Search Results

Search found 19504 results on 781 pages for 'double instance'.

Page 154/781 | < Previous Page | 150 151 152 153 154 155 156 157 158 159 160 161  | Next Page >

  • Windows Azure Service Bus Scatter-Gather Implementation

    - by Alan Smith
    One of the more challenging enterprise integration patterns that developers may wish to implement is the Scatter-Gather pattern. In this article I will show the basic implementation of a scatter-gather pattern using the topic-subscription model of the windows azure service bus. I’ll be using the implementation in demos, and also as a lab in my training courses, and the pattern will also be included in the next release of my free e-book the “Windows Azure Service Bus Developer Guide”. The Scatter-Gather pattern answers the following scenario. How do you maintain the overall message flow when a message needs to be sent to multiple recipients, each of which may send a reply? Use a Scatter-Gather that broadcasts a message to multiple recipients and re-aggregates the responses back into a single message. The Enterprise Integration Patterns website provides a description of the Scatter-Gather pattern here.   The scatter-gather pattern uses a composite of the publish-subscribe channel pattern and the aggregator pattern. The publish-subscribe channel is used to broadcast messages to a number of receivers, and the aggregator is used to gather the response messages and aggregate them together to form a single message. Scatter-Gather Scenario The scenario for this scatter-gather implementation is an application that allows users to answer questions in a poll based voting scenario. A poll manager application will be used to broadcast questions to users, the users will use a voting application that will receive and display the questions and send the votes back to the poll manager. The poll manager application will receive the users’ votes and aggregate them together to display the results. The scenario should be able to scale to support a large number of users.   Scatter-Gather Implementation The diagram below shows the overall architecture for the scatter-gather implementation.       Messaging Entities Looking at the scatter-gather pattern diagram it can be seen that the topic-subscription architecture is well suited for broadcasting a message to a number of subscribers. The poll manager application can send the question messages to a topic, and each voting application can receive the question message on its own subscription. The static limit of 2,000 subscriptions per topic in the current release means that 2,000 voting applications can receive question messages and take part in voting. The vote messages can then be sent to the poll manager application using a queue. The voting applications will send their vote messages to the queue, and the poll manager will receive and process the vote messages. The questions topic and answer queue are created using the Windows Azure Developer Portal. Each instance of the voting application will create its own subscription in the questions topic when it starts, allowing the question messages to be broadcast to all subscribing voting applications. Data Contracts Two simple data contracts will be used to serialize the questions and votes as brokered messages. The code for these is shown below.   [DataContract] public class Question {     [DataMember]     public string QuestionText { get; set; } }     To keep the implementation of the voting functionality simple and focus on the pattern implementation, the users can only vote yes or no to the questions.   [DataContract] public class Vote {     [DataMember]     public string QuestionText { get; set; }       [DataMember]     public bool IsYes { get; set; } }     Poll Manager Application The poll manager application has been implemented as a simple WPF application; the user interface is shown below. A question can be entered in the text box, and sent to the topic by clicking the Add button. The topic and subscriptions used for broadcasting the messages are shown in a TreeView control. The questions that have been broadcast and the resulting votes are shown in a ListView control. When the application is started any existing subscriptions are cleared form the topic, clients are then created for the questions topic and votes queue, along with background workers for receiving and processing the vote messages, and updating the display of subscriptions.   public MainWindow() {     InitializeComponent();       // Create a new results list and data bind it.     Results = new ObservableCollection<Result>();     lsvResults.ItemsSource = Results;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Clear out any old subscriptions.     NamespaceManager = new NamespaceManager(serviceBusUri, credentials);     IEnumerable<SubscriptionDescription> subs =         NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);     foreach (SubscriptionDescription sub in subs)     {         NamespaceManager.DeleteSubscription(sub.TopicPath, sub.Name);     }       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create the topic and queue clients.     ScatterGatherTopicClient =         factory.CreateTopicClient(AccountDetails.ScatterGatherTopic);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker threads.     VotesBackgroundWorker = new BackgroundWorker();     VotesBackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     VotesBackgroundWorker.RunWorkerAsync();       SubscriptionsBackgroundWorker = new BackgroundWorker();     SubscriptionsBackgroundWorker.DoWork += new DoWorkEventHandler(UpdateSubscriptions);     SubscriptionsBackgroundWorker.RunWorkerAsync(); }     When the poll manager user nters a question in the text box and clicks the Add button a question message is created and sent to the topic. This message will be broadcast to all the subscribing voting applications. An instance of the Result class is also created to keep track of the votes cast, this is then added to an observable collection named Results, which is data-bound to the ListView control.   private void btnAddQuestion_Click(object sender, RoutedEventArgs e) {     // Create a new result for recording votes.     Result result = new Result()     {         Question = txtQuestion.Text     };     Results.Add(result);       // Send the question to the topic     Question question = new Question()     {         QuestionText = result.Question     };     BrokeredMessage msg = new BrokeredMessage(question);     ScatterGatherTopicClient.Send(msg);       txtQuestion.Text = ""; }     The Results class is implemented as follows.   public class Result : INotifyPropertyChanged {     public string Question { get; set; }       private int m_YesVotes;     private int m_NoVotes;       public event PropertyChangedEventHandler PropertyChanged;       public int YesVotes     {         get { return m_YesVotes; }         set         {             m_YesVotes = value;             NotifyPropertyChanged("YesVotes");         }     }       public int NoVotes     {         get { return m_NoVotes; }         set         {             m_NoVotes = value;             NotifyPropertyChanged("NoVotes");         }     }       private void NotifyPropertyChanged(string prop)     {         if(PropertyChanged != null)         {             PropertyChanged(this, new PropertyChangedEventArgs(prop));         }     } }     The INotifyPropertyChanged interface is implemented so that changes to the number of yes and no votes will be updated in the ListView control. Receiving the vote messages from the voting applications is done asynchronously, using a background worker thread.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         // Receive a vote message from the queue         BrokeredMessage msg = ScatterGatherQueueClient.Receive();         if (msg != null)         {             // Deserialize the message.             Vote vote = msg.GetBody<Vote>();               // Update the results.             foreach (Result result in Results)             {                 if (result.Question.Equals(vote.QuestionText))                 {                     if (vote.IsYes)                     {                         result.YesVotes++;                     }                     else                     {                         result.NoVotes++;                     }                     break;                 }             }               // Mark the message as complete.             msg.Complete();         }       } }     When a vote message is received, the result that matches the vote question is updated with the vote from the user. The message is then marked as complete. A second background thread is used to update the display of subscriptions in the TreeView, with a dispatcher used to update the user interface. // This runs on a background worker. private void UpdateSubscriptions(object sender, DoWorkEventArgs e) {     while (true)     {         // Get a list of subscriptions.         IEnumerable<SubscriptionDescription> subscriptions =             NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);           // Update the user interface.         SimpleDelegate setQuestion = delegate()         {             trvSubscriptions.Items.Clear();             TreeViewItem topicItem = new TreeViewItem()             {                 Header = AccountDetails.ScatterGatherTopic             };               foreach (SubscriptionDescription subscription in subscriptions)             {                 TreeViewItem subscriptionItem = new TreeViewItem()                 {                     Header = subscription.Name                 };                 topicItem.Items.Add(subscriptionItem);             }             trvSubscriptions.Items.Add(topicItem);               topicItem.ExpandSubtree();         };         this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);           Thread.Sleep(3000);     } }       Voting Application The voting application is implemented as another WPF application. This one is more basic, and allows the user to vote “Yes” or “No” for the questions sent by the poll manager application. The user interface for that application is shown below. When an instance of the voting application is created it will create a subscription in the questions topic using a GUID as the subscription name. The application can then receive copies of every question message that is sent to the topic. Clients for the new subscription and the votes queue are created, along with a background worker to receive the question messages. The voting application is set to receiving mode, meaning it is ready to receive a question message from the subscription.   public MainWindow() {     InitializeComponent();       // Set the mode to receiving.     IsReceiving = true;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create a subcription for this instance     NamespaceManager mgr = new NamespaceManager(serviceBusUri, credentials);     string subscriptionName = Guid.NewGuid().ToString();     mgr.CreateSubscription(AccountDetails.ScatterGatherTopic, subscriptionName);       // Create the subscription and queue clients.     ScatterGatherSubscriptionClient = factory.CreateSubscriptionClient         (AccountDetails.ScatterGatherTopic, subscriptionName);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker thread.     BackgroundWorker = new BackgroundWorker();     BackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     BackgroundWorker.RunWorkerAsync(); }     I took the inspiration for creating the subscriptions in the voting application from the chat application that uses topics and subscriptions blogged by Ovais Akhter here. The method that receives the question messages runs on a background thread. If the application is in receive mode, a question message will be received from the subscription, the question will be displayed in the user interface, the voting buttons enabled, and IsReceiving set to false to prevent more questing from being received before the current one is answered.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         if (IsReceiving)         {             // Receive a question message from the topic.             BrokeredMessage msg = ScatterGatherSubscriptionClient.Receive();             if (msg != null)             {                 // Deserialize the message.                 Question question = msg.GetBody<Question>();                   // Update the user interface.                 SimpleDelegate setQuestion = delegate()                 {                     lblQuestion.Content = question.QuestionText;                     btnYes.IsEnabled = true;                     btnNo.IsEnabled = true;                 };                 this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);                 IsReceiving = false;                   // Mark the message as complete.                 msg.Complete();             }         }         else         {             Thread.Sleep(1000);         }     } }     When the user clicks on the Yes or No button, the btnVote_Click method is called. This will create a new Vote data contract with the appropriate question and answer and send the message to the poll manager application using the votes queue. The user voting buttons are then disabled, the question text cleared, and the IsReceiving flag set to true to allow a new message to be received.   private void btnVote_Click(object sender, RoutedEventArgs e) {     // Create a new vote.     Vote vote = new Vote()     {         QuestionText = (string)lblQuestion.Content,         IsYes = ((sender as Button).Content as string).Equals("Yes")     };       // Send the vote message.     BrokeredMessage msg = new BrokeredMessage(vote);     ScatterGatherQueueClient.Send(msg);       // Update the user interface.     lblQuestion.Content = "";     btnYes.IsEnabled = false;     btnNo.IsEnabled = false;     IsReceiving = true; }     Testing the Application In order to test the application, an instance of the poll manager application is started; the user interface is shown below. As no instances of the voting application have been created there are no subscriptions present in the topic. When an instance of the voting application is created the subscription will be displayed in the poll manager. Now that a voting application is subscribing, a questing can be sent from the poll manager application. When the message is sent to the topic, the voting application will receive the message and display the question. The voter can then answer the question by clicking on the appropriate button. The results of the vote are updated in the poll manager application. When two more instances of the voting application are created, the poll manager will display the new subscriptions. More questions can then be broadcast to the voting applications. As the question messages are queued up in the subscription for each voting application, the users can answer the questions in their own time. The vote messages will be received by the poll manager application and aggregated to display the results. The screenshots of the applications part way through voting are shown below. The messages for each voting application are queued up in sequence on the voting application subscriptions, allowing the questions to be answered at different speeds by the voters.

    Read the article

  • Working with Tile Notifications in Windows 8 Store Apps – Part I

    - by dwahlin
    One of the features that really makes Windows 8 apps stand out from others is the tile functionality on the start screen. While icons allow a user to start an application, tiles provide a more engaging way to engage the user and draw them into an application. Examples of “live” tiles on part of my current start screen are shown next: I’ll admit that if you get enough of these tiles going the start screen can actually be a bit distracting. Fortunately, a user can easily disable a live tile by right-clicking on it or pressing and holding a tile on a touch device and then selecting Turn live tile off from the AppBar: The can also make a wide tile smaller (into a square tile) or make a square tile bigger assuming the application supports both squares and rectangles. In this post I’ll walk through how to add tile notification functionality into an application. Both XAML/C# and HTML/JavaScript apps support live tiles and I’ll show the code for both options.   Understanding Tile Templates The first thing you need to know if you want to add custom tile functionality (live tiles) into your application is that there is a collection of tile templates available out-of-the-box. Each tile template has XML associated with it that you need to load, update with your custom data, and then feed into a tile update manager. By doing that you can control what shows in your app’s tile on the Windows 8 start screen. So how do you learn more about the different tile templates and their respective XML? Fortunately, Microsoft has a nice documentation page in the Windows 8 Store SDK. Visit http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx to see a complete list of square and wide/rectangular tile templates that you can use. Looking through the templates you’ll It has the following XML template associated with it:  <tile> <visual> <binding template="TileSquareBlock"> <text id="1">Text Field 1</text> <text id="2">Text Field 2</text> </binding> </visual> </tile> An example of a wide/rectangular tile template is shown next:    <tile> <visual> <binding template="TileWideImageAndText01"> <image id="1" src="image1.png" alt="alt text"/> <text id="1">Text Field 1</text> </binding> </visual> </tile>   To use these tile templates (or others you find interesting), update their content, and get them to show for your app’s tile on the Windows 8 start screen you’ll need to perform the following steps: Define the tile template to use in your app Load the tile template’s XML into memory Modify the children of the <binding> tag Feed the modified tile XML into a new TileNotification instance Feed the TileNotification instance into the Update() method of the TileUpdateManager In the remainder of the post I’ll walk through each of the steps listed above to provide wide and square tile notifications for an application. The wide tile that’s shown will show an image and text while the square tile will only show text. If you’re going to provide custom tile notifications it’s recommended that you provide wide and square tiles since users can switch between the two of them directly on the start screen. Note: When working with tile notifications it’s possible to manipulate and update a tile’s XML template without having to know XML parsing techniques. This can be accomplished using some C# notification extension classes that are available. In this post I’m going to focus on working with tile notifications using an XML parser so that the focus is on the steps required to add notifications to the Windows 8 start screen rather than on external extension classes. You can access the extension classes in the Windows 8 samples gallery if you’re interested.   Steps to Create Custom App Tile Notifications   Step 1: Define the tile template to use in your app Although you can cut-and-paste a tile template’s XML directly into your C# or HTML/JavaScript Windows store app and then parse it using an XML parser, it’s easier to use the built-in TileTemplateType enumeration from the Windows.UI.Notifications namespace. It provides direct access to the XML for the various templates so once you locate a template you like in the documentation (mentioned above), simplify reference it:HTML/JavaScript var notifications = Windows.UI.Notifications; var template = notifications.TileTemplateType.tileWideImageAndText01; .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C# var template = TileTemplateType.TileWideImageAndText01;   Step 2: Load the tile template’s XML into memory Once the target template’s XML is identified, load it into memory using the TileUpdateManager’s GetTemplateContent() method. This method parses the template XML and returns an XmlDocument object:   HTML/JavaScript   var tileXml = notifications.TileUpdateManager.getTemplateContent(template); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#  var tileXml = TileUpdateManager.GetTemplateContent(template);   Step 3: Modify the children of the <binding> tag Once the XML for a given template is loaded into memory you need to locate the appropriate <image> and/or <text> elements in the XML and update them with your app data. This can be done using standard XML DOM manipulation techniques. The example code below locates the image folder and loads the path to an image file located in the project into it’s inner text. The code also creates a square tile that consists of text, updates it’s <text> element, and then imports and appends it into the wide tile’s XML.   HTML/JavaScript var image = tileXml.selectSingleNode('//image[@id="1"]'); image.setAttribute('src', 'ms-appx:///images/' + imageFile); image.setAttribute('alt', 'Live Tile'); var squareTemplate = notifications.TileTemplateType.tileSquareText04; var squareTileXml = notifications.TileUpdateManager.getTemplateContent(squareTemplate); var squareTileTextAttributes = squareTileXml.selectSingleNode('//text[@id="1"]'); squareTileTextAttributes.appendChild(squareTileXml.createTextNode(content)); var node = tileXml.importNode(squareTileXml.selectSingleNode('//binding'), true); tileXml.selectSingleNode('//visual').appendChild(node); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#var tileXml = TileUpdateManager.GetTemplateContent(template); var text = tileXml.SelectSingleNode("//text[@id='1']"); text.AppendChild(tileXml.CreateTextNode(content)); var image = (XmlElement)tileXml.SelectSingleNode("//image[@id='1']"); image.SetAttribute("src", "ms-appx:///Assets/" + imageFile); image.SetAttribute("alt", "Live Tile"); Debug.WriteLine(image.GetXml()); var squareTemplate = TileTemplateType.TileSquareText04; var squareTileXml = TileUpdateManager.GetTemplateContent(squareTemplate); var squareTileTextAttributes = squareTileXml.SelectSingleNode("//text[@id='1']"); squareTileTextAttributes.AppendChild(squareTileXml.CreateTextNode(content)); var node = tileXml.ImportNode(squareTileXml.SelectSingleNode("//binding"), true); tileXml.SelectSingleNode("//visual").AppendChild(node);  Step 4: Feed the modified tile XML into a new TileNotification instance Now that the XML data has been updated with the desired text and images, it’s time to load the XmlDocument object into a new TileNotification instance:   HTML/JavaScript var tileNotification = new notifications.TileNotification(tileXml); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#var tileNotification = new TileNotification(tileXml);  Step 5: Feed the TileNotification instance into the Update() method of the TileUpdateManager Once the TileNotification instance has been created and the XmlDocument has been passed to its constructor, it needs to be passed to the Update() method of a TileUpdator in order to be shown on the Windows 8 start screen:   HTML/JavaScript notifications.TileUpdateManager.createTileUpdaterForApplication().update(tileNotification); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#TileUpdateManager.CreateTileUpdaterForApplication().Update(tileNotification);    Once the tile notification is updated it’ll show up on the start screen. An example of the wide and square tiles created with the included demo code are shown next:     Download the HTML/JavaScript and XAML/C# sample application here. In the next post in this series I’ll walk through how to queue multiple tiles and clear a queue.

    Read the article

  • Connecting SceneBuilder edited FXML to Java code

    - by daniel
    Recently I had to answer several questions regarding how to connect an UI built with the JavaFX SceneBuilder 1.0 Developer Preview to Java Code. So I figured out that a short overview might be helpful. But first, let me state the obvious. What is FXML? To make it short, FXML is an XML based declaration format for JavaFX. JavaFX provides an FXML loader which will parse FXML files and from that construct a graph of Java object. It may sound complex when stated like that but it is actually quite simple. Here is an example of FXML file, which instantiate a StackPane and puts a Button inside it: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml"> <children> <Button mnemonicParsing="false" text="Button" /> </children> </StackPane> ... and here is the code I would have had to write if I had chosen to do the same thing programatically: import javafx.scene.control.*; import javafx.scene.layout.*; ... final Button button = new Button("Button"); button.setMnemonicParsing(false); final StackPane stackPane = new StackPane(); stackPane.setPrefWidth(200.0); stackPane.setPrefHeight(150.0); stacPane.getChildren().add(button); As you can see - FXML is rather simple to understand - as it is quite close to the JavaFX API. So OK FXML is simple, but why would I use it?Well, there are several answers to that - but my own favorite is: because you can make it with SceneBuilder. What is SceneBuilder? In short SceneBuilder is a layout tool that will let you graphically build JavaFX user interfaces by dragging and dropping JavaFX components from a library, and save it as an FXML file. SceneBuilder can also be used to load and modify JavaFX scenegraphs declared in FXML. Here is how I made the small FXML file above: Start the JavaFX SceneBuilder 1.0 Developer Preview In the Library on the left hand side, click on 'StackPane' and drag it on the content view (the white rectangle) In the Library, select a Button and drag it onto the StackPane on the content view. In the Hierarchy Panel on the left hand side - select the StackPane component, then invoke 'Edit > Trim To Selected' from the menubar That's it - you can now save, and you will obtain the small FXML file shown above. Of course this is only a trivial sample, made for the sake of the example - and SceneBuilder will let you create much more complex UIs. So, I have now an FXML file. But what do I do with it? How do I include it in my program? How do I write my main class? Loading an FXML file with JavaFX Well, that's the easy part - because the piece of code you need to write never changes. You can download and look at the SceneBuilder samples if you need to get convinced, but here is the short version: Create a Java class (let's call it 'Main.java') which extends javafx.application.Application In the same directory copy/save the FXML file you just created using SceneBuilder. Let's name it "simple.fxml" Now here is the Java code for the Main class, which simply loads the FXML file and puts it as root in a stage's scene. /* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. */ package simple; import java.util.logging.Level; import java.util.logging.Logger; import javafx.application.Application; import javafx.fxml.FXMLLoader; import javafx.scene.Scene; import javafx.scene.layout.StackPane; import javafx.stage.Stage; public class Main extends Application { /** * @param args the command line arguments */ public static void main(String[] args) { Application.launch(Main.class, (java.lang.String[])null); } @Override public void start(Stage primaryStage) { try { StackPane page = (StackPane) FXMLLoader.load(Main.class.getResource("simple.fxml")); Scene scene = new Scene(page); primaryStage.setScene(scene); primaryStage.setTitle("FXML is Simple"); primaryStage.show(); } catch (Exception ex) { Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex); } } } Great! Now I only have to use my favorite IDE to compile the class and run it. But... wait... what does it do? Well nothing. It just displays a button in the middle of a window. There's no logic attached to it. So how do we do that? How can I connect this button to my application logic? Here is how: Connection to code First let's define our application logic. Since this post is only intended to give a very brief overview - let's keep things simple. Let's say that the only thing I want to do is print a message on System.out when the user clicks on my button. To do that, I'll need to register an action handler with my button. And to do that, I'll need to somehow get a handle on my button. I'll need some kind of controller logic that will get my button and add my action handler to it. So how do I get a handle to my button and pass it to my controller? Once again - this is easy: I just need to write a controller class for my FXML. With each FXML file, it is possible to associate a controller class defined for that FXML. That controller class will make the link between the UI (the objects defined in the FXML) and the application logic. To each object defined in FXML we can associate an fx:id. The value of the id must be unique within the scope of the FXML, and is the name of an instance variable inside the controller class, in which the object will be injected. Since I want to have access to my button, I will need to add an fx:id to my button in FXML, and declare an @FXML variable in my controller class with the same name. In other words - I will need to add fx:id="myButton" to my button in FXML: -- <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> and declare @FXML private Button myButton in my controller class @FXML private Button myButton; // value will be injected by the FXMLLoader Let's see how to do this. Add an fx:id to the Button object Load "simple.fxml" in SceneBuilder - if not already done In the hierarchy panel (bottom left), or directly on the content view, select the Button object. Open the Properties sections of the inspector (right panel) for the button object At the top of the section, you will see a text field labelled fx:id. Enter myButton in that field and validate. Associate a controller class with the FXML file Still in SceneBuilder, select the top root object (in our case, that's the StackPane), and open the Code section of the inspector (right hand side) At the top of the section you should see a text field labelled Controller Class. In the field, type simple.SimpleController. This is the name of the class we're going to create manually. If you save at this point, the FXML will look like this: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml" fx:controller="simple.SimpleController"> <children> <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> </children> </StackPane> As you can see, the name of the controller class has been added to the root object: fx:controller="simple.SimpleController" Coding the controller class In your favorite IDE, create an empty SimpleController.java class. Now what does a controller class looks like? What should we put inside? Well - SceneBuilder will help you there: it will show you an example of controller skeleton tailored for your FXML. In the menu bar, invoke View > Show Sample Controller Skeleton. A popup appears, displaying a suggestion for the controller skeleton: copy the code displayed there, and paste it into your SimpleController.java: /** * Sample Skeleton for "simple.fxml" Controller Class * Use copy/paste to copy paste this code into your favorite IDE **/ package simple; import java.net.URL; import java.util.ResourceBundle; import javafx.fxml.FXML; import javafx.fxml.Initializable; import javafx.scene.control.Button; public class SimpleController implements Initializable { @FXML // fx:id="myButton" private Button myButton; // Value injected by FXMLLoader @Override // This method is called by the FXMLLoader when initialization is complete public void initialize(URL fxmlFileLocation, ResourceBundle resources) { assert myButton != null : "fx:id=\"myButton\" was not injected: check your FXML file 'simple.fxml'."; // initialize your logic here: all @FXML variables will have been injected } } Note that the code displayed by SceneBuilder is there only for educational purpose: SceneBuilder does not create and does not modify Java files. This is simply a hint of what you can use, given the fx:id present in your FXML file. You are free to copy all or part of the displayed code and paste it into your own Java class. Now at this point, there only remains to add our logic to the controller class. Quite easy: in the initialize method, I will register an action handler with my button: () { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... -- ... // initialize your logic here: all @FXML variables will have been injected myButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... That's it - if you now compile everything in your IDE, and run your application, clicking on the button should print a message on the console! Summary What happens is that in Main.java, the FXMLLoader will load simple.fxml from the jar/classpath, as specified by 'FXMLLoader.load(Main.class.getResource("simple.fxml"))'. When loading simple.fxml, the loader will find the name of the controller class, as specified by 'fx:controller="simple.SimpleController"' in the FXML. Upon finding the name of the controller class, the loader will create an instance of that class, in which it will try to inject all the objects that have an fx:id in the FXML. Thus, after having created '<Button fx:id="myButton" ... />', the FXMLLoader will inject the button instance into the '@FXML private Button myButton;' instance variable found on the controller instance. This is because The instance variable has an @FXML annotation, The name of the variable exactly matches the value of the fx:id Finally, when the whole FXML has been loaded, the FXMLLoader will call the controller's initialize method, and our code that registers an action handler with the button will be executed. For a complete example, take a look at the HelloWorld SceneBuilder sample. Also make sure to follow the SceneBuilder Get Started guide, which will guide you through a much more complete example. Of course, there are more elegant ways to set up an Event Handler using FXML and SceneBuilder. There are also many different ways to work with the FXMLLoader. But since it's starting to be very late here, I think it will have to wait for another post. I hope you have enjoyed the tour! --daniel

    Read the article

  • Parsing Concerns

    - by Jesse
    If you’ve ever written an application that accepts date and/or time inputs from an external source (a person, an uploaded file, posted XML, etc.) then you’ve no doubt had to deal with parsing some text representing a date into a data structure that a computer can understand. Similarly, you’ve probably also had to take values from those same data structure and turn them back into their original formats. Most (all?) suitably modern development platforms expose some kind of parsing and formatting functionality for turning text into dates and vice versa. In .NET, the DateTime data structure exposes ‘Parse’ and ‘ToString’ methods for this purpose. This post will focus mostly on parsing, though most of the examples and suggestions below can also be applied to the ToString method. The DateTime.Parse method is pretty permissive in the values that it will accept (though apparently not as permissive as some other languages) which makes it pretty easy to take some text provided by a user and turn it into a proper DateTime instance. Here are some examples (note that the resulting DateTime values are shown using the RFC1123 format): DateTime.Parse("3/12/2010"); //Fri, 12 Mar 2010 00:00:00 GMT DateTime.Parse("2:00 AM"); //Sat, 01 Jan 2011 02:00:00 GMT (took today's date as date portion) DateTime.Parse("5-15/2010"); //Sat, 15 May 2010 00:00:00 GMT DateTime.Parse("7/8"); //Fri, 08 Jul 2011 00:00:00 GMT DateTime.Parse("Thursday, July 1, 2010"); //Thu, 01 Jul 2010 00:00:00 GMT Dealing With Inaccuracy While the DateTime struct has the ability to store a date and time value accurate down to the millisecond, most date strings provided by a user are not going to specify values with that much precision. In each of the above examples, the Parse method was provided a partial value from which to construct a proper DateTime. This means it had to go ahead and assume what you meant and fill in the missing parts of the date and time for you. This is a good thing, especially when we’re talking about taking input from a user. We can’t expect that every person using our software to provide a year, day, month, hour, minute, second, and millisecond every time they need to express a date. That said, it’s important for developers to understand what assumptions the software might be making and plan accordingly. I think the assumptions that were made in each of the above examples were pretty reasonable, though if we dig into this method a little bit deeper we’ll find that there are a lot more assumptions being made under the covers than you might have previously known. One of the biggest assumptions that the DateTime.Parse method has to make relates to the format of the date represented by the provided string. Let’s consider this example input string: ‘10-02-15’. To some people. that might look like ‘15-Feb-2010’. To others, it might be ‘02-Oct-2015’. Like many things, it depends on where you’re from. This Is America! Most cultures around the world have adopted a “little-endian” or “big-endian” formats. (Source: Date And Time Notation By Country) In this context,  a “little-endian” date format would list the date parts with the least significant first while the “big-endian” date format would list them with the most significant first. For example, a “little-endian” date would be “day-month-year” and “big-endian” would be “year-month-day”. It’s worth nothing here that ISO 8601 defines a “big-endian” format as the international standard. While I personally prefer “big-endian” style date formats, I think both styles make sense in that they follow some logical standard with respect to ordering the date parts by their significance. Here in the United States, however, we buck that trend by using what is, in comparison, a completely nonsensical format of “month/day/year”. Almost no other country in the world uses this format. I’ve been fortunate in my life to have done some international travel, so I’ve been aware of this difference for many years, but never really thought much about it. Until recently, I had been developing software for exclusively US-based audiences and remained blissfully ignorant of the different date formats employed by other countries around the world. The web application I work on is being rolled out to users in different countries, so I was recently tasked with updating it to support different date formats. As it turns out, .NET has a great mechanism for dealing with different date formats right out of the box. Supporting date formats for different cultures is actually pretty easy once you understand this mechanism. Pulling the Curtain Back On the Parse Method Have you ever taken a look at the different flavors (read: overloads) that the DateTime.Parse method comes in? In it’s simplest form, it takes a single string parameter and returns the corresponding DateTime value (if it can divine what the date value should be). You can optionally provide two additional parameters to this method: an ‘System.IFormatProvider’ and a ‘System.Globalization.DateTimeStyles’. Both of these optional parameters have some bearing on the assumptions that get made while parsing a date, but for the purposes of this article I’m going to focus on the ‘System.IFormatProvider’ parameter. The IFormatProvider exposes a single method called ‘GetFormat’ that returns an object to be used for determining the proper format for displaying and parsing things like numbers and dates. This interface plays a big role in the globalization capabilities that are built into the .NET Framework. The cornerstone of these globalization capabilities can be found in the ‘System.Globalization.CultureInfo’ class. To put it simply, the CultureInfo class is used to encapsulate information related to things like language, writing system, and date formats for a certain culture. Support for many cultures are “baked in” to the .NET Framework and there is capacity for defining custom cultures if needed (thought I’ve never delved into that). While the details of the CultureInfo class are beyond the scope of this post, so for now let me just point out that the CultureInfo class implements the IFormatInfo interface. This means that a CultureInfo instance created for a given culture can be provided to the DateTime.Parse method in order to tell it what date formats it should expect. So what happens when you don’t provide this value? Let’s crack this method open in Reflector: When no IFormatInfo parameter is provided (i.e. we use the simple DateTime.Parse(string) overload), the ‘DateTimeFormatInfo.CurrentInfo’ is used instead. Drilling down a bit further we can see the implementation of the DateTimeFormatInfo.CurrentInfo property: From this property we can determine that, in the absence of an IFormatProvider being specified, the DateTime.Parse method will assume that the provided date should be treated as if it were in the format defined by the CultureInfo object that is attached to the current thread. The culture specified by the CultureInfo instance on the current thread can vary depending on several factors, but if you’re writing an application where a single instance might be used by people from different cultures (i.e. a web application with an international user base), it’s important to know what this value is. Having a solid strategy for setting the current thread’s culture for each incoming request in an internationally used ASP .NET application is obviously important, and might make a good topic for a future post. For now, let’s think about what the implications of not having the correct culture set on the current thread. Let’s say you’re running an ASP .NET application on a server in the United States. The server was setup by English speakers in the United States, so it’s configured for US English. It exposes a web page where users can enter order data, one piece of which is an anticipated order delivery date. Most users are in the US, and therefore enter dates in a ‘month/day/year’ format. The application is using the DateTime.Parse(string) method to turn the values provided by the user into actual DateTime instances that can be stored in the database. This all works fine, because your users and your server both think of dates in the same way. Now you need to support some users in South America, where a ‘day/month/year’ format is used. The best case scenario at this point is a user will enter March 13, 2011 as ‘25/03/2011’. This would cause the call to DateTime.Parse to blow up since that value doesn’t look like a valid date in the US English culture (Note: In all likelihood you might be using the DateTime.TryParse(string) method here instead, but that method behaves the same way with regard to date formats). “But wait a minute”, you might be saying to yourself, “I thought you said that this was the best case scenario?” This scenario would prevent users from entering orders in the system, which is bad, but it could be worse! What if the order needs to be delivered a day earlier than that, on March 12, 2011? Now the user enters ‘12/03/2011’. Now the call to DateTime.Parse sees what it thinks is a valid date, but there’s just one problem: it’s not the right date. Now this order won’t get delivered until December 3, 2011. In my opinion, that kind of data corruption is a much bigger problem than having the Parse call fail. What To Do? My order entry example is a bit contrived, but I think it serves to illustrate the potential issues with accepting date input from users. There are some approaches you can take to make this easier on you and your users: Eliminate ambiguity by using a graphical date input control. I’m personally a fan of a jQuery UI Datepicker widget. It’s pretty easy to setup, can be themed to match the look and feel of your site, and has support for multiple languages and cultures. Be sure you have a way to track the culture preference of each user in your system. For a web application this could be done using something like a cookie or session state variable. Ensure that the current user’s culture is being applied correctly to DateTime formatting and parsing code. This can be accomplished by ensuring that each request has the handling thread’s CultureInfo set properly, or by using the Format and Parse method overloads that accept an IFormatProvider instance where the provided value is a CultureInfo object constructed using the current user’s culture preference. When in doubt, favor formats that are internationally recognizable. Using the string ‘2010-03-05’ is likely to be recognized as March, 5 2011 by users from most (if not all) cultures. Favor standard date format strings over custom ones. So far we’ve only talked about turning a string into a DateTime, but most of the same “gotchas” apply when doing the opposite. Consider this code: someDateValue.ToString("MM/dd/yyyy"); This will output the same string regardless of what the current thread’s culture is set to (with the exception of some cultures that don’t use the Gregorian calendar system, but that’s another issue all together). For displaying dates to users, it would be better to do this: someDateValue.ToString("d"); This standard format string of “d” will use the “short date format” as defined by the culture attached to the current thread (or provided in the IFormatProvider instance in the proper method overload). This means that it will honor the proper month/day/year, year/month/day, or day/month/year format for the culture. Knowing Your Audience The examples and suggestions shown above can go a long way toward getting an application in shape for dealing with date inputs from users in multiple cultures. There are some instances, however, where taking approaches like these would not be appropriate. In some cases, the provider or consumer of date values that pass through your application are not people, but other applications (or other portions of your own application). For example, if your site has a page that accepts a date as a query string parameter, you’ll probably want to format that date using invariant date format. Otherwise, the same URL could end up evaluating to a different page depending on the user that is viewing it. In addition, if your application exports data for consumption by other systems, it’s best to have an agreed upon format that all systems can use and that will not vary depending upon whether or not the users of the systems on either side prefer a month/day/year or day/month/year format. I’ll look more at some approaches for dealing with these situations in a future post. If you take away one thing from this post, make it an understanding of the importance of knowing where the dates that pass through your system come from and are going to. You will likely want to vary your parsing and formatting approach depending on your audience.

    Read the article

  • Very different I/O performance in C++ on Windows

    - by Mr.Gate
    Hi all, I'm a new user and my english is not so good so I hope to be clear. We're facing a performance problem using large files (1GB or more) expecially (as it seems) when you try to grow them in size. Anyway... to verify our sensations we tryed the following (on Win 7 64Bit, 4core, 8GB Ram, 32 bit code compiled with VC2008) a) Open an unexisting file. Write it from the beginning up to 1Gb in 1Mb slots. Now you have a 1Gb file. Now randomize 10000 positions within that file, seek to that position and write 50 bytes in each position, no matter what you write. Close the file and look at the results. Time to create the file is quite fast (about 0.3"), time to write 10000 times is fast all the same (about 0.03"). Very good, this is the beginnig. Now try something else... b) Open an unexisting file, seek to 1Gb-1byte and write just 1 byte. Now you have another 1Gb file. Follow the next steps exactly same way of case 'a', close the file and look at the results. Time to create the file is the faster you can imagine (about 0.00009") but write time is something you can't believe.... about 90"!!!!! b.1) Open an unexisting file, don't write any byte. Act as before, ramdomizing, seeking and writing, close the file and look at the result. Time to write is long all the same: about 90"!!!!! Ok... this is quite amazing. But there's more! c) Open again the file you crated in case 'a', don't truncate it... randomize again 10000 positions and act as before. You're fast as before, about 0,03" to write 10000 times. This sounds Ok... try another step. d) Now open the file you created in case 'b', don't truncate it... randomize again 10000 positions and act as before. You're slow again and again, but the time is reduced to... 45"!! Maybe, trying again, the time will reduce. I actually wonder why... Any Idea? The following is part of the code I used to test what I told in previuos cases (you'll have to change someting in order to have a clean compilation, I just cut & paste from some source code, sorry). The sample can read and write, in random, ordered or reverse ordered mode, but write only in random order is the clearest test. We tryed using std::fstream but also using directly CreateFile(), WriteFile() and so on the results are the same (even if std::fstream is actually a little slower). Parameters for case 'a' = -f_tempdir_\casea.dat -n10000 -t -p -w Parameters for case 'b' = -f_tempdir_\caseb.dat -n10000 -t -v -w Parameters for case 'b.1' = -f_tempdir_\caseb.dat -n10000 -t -w Parameters for case 'c' = -f_tempdir_\casea.dat -n10000 -w Parameters for case 'd' = -f_tempdir_\caseb.dat -n10000 -w Run the test (and even others) and see... // iotest.cpp : Defines the entry point for the console application. // #include <windows.h> #include <iostream> #include <set> #include <vector> #include "stdafx.h" double RealTime_Microsecs() { LARGE_INTEGER fr = {0, 0}; LARGE_INTEGER ti = {0, 0}; double time = 0.0; QueryPerformanceCounter(&ti); QueryPerformanceFrequency(&fr); time = (double) ti.QuadPart / (double) fr.QuadPart; return time; } int main(int argc, char* argv[]) { std::string sFileName ; size_t stSize, stTimes, stBytes ; int retval = 0 ; char *p = NULL ; char *pPattern = NULL ; char *pReadBuf = NULL ; try { // Default stSize = 1<<30 ; // 1Gb stTimes = 1000 ; stBytes = 50 ; bool bTruncate = false ; bool bPre = false ; bool bPreFast = false ; bool bOrdered = false ; bool bReverse = false ; bool bWriteOnly = false ; // Comsumo i parametri for(int index=1; index < argc; ++index) { if ( '-' != argv[index][0] ) throw ; switch(argv[index][1]) { case 'f': sFileName = argv[index]+2 ; break ; case 's': stSize = xw::str::strtol(argv[index]+2) ; break ; case 'n': stTimes = xw::str::strtol(argv[index]+2) ; break ; case 'b':stBytes = xw::str::strtol(argv[index]+2) ; break ; case 't': bTruncate = true ; break ; case 'p' : bPre = true, bPreFast = false ; break ; case 'v' : bPreFast = true, bPre = false ; break ; case 'o' : bOrdered = true, bReverse = false ; break ; case 'r' : bReverse = true, bOrdered = false ; break ; case 'w' : bWriteOnly = true ; break ; default: throw ; break ; } } if ( sFileName.empty() ) { std::cout << "Usage: -f<File Name> -s<File Size> -n<Number of Reads and Writes> -b<Bytes per Read and Write> -t -p -v -o -r -w" << std::endl ; std::cout << "-t truncates the file, -p pre load the file, -v pre load 'veloce', -o writes in order mode, -r write in reverse order mode, -w Write Only" << std::endl ; std::cout << "Default: 1Gb, 1000 times, 50 bytes" << std::endl ; throw ; } if ( !stSize || !stTimes || !stBytes ) { std::cout << "Invalid Parameters" << std::endl ; return -1 ; } size_t stBestSize = 0x00100000 ; std::fstream fFile ; fFile.open(sFileName.c_str(), std::ios_base::binary|std::ios_base::out|std::ios_base::in|(bTruncate?std::ios_base::trunc:0)) ; p = new char[stBestSize] ; pPattern = new char[stBytes] ; pReadBuf = new char[stBytes] ; memset(p, 0, stBestSize) ; memset(pPattern, (int)(stBytes&0x000000ff), stBytes) ; double dTime = RealTime_Microsecs() ; size_t stCopySize, stSizeToCopy = stSize ; if ( bPre ) { do { stCopySize = std::min(stSizeToCopy, stBestSize) ; fFile.write(p, stCopySize) ; stSizeToCopy -= stCopySize ; } while (stSizeToCopy) ; std::cout << "Creating time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } else if ( bPreFast ) { fFile.seekp(stSize-1) ; fFile.write(p, 1) ; std::cout << "Creating Fast time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } size_t stPos ; ::srand((unsigned int)dTime) ; double dReadTime, dWriteTime ; stCopySize = stTimes ; std::vector<size_t> inVect ; std::vector<size_t> outVect ; std::set<size_t> outSet ; std::set<size_t> inSet ; // Prepare vector and set do { stPos = (size_t)(::rand()<<16) % stSize ; outVect.push_back(stPos) ; outSet.insert(stPos) ; stPos = (size_t)(::rand()<<16) % stSize ; inVect.push_back(stPos) ; inSet.insert(stPos) ; } while (--stCopySize) ; // Write & read using vectors if ( !bReverse && !bOrdered ) { std::vector<size_t>::iterator outI, inI ; outI = outVect.begin() ; inI = inVect.begin() ; stCopySize = stTimes ; dReadTime = 0.0 ; dWriteTime = 0.0 ; do { dTime = RealTime_Microsecs() ; fFile.seekp(*outI) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++outI ; if ( !bWriteOnly ) { dTime = RealTime_Microsecs() ; fFile.seekg(*inI) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++inI ; } } while (--stCopySize) ; std::cout << "Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " (Ave: " << xw::str::itoa(dWriteTime/stTimes, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { std::cout << "Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " (Ave: " << xw::str::itoa(dReadTime/stTimes, 10, 'f') << ")" << std::endl ; } } // End // Write in order if ( bOrdered ) { std::set<size_t>::iterator i = outSet.begin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.begin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End // Write in reverse order if ( bReverse ) { std::set<size_t>::reverse_iterator i = outSet.rbegin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.rbegin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End dTime = RealTime_Microsecs() ; fFile.close() ; std::cout << "Flush/Close Time is " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; std::cout << "Program Terminated" << std::endl ; } catch(...) { std::cout << "Something wrong or wrong parameters" << std::endl ; retval = -1 ; } if ( p ) delete []p ; if ( pPattern ) delete []pPattern ; if ( pReadBuf ) delete []pReadBuf ; return retval ; }

    Read the article

  • Very different IO performance in C/C++

    - by Roberto Tirabassi
    Hi all, I'm a new user and my english is not so good so I hope to be clear. We're facing a performance problem using large files (1GB or more) expecially (as it seems) when you try to grow them in size. Anyway... to verify our sensations we tryed the following (on Win 7 64Bit, 4core, 8GB Ram, 32 bit code compiled with VC2008) a) Open an unexisting file. Write it from the beginning up to 1Gb in 1Mb slots. Now you have a 1Gb file. Now randomize 10000 positions within that file, seek to that position and write 50 bytes in each position, no matter what you write. Close the file and look at the results. Time to create the file is quite fast (about 0.3"), time to write 10000 times is fast all the same (about 0.03"). Very good, this is the beginnig. Now try something else... b) Open an unexisting file, seek to 1Gb-1byte and write just 1 byte. Now you have another 1Gb file. Follow the next steps exactly same way of case 'a', close the file and look at the results. Time to create the file is the faster you can imagine (about 0.00009") but write time is something you can't believe.... about 90"!!!!! b.1) Open an unexisting file, don't write any byte. Act as before, ramdomizing, seeking and writing, close the file and look at the result. Time to write is long all the same: about 90"!!!!! Ok... this is quite amazing. But there's more! c) Open again the file you crated in case 'a', don't truncate it... randomize again 10000 positions and act as before. You're fast as before, about 0,03" to write 10000 times. This sounds Ok... try another step. d) Now open the file you created in case 'b', don't truncate it... randomize again 10000 positions and act as before. You're slow again and again, but the time is reduced to... 45"!! Maybe, trying again, the time will reduce. I actually wonder why... Any Idea? The following is part of the code I used to test what I told in previuos cases (you'll have to change someting in order to have a clean compilation, I just cut & paste from some source code, sorry). The sample can read and write, in random, ordered or reverse ordered mode, but write only in random order is the clearest test. We tryed using std::fstream but also using directly CreateFile(), WriteFile() and so on the results are the same (even if std::fstream is actually a little slower). Parameters for case 'a' = -f_tempdir_\casea.dat -n10000 -t -p -w Parameters for case 'b' = -f_tempdir_\caseb.dat -n10000 -t -v -w Parameters for case 'b.1' = -f_tempdir_\caseb.dat -n10000 -t -w Parameters for case 'c' = -f_tempdir_\casea.dat -n10000 -w Parameters for case 'd' = -f_tempdir_\caseb.dat -n10000 -w Run the test (and even others) and see... // iotest.cpp : Defines the entry point for the console application. // #include <windows.h> #include <iostream> #include <set> #include <vector> #include "stdafx.h" double RealTime_Microsecs() { LARGE_INTEGER fr = {0, 0}; LARGE_INTEGER ti = {0, 0}; double time = 0.0; QueryPerformanceCounter(&ti); QueryPerformanceFrequency(&fr); time = (double) ti.QuadPart / (double) fr.QuadPart; return time; } int main(int argc, char* argv[]) { std::string sFileName ; size_t stSize, stTimes, stBytes ; int retval = 0 ; char *p = NULL ; char *pPattern = NULL ; char *pReadBuf = NULL ; try { // Default stSize = 1<<30 ; // 1Gb stTimes = 1000 ; stBytes = 50 ; bool bTruncate = false ; bool bPre = false ; bool bPreFast = false ; bool bOrdered = false ; bool bReverse = false ; bool bWriteOnly = false ; // Comsumo i parametri for(int index=1; index < argc; ++index) { if ( '-' != argv[index][0] ) throw ; switch(argv[index][1]) { case 'f': sFileName = argv[index]+2 ; break ; case 's': stSize = xw::str::strtol(argv[index]+2) ; break ; case 'n': stTimes = xw::str::strtol(argv[index]+2) ; break ; case 'b':stBytes = xw::str::strtol(argv[index]+2) ; break ; case 't': bTruncate = true ; break ; case 'p' : bPre = true, bPreFast = false ; break ; case 'v' : bPreFast = true, bPre = false ; break ; case 'o' : bOrdered = true, bReverse = false ; break ; case 'r' : bReverse = true, bOrdered = false ; break ; case 'w' : bWriteOnly = true ; break ; default: throw ; break ; } } if ( sFileName.empty() ) { std::cout << "Usage: -f<File Name> -s<File Size> -n<Number of Reads and Writes> -b<Bytes per Read and Write> -t -p -v -o -r -w" << std::endl ; std::cout << "-t truncates the file, -p pre load the file, -v pre load 'veloce', -o writes in order mode, -r write in reverse order mode, -w Write Only" << std::endl ; std::cout << "Default: 1Gb, 1000 times, 50 bytes" << std::endl ; throw ; } if ( !stSize || !stTimes || !stBytes ) { std::cout << "Invalid Parameters" << std::endl ; return -1 ; } size_t stBestSize = 0x00100000 ; std::fstream fFile ; fFile.open(sFileName.c_str(), std::ios_base::binary|std::ios_base::out|std::ios_base::in|(bTruncate?std::ios_base::trunc:0)) ; p = new char[stBestSize] ; pPattern = new char[stBytes] ; pReadBuf = new char[stBytes] ; memset(p, 0, stBestSize) ; memset(pPattern, (int)(stBytes&0x000000ff), stBytes) ; double dTime = RealTime_Microsecs() ; size_t stCopySize, stSizeToCopy = stSize ; if ( bPre ) { do { stCopySize = std::min(stSizeToCopy, stBestSize) ; fFile.write(p, stCopySize) ; stSizeToCopy -= stCopySize ; } while (stSizeToCopy) ; std::cout << "Creating time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } else if ( bPreFast ) { fFile.seekp(stSize-1) ; fFile.write(p, 1) ; std::cout << "Creating Fast time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } size_t stPos ; ::srand((unsigned int)dTime) ; double dReadTime, dWriteTime ; stCopySize = stTimes ; std::vector<size_t> inVect ; std::vector<size_t> outVect ; std::set<size_t> outSet ; std::set<size_t> inSet ; // Prepare vector and set do { stPos = (size_t)(::rand()<<16) % stSize ; outVect.push_back(stPos) ; outSet.insert(stPos) ; stPos = (size_t)(::rand()<<16) % stSize ; inVect.push_back(stPos) ; inSet.insert(stPos) ; } while (--stCopySize) ; // Write & read using vectors if ( !bReverse && !bOrdered ) { std::vector<size_t>::iterator outI, inI ; outI = outVect.begin() ; inI = inVect.begin() ; stCopySize = stTimes ; dReadTime = 0.0 ; dWriteTime = 0.0 ; do { dTime = RealTime_Microsecs() ; fFile.seekp(*outI) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++outI ; if ( !bWriteOnly ) { dTime = RealTime_Microsecs() ; fFile.seekg(*inI) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++inI ; } } while (--stCopySize) ; std::cout << "Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " (Ave: " << xw::str::itoa(dWriteTime/stTimes, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { std::cout << "Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " (Ave: " << xw::str::itoa(dReadTime/stTimes, 10, 'f') << ")" << std::endl ; } } // End // Write in order if ( bOrdered ) { std::set<size_t>::iterator i = outSet.begin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.begin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End // Write in reverse order if ( bReverse ) { std::set<size_t>::reverse_iterator i = outSet.rbegin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.rbegin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End dTime = RealTime_Microsecs() ; fFile.close() ; std::cout << "Flush/Close Time is " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; std::cout << "Program Terminated" << std::endl ; } catch(...) { std::cout << "Something wrong or wrong parameters" << std::endl ; retval = -1 ; } if ( p ) delete []p ; if ( pPattern ) delete []pPattern ; if ( pReadBuf ) delete []pReadBuf ; return retval ; }

    Read the article

  • Linux VirtualBox inside Windows VirtualBox doesn't boot

    - by Tobbe
    I'm trying to run a Linux VirtualBox instance inside a Windows 7 VirtualBox instance, but Linux (tried both Puppy and Mint) doesn't boot. My research says that this should be possible, see here for example: Can you run one virtual machine inside another? but I can't get it to work. Here are a couple of screenshots showing where the boot process stops for Linux Mint and Puppy Linux. What am I doing wrong?

    Read the article

  • Bind an ip address to Postfix as outgoing ip

    - by jack
    Is that possible to bind all available public ip addresses on a server to one Postfix instance as its outgoing ip pool and let it choose a random ip or specified ip from the pool each time it sends out an email? If above is not possible, can it be configured to listen on one public ip address per instance and each time it delivers a message, it use the binded one as outgoing ip address.

    Read the article

  • Can IBM IHS server support more than one Websphere Application Server plug-in location?

    - by Spike Williams
    We want http://webserver.com/foo to point to an instance of WAS 6.0, and http://webserver.com/foo2 to point to an instance of WAS 7.0, running on the same server, but with different port numbers. This is a temporary thing, as we need to have both servers running as we transition our applications from running on 6.0 to 7.0. The webserver is IBMIHS (an Apache variant), and it needs to use the WebSphere plugin to connect to the WAS servers. Will this work? Any drawbacks?

    Read the article

  • How do you transfer AWS RDS snap shot to a different AWS account

    - by Webmonger
    Hi I have an RDS database that I need to transfer a snapshot of to another AWS account. I understand there are issues being able to do this between availability zones so I'm really unsure if this is possible. The RDS instance is mySql. If it's not possible to transfer the snapshot please could you explain how to transfer the data from one RDS instance to another without downloading any if the contents(The DB is over 200GB). Thanks in advance

    Read the article

  • How do I stop VMware Workstation 6.5 from giving up input focus for no reason on Ubuntu 10.4?

    - by Matt
    After patching some kernel modules, I got VMware Workstation 6.5.4 running on my Ubuntu 10.4 x86_64 machine. However, now my Windows XP SP3 guest instance cannot keep mouse input captured for any length of time. I can sometimes activate a control in the guest if a double click very quickly, but it's not reliable (and extremely annoying). Everything appears to be fine in Unity; the problem just appears when I'm running the instance in the VMware window.

    Read the article

  • SQL Server Moved Active Directory Domain

    - by Ollie
    I have changed the AD domain on a SQL Server 2008 box which was setup only for Windows Authentication. Now the domain has changed, I can't log into the SQL Server instance even as the domain's Administrator account. Is there a way of updating the server security settings without logging into the SQL instance first through a command switch / registry setting / etc..

    Read the article

  • How does Windows Task Scheduler detect that a task is already running?

    - by Dan C
    I have an application on Windows Server 2008 that takes different command-line parameters. For example: myapp.exe /A myapp.exe /B I have created a task scheduler task for each of those. While "myapp.exe /A" is running, I want to prevent another instance of it from starting. However, I still want "myapp.exe /B" to be able to run (again, though only one instance of it at a time). How can I set this up?

    Read the article

  • Merge tabs from 2 session of IE8?

    - by MattSlay
    Sometimes I wind up with two or more instances of IE8 running, and each instance has a few tabs open. Is there a way to merge all the tabs from all the IE8 instances into just one instance of IE8, and close all the other IE8 instances?

    Read the article

  • mysqld_multi stop doesn't seem to work

    - by gravyface
    mysqld_multi stop 1 followed by (repeatedly, a few moments later) mysqld_multi report 1 returns: Reporting MySQL servers MySQL server from group: mysqld1 is running The instances work fine and when I reboot, I have to start the instances to get them to come back up (a separate issue I need to resolve), but the stop command doesn't seem to do anything. It truly doesn't stop the instance because in the instance log file I see this: 120619 11:12:39 mysqld_safe A mysqld process already exists after trying to run start after.

    Read the article

  • Bash command to focus a specific window.

    - by D Connors
    Is there a way, in bash command line, to give focus to a specific window of a running process. Assume I know the process' name, number, and anything else I need. For instance, if I have a single instance of Firefox running, but it's minimized (or there's some other window on top of it). I need a bash command that brings up and gives focus to the Firefox window, by making it the active window. Thanks

    Read the article

  • Vagrant-aws not provisioning

    - by SuperCabbage
    I'm trying to spin up and provision an EC2 instance with Vagrant, it successfully creates the instance up and I can then use vagrant ssh to SSH into the it but Puppet doesn't seem to carry out any provisioning. Upon running vagrant up --provider=aws --provision I get the following output Bringing machine 'default' up with 'aws' provider... WARNING: Nokogiri was built against LibXML version 2.8.0, but has dynamically loaded 2.9.1 [default] Warning! The AWS provider doesn't support any of the Vagrant high-level network configurations (`config.vm.network`). They will be silently ignored. [default] Launching an instance with the following settings... [default] -- Type: m1.small [default] -- AMI: ami-a73264ce [default] -- Region: us-east-1 [default] -- Keypair: banderton [default] -- Block Device Mapping: [] [default] -- Terminate On Shutdown: false [default] Waiting for SSH to become available... [default] Machine is booted and ready for use! [default] Rsyncing folder: /Users/benanderton/development/projects/my-project/aws/ => /vagrant [default] Rsyncing folder: /Users/benanderton/development/projects/my-project/aws/manifests/ => /tmp/vagrant-puppet/manifests [default] Rsyncing folder: /Users/benanderton/development/projects/my-project/aws/modules/ => /tmp/vagrant-puppet/modules-0 [default] Running provisioner: puppet... An error occurred while executing multiple actions in parallel. Any errors that occurred are shown below. An error occurred while executing the action on the 'default' machine. Please handle this error then try again: No error message I can then SSH into the instance by using vagrant ssh but none of my provisioning has taken place, so I'm assuming that errors have occured but I'm not being given any useful information relating to them. My Vagrantfile is as following; Vagrant.configure("2") do |config| config.vm.box = "ubuntu_aws" config.vm.box_url = "https://github.com/mitchellh/vagrant-aws/raw/master/dummy.box" config.vm.provider :aws do |aws, override| aws.access_key_id = "REDACTED" aws.secret_access_key = "REDACTED" aws.keypair_name = "banderton" override.ssh.private_key_path = "~/.ssh/banderton.pem" override.ssh.username = "ubuntu" aws.ami = "ami-a73264ce" end config.vm.provision :puppet do |puppet| puppet.manifests_path = "manifests" puppet.module_path = "modules" puppet.options = ['--verbose'] end end My Puppet manifest is as following; package { [ 'build-essential', 'vim', 'curl', 'git-core', 'nano', 'freetds-bin' ]: ensure => 'installed', } None of the packages are installed.

    Read the article

  • (Amazon AWS) EBS mount error: Stale NFS file handle

    - by May
    I have an EC2 instance that just went offline (cannot even be pinged) but is still reflected as operational. In an effort to retrieve data stored on an attached EBS, I did a forced detach of the mounted volume, launched a new instance, and tried attaching the EBS volume. However, I keep getting an error - mount: Stale NFS file handle whenever I do so. Did I just lose all my files?

    Read the article

  • Eucalyptus / no bootable EBS yet - any alternatives to Eucalyptus?

    - by itgorilla
    I've read a couple of articles that Eucalyptus doesn't support bootable EBS yet. This is a problem since you can't make a backup form an instance like you a able on Amazon cloud or Rack Space Cloud. If you ever reboot the physical Ecalyptus sever that's running the node controller the instance is gone along with all your settings. Are there any alternatives to Eucalyptus or is just the only game in town when it comes to open source cloud?

    Read the article

  • VirtualBox - multiple guests, each with a single bridged adapter?

    - by Martin
    I am running a dedicated server (located at Hetzner, Germany) that runs VirtualBox in order to virtualize several services accross multiple virtual guests. Those guests are supposed to communicate with each other (for instance, a virtual web server has to access a virtual database server); to be reachable from the dedicated server (for instance, SSH access); and to access the Internet via the dedicated server (for instance, to download security updates) Currently, this is achieved by having host-only adapter vboxnet0 on the dedicated server and two virtual interfaces on each guest. There, virtual adapter eth0 is attached to vboxnet0 (to achieve (1) and (2)), virtual adapter eth1 is attached to VirtualBox' NAT (to achieve (3)). Via eth0, the guests have access to a DHCP and a DNS server, both running on the dedicated server (there, bound to vboxnet0). This allows me to assign custom IP addresses and names. Via eth1, VirtualBox pushes a proper route that enables each guest to access the Internet (via eth0 on the dedicated server). This setup with two virtual adapters frequently leads to problems and at leasts complicates many things. For instance, on the dedicated server there is OpenVPN which allows to access the virtual machines via the Internet; futhermore, there is Shorwall that controls the incoming and outgoing network traffic between the Internet, the dedicated server, and the individual virtual machines. Not to mention automatic installation of servers via PXE... Therefore, I would prefer to have only one single virtual adapter on each guest which would be used for both incoming and outgoing connections. As far as I understand, one would basically use a bridged interface for that very purpose. Now the question arises: Which interface on the dedicated server would the bridge use? eth0 on the host server is not an option, as this is prohibited by the provider. A virtual interface eth0:0 would not make any sense, as a bridge always uses a physical interface (eth0 in this case). Would it be possible to create a bridged interface in each virtual machine that would "dangle in the air"? Thus, without a complement on the dedicated server? How would I have to set up the routing on the host server? Please note that the host / dedicated server has only one network adapter (eth0) which is connected to the provider's network. Regards, Martin

    Read the article

< Previous Page | 150 151 152 153 154 155 156 157 158 159 160 161  | Next Page >