brilliantly extensible to make it relatively easy to customize the parameter behavior. I'm very stoked that this got resolved  - in the last two months I've had two customers with projects that decided not to use Web API in AJAX heavy SPA applications because this POST variable mapping wasn't available. This might actually change their mind to still switch back and take advantage of the many great features in Web API. I too frequently use plain POST variables for communicating with server AJAX handlers and while I could have worked around this (with untyped JObject or the Form collection mostly), having proper POST to parameter mapping makes things much easier. I said this in my last post on POST data and say it again here: I think POST to method parameter mapping should have been shipped in the box with Web API, because without knowing about this limitation the expectation is that simple POST variables map to parameters just like query string values do. I hope Microsoft considers including this type of functionality natively in the next version of Web API natively or at least as a built-in HttpParameterBinding that can be just added. This is especially true, since this binding doesn't affect existing bindings. Resources SimplePostVariableParameterBinding Source on GitHub Global.asax hookup source Mapping URL Encoded Post Values in  ASP.NET Web API© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • WCF Named Pipe IPC

    - by Peter M
    I have been trying to get up to speed on Named Pipes this week. The task I am trying to solve with them is that I have an existing windows service that is acting as a device driver that funnels data from an external device into a database. Now I have to modify this service and add an optional user front end (on the same machine, using a form of IPC) that can monitor the data as it passes between the device and the DB as well as send some commands back to the service. My initial ideas for the IPC were either named pipes or memory mapped files. So far I have been working through the named pipe idea using WCF Tutorial Basic Interprocess Communication . My idea is to set the Windows service up with an additional thread that implements the WCF NamedPipe Service and use that as a conduit to the internals of my driver. I have the sample code working, however I can not get my head around 2 issues that I am hoping that someone here can help me with: In the tutorial the ServiceHost is instantiated with a typeof(StringReverser) rather than by referencing a concrete class. Thus there seems to be no mechanism for the Server to interact with the service itself (between the host.Open() and host.Close() lines). Is it possible to create a link between and pass information between the server and the class that actually implements the service? If so, how? If I run a single instance of the server and then run multiple instance of the clients, it seems that each client gets a separate instance of the service class. I tried adding some state information to the class implementing the service and it was only retained within the instance of the named pipe. This is possibly related to the first question, but is there anyway to force the named pipes to use the same instance of the class that is implementing the service? Finally, any thoughts on MMF vs Named Pipes? Thanks for you help

    Read the article

  • Handle "Cannot access a closed resource set"

    - by Philip
    I have a website with several languages in a database. From the database I use ResXResourceWriter to create my .resx files. This is working really good but sometimes I get this exception: MESSAGE: Cannot access a closed resource set. SOURCE: mscorlib FORM: QUERYSTRING: TARGETSITE: System.Object GetObject(System.String, Boolean, Boolean) STACKTRACE: at System.Resources.RuntimeResourceSet.GetObject(String key, Boolean ignoreCase, Boolean isString) at System.Resources.RuntimeResourceSet.GetString(String key, Boolean ignoreCase) at System.Resources.ResourceManager.GetString(String name, CultureInfo culture) at System.Linq.Expressions.Expression.ValidateStaticOrInstanceMethod(Expression instance, MethodInfo method) at System.Linq.Expressions.Expression.Call(Expression instance, MethodInfo method, IEnumerable`1 arguments) at System.Data.Linq.DataContext.GetMethodCall(Object instance, MethodInfo methodInfo, Object[] parameters) at System.Data.Linq.DataContext.ExecuteMethodCall(Object instance, MethodInfo methodInfo, Object[] parameters) at Business.DatabaseModelDataContext.Web_GetMostPlayedEvents(String cultureCode) at Presentation.Default.Page_Load(Object sender, EventArgs e) at System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) at System.Web.UI.Control.LoadRecursive() at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) I don't know why this is happening or how to solve it. Does anyone know anything about this? Thanks, Philip

    Read the article

  • How can I implement an abstract singleton class in Java?

    - by Simon
    Here is my sample abstract singleton class: public abstract class A { protected static A instance; public static A getInstance() { return instance; } //...rest of my abstract methods... } And here is the concrete implementation: public class B extends A { private B() { } static { instance = new B(); } //...implementations of my abstract methods... } Unfortunately I can't get the static code in class B to execute, so the instance variable never gets set. I have tried this: Class c = B.class; A.getInstance() - returns null; and this ClassLoader.getSystemClassLoader().loadClass("B"); A.getInstance() - return null; Running both these in the eclipse debugger the static code never gets executed. The only way I could find to get the static code executed is to change the accessibility on B's constructor to public, and to call it. I'm using sun-java6-jre on Ubuntu 32bit to run these tests.

    Read the article

  • Memory leak when using Workflow 4.0 SqlWorkflowInstanceStore and PersistableIdleAction.Unload

    - by Rohland
    Hi, This particular problem is driving me nuts. I wonder if anyone has experienced a similar problem. If I load up a workflow then unload it and perform a memory snapshot then the result is predictable - my workflow is no longer in memory. However, if I load up a workflow and set the PersistableIdle action to PersistableIdleAction.Unload and let the workflow idle the workflow remains in memory even though the Unload action fires. I used ANTS Memory Profiler to debug this issue. This is the object retention graph outputted showing that an internal object is hanging onto my workflow instance. Can anyone else verify this problem? My code amounts to the following: Create SqlWorkflowInstanceStore and setup lock owner handle -- At this point I take a memory snapshot Create an instance of Workflow1 Set the PersistableIdle action Apply the instancestore to Workflow1 Setup action event handlers for Idle, Unload, UnhandledException etc. Persist the workflow instance Run the workflow instance Wait for instance to idle (caused by Delay activity) Ensure the Unload action is fired -- At this point I take a second memory snapshot From the above image, it is clear that the only object referencing Workflow1 is some internal event handlers result which I have no ability to dispose of. Any clues?

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • How to update model?

    - by Alexander Efimov
    Hi, guys. I have an ASP.NET MVC page where the model is being edited. On each action executing I have a new controller, so I don't get an updated model. I'm saving a model instance into Session["MyModelKey"]. But every time an action is executed, I have unmodified instance there even if I have changed values in textboxes which were created like this: @Html.LabelFor(model = model.EMail) @Html.TextBoxFor(model = model.EMail) @Html.LabelFor(model = model.Country) @Html.TextBoxFor(model = model.Country) @Html.ActionLink("MyAction", "MyController") Controller: public class MyController : Controller { public ActionResult MyAction() { //Every time this action is executed - I have a new controller instance //So I have null in View.Model //I get Session["MyModelKey"] here, //But the model instance properties are not updated //even though I have updated E-mail and Country properties of the model in the UI } } So, how can I get an updated model? Thanks in advance.

    Read the article

  • ASP.NET Web API and Simple Value Parameters from POSTed data

    - by Rick Strahl
    In testing out various features of Web API I've found a few oddities in the way that the serialization is handled. These are probably not super common but they may throw you for a loop. Here's what I found. Simple Parameters from Xml or JSON Content Web API makes it very easy to create action methods that accept parameters that are automatically parsed from XML or JSON request bodies. For example, you can send a JavaScript JSON object to the server and Web API happily deserializes it for you. This works just fine:public string ReturnAlbumInfo(Album album) { return album.AlbumName + " (" + album.YearReleased.ToString() + ")"; } However, if you have methods that accept simple parameter types like strings, dates, number etc., those methods don't receive their parameters from XML or JSON body by default and you may end up with failures. Take the following two very simple methods:public string ReturnString(string message) { return message; } public HttpResponseMessage ReturnDateTime(DateTime time) { return Request.CreateResponse<DateTime>(HttpStatusCode.OK, time); } The first one accepts a string and if called with a JSON string from the client like this:var client = new HttpClient(); var result = client.PostAsJsonAsync<string>(http://rasxps/AspNetWebApi/albums/rpc/ReturnString, "Hello World").Result; which results in a trace like this: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnString HTTP/1.1Content-Type: application/json; charset=utf-8Host: rasxpsContent-Length: 13Expect: 100-continueConnection: Keep-Alive "Hello World" produces… wait for it: null. Sending a date in the same fashion:var client = new HttpClient(); var result = client.PostAsJsonAsync<DateTime>(http://rasxps/AspNetWebApi/albums/rpc/ReturnDateTime, new DateTime(2012, 1, 1)).Result; results in this trace: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnDateTime HTTP/1.1Content-Type: application/json; charset=utf-8Host: rasxpsContent-Length: 30Expect: 100-continueConnection: Keep-Alive "\/Date(1325412000000-1000)\/" (yes still the ugly MS AJAX date, yuk! This will supposedly change by RTM with Json.net used for client serialization) produces an error response: The parameters dictionary contains a null entry for parameter 'time' of non-nullable type 'System.DateTime' for method 'System.Net.Http.HttpResponseMessage ReturnDateTime(System.DateTime)' in 'AspNetWebApi.Controllers.AlbumApiController'. An optional parameter must be a reference type, a nullable type, or be declared as an optional parameter. Basically any simple parameters are not parsed properly resulting in null being sent to the method. For the string the call doesn't fail, but for the non-nullable date it produces an error because the method can't handle a null value. This behavior is a bit unexpected to say the least, but there's a simple solution to make this work using an explicit [FromBody] attribute:public string ReturnString([FromBody] string message) andpublic HttpResponseMessage ReturnDateTime([FromBody] DateTime time) which explicitly instructs Web API to read the value from the body. UrlEncoded Form Variable Parsing Another similar issue I ran into is with POST Form Variable binding. Web API can retrieve parameters from the QueryString and Route Values but it doesn't explicitly map parameters from POST values either. Taking our same ReturnString function from earlier and posting a message POST variable like this:var formVars = new Dictionary<string,string>(); formVars.Add("message", "Some Value"); var content = new FormUrlEncodedContent(formVars); var client = new HttpClient(); var result = client.PostAsync(http://rasxps/AspNetWebApi/albums/rpc/ReturnString, content).Result; which produces this trace: POST http://rasxps/AspNetWebApi/albums/rpc/ReturnString HTTP/1.1Content-Type: application/x-www-form-urlencodedHost: rasxpsContent-Length: 18Expect: 100-continue message=Some+Value When calling ReturnString:public string ReturnString(string message) { return message; } unfortunately it does not map the message value to the message parameter. This sort of mapping unfortunately is not available in Web API. Web API does support binding to form variables but only as part of model binding, which binds object properties to the POST variables. Sending the same message as in the previous example you can use the following code to pick up POST variable data:public string ReturnMessageModel(MessageModel model) { return model.Message; } public class MessageModel { public string Message { get; set; }} Note that the model is bound and the message form variable is mapped to the Message property as would other variables to properties if there were more. This works but it's not very dynamic. There's no real easy way to retrieve form variables (or query string values for that matter) in Web API's Request object as far as I can discern. Well only if you consider this easy:public string ReturnString() { var formData = Request.Content.ReadAsAsync<FormDataCollection>().Result; return formData.Get("message"); } Oddly FormDataCollection does not allow for indexers to work so you have to use the .Get() method which is rather odd. If you're running under IIS/Cassini you can always resort to the old and trusty HttpContext access for request data:public string ReturnString() { return HttpContext.Current.Request.Form["message"]; } which works fine and is easier. It's kind of a bummer that HttpRequestMessage doesn't expose some sort of raw Request object that has access to dynamic data - given that it's meant to serve as a generic REST/HTTP API that seems like a crucial missing piece. I don't see any way to read query string values either. To me personally HttpContext works, since I don't see myself using self-hosted code much.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

< Previous Page | 146 147 148 149 150 151 152 153 154 155 156 157  | Next Page >