Search Results

Search found 11993 results on 480 pages for 'define syntax'.

Page 167/480 | < Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Is there a constant for "end of time"?

    - by Nick Rosencrantz
    For some systems, the time value 9999-12-31 is used as the "end of time" as the end of the time that the computer can calculate. But what if it changes? Wouldn't it be better to define this time as a builtin variable? In C and other programming languages there usually is a variable such as MAX_INT or similar to get the largest value an integer could have. Why is there not a similar function for MAX_TIME i.e. set the variable to the "end of time" which for many systems usually is 9999-12-31. To avoid the problem of hardcoding to a wrong year (9999) could these systems introduce a variable for the "end of time"?

    Read the article

  • Is there a language between C and C++?

    - by Robert Martin
    I really like the simple and transparent nature of C: when I write C code I feel unencumbered by "leaky abstractions" and can almost always make a shrewd guess as to the assembly I'm producing. I also like the simple, familiar syntax for C. However, C doesn't have these simple, helpful doodads that C++ offers like classes, simplified non-cstring handling, etc. I know that it's all possible to implement in C using jump tables and the like, but that's a bit wordy at times, and not very type-safe for various reasons. I'm not a fan of the over-emphasis on objects in C++, though, and I'm gun shy of the 'new' operator and the like. C++ seems to have just a few too many hiccups to, for instance, be used as a system programming language. Does there exist a language that sits between C and C++ on the scale of widgets and doodads? Disclaimer: I mean this as purely a factual question. I do not intend to anger you because I don't share your view that C{,++} is good enough to do whatever I'm planning.

    Read the article

  • SQL SERVER – Not Possible – Delete From Multiple Table – Update Multiple Table in Single Statement

    - by pinaldave
    There are two questions which I get every single day multiple times. In my gmail, I have created standard canned reply for them. Let us see the questions here. I want to delete from multiple table in a single statement how will I do it? I want to update multiple table in a single statement how will I do it? The answer is – No, You cannot and you should not. SQL Server does not support deleting or updating from two tables in a single update. If you want to delete or update two different tables – you may want to write two different delete or update statements for it. This method has many issues – from the consistency of the data to SQL syntax. Now here is the real reason for this blog post – yesterday I was asked this question again and I replied my canned answer saying it is not possible and it should not be any way implemented that day. In the response to my reply I was pointed out to my own blog post where user suggested that I had previously mentioned this is possible and with demo example. Let us go over my conversation – you may find it interesting. Let us call the user DJ. DJ: Pinal, can we delete multiple table in a single statement or with single delete statement? Pinal: No, you cannot and you should not. DJ: Oh okey, if that is the case, why do you suggest to do that? Pinal: (baffled) I am not suggesting that. I am rather suggesting that it is not possible and it should not be possible. DJ: Hmm… but in that case why did you blog about it earlier? Pinal: (What?) No, I did not. I am pretty confident. DJ: Well, I am confident as well. You did. Pinal: In that case, it is my word against your word. Isn’t it? DJ: I have proof. Do you want to see it that you suggest it is possible? Pinal: Yes, I will be delighted too. (After 10 Minutes) DJ: Here are not one but two of your blog posts which talks about it - SQL SERVER – Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – Part 1 of 2 SQL SERVER – Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – T-SQL Example – Part 2 of 2 Pinal: Oh! DJ: I know I was correct. Pinal: Well, oh man, I did not mean there what you mean here. DJ: I did not understand can you explain it further. Pinal: Here we go. The example in the other blog is the example of the cascading delete or cascading update. I think you may want to understand the concept of the foreign keys and cascading update/delete. The concept of cascading exists to maintain data integrity. If there primary keys get deleted the update or delete reflects on the foreign key table to maintain the key integrity and data consistency. SQL Server follows ANSI Entry SQL with regard to referential integrity between PrimaryKey and ForeignKey columns which requires the inserting, updating, and deleting of data in related tables to be restricted to values that preserve the integrity. This is all together different concept than deleting multiple values in a single statement. When I hear that someone wants to delete or update multiple table in a single statement what I assume is something very similar to following. DELETE/UPDATE Table 1 (cols) Table 2 (cols) VALUES … which is not valid statement/syntax as well it is not ASNI standards as well. I guess, after this discussion with DJ, I realize I need to do a blog post so I can add the link to this blog post in my canned answer. Well, it was a fun conversation with DJ and I hope it the message is very clear now. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Joins, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • What tasks should an Architect NOT do or limit to be effective?

    - by GBH
    There are plenty of questions/answers about what an architect does, but what should someone in an Architect role NOT do? What are the boundaries/limits to maintain to be an effective Architect? I'm thinking here of Architect vs Developer and Architect vs Project Manager For example, I'm finding myself in a role where my title is Architect but I am also the coding/development lead and project manager on multiple small enterprise projects. I'm struggling with all the task switching and now I want to limit task switching. Trying to wear every hat just isn't working. What tasks should an Architect not do at all? What tasks should an Architect limit? I do think an Architect needs to keep coding, but how to define an appropriate limit for coding work?

    Read the article

  • U1 music mp3 files not put into albums

    - by david
    Via the web page I can see that my files sync to U1 cloud servers. For the mp3 files, there seems to be a problem that several questions have already addressed but there does not seem to be a clear answer. If I use EasyTAG 2.1.6, I can see the ID3 tags on the local files and they seem to correctly define the artist, album title and track name. I expect it is not relevant, but I am using 10.04 with several different clients to rip the CDs. However, some mp3 files do not appear in the cloud at all and some others get assigned to Various Artist or Unknown artist. Does the music streaming (e.g. via Ipad) use the tags or the directory/file structure to assign the artist or album, and how quickly should it be expected to work? :-) Which version of ID3 tags does U1 music streaming work best with or prefer? thanks for any help David

    Read the article

  • Teaching logical/analytical thinking

    - by Joshua
    I have been trial running a club in which I teach programming for the past year and while they have progressed what they really lack is the most fundamental concept to programming, analytical thinking. As I now approach the second year of teaching to the children (aged 12 - 14) I am now realising that before I begin teaching them the syntax and how to actually program an app (or what they would rather, a game) I need to introduce them to analytical thinking first. I have already found Scratch and similar things such as Light-Bot and will most certainly be using the, to teach them how to implement their logical thinking but what I really need are some tips or articles on how to teach analytical thinking itself to children aged 12 - 14. What I'm looking for are some ideas on how to teach the kind of thinking that these kids will need in order to get them into programming, whether that be analytical, logical or critical. How and what should I teach them relating to the way their minds need to be wired when programming solutions to problems?

    Read the article

  • Updated article "Agent Alerts Management Pack"

    - by TiborKaraszi
    I've just updated the "Agent Alerts Management Pack" found here . I realize that some don't feel confident in reading and executing T-SQL code and they instead prefer to point & click in SSMS instead. So I added two tables with my suggestion on the severity levels and error numbers to define alerts for. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!...(read more)

    Read the article

  • sed problem with scripting

    - by Pablo Ramos
    I am trying to run a script using sed i runing like this for et in 1 # 2 3 do if [ -d ET$et ]; then rm -rf ET$et; fi mkdir ET$et cd ET$et cp $home/step_$i/FDE/diabatA/run.adf . cp $home/step_$i/FDE/diabatA/mas$i.xyz . awk1=`awk '/type=fde/{print NR }' run.adf | head -1` awk2=`$(echo "$a+379" | bc -l )` sed -n "$awk1,"$awk2"p" run.adf > first awk3=`awk '/ATOMS/{print NR +1}' first` awk4=`cat mas$i.xyz | wc -l` awk4=$( echo "$awk4-1" | bc -l ) awk5=`awk "/ATOMS/{print NR +"${awk4}" }" run.adf` sed -n "$awk3,"$awk4"p" first > atoms par=$( echo "$awk4-99" | bc -l ) rho1=$(cat atoms | head -34 ) rho2=$(cat atoms | head -64 | tail -31) rho3=$(cat atoms | head -97 | tail -33) rhoall=$(cat atoms | tail -${par} ) echo -e "$rho1\n$rho2\n$rhoall" > eje done but is telling me this: (standard_in) 1: syntax error sed: -e expression #1, char 6: unexpected `,' sed: -e expression #1, char 1: unknown command: `,' Please, I appreciate any help with this issue... Thanks Pablo

    Read the article

  • Learning Python is good?

    - by user15220
    Recently I have seen some videos from MIT on computer programming topics. I found it's really worth watching. Especially the concepts of algorithms and fundamental stuffs. The programs were written and explained in Python. I never had looked into this language before as I learned and doing stuffs with C/C++ programming. But the cleanliness and better readability of syntax attracted me. Of course as a C++ programmer for long time it's the most readable language for me. Also I heard Python library contains solid algorithms and data-structures implementations. Can you share your experience in this language?

    Read the article

  • Books or help on OO Analysis

    - by Pat
    I have this course where we learn about the domain model, use cases, contracts and eventually leap into class diagrams and sequence diagrams to define good software classes. I just had an exam and I got trashed, but part of the reason is we barely have any practical material, I spent at least two good months without drawing a single class diagram by myself from a case study. I'm not here to blame the system or the class I'm in, I'm just wondering if people have some exercise-style books that either provide domain models with glossaries, system sequence diagrams and ask you to use GRASP to make software classes? I could really use some alone-time practicing going from analysis to conception of software entities. I'm almost done with Larman's book called "Applying UML and Patterns An Introduction to Object-Oriented Analysis and Design and Iterative Development, Third Edition". It's a good book, but I'm not doing anything by myself since it doesn't come with exercises. Thanks.

    Read the article

  • Programming 101 [closed]

    - by Ashish SIngh
    i just got placed after completing my b.tech as an assistant programmer i am curious to know about some things.... i am not at all a very good programmer(in java) as i just started but whenever i see some complicated coding i feel like how man... how they think so much i mean flow and all... what should i do? should i just go with the flow or what?? java is very vast so nobody can memorize everything then how they find so many specific functions to use... should i try to memorize all the syntax stuff or just use google to things and with time it ll be all handy.... what should be my strategy to enhance my skills PS: i love java (crazy about it...) and one more thing, in my company i m not under much pressure so it is good or bad for me???? please guide me. i know you all can help me with your experience :) thank you.

    Read the article

  • Program crash on deque from queue

    - by SwedishGit
    My first question asked here, so please excuse if I fail to include something... I'm working on a homework project, which basically consists of creating a "Jukebox" (importing/exporting albums from txt files, creating and "playing" a playlist, etc.). I've become stuck on one point: When "playing" the playlist, which consists of a self-made Queue, a copy of it is made from which songs are dequeued and printed out with a time delay. This appears to run fine on the first run through the program, but if the "play" option is chosen again (with the same playlist, created from a different menu option), it crashes before managing to print the first song. It also crashes if creating a new playlist, but then it manages to print some songs (seem to depend on the number of songs in the first/new playlists...) before crashing. With printouts I've been able to track the crashing down to being on the "item = n-data" call in the deque function... but can't get my head around why this would crash. Below is the code I think should be relevant... let me know if there are other parts that would help if I include. Edit: The Debug Error shown on crash is: R6010 abort() has been called The method to play from the playlist: void Jukebox::playList() { if(songList.getNodes() > 0) { Queue tmpList(songList); Song tmpSong; while(tmpList.deque(tmpSong)) { clock_t temp; temp = clock () + 2 * CLOCKS_PER_SEC ; while (clock() < temp) {} } } else cout << "There are no songs in the playlist!" << endl; } Queue: // Queue.h - Projekt-uppgift // Håkan Sjölin 2014-05-31 //----------------------------------------------------------------------------- #ifndef queue_h #define queue_h #include "Song.h" using namespace std; typedef Song Item; class Node; class Queue { private: Node *first; Node *last; int nodes; public: Queue():first(nullptr),last(nullptr),nodes(0){}; ~Queue(); void enque(Item item); bool deque(Item &item); int getNodes() const { return nodes; } void empty(); }; #endif // Queue.cpp - Projekt-uppgift // Håkan Sjölin 2014-05-31 //----------------------------------------------------------------------------- #include "queue.h" using namespace std; class Node { public: Node *next; Item data; Node (Node *n, Item newData) : next(n), data(newData) {} }; //------------------------------------------------------------------------------ // Funktionsdefinitioner för klassen Queue //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Destruktor //------------------------------------------------------------------------------ Queue::~Queue() { while(first!=0) { Node *tmp = first; first = first->next; delete tmp; } } //------------------------------------------------------------------------------ // Lägg till data sist i kön //------------------------------------------------------------------------------ void Queue::enque(Item item) { Node *pNew = new Node(0,item); if(getNodes() < 1) first = pNew; else last->next = pNew; last = pNew; nodes++; } //------------------------------------------------------------------------------ // Ta bort data först i kön //------------------------------------------------------------------------------ bool Queue::deque(Item &item) { if(getNodes() < 1) return false; //cout << "deque: test2" << endl; Node *n = first; //cout << "deque: test3" << endl; //cout << "item = " << item << endl; //cout << "first = " << first << endl; //cout << "n->data = " << n->data << endl; item = n->data; //cout << "deque: test4" << endl; first = first->next; //delete n; nodes--; if(getNodes() < 1) // Kön BLEV tom last = nullptr; return true; } //------------------------------------------------------------------------------ // Töm kön //------------------------------------------------------------------------------ void Queue::empty() { while (getNodes() > 0) { Item item; deque(item); } } //------------------------------------------------------------------------------ Song: // Song.h - Projekt-uppgift // Håkan Sjölin 2014-05-15 //----------------------------------------------------------------------------- #ifndef song_h #define song_h #include "Time.h" #include <string> #include <iostream> using namespace std; class Song { private: string title; string artist; Time length; public: Song(); Song(string pTitle, string pArtist, Time pLength); // Setfunktioner void setTitle(string pTitle); void setArtist(string pArtist); void setLength(Time pLength); // Getfunktioner string getTitle() const { return title;} string getArtist() const { return artist;} Time getLength() const { return length;} }; ostream &operator<<(ostream &os, const Song &song); istream &operator>>(istream &is, Song &song); #endif // Song.cpp - Projekt-uppgift // Håkan Sjölin 2014-05-15 //----------------------------------------------------------------------------- #include "Song.h" #include "Constants.h" #include <iostream> //------------------------------------------------------------------------------ // Definiering av Songs medlemsfunktioner //------------------------------------------------------------------------------ // Fövald konstruktor //------------------------------------------------------------------------------ Song::Song() { } //------------------------------------------------------------------------------ // Initieringskonstruktor //------------------------------------------------------------------------------ Song::Song(string pTitle, string pArtist, Time pLength) { title = pTitle; artist = pArtist; length = pLength; } //------------------------------------------------------------------------------ // Setfunktioner //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // setTitle // Ange titel //------------------------------------------------------------------------------ void Song::setTitle(string pTitle) { title = pTitle; } //------------------------------------------------------------------------------ // setArtist // Ange artist //------------------------------------------------------------------------------ void Song::setArtist(string pArtist) { artist = pArtist; } //------------------------------------------------------------------------------ // setTitle // Ange titel //------------------------------------------------------------------------------ void Song::setLength(Time pLength) { length = pLength; } //--------------------------------------------------------------------------- // Överlagring av utskriftsoperatorn //--------------------------------------------------------------------------- ostream &operator<<(ostream &os, const Song &song) { os << song.getTitle() << DELIM << song.getArtist() << DELIM << song.getLength(); return os; } //--------------------------------------------------------------------------- // Överlagring av inmatningsoperatorn //--------------------------------------------------------------------------- istream &operator>>(istream &is, Song &song) { string tmpString; Time tmpLength; getline(is, tmpString, DELIM); song.setTitle(tmpString); getline(is, tmpString, DELIM); song.setArtist(tmpString); is >> tmpLength; is.get(); song.setLength(tmpLength); return is; } //--------------------------------------------------------------------------- Album: // Album.h - Projekt-uppgift // Håkan Sjölin 2014-05-17 //----------------------------------------------------------------------------- #ifndef album_h #define album_h #include "Song.h" #include <string> #include <vector> #include <iostream> using namespace std; class Album { private: string name; vector<Song> songs; public: Album(); Album(string pNameTitle, vector<Song> pSongs); // Setfunktioner void setName(string pName); // Getfunktioner string getName() const { return name;} vector<Song> getSongs() const { return songs;} int getNumberOfSongs() const { return songs.size();} Time getTotalTime() const; void addSong(Song pSong); bool operator<(const Album &album) const; }; ostream &operator<<(ostream &os, const Album &album); istream &operator>>(istream &is, Album &album); #endif // Album.cpp - Projekt-uppgift // Håkan Sjölin 2014-05-17 //----------------------------------------------------------------------------- #include "Album.h" #include "Constants.h" #include <iostream> #include <string> //------------------------------------------------------------------------------ // Definiering av Albums medlemsfunktioner //------------------------------------------------------------------------------ // Fövald konstruktor //------------------------------------------------------------------------------ Album::Album() { } //------------------------------------------------------------------------------ // Initieringskonstruktor //------------------------------------------------------------------------------ Album::Album(string pName, vector<Song> pSongs) { name = pName; songs = pSongs; } //------------------------------------------------------------------------------ // Setfunktioner //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // setName // Ange namn //------------------------------------------------------------------------------ void Album::setName(string pName) { name = pName; } //------------------------------------------------------------------------------ // addSong // Lägg till song //------------------------------------------------------------------------------ void Album::addSong(Song pSong) { songs.push_back(pSong); } //------------------------------------------------------------------------------ // getTotalTime // Returnera total speltid //------------------------------------------------------------------------------ Time Album::getTotalTime() const { Time tTime(0,0,0); for(Song s : songs) { tTime = tTime + s.getLength(); } return tTime; } //--------------------------------------------------------------------------- // Mindre än //--------------------------------------------------------------------------- bool Album::operator<(const Album &album) const { return getTotalTime() < album.getTotalTime(); } //--------------------------------------------------------------------------- // Överlagring av utskriftsoperatorn //--------------------------------------------------------------------------- ostream &operator<<(ostream &os, const Album &album) { os << album.getName() << endl; os << album.getNumberOfSongs() << endl; for (size_t i = 0; i < album.getSongs().size(); i++) os << album.getSongs().at(i) << endl; return os; } //--------------------------------------------------------------------------- // Överlagring av inmatningsoperatorn //--------------------------------------------------------------------------- istream &operator>>(istream &is, Album &album) { string tmpString; int tmpNumberOfSongs; Song tmpSong; getline(is, tmpString); album.setName(tmpString); is >> tmpNumberOfSongs; is.get(); for (int i = 0; i < tmpNumberOfSongs; i++) { is >> tmpSong; album.addSong(tmpSong); } return is; } //--------------------------------------------------------------------------- Time: // Time.h - Projekt-uppgift // Håkan Sjölin 2014-05-15 //----------------------------------------------------------------------------- #ifndef time_h #define time_h #include <iostream> using namespace std; class Time { private: int hours; int minutes; int seconds; public: Time(); Time(int pHour, int pMinute, int pSecond); // Setfunktioner void setHour(int pHour); void setMinute(int pMinute); void setSecond(int pSecond); // Getfunktioner int getHour() const { return hours;} int getMinute() const { return minutes;} int getSecond() const { return seconds;} Time operator+(const Time &time) const; bool operator==(const Time &time) const; bool operator<(const Time &time) const; }; ostream &operator<<(ostream &os, const Time &time); istream &operator>>(istream &is, Time &Time); #endif // Time.cpp - Projekt-uppgift // Håkan Sjölin 2014-05-15 //----------------------------------------------------------------------------- #include "Time.h" #include <iostream> //------------------------------------------------------------------------------ // Definiering av Times medlemsfunktioner //------------------------------------------------------------------------------ // Fövald konstruktor //------------------------------------------------------------------------------ Time::Time() { } //------------------------------------------------------------------------------ // Initieringskonstruktor //------------------------------------------------------------------------------ Time::Time(int pHour, int pMinute, int pSecond) { setHour(pHour); setMinute(pMinute); setSecond(pSecond); } //------------------------------------------------------------------------------ // Setfunktioner //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // setHour // Ange timme //------------------------------------------------------------------------------ void Time::setHour(int pHour) { if(pHour>-1) hours = pHour; else hours = 0; } //------------------------------------------------------------------------------ // setMinute // Ange minut //------------------------------------------------------------------------------ void Time::setMinute(int pMinute) { if(pMinute < 60 && pMinute > -1) { minutes = pMinute; } else minutes = 0; } //------------------------------------------------------------------------------ // setSecond // Ange sekund //------------------------------------------------------------------------------ void Time::setSecond(int pSecond) { if(pSecond < 60 && pSecond > -1) { seconds = pSecond; } else seconds = 0; } //--------------------------------------------------------------------------- // Överlagring av utskriftsoperatorn //--------------------------------------------------------------------------- ostream &operator<<(ostream &os, const Time &time) { os << time.getHour()*3600+time.getMinute()*60+time.getSecond(); return os; } //--------------------------------------------------------------------------- // Överlagring av inmatningsoperatorn //--------------------------------------------------------------------------- istream &operator>>(istream &is, Time &time) { int tmp; is >> tmp; time.setSecond(tmp%60); time.setMinute((tmp/60)%60); time.setHour(tmp/3600); return is; } //--------------------------------------------------------------------------- // Likhet //-------------------------------------------------------------------------- bool Time::operator==(const Time &time) const { return hours == time.getHour() && minutes == time.getMinute() && seconds == time.getSecond(); } //--------------------------------------------------------------------------- // Mindre än //--------------------------------------------------------------------------- bool Time::operator<(const Time &time) const { if(hours == time.getHour()) { if(minutes == time.getMinute()) { return seconds < time.getSecond(); } else { return minutes < time.getMinute(); } } else { return hours < time.getHour(); } } //--------------------------------------------------------------------------- // Addition //--------------------------------------------------------------------------- Time Time::operator+(const Time &time) const { return Time(hours+time.getHour() + (minutes+time.getMinute() + (seconds+time.getSecond())/60)/60, (minutes+time.getMinute() + (seconds+time.getSecond())/60)%60, (seconds+time.getSecond())%60); } //--------------------------------------------------------------------------- Thanks in advance for any help! Edit2: Didn't think of including the more detailed crash info (as it didn't show in the crash pop-up, so to say). Anyway, here it is: Output: 'Jukebox.exe' (Win32): Loaded 'C:\Users\Håkan\Documents\Studier - IT\Objektbaserad programmering i C++\Inlämningsuppgifter\Projekt\Jukebox\Debug\Jukebox.exe'. Symbols loaded. 'Jukebox.exe' (Win32): Loaded 'C:\Windows\SysWOW64\ntdll.dll'. Cannot find or open the PDB file. 'Jukebox.exe' (Win32): Loaded 'C:\Windows\SysWOW64\kernel32.dll'. Cannot find or open the PDB file. 'Jukebox.exe' (Win32): Loaded 'C:\Windows\SysWOW64\KernelBase.dll'. Cannot find or open the PDB file. 'Jukebox.exe' (Win32): Loaded 'C:\Windows\SysWOW64\msvcp110d.dll'. Symbols loaded. 'Jukebox.exe' (Win32): Loaded 'C:\Windows\SysWOW64\msvcr110d.dll'. Symbols loaded. The thread 0xe50 has exited with code 0 (0x0). Unhandled exception at 0x0083630C in Jukebox.exe: 0xC0000005: Access violation reading location 0x0000003C. Call stack: > Jukebox.exe!Song::getLength() Line 27 C++ Jukebox.exe!operator<<(std::basic_ostream<char,std::char_traits<char> > & os, const Song & song) Line 59 C++ Jukebox.exe!Queue::deque(Song & item) Line 55 C++ Jukebox.exe!Jukebox::playList() Line 493 C++ Jukebox.exe!Jukebox::play() Line 385 C++ Jukebox.exe!Jukebox::run() Line 536 C++ Jukebox.exe!main() Line 547 C++ Jukebox.exe!__tmainCRTStartup() Line 536 C Jukebox.exe!mainCRTStartup() Line 377 C kernel32.dll!754d86e3() Unknown [Frames below may be incorrect and/or missing, no symbols loaded for kernel32.dll] ntdll.dll!7748bf39() Unknown ntdll.dll!7748bf0c() Unknown

    Read the article

  • Instead of alter table column to turn IDENTITY on and off, turn IDENTITY_INSERT on and off

    - by Kevin Shyr
    First of all, I don't know which version of SQL this post (http://www.techonthenet.com/sql/tables/alter_table.php) is based on, but at least for Microsoft SQL Server 2008, the syntax is not: ALTER TABLE [table_name] MODIFY [column_name] [data_type] NOT NULL; Instead, it should be: ALTER TABLE [table_name] ALTER COLUMN [column_name] [data_type] NOT NULL;   Then, as several posts point out, you can't use T-SQL to run an existing column into an IDENTITY column.  Instead, use the IDENTITY_INSERT to copy data from other tables.  http://msdn.microsoft.com/en-us/library/ms188059.aspx SET IDENTITY_INSERT [table_name] ON INSERT .... SET IDENTITY_INSERT [table_name] OFF     http://www.sqlservercentral.com/Forums/Topic126147-8-1.aspx http://www.sqlteam.com/forums/topic.asp?TOPIC_ID=65257

    Read the article

  • Database-as-a-Service on Exadata Cloud

    - by Gagan Chawla
    Note – Oracle Enterprise Manager 12c DBaaS is platform agnostic and is designed to work on Exadata/non-Exadata, physical/virtual, Oracle/non Oracle platforms and it’s not a mandatory requirement to use Exadata as the base platform. Database-as-a-Service (DBaaS) is an important trend these days and the top business drivers motivating customers towards private database cloud model include constant pressure to reduce IT Costs and Complexity, and also to be able to improve Agility and Quality of Service. The first step many enterprises take in their journey towards cloud computing is to move to a consolidated and standardized environment and Exadata being already a proven best-in-class popular consolidation platform, we are seeing now more and more customers starting to evolve from Exadata based platform into an agile self service driven private database cloud using Oracle Enterprise Manager 12c. Together Exadata Database Machine and Enterprise Manager 12c provides industry’s most comprehensive and integrated solution to transform from a typical silo’ed environment into enterprise class database cloud with self service, rapid elasticity and pay-per-use capabilities.   In today’s post, I’ll list down the important steps to enable DBaaS on Exadata using Enterprise Manager 12c. These steps are chalked down based on a recent DBaaS implementation from a real customer engagement - Project Planning - First step involves defining the scope of implementation, mapping functional requirements and objectives to use cases, defining high availability, network, security requirements, and delivering the project plan. In a Cloud project you plan around technology, business and processes all together so ensure you engage your actual end users and stakeholders early on in the project right from the scoping and planning stage. Setup your EM 12c Cloud Control Site – Once the project plan approval and sign off from stakeholders is achieved, refer to EM 12c Install guide and these are some important tips to follow during the site setup phase - Review the new EM 12c Sizing paper before you get started with install Cloud, Chargeback and Trending, Exadata plug ins should be selected to deploy during install Refer to EM 12c Administrator’s guide for High Availability, Security, Network/Firewall best practices and options Your management and managed infrastructure should not be combined i.e. EM 12c repository should not be hosted on same Exadata where target Database Cloud is to be setup Setup Roles and Users – Cloud Administrator (EM_CLOUD_ADMINISTRATOR), Self Service Administrator (EM_SSA_ADMINISTRATOR), Self Service User (EM_SSA_USER) are the important roles required for cloud lifecycle management. Roles and users are managed by Super Administrator via Setup menu –> Security option. For Self Service/SSA users custom role(s) based on EM_SSA_USER should be created and EM_USER, PUBLIC roles should be revoked during SSA user account creation. Configure Software Library – Cloud Administrator logs in and in this step configures software library via Enterprise menu –> provisioning and patching option and the storage location is OMS shared filesystem. Software Library is the centralized repository that stores all software entities and is often termed as ‘local store’. Setup Self Update – Self Update is one of the most innovative and cool new features in EM 12c framework. Self update can be accessed via Setup -> Extensibility option by Super Administrator and is the unified delivery mechanism to get all new and updated entities (Agent software, plug ins, connectors, gold images, provisioning bundles etc) in EM 12c. Deploy Agents on all Compute nodes, and discover Exadata targets – Refer to Exadata discovery cookbook for detailed walkthrough to ensure successful discovery of Exadata targets. Configure Privilege Delegation Settings – This step involves deployment of privilege setting template on all the nodes by Super Administrator via Setup menu -> Security option with the option to define whether to use sudo or powerbroker for all provisioning and patching operations. Provision Grid Infrastructure with RAC Database on Compute Nodes – Software is provisioned in this step via a provisioning profile using EM 12c database provisioning. In case of Exadata, Grid Infrastructure and RAC Database software is already deployed on compute nodes via OneCommand from Oracle, so SSA Administrator just needs to discover Oracle Homes and Listener as EM targets. Databases will be created as and when users request for databases from cloud. Customize Create Database Deployment Procedure – the actual database creation steps are "templatized" in this step by Self Service Administrator and the newly saved deployment procedure will be used during service template creation in next step. This is an important step and make sure you have locked all the required variables marked as locked as ‘Y’ in this table. Setup Self Service Portal – This step involves setting up of zones, user quotas, service templates, chargeback plan. The SSA portal is setup by Self Service Administrator via Setup menu -> Cloud -> Database option and following guided workflow. Refer to DBaaS cookbook for details. You also have an option to customize SSA login page via steps documented in EM 12c Cloud Administrator’s guide Final Checks – Define and document process guidelines for SSA users and administrators. Get your SSA users trained on Self Service Portal features and overall DBaaS model and SSA administrators should be familiar with Self Service Portal setup pieces, EM 12c database lifecycle management capabilities and overall EM 12c monitoring framework. GO LIVE – Announce rollout of Database-as-a-Service to your SSA users. Users can login to the Self Service Portal and request/monitor/view their databases in Exadata based database cloud. Congratulations! You just delivered a successful database cloud implementation project! In future posts, we will cover these additional useful topics around database cloud – DBaaS Implementation tips and tricks – right from setup to self service to managing the cloud lifecycle ‘How to’ enable real production databases copies in DBaaS with rapid provisioning in database cloud Case study of a customer who recently achieved success with their transformational journey from traditional silo’ed environment on to Exadata based database cloud using Enterprise Manager 12c. More Information – Podcast on Database as a Service using Oracle Enterprise Manager 12c Oracle Enterprise Manager 12c Installation and Administration guide, Cloud Administration guide DBaaS Cookbook Exadata Discovery Cookbook Screenwatch: Private Database Cloud: Set Up the Cloud Self-Service Portal Screenwatch: Private Database Cloud: Use the Cloud Self-Service Portal Stay Connected: Twitter |  Face book |  You Tube |  Linked in |  Newsletter

    Read the article

  • CSM DX11 issues

    - by KaiserJohaan
    I got CSM to work in OpenGL, and now Im trying to do the same in directx. I'm using the same math library and all and I'm pretty much using the alghorithm straight off. I am using right-handed, column major matrices from GLM. The light is looking (-1, -1, -1). The problem I have is twofolds; For some reason, the ground floor is causing alot of (false) shadow artifacts, like the vast shadowed area you see. I confirmed this when I disabled the ground for the depth pass, but thats a hack more than anything else The shadows are inverted compared to the shadowmap. If you squint you can see the chairs shadows should be mirrored instead. This is the first cascade shadow map, in range of the alien and the chair: I can't figure out why this is. This is the depth pass: for (uint32_t cascadeIndex = 0; cascadeIndex < NUM_SHADOWMAP_CASCADES; cascadeIndex++) { mShadowmap.BindDepthView(context, cascadeIndex); CameraFrustrum cameraFrustrum = CalculateCameraFrustrum(degreesFOV, aspectRatio, nearDistArr[cascadeIndex], farDistArr[cascadeIndex], cameraViewMatrix); lightVPMatrices[cascadeIndex] = CreateDirLightVPMatrix(cameraFrustrum, lightDir); mVertexTransformPass.RenderMeshes(context, renderQueue, meshes, lightVPMatrices[cascadeIndex]); lightVPMatrices[cascadeIndex] = gBiasMatrix * lightVPMatrices[cascadeIndex]; farDistArr[cascadeIndex] = -farDistArr[cascadeIndex]; } CameraFrustrum CalculateCameraFrustrum(const float fovDegrees, const float aspectRatio, const float minDist, const float maxDist, const Mat4& cameraViewMatrix) { CameraFrustrum ret = { Vec4(1.0f, 1.0f, -1.0f, 1.0f), Vec4(1.0f, -1.0f, -1.0f, 1.0f), Vec4(-1.0f, -1.0f, -1.0f, 1.0f), Vec4(-1.0f, 1.0f, -1.0f, 1.0f), Vec4(1.0f, -1.0f, 1.0f, 1.0f), Vec4(1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, 1.0f, 1.0f, 1.0f), Vec4(-1.0f, -1.0f, 1.0f, 1.0f), }; const Mat4 perspectiveMatrix = PerspectiveMatrixFov(fovDegrees, aspectRatio, minDist, maxDist); const Mat4 invMVP = glm::inverse(perspectiveMatrix * cameraViewMatrix); for (Vec4& corner : ret) { corner = invMVP * corner; corner /= corner.w; } return ret; } Mat4 CreateDirLightVPMatrix(const CameraFrustrum& cameraFrustrum, const Vec3& lightDir) { Mat4 lightViewMatrix = glm::lookAt(Vec3(0.0f), -glm::normalize(lightDir), Vec3(0.0f, -1.0f, 0.0f)); Vec4 transf = lightViewMatrix * cameraFrustrum[0]; float maxZ = transf.z, minZ = transf.z; float maxX = transf.x, minX = transf.x; float maxY = transf.y, minY = transf.y; for (uint32_t i = 1; i < 8; i++) { transf = lightViewMatrix * cameraFrustrum[i]; if (transf.z > maxZ) maxZ = transf.z; if (transf.z < minZ) minZ = transf.z; if (transf.x > maxX) maxX = transf.x; if (transf.x < minX) minX = transf.x; if (transf.y > maxY) maxY = transf.y; if (transf.y < minY) minY = transf.y; } Mat4 viewMatrix(lightViewMatrix); viewMatrix[3][0] = -(minX + maxX) * 0.5f; viewMatrix[3][1] = -(minY + maxY) * 0.5f; viewMatrix[3][2] = -(minZ + maxZ) * 0.5f; viewMatrix[0][3] = 0.0f; viewMatrix[1][3] = 0.0f; viewMatrix[2][3] = 0.0f; viewMatrix[3][3] = 1.0f; Vec3 halfExtents((maxX - minX) * 0.5, (maxY - minY) * 0.5, (maxZ - minZ) * 0.5); return OrthographicMatrix(-halfExtents.x, halfExtents.x, -halfExtents.y, halfExtents.y, halfExtents.z, -halfExtents.z) * viewMatrix; } And this is the pixel shader used for the lighting stage: #define DEPTH_BIAS 0.0005 #define NUM_CASCADES 4 cbuffer DirectionalLightConstants : register(CBUFFER_REGISTER_PIXEL) { float4x4 gSplitVPMatrices[NUM_CASCADES]; float4x4 gCameraViewMatrix; float4 gSplitDistances; float4 gLightColor; float4 gLightDirection; }; Texture2D gPositionTexture : register(TEXTURE_REGISTER_POSITION); Texture2D gDiffuseTexture : register(TEXTURE_REGISTER_DIFFUSE); Texture2D gNormalTexture : register(TEXTURE_REGISTER_NORMAL); Texture2DArray gShadowmap : register(TEXTURE_REGISTER_DEPTH); SamplerComparisonState gShadowmapSampler : register(SAMPLER_REGISTER_DEPTH); float4 ps_main(float4 position : SV_Position) : SV_Target0 { float4 worldPos = gPositionTexture[uint2(position.xy)]; float4 diffuse = gDiffuseTexture[uint2(position.xy)]; float4 normal = gNormalTexture[uint2(position.xy)]; float4 camPos = mul(gCameraViewMatrix, worldPos); uint index = 3; if (camPos.z > gSplitDistances.x) index = 0; else if (camPos.z > gSplitDistances.y) index = 1; else if (camPos.z > gSplitDistances.z) index = 2; float3 projCoords = (float3)mul(gSplitVPMatrices[index], worldPos); float viewDepth = projCoords.z - DEPTH_BIAS; projCoords.z = float(index); float visibilty = gShadowmap.SampleCmpLevelZero(gShadowmapSampler, projCoords, viewDepth); float angleNormal = clamp(dot(normal, gLightDirection), 0, 1); return visibilty * diffuse * angleNormal * gLightColor; } As you can see I am using depth bias and a bias matrix. Any hints on why this behaves so wierdly?

    Read the article

  • How do I create a PPA for a working program?

    - by d3vid
    Let's assume I have a working application written in C, C++ or Python. I want to create a Launchpad PPA so others can easily install it from a package. Please give step by step instructions for doing this from beginning to end. (Or provide a link that does the same ;) Does the programming language matter? (Could it be a bash script?) Do I need to add anything to my build? Where should the build install itself to? How do I define dependencies? How do I use dependencies? How do I create a .deb? What do I need to do before uploading to Launchpad?

    Read the article

  • Breaking through the class sealing

    - by Jason Crease
    Do you understand 'sealing' in C#?  Somewhat?  Anyway, here's the lowdown. I've done this article from a C# perspective, but I've occasionally referenced .NET when appropriate. What is sealing a class? By sealing a class in C#, you ensure that you ensure that no class can be derived from that class.  You do this by simply adding the word 'sealed' to a class definition: public sealed class Dog {} Now writing something like " public sealed class Hamster: Dog {} " you'll get a compile error like this: 'Hamster: cannot derive from sealed type 'Dog' If you look in an IL disassembler, you'll see a definition like this: .class public auto ansi sealed beforefieldinit Dog extends [mscorlib]System.Object Note the addition of the word 'sealed'. What about sealing methods? You can also seal overriding methods.  By adding the word 'sealed', you ensure that the method cannot be overridden in a derived class.  Consider the following code: public class Dog : Mammal { public sealed override void Go() { } } public class Mammal { public virtual void Go() { } } In this code, the method 'Go' in Dog is sealed.  It cannot be overridden in a subclass.  Writing this would cause a compile error: public class Dachshund : Dog { public override void Go() { } } However, we can 'new' a method with the same name.  This is essentially a new method; distinct from the 'Go' in the subclass: public class Terrier : Dog { public new void Go() { } } Sealing properties? You can also seal seal properties.  You add 'sealed' to the property definition, like so: public sealed override string Name {     get { return m_Name; }     set { m_Name = value; } } In C#, you can only seal a property, not the underlying setters/getters.  This is because C# offers no override syntax for setters or getters.  However, in underlying IL you seal the setter and getter methods individually - a property is just metadata. Why bother sealing? There are a few traditional reasons to seal: Invariance. Other people may want to derive from your class, even though your implementation may make successful derivation near-impossible.  There may be twisted, hacky logic that could never be second-guessed by another developer.  By sealing your class, you're protecting them from wasting their time.  The CLR team has sealed most of the framework classes, and I assume they did this for this reason. Security.  By deriving from your type, an attacker may gain access to functionality that enables him to hack your system.  I consider this a very weak security precaution. Speed.  If a class is sealed, then .NET doesn't need to consult the virtual-function-call table to find the actual type, since it knows that no derived type can exist.  Therefore, it could emit a 'call' instead of 'callvirt' or at least optimise the machine code, thus producing a performance benefit.  But I've done trials, and have been unable to demonstrate this If you have an example, please share! All in all, I'm not convinced that sealing is interesting or important.  Anyway, moving-on... What is automatically sealed? Value types and structs.  If they were not always sealed, all sorts of things would go wrong.  For instance, structs are laid-out inline within a class.  But what if you assigned a substruct to a struct field of that class?  There may be too many fields to fit. Static classes.  Static classes exist in C# but not .NET.  The C# compiler compiles a static class into an 'abstract sealed' class.  So static classes are already sealed in C#. Enumerations.  The CLR does not track the types of enumerations - it treats them as simple value types.  Hence, polymorphism would not work. What cannot be sealed? Interfaces.  Interfaces exist to be implemented, so sealing to prevent implementation is dumb.  But what if you could prevent interfaces from being extended (i.e. ban declarations like "public interface IMyInterface : ISealedInterface")?  There is no good reason to seal an interface like this.  Sealing finalizes behaviour, but interfaces have no intrinsic behaviour to finalize Abstract classes.  In IL you can create an abstract sealed class.  But C# syntax for this already exists - declaring a class as a 'static', so it forces you to declare it as such. Non-override methods.  If a method isn't declared as override it cannot be overridden, so sealing would make no difference.  Note this is stated from a C# perspective - the words are opposite in IL.  In IL, you have four choices in total: no declaration (which actually seals the method), 'virtual' (called 'override' in C#), 'sealed virtual' ('sealed override' in C#) and 'newslot virtual' ('new virtual' or 'virtual' in C#, depending on whether the method already exists in a base class). Methods that implement interface methods.  Methods that implement an interface method must be virtual, so cannot be sealed. Fields.  A field cannot be overridden, only hidden (using the 'new' keyword in C#), so sealing would make no sense.

    Read the article

  • Are there any resources on how to identify problems that could best be solved with templates?

    - by sap
    I decided to improve my knowledge in template meta-programming. I know the syntax and rules and been playing with counteless examples from online resources. I understand how powerful templates can be and how much compile time optimization they can provide but I still cant "think in templates", I can't seem to know by myself if a certain problem could be best solved with templates and if it can, how to adapt that problem to templates. Is there some kind of online resource or book that teaches how to identify problems that could best be solved with templates and how to adapt that problem?

    Read the article

  • How to position a sprite in a 2D animation skeleton?

    - by Paul Manta
    Given two joints that define a bone, I would like to know how to decide where, between those two joints, I should draw the sprite. This should be a fairly simple thing to solve, but there is one thing that I am not sure about. After I've determined the rotation of the sprite (which is the absolute angle the joints form with the x-axis), I also need to determine the origin point from where I need to start drawing the transformed image. So how should I position the sprite between the two joints? Should I make the center of the image be the midpoint between the two joints, or should I make one the of the joints be the origin? Do these things matter that much (could the wrong positioning make the sprite move oddly during the animation)?

    Read the article

  • Do subdomains need to be defined through domain registerar?

    - by Johnny
    I have bought a new domain name from GoDaddy. Let's say it is abcd.com. On GoDaddy's DNS Managing page, I changed A(Host) part to @ = 74.125.232.215 which is www.google.co.uk's IP address. Now if I type www.abcd.com, it directly goes to www.google.co.uk. But if I type http://test.abcd.com, it cannot be loaded. Do I need to define every subdomain through GoDaddy? Is this how it work? P.S. Amazon EC2 directly generates a subdomain for users to reach their virtual PCs. It cannot be domain registerar dependant. P.S.2. Same question for using "www2" at the start of url.

    Read the article

  • Why some user functions don't get recognised by bash?

    - by strapakowsky
    I can define a function like: myfunction () { ls -R "$1" ; } And then myfunction . just works. But if I do echo "myfunction ." | sh echo "myfunction ." | bash the messages are: sh: myfunction: not found bash: line 1: myfunction: command not found Why? And how can I call a function that comes from a string if not by piping it to sh or bash? I know there is this command source, but I am confused of when I should use source and when sh or bash. Also, I cannot pipe through source. To add to confusion, there is this command . that seems to have nothing to do with the "." that means "current directory".

    Read the article

  • System Wide Performance Sanity Check Procedures

    - by user702295
    Do you need to boost your overall implementation performance? Do you need a direction to pinpoint possible performance opportunities? Are you looking for a general performance guide? Try MOS note 69565.1.  This paper describes a holistic methodology that defines a systematic approach to resolve complex Application performance problems.  It has been successfully used on many critical accounts.  The 'end-to-end' tuning approach encompasses the client, network and database and has proven far more effective than isolated tuning exercises.  It has been used to define and measure targets to ensure success.  Even though it was checked for relevance on 13-Oct-2008, the procedure is still very valuable. Regards!  

    Read the article

  • How should I make searching a relational database more efficient?

    - by Travis J
    This is in the scope of a web application. I have a database which has a few nested relations. There is a feature which depicts the history of a large chain of relations. It is essentially a data analysis feature. The issue is that in order to search, a large object graph must be loaded - the loading time for this object graph is not quick enough to be viable. The problem is that without loading the whole graph it makes searching from a single string nearly impossible. In order to search, explicit fields must be specified and the search data supplied. Is there a design pattern for exposing the data in a way which facilitates a single string search instead of having to explicitly define parameters?

    Read the article

  • Unexpected behaviour with glFramebufferTexture1D

    - by Roshan
    I am using render to texture concept with glFramebufferTexture1D. I am drawing a cube on non-default FBO with all the vertices as -1,1 (maximum) in X Y Z direction. Now i am setting viewport to X while rendering on non default FBO. My background is blue with white color of cube. For default FBO, i have created 1-D texture and attached this texture to above FBO with color attachment. I am setting width of texture equal to width*height of above FBO view-port. Now, when i render this texture to on another cube, i can see continuous white color on start or end of each face of the cube. That means part of the face is white and rest is blue. I am not sure whether this behavior is correct or not. I expect all the texels should be white as i am using -1 and 1 coordinates for cube rendered on non-default FBO. code: #define WIDTH 3 #define HEIGHT 3 GLfloat vertices8[]={ 1.0f,1.0f,1.0f, -1.0f,1.0f,1.0f, -1.0f,-1.0f,1.0f, 1.0f,-1.0f,1.0f,//face 1 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 2 1.0f,1.0f,1.0f, 1.0f,-1.0f,1.0f, 1.0f,-1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 3 -1.0f,1.0f,1.0f, -1.0f,1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,1.0f,//face 4 1.0f,1.0f,1.0f, 1.0f,1.0f,-1.0f, -1.0f,1.0f,-1.0f, -1.0f,1.0f,1.0f,//face 5 -1.0f,-1.0f,1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f,-1.0f,1.0f//face 6 }; GLfloat vertices[]= { 0.5f,0.5f,0.5f, -0.5f,0.5f,0.5f, -0.5f,-0.5f,0.5f, 0.5f,-0.5f,0.5f,//face 1 0.5f,-0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 2 0.5f,0.5f,0.5f, 0.5f,-0.5f,0.5f, 0.5f,-0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 3 -0.5f,0.5f,0.5f, -0.5f,0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,-0.5f,0.5f,//face 4 0.5f,0.5f,0.5f, 0.5f,0.5f,-0.5f, -0.5f,0.5f,-0.5f, -0.5f,0.5f,0.5f,//face 5 -0.5f,-0.5f,0.5f, -0.5f,-0.5f,-0.5f, 0.5f,-0.5f,-0.5f, 0.5f,-0.5f,0.5f//face 6 }; GLuint indices[] = { 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 }; GLfloat texcoord[] = { 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0 }; glGenTextures(1, &id1); glBindTexture(GL_TEXTURE_1D, id1); glGenFramebuffers(1, &Fboid); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, WIDTH*HEIGHT , 0, GL_RGBA, GL_UNSIGNED_BYTE,0); glBindFramebuffer(GL_FRAMEBUFFER, Fboid); glFramebufferTexture1D(GL_DRAW_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_1D,id1,0); draw_cube(); glBindFramebuffer(GL_FRAMEBUFFER, 0); draw(); } draw_cube() { glViewport(0, 0, WIDTH, HEIGHT); glClearColor(0.0f, 0.0f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(temp.psId,"position")); glVertexAttribPointer(glGetAttribLocation(temp.psId,"position"), 3, GL_FLOAT, GL_FALSE, 0,vertices8); glDrawArrays (GL_TRIANGLE_FAN, 0, 24); } draw() { glClearColor(1.0f, 0.0f, 0.0f, 1.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"tk_position")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"tk_position"), 3, GL_FLOAT, GL_FALSE, 0,vertices); nResult = GL_ERROR_CHECK((GL_NO_ERROR, "glVertexAttribPointer(position, 3, GL_FLOAT, GL_FALSE, 0,vertices);")); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"inputtexcoord")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"inputtexcoord"), 2, GL_FLOAT, GL_FALSE, 0,texcoord); glBindTexture(*target11, id1); glDrawElements ( GL_TRIANGLES, 36,GL_UNSIGNED_INT, indices ); when i change WIDTH=HEIGHT=2, and call a glreadpixels with height, width equal to 4 in draw_cube() i can see first 2 pixels with white color, next two with blue(glclearcolor), next two white and then blue and so on.. Now when i change width parameter in glTeximage1D to 16 then ideally i should see alternate patches of white and blue right? But its not the case here. why so?

    Read the article

< Previous Page | 163 164 165 166 167 168 169 170 171 172 173 174  | Next Page >