Search Results

Search found 479 results on 20 pages for 'subsystem'.

Page 17/20 | < Previous Page | 13 14 15 16 17 18 19 20  | Next Page >

  • OnExit is not entering via PostSharp in asp.net project.

    - by mark smith
    Hi there, I have setup PostSharp and it appears to be working but i don't get it entering OnExit (i have logged setup to ensure it is working) ... Its a bit tricky to configure with asp.net - or is it just me ... I am using the 1.5 new version I basically have the following in my web.config and i had to add the SearchPath otherwise it can't find my assemblies <postsharp directory="C:\Program Files\PostSharp 1.5" trace="true"> <parameters> <!--<add name="parameter-name" value="parameter-value"/>--> </parameters> <searchPath> <!-- Always add the binary folder to the search path. --> <add name="bin" value="~\bin"/> </searchPath> </postsharp> I have set tracing on but what is strange to me is that it appears to build to the temp directory, maybe this is my issue, i am unsure .. hence i do F5 ... Is it possible to name the Output directory and output file?? As you can see it is editing a DLL in the temp dir so IIS is no longer in control so it doesn't execute it ??? Confused! :-) C:\Program Files\PostSharp 1.5\postsharp.exe "/P:Output=C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\mysitemvc-1.2\c2087140\8ac2dc93\postsharp\App_Web_04ae3ewy.dll" "/P:IntermediateDirectory=C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\mysitemvc-1.2\c2087140\8ac2dc93\postsharp " /P:CleanIntermediate=False /P:ReferenceDirectory=. /P:SignAssembly=False /P:PrivateKeyLocation= /P:ResolvedReferences= "/P:SearchPath=C:\Source Code\Visual Studio 2008\Projects\mysitemvc\mysitemvc\bin," /V /SkipAutoUpdate "C:\Program Files\PostSharp 1.5\Default.psproj" "C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\mysitemvc-1.2\c2087140\8ac2dc93\before-postsharp\App_Web_04ae3ewy.dll" PostSharp 1.5 [1.5.6.627] - Copyright (c) Gael Fraiteur, 2005-2009. info PS0035: C:\Windows\Microsoft.NET\Framework\v2.0.50727\ilasm.exe "C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\mysitemvc-1.2\c2087140\8ac2dc93\postsharp\App_Web_04ae3ewy.il" /QUIET /DLL /PDB "/RESOURCE=C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\mysitemvc-1.2\c2087140\8ac2dc93\postsharp\App_Web_04ae3ewy.res" "/OUTPUT=C:\Windows\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\mysitemvc-1.2\c2087140\8ac2dc93\postsharp\App_Web_04ae3ewy.dll" /SUBSYSTEM=3 /FLAGS=1 /BASE=18481152 /STACK=1048576 /ALIGNMENT=512 /MDV=v2.0.50727

    Read the article

  • Visual Studio Express 2012 debug mode doesn't work

    - by user2350086
    I have a project in Visual Studio that I have been working on for a while, and I have used the debugger extensively. Recently I changed some settings and I have lost the ability to stop the program and step through code. I can't figure out what I had changed that might have affected this. If I put a breakpoint in my code and try to have the program stop there, it doesn't. The break point shows up white with a red outline. If I hover the mouse over it, it says "The breakpoint will not currently be hit. No executable code of the debugger's target code type is associated with this line. Possible causes include: conditional compilation, compiler optimizations, or the target architecture of this line is not supported by the current debugger code type." I know for a fact that the program executes the code where the breakpoint is because I put the breakpoint in the beginning of the InitializeComponent method. The program displays the window fine, but does not stop at the breakpoint. Yes, I am running in debug mode. It seems as though there is a disconnect between the compiled code and the source code displayed. Does anyone know what that would be, or know which compiler settings I should check to re-enable debugging? Here are the compiler options: /GS /analyze- /W3 /Zc:wchar_t /I"D:\dev\libcurl-7.19.3-win32-ssl-msvc\include" /Zi /Od /sdl /Fd"Debug\vc110.pdb" /fp:precise /D "WIN32" /D "_DEBUG" /D "_UNICODE" /D "UNICODE" /errorReport:prompt /WX- /Zc:forScope /Oy- /clr /FU"C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.5\mscorlib.dll" /FU"C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.5\System.Data.dll" /FU"C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.5\System.dll" /FU"C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.5\System.Drawing.dll" /FU"C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.5\System.Windows.Forms.DataVisualization.dll" /FU"C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.5\System.Windows.Forms.dll" /FU"C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.5\System.Xml.dll" /MDd /Fa"Debug\" /EHa /nologo /Fo"Debug\" /Fp"Debug\Prog.pch" The linker options are: /OUT:"D:\dev\Prog\Debug\Prog.exe" /MANIFEST /NXCOMPAT /PDB:"D:\dev\Prog\Debug\Prog.pdb" /DYNAMICBASE "curllib.lib" "winmm.lib" "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib" "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib" "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib" /FIXED:NO /DEBUG /MACHINE:X86 /ENTRY:"Main" /INCREMENTAL /PGD:"D:\dev\Prog\Debug\Prog.pgd" /SUBSYSTEM:WINDOWS /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /ManifestFile:"Debug\Prog.exe.intermediate.manifest" /ERRORREPORT:PROMPT /NOLOGO /LIBPATH:"D:\dev\libcurl-7.19.3-win32-ssl-msvc\lib\Debug" /ASSEMBLYDEBUG /TLBID:1

    Read the article

  • Under what circumstances would a LINQ-to-SQL Entity "lose" a changed field?

    - by John Rudy
    I'm going nuts over what should be a very simple situation. In an ASP.NET MVC 2 app (not that I think this matters), I have an edit action which takes a very small entity and makes a few changes. The key portion (outside of error handling/security) looks like this: Todo t = Repository.GetTodoByID(todoID); UpdateModel(t); Repository.Save(); Todo is the very simple, small entity with the following fields: ID (primary key), FolderID (foreign key), PercentComplete, TodoText, IsDeleted and SaleEffortID (foreign key). Each of these obviously corresponds to a field in the database. When UpdateModel(t) is called, t does get correctly updated for all fields which have changed. When Repository.Save() is called, by the time the SQL is written out, FolderID reverts back to its original value. The complete code to Repository.Save(): public void Save() { myDataContext.SubmitChanges(); } myDataContext is an instance of the DataContext class created by the LINQ-to-SQL designer. Nothing custom has been done to this aside from adding some common interfaces to some of the entities. I've validated that the FolderID is getting lost before the call to Repository.Save() by logging out the generated SQL: UPDATE [Todo].[TD_TODO] SET [TD_PercentComplete] = @p4, [TD_TodoText] = @p5, [TD_IsDeleted] = @p6 WHERE ([TD_ID] = @p0) AND ([TD_TDF_ID] = @p1) AND /* Folder ID */ ([TD_PercentComplete] = @p2) AND ([TD_TodoText] = @p3) AND (NOT ([TD_IsDeleted] = 1)) AND ([TD_SE_ID] IS NULL) /* SaleEffort ID */ -- @p0: Input BigInt (Size = -1; Prec = 0; Scale = 0) [5] -- @p1: Input BigInt (Size = -1; Prec = 0; Scale = 0) [1] /* this SHOULD be 4 and in the update list */ -- @p2: Input TinyInt (Size = -1; Prec = 0; Scale = 0) [90] -- @p3: Input NVarChar (Size = 4000; Prec = 0; Scale = 0) [changing text] -- @p4: Input TinyInt (Size = -1; Prec = 0; Scale = 0) [0] -- @p5: Input NVarChar (Size = 4000; Prec = 0; Scale = 0) [changing text foo] -- @p6: Input Bit (Size = -1; Prec = 0; Scale = 0) [True] -- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 4.0.30319.1 So somewhere between UpdateModel(t) (where I've validated in the debugger that FolderID updated) and the output of this SQL, the FolderID reverts. The other fields all save. (Well, OK, I haven't validated SaleEffortID yet, because that subsystem isn't really ready yet, but everything else saves.) I've exhausted my own means of research on this: Does anyone know of conditions which would cause a partial entity reset (EG, something to do with long foreign keys?), and/or how to work around this?

    Read the article

  • Google Apps e-mail being rejected from some domains

    - by Paul J. Lucas
    I'm migrating e-mail for my domains to Google Apps' e-mail. Most everything seems to work except e-mail sent to any user at (at least) sonic.net is rejected with a message of the form (where any-address has been substituted for my friend's address): From: Mail Delivery Subsystem <[email protected]> Date: March 11, 2010 10:04:48 AM PST To: [email protected] Subject: Delivery Status Notification (Failure) Delivered-To: [email protected] Received: by 10.229.194.26 with SMTP id dw26cs8717qcb; Thu, 11 Mar 2010 10:04:48 -0800 (PST) Received: by 10.223.68.143 with SMTP id v15mr3841599fai.62.1268330688325; Thu, 11 Mar 2010 10:04:48 -0800 (PST) Received: by 10.223.68.143 with SMTP id v15mr5119424fai.62; Thu, 11 Mar 2010 10:04:48 -0800 (PST) Mime-Version: 1.0 Return-Path: <> X-Failed-Recipients: [email protected] Message-Id: <[email protected]> Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Delivery to the following recipient failed permanently: [email protected] Technical details of permanent failure: Google tried to deliver your message, but it was rejected by the recipient domain. We recommend contacting the other email provider for further information about the cause of this error. The error that the other server returned was: 550 550 5.1.1 <[email protected]>... No such user here (state 13). And here are the headers from the message it bounces back: Received: by 10.101.90.7 with SMTP id s7mr2515885anl.176.1267979929490; Sun, 07 Mar 2010 08:38:49 -0800 (PST) Return-Path: <[email protected]> Received: from [10.0.1.203] (adsl-76-201-171-194.dsl.pltn13.sbcglobal.net [76.201.171.194]) by mx.google.com with ESMTPS id 4sm1046550yxd.70.2010.03.07.08.38.48 (version=TLSv1/SSLv3 cipher=RC4-MD5); Sun, 07 Mar 2010 08:38:49 -0800 (PST) From: "Paul J. Lucas" <[email protected]> Content-Type: text/plain; charset=us-ascii Content-Transfer-Encoding: quoted-printable Subject: Some fascinating subject Date: Sun, 7 Mar 2010 08:38:46 -0800 References: <[email protected]> To: [email protected] Message-Id: <[email protected]> Mime-Version: 1.0 (Apple Message framework v1077) X-Mailer: Apple Mail (2.1077) However, I am able to send mail to a user at sonic.net using my old e-mail account. Also, my company uses Google Apps for e-mail and I can send e-mail to a user at sonic.net from my company. The differences between my personal e-mail and my company's are: My company's domain has no SPF record whereas mine does. My company's domain has an A record whereas mine does not. My SPF record initially was as prescribed by Google here. However, this guy claims Google is wrong and gives a fix. I've tried it both ways with no difference. My SPF record is currently: v=spf1 mx include:aspmx.googlemail.com include:_spf.google.com ~all As for the lack of an A record, you wouldn't think that a mail host would care about that so long as mx records are defined. However, the funny thing is that if you look at the error message, why does Google state that the recipient's domain stated that there is "No such user here" for my address? That makes no sense. Of course there is no user having my address at sonic.net. Also, I assume that I just discovered that I can't send mail to users at sonic.net by accident and that there are probably other domains I can't send e-mail to. So... anybody have any idea what's going on? And how I can get mail to users at sonic.net?

    Read the article

  • Linux bcm43224 wifi adapter slows down a couple minutes after boot

    - by Blubber
    I just installed Ubuntu on my mid 2012 MacBook Air. Everything worked out of the box, but the wifi is showing some weird behavior. When I first login it's really fast, loading google.com is near instant, and browsing in general feels at least as smooth as it did on Mac OS. However, after a couple minutes the connection slows down dramatically, sometimes it takes over 5s to load google.com, a simple reboot fixes the problem for another couple minutes. Specs: Wifi: 02:00.0 Network controller: Broadcom Corporation BCM43224 802.11a/b/g/n (rev 01) Driver: open-source brcmsmac driver Kernel: Linux wega 3.8.0-21-generic #32-Ubuntu SMP Tue May 14 22:16:46 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux Distro: Ubuntu 13.04 (uptodate) I tried a number of things, none of which actually helped Use proprietary sta driver from broadcom Installed firmware into /lib/firmware/brcms (which, as far as I can tell from logs, does not get loaded at all) Switch router to only use 2.4 OR 5 GHz Set router to only use a OR g OR n Set router to use AES encryption only Turned off power management on the adapter Set regulatory region to the correct value (NL) on both router and laptop Disable ipv6 Nothing seems to help, the slowdown always occurs. I did notice that the latency (ping google.com) stays roughly the same (around 9ms). Below is some more information that might be of use. $ lspci -nnk | grep -iA2 net 02:00.0 Network controller [0280]: Broadcom Corporation BCM43224 802.11a/b/g/n [14e4:4353] (rev 01) Subsystem: Apple Inc. Device [106b:00e9] Kernel driver in use: bcma-pci-bridge $ rfkill list 0: hci0: Bluetooth Soft blocked: no Hard blocked: no 1: phy0: Wireless LAN Soft blocked: no Hard blocked: no $ lsmod Module Size Used by dm_crypt 22820 1 arc4 12615 2 brcmsmac 550698 0 coretemp 13355 0 kvm_intel 132891 0 parport_pc 28152 0 kvm 443165 1 kvm_intel ppdev 17073 0 cordic 12574 1 brcmsmac brcmutil 14755 1 brcmsmac mac80211 606457 1 brcmsmac cfg80211 510937 2 brcmsmac,mac80211 bnep 18036 2 rfcomm 42641 12 joydev 17377 0 applesmc 19353 0 input_polldev 13896 1 applesmc snd_hda_codec_hdmi 36913 1 microcode 22881 0 snd_hda_codec_cirrus 23829 1 nls_iso8859_1 12713 1 uvcvideo 80847 0 btusb 22474 0 snd_hda_intel 39619 3 videobuf2_vmalloc 13056 1 uvcvideo snd_hda_codec 136453 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec_cirrus bcm5974 17347 0 bluetooth 228619 22 bnep,btusb,rfcomm snd_hwdep 13602 1 snd_hda_codec lpc_ich 17061 0 videobuf2_memops 13202 1 videobuf2_vmalloc videobuf2_core 40513 1 uvcvideo videodev 129260 2 uvcvideo,videobuf2_core bcma 41051 1 brcmsmac snd_pcm 97451 3 snd_hda_codec_hdmi,snd_hda_codec,snd_hda_intel snd_page_alloc 18710 2 snd_pcm,snd_hda_intel snd_seq_midi 13324 0 snd_seq_midi_event 14899 1 snd_seq_midi snd_rawmidi 30180 1 snd_seq_midi snd_seq 61554 2 snd_seq_midi_event,snd_seq_midi snd_seq_device 14497 3 snd_seq,snd_rawmidi,snd_seq_midi snd_timer 29425 2 snd_pcm,snd_seq snd 68876 16 snd_hwdep,snd_timer,snd_hda_codec_hdmi,snd_pcm,snd_seq,snd_rawmidi,snd_hda_codec,snd_hda_intel,snd_seq_device,snd_hda_codec_cirrus mei 41158 0 soundcore 12680 1 snd apple_bl 13673 0 mac_hid 13205 0 lp 17759 0 parport 46345 3 lp,ppdev,parport_pc usb_storage 57204 0 hid_apple 13237 0 hid_generic 12540 0 ghash_clmulni_intel 13259 0 aesni_intel 55399 399 aes_x86_64 17255 1 aesni_intel xts 12885 1 aesni_intel lrw 13257 1 aesni_intel gf128mul 14951 2 lrw,xts ablk_helper 13597 1 aesni_intel cryptd 20373 4 ghash_clmulni_intel,aesni_intel,ablk_helper i915 600351 3 ahci 25731 3 libahci 31364 1 ahci video 19390 1 i915 i2c_algo_bit 13413 1 i915 drm_kms_helper 49394 1 i915 usbhid 47074 0 drm 286313 4 i915,drm_kms_helper hid 101002 3 hid_generic,usbhid,hid_apple $ dmesg | egrep 'b43|bcma|brcm|[F]irm' [ 0.055025] [Firmware Bug]: ioapic 2 has no mapping iommu, interrupt remapping will be disabled [ 0.152336] [Firmware Bug]: ACPI: BIOS _OSI(Linux) query ignored [ 2.187681] pci_root PNP0A08:00: [Firmware Info]: MMCONFIG for domain 0000 [bus 00-99] only partially covers this bridge [ 12.553600] bcma-pci-bridge 0000:02:00.0: enabling device (0000 -> 0002) [ 12.553657] bcma: bus0: Found chip with id 0xA8D8, rev 0x01 and package 0x08 [ 12.553688] bcma: bus0: Core 0 found: ChipCommon (manuf 0x4BF, id 0x800, rev 0x22, class 0x0) [ 12.553715] bcma: bus0: Core 1 found: IEEE 802.11 (manuf 0x4BF, id 0x812, rev 0x17, class 0x0) [ 12.553764] bcma: bus0: Core 2 found: PCIe (manuf 0x4BF, id 0x820, rev 0x0F, class 0x0) [ 12.605777] bcma: bus0: Bus registered [ 12.852925] brcmsmac bcma0:0: mfg 4bf core 812 rev 23 class 0 irq 17 [ 13.085176] brcmsmac bcma0:0: brcms_ops_bss_info_changed: qos enabled: false (implement) [ 13.085186] brcmsmac bcma0:0: brcms_ops_config: change power-save mode: false (implement) [ 20.862617] brcmsmac bcma0:0: brcmsmac: brcms_ops_bss_info_changed: associated [ 20.862622] brcmsmac bcma0:0: brcms_ops_bss_info_changed: arp filtering: enabled true, count 0 (implement) [ 20.862625] brcmsmac bcma0:0: brcms_ops_bss_info_changed: qos enabled: true (implement) [ 20.897957] brcmsmac bcma0:0: brcms_ops_bss_info_changed: arp filtering: enabled true, count 1 (implement) $ iwconfig lo no wireless extensions. wlan0 IEEE 802.11abgn ESSID:"wlan" Mode:Managed Frequency:5.22 GHz Access Point: E0:46:9A:4E:63:9A Bit Rate=65 Mb/s Tx-Power=17 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=63/70 Signal level=-47 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:13 Invalid misc:56 Missed beacon:0

    Read the article

  • COPSSH RSA only authentication connection problem

    - by Siriss
    Hello all- I am trying to setup an RSA Authentication only SSH/SFTP server. The SSH will be used primarily for RDC. Everything works just fine if I use password authentication. I am using Putty Key Generator to create he keys and I have pasted the key into authorized_keys file and restarted the OpenSSH server. I am using FileZilla to test the SFTP connection as that is the most important. For my tests I have created the keys without password correction. It will not work with a standard SSH connection either. It says "Server refused our key". I have recreated the key twice double checking with a guide on google, and I am pretty sure I did it correctly. I load the key file into FileZilla under settings/SFTP and try to connect and I get the following error: Disconnected: No supported authentication methods available. I have been playing with the different settings all night and I cannot figure it out. Here is my sshd_config file: # $OpenBSD: sshd_config,v 1.80 2008/07/02 02:24:18 djm Exp $ # This is the sshd server system-wide configuration file. See # sshd_config(5) for more information. # This sshd was compiled with PATH=/usr/bin:/bin:/usr/sbin:/sbin # The strategy used for options in the default sshd_config shipped with # OpenSSH is to specify options with their default value where # possible, but leave them commented. Uncommented options change a # default value. #Port 22 #AddressFamily any #ListenAddress 0.0.0.0 #ListenAddress :: # Disable legacy (protocol version 1) support in the server for new # installations. In future the default will change to require explicit # activation of protocol 1 Protocol 2 # HostKey for protocol version 1 #HostKey /etc/ssh/ssh_host_key # HostKeys for protocol version 2 #HostKey /etc/ssh/ssh_host_rsa_key #HostKey /etc/ssh/ssh_host_dsa_key # Lifetime and size of ephemeral version 1 server key #KeyRegenerationInterval 1h #ServerKeyBits 1024 # Logging # obsoletes QuietMode and FascistLogging #SyslogFacility AUTH #LogLevel INFO # Authentication: #LoginGraceTime 2m PermitRootLogin no #StrictModes yes #MaxAuthTries 6 #MaxSessions 10 RSAAuthentication yes PubkeyAuthentication yes AuthorizedKeysFile .ssh/authorized_keys # For this to work you will also need host keys in /etc/ssh/ssh_known_hosts RhostsRSAAuthentication no # similar for protocol version 2 #HostbasedAuthentication no # Change to yes if you don't trust ~/.ssh/known_hosts for # RhostsRSAAuthentication and HostbasedAuthentication #IgnoreUserKnownHosts no # Don't read the user's ~/.rhosts and ~/.shosts files #IgnoreRhosts yes # To disable tunneled clear text passwords, change to no here! PasswordAuthentication no PermitEmptyPasswords no # Change to no to disable s/key passwords #ChallengeResponseAuthentication yes # Kerberos options #KerberosAuthentication no #KerberosOrLocalPasswd yes #KerberosTicketCleanup yes #KerberosGetAFSToken no # GSSAPI options #GSSAPIAuthentication no #GSSAPICleanupCredentials yes # Set this to 'yes' to enable PAM authentication, account processing, # and session processing. If this is enabled, PAM authentication will # be allowed through the ChallengeResponseAuthentication and # PasswordAuthentication. Depending on your PAM configuration, # PAM authentication via ChallengeResponseAuthentication may bypass # the setting of "PermitRootLogin without-password". # If you just want the PAM account and session checks to run without # PAM authentication, then enable this but set PasswordAuthentication # and ChallengeResponseAuthentication to 'no'. UsePAM no #AllowAgentForwarding yes #AllowTcpForwarding yes #GatewayPorts no #X11Forwarding no #X11DisplayOffset 10 #X11UseLocalhost yes #PrintMotd yes #PrintLastLog yes #TCPKeepAlive yes UseLogin no #UsePrivilegeSeparation yes #PermitUserEnvironment no #Compression delayed #ClientAliveInterval 0 #ClientAliveCountMax 3 #UseDNS yes #PidFile /var/run/sshd.pid #MaxStartups 10 #PermitTunnel no #ChrootDirectory none # no default banner path #Banner none # override default of no subsystems Subsystem sftp /bin/sftp-server # Example of overriding settings on a per-user basis #Match User anoncvs # X11Forwarding no # AllowTcpForwarding no # ForceCommand cvs server Thank you so much for your help!

    Read the article

  • XFS disk becomes unavailable after a while

    - by Guard
    Ubuntu 12.04 (but the same was on 11.10 before upgrading) WD MyBook, 2TB, no RAID (or RAID0, not completely sure, anyway no mirroring, both 1TB disks are in use, mounted as a single device). Formatted to XFS, normally used for big movie files. Connected to Firewire 800. At some point the LED started going up and down as when constantly reading/writing. The device gives access error. When unplugged (cable, then holding the power button for a while, then unplugging the power) and re-connected becomes available. xfs_check with no results. xfs_repair did something, but looks like didn't fix any error. Then after a massive read (checking 1.5GB torrent file for integrity) becomes unavailable again. Any ideas what's wrong? Drives? Cables? Motherboard? OS? UPD: not sure how relevant this is, but here are dmesg output [14380.632816] SGI XFS with ACLs, security attributes, realtime, large block/inode numbers, no debug enabled [14380.633356] SGI XFS Quota Management subsystem [14421.812220] firewire_core: phy config: card 0, new root=ffc1, gap_count=5 [14441.890596] firewire_core: phy config: card 0, new root=ffc1, gap_count=5 [14441.896858] firewire_core: phy config: card 0, new root=ffc1, gap_count=5 [14453.895347] firewire_core: created device fw1: GUID 0090a99500a35518, S400, 9 config ROM retries [14453.904818] scsi6 : SBP-2 IEEE-1394 [14453.905014] scsi7 : SBP-2 IEEE-1394 [14454.139993] firewire_sbp2: fw1.0: logged in to LUN 0000 (0 retries) [14454.158769] scsi 6:0:0:0: Direct-Access WD My Book 1015 PQ: 0 ANSI: 4 [14454.159251] sd 6:0:0:0: Attached scsi generic sg3 type 0 [14454.162391] firewire_sbp2: fw1.1: logged in to LUN 0001 (0 retries) [14454.167453] sd 6:0:0:0: [sdc] 3907017568 512-byte logical blocks: (2.00 TB/1.81 TiB) [14454.178822] sd 6:0:0:0: [sdc] Write Protect is off [14454.178826] sd 6:0:0:0: [sdc] Mode Sense: 10 00 00 00 [14454.186830] scsi 7:0:0:1: Enclosure WD My Book Device 1015 PQ: 0 ANSI: 4 [14454.186995] scsi 7:0:0:1: Attached scsi generic sg4 type 13 [14454.190078] sd 6:0:0:0: [sdc] Cache data unavailable [14454.190087] sd 6:0:0:0: [sdc] Assuming drive cache: write through [14454.202176] sd 6:0:0:0: [sdc] Cache data unavailable [14454.202185] sd 6:0:0:0: [sdc] Assuming drive cache: write through [14454.239940] sdc: [mac] sdc1 sdc2 sdc3 sdc4 [14454.271262] sd 6:0:0:0: [sdc] Cache data unavailable [14454.271270] sd 6:0:0:0: [sdc] Assuming drive cache: write through [14454.271354] sd 6:0:0:0: [sdc] Attached SCSI disk [14454.272149] ses 7:0:0:1: Attached Enclosure device [14606.090024] XFS (sdc3): Mounting Filesystem [14612.048343] XFS (sdc3): Starting recovery (logdev: internal) [14620.697636] XFS (sdc3): Ending recovery (logdev: internal) [14748.120957] e1000e: eth0 NIC Link is Up 100 Mbps Full Duplex, Flow Control: Rx/Tx [14748.120963] e1000e 0000:00:19.0: eth0: 10/100 speed: disabling TSO [14752.568382] uhci_hcd 0000:00:1a.0: PCI INT A disabled [14752.568579] uhci_hcd 0000:00:1a.1: PCI INT B disabled [14752.568738] ehci_hcd 0000:00:1a.7: PCI INT C disabled [14752.568779] ehci_hcd 0000:00:1a.7: PME# enabled [14752.584526] uhci_hcd 0000:00:1d.1: PCI INT B disabled [14752.584689] uhci_hcd 0000:00:1d.2: PCI INT C disabled [14752.680079] ehci_hcd 0000:00:1a.7: BAR 0: set to [mem 0xe4641000-0xe46413ff] (PCI address [0xe4641000-0xe46413ff]) [14752.680104] ehci_hcd 0000:00:1a.7: restoring config space at offset 0xf (was 0x300, writing 0x30b) [14752.680136] ehci_hcd 0000:00:1a.7: restoring config space at offset 0x1 (was 0x2900000, writing 0x2900002) [14752.680170] ehci_hcd 0000:00:1a.7: PME# disabled [14752.680182] ehci_hcd 0000:00:1a.7: PCI INT C -> GSI 18 (level, low) -> IRQ 18 [14752.680190] ehci_hcd 0000:00:1a.7: setting latency timer to 64 [14752.710334] uhci_hcd 0000:00:1a.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [14752.710342] uhci_hcd 0000:00:1a.0: setting latency timer to 64 [14752.749186] uhci_hcd 0000:00:1a.1: PCI INT B -> GSI 17 (level, low) -> IRQ 17 [14752.749194] uhci_hcd 0000:00:1a.1: setting latency timer to 64 [14752.790231] uhci_hcd 0000:00:1d.1: PCI INT B -> GSI 22 (level, low) -> IRQ 22 [14752.790239] uhci_hcd 0000:00:1d.1: setting latency timer to 64 [14752.829170] uhci_hcd 0000:00:1d.2: PCI INT C -> GSI 18 (level, low) -> IRQ 18 [14752.829178] uhci_hcd 0000:00:1d.2: setting latency timer to 64

    Read the article

  • Setting up VPN client: L2TP with IPsec

    - by zachar
    I've got to connect to vpn server. It works on Windows, but in Ubuntu 10.04 not. Number of options is confusing for me. There is the input that I have: IP Address of VPN Pre-shared key to authenticate Information that MS-CHAPv2 is used Login and Password to VPN I was trying to achive that with network manager and with L2TP IPsec VPN Manager 1.0.9 but at failed. There is some logged information from L2TP IPsec VPN Manager 1.0.9: Nov 09 15:21:46.854 ipsec_setup: Stopping Openswan IPsec... Nov 09 15:21:48.088 Stopping xl2tpd: xl2tpd. Nov 09 15:21:48.132 ipsec_setup: Starting Openswan IPsec U2.6.23/K2.6.32-49-generic... Nov 09 15:21:48.308 ipsec__plutorun: Starting Pluto subsystem... Nov 09 15:21:48.318 ipsec__plutorun: adjusting ipsec.d to /etc/ipsec.d Nov 09 15:21:48.338 ipsec__plutorun: 002 added connection description "my_vpn_name" Nov 09 15:21:48.348 ipsec__plutorun: 003 NAT-Traversal: Trying new style NAT-T Nov 09 15:21:48.348 ipsec__plutorun: 003 NAT-Traversal: ESPINUDP(1) setup failed for new style NAT-T family IPv4 (errno=19) Nov 09 15:21:48.349 ipsec__plutorun: 003 NAT-Traversal: Trying old style NAT-T Nov 09 15:21:48.994 104 "my_vpn_name" #1: STATE_MAIN_I1: initiate Nov 09 15:21:48.994 003 "my_vpn_name" #1: received Vendor ID payload [RFC 3947] method set to=109 Nov 09 15:21:48.994 003 "my_vpn_name" #1: received Vendor ID payload [Dead Peer Detection] Nov 09 15:21:48.994 106 "my_vpn_name" #1: STATE_MAIN_I2: sent MI2, expecting MR2 Nov 09 15:21:48.994 003 "my_vpn_name" #1: NAT-Traversal: Result using RFC 3947 (NAT-Traversal): i am NATed Nov 09 15:21:48.994 108 "my_vpn_name" #1: STATE_MAIN_I3: sent MI3, expecting MR3 Nov 09 15:21:48.994 004 "my_vpn_name" #1: STATE_MAIN_I4: ISAKMP SA established {auth=OAKLEY_PRESHARED_KEY cipher=oakley_3des_cbc_192 prf=oakley_sha group=modp1024} Nov 09 15:21:48.995 117 "my_vpn_name" #2: STATE_QUICK_I1: initiate Nov 09 15:21:48.995 004 "my_vpn_name" #2: STATE_QUICK_I2: sent QI2, IPsec SA established transport mode {ESP=>0x0c96795d <0x483e1a42 xfrm=AES_128-HMAC_SHA1 NATOA=none NATD=none DPD=none} Nov 09 15:21:49.996 [ERROR 210] Failed to open l2tp control file 'c my_vpn_name' and from syslog: Nov 9 15:21:46 o99 L2tpIPsecVpnControlDaemon: Opening client connection Nov 9 15:21:46 o99 L2tpIPsecVpnControlDaemon: Executing command ipsec setup stop Nov 9 15:21:46 o99 ipsec_setup: Stopping Openswan IPsec... Nov 9 15:21:48 o99 kernel: [ 4350.245171] NET: Unregistered protocol family 15 Nov 9 15:21:48 o99 ipsec_setup: ...Openswan IPsec stopped Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Command ipsec setup stop finished with exit code 0 Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Executing command invoke-rc.d xl2tpd stop Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Command invoke-rc.d xl2tpd stop finished with exit code 0 Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Opening client connection Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Closing client connection Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Executing command ipsec setup start Nov 9 15:21:48 o99 kernel: [ 4350.312483] NET: Registered protocol family 15 Nov 9 15:21:48 o99 ipsec_setup: Starting Openswan IPsec U2.6.23/K2.6.32-49-generic... Nov 9 15:21:48 o99 ipsec_setup: Using NETKEY(XFRM) stack Nov 9 15:21:48 o99 kernel: [ 4350.410774] Initializing XFRM netlink socket Nov 9 15:21:48 o99 kernel: [ 4350.413601] padlock: VIA PadLock not detected. Nov 9 15:21:48 o99 kernel: [ 4350.427311] padlock: VIA PadLock Hash Engine not detected. Nov 9 15:21:48 o99 kernel: [ 4350.441533] padlock: VIA PadLock not detected. Nov 9 15:21:48 o99 ipsec_setup: ...Openswan IPsec started Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Command ipsec setup start finished with exit code 0 Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Executing command invoke-rc.d xl2tpd start Nov 9 15:21:48 o99 ipsec__plutorun: adjusting ipsec.d to /etc/ipsec.d Nov 9 15:21:48 o99 pluto: adjusting ipsec.d to /etc/ipsec.d Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Command invoke-rc.d xl2tpd start finished with exit code 0 Nov 9 15:21:48 o99 ipsec__plutorun: 002 added connection description "my_vpn_name" Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Executing command ipsec auto --ready Nov 9 15:21:48 o99 ipsec__plutorun: 003 NAT-Traversal: Trying new style NAT-T Nov 9 15:21:48 o99 ipsec__plutorun: 003 NAT-Traversal: ESPINUDP(1) setup failed for new style NAT-T family IPv4 (errno=19) Nov 9 15:21:48 o99 ipsec__plutorun: 003 NAT-Traversal: Trying old style NAT-T Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Command ipsec auto --ready finished with exit code 0 Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Executing command ipsec auto --up my_vpn_name Nov 9 15:21:48 o99 L2tpIPsecVpnControlDaemon: Command ipsec auto --up my_vpn_name finished with exit code 0 Nov 9 15:21:49 o99 L2tpIPsecVpnControlDaemon: Closing client connection Can anyone tell me something more about that? Where is the mistake?

    Read the article

  • Why would VMWare to go defunct? How to recover from/prevent it?

    - by Josh
    I am running VMWare Server 2.0.2 (Build 203138) on a dual core Intel i5 with Ubuntu Server 10.04 LTS system (kernel 2.6.32-22-server #33-Ubuntu SMP). Disk Subsystem is a software RAID5 array. The system has been set up for a little over a week. For the past 5 days I have been running at leat 3 VMs (Linux and a variety of Windows OSes) with no issues whatsoever. But while I was installing Linux onto a new VM, suddenly all VMs became unresponsive, including the one I was installing to. I could not log in to the VMWare Management Interface, and the system was somewhat unresponsive via SSH. When I looked at top, I saw: top - 16:14:51 up 6 days, 1:49, 8 users, load average: 24.29, 24.33 17.54 Tasks: 203 total, 7 running, 195 sleeping, 0 stopped, 1 zombie Cpu(s): 0.2%us, 25.6%sy, 0.0%ni, 74.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 8056656k total, 5927580k used, 2129076k free, 20320k buffers Swap: 7811064k total, 240216k used, 7570848k free, 5045884k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 21549 root 39 19 0 0 0 Z 100 0.0 15:02.44 [vmware-vmx] <defunct> 2115 root 20 0 0 0 0 S 1 0.0 170:32.08 [vmware-rtc] 2231 root 21 1 1494m 126m 100m S 1 1.6 892:58.05 /usr/lib/vmware/bin/vmware-vmx -# product=2; 2280 jnet 20 0 19320 1164 800 R 0 0.0 30:04.55 top 12236 root 20 0 833m 41m 34m S 0 0.5 88:34.24 /usr/lib/vmware/bin/vmware-vmx -# product=2; 1 root 20 0 23704 1476 920 S 0 0.0 0:00.80 /sbin/init 2 root 20 0 0 0 0 S 0 0.0 0:00.01 [kthreadd] 3 root RT 0 0 0 0 S 0 0.0 0:00.00 [migration/0] 4 root 20 0 0 0 0 S 0 0.0 0:00.84 [ksoftirqd/0] 5 root RT 0 0 0 0 S 0 0.0 0:00.00 [watchdog/0] 6 root RT 0 0 0 0 S 0 0.0 0:00.00 [migration/1] The VMWare process for the virtual machine I was installing into became a zombie. Yet, it was still consuming 100% of the CPU time on one of the cores, and I couldn't reach it or any other virtual machines. (I was logged in to one virtual machine over SSH, another via X11, and a third via VNC. All three connections died). When I ran ps -ef and similar commands, I found that the defunct vmware-vmx process had it's parent PID set to init (1). I also used lsof -p 21549 and found that the defunct process had no open files. Yet it was using 100% of CPU time... I was unable to kill any vmware-vmx processes, including the defunct one, even with kill -9. As a last resort to resolve the situation I tried to reboot the box, however shutdown, halt, reboot, and init 6 all failed to reboot/shutdown, even when given appropriate --force settings. ControlAltDel produced a message about rebooting on the console, but the system would not reboot. I had to hard power-cycle the box to resolve the situation. (See my other question, Should I worry about the integrity of my linux software RAID5 after a crash or kernel panic?) What would cause a scenario like this? What else could I have done to resolve it besides a hard reboot? What can I do to prevent such a situation in the future?

    Read the article

  • /usr/bin/sshd isn't linked against PAM on one of my systems. What is wrong and how can I fix it?

    - by marc.riera
    Hi, I'm using AD as my user account server with ldap. Most of the servers run with UsePam yes except this one, it has lack of pam support on sshd. root@linserv9:~# ldd /usr/sbin/sshd linux-vdso.so.1 => (0x00007fff621fe000) libutil.so.1 => /lib/libutil.so.1 (0x00007fd759d0b000) libz.so.1 => /usr/lib/libz.so.1 (0x00007fd759af4000) libnsl.so.1 => /lib/libnsl.so.1 (0x00007fd7598db000) libcrypto.so.0.9.8 => /usr/lib/libcrypto.so.0.9.8 (0x00007fd75955b000) libcrypt.so.1 => /lib/libcrypt.so.1 (0x00007fd759323000) libc.so.6 => /lib/libc.so.6 (0x00007fd758fc1000) libdl.so.2 => /lib/libdl.so.2 (0x00007fd758dbd000) /lib64/ld-linux-x86-64.so.2 (0x00007fd759f0e000) I have this packages installed root@linserv9:~# dpkg -l|grep -E 'pam|ssh' ii denyhosts 2.6-2.1 an utility to help sys admins thwart ssh hac ii libpam-modules 0.99.7.1-5ubuntu6.1 Pluggable Authentication Modules for PAM ii libpam-runtime 0.99.7.1-5ubuntu6.1 Runtime support for the PAM library ii libpam-ssh 1.91.0-9.2 enable SSO behavior for ssh and pam ii libpam0g 0.99.7.1-5ubuntu6.1 Pluggable Authentication Modules library ii libpam0g-dev 0.99.7.1-5ubuntu6.1 Development files for PAM ii openssh-blacklist 0.1-1ubuntu0.8.04.1 list of blacklisted OpenSSH RSA and DSA keys ii openssh-client 1:4.7p1-8ubuntu1.2 secure shell client, an rlogin/rsh/rcp repla ii openssh-server 1:4.7p1-8ubuntu1.2 secure shell server, an rshd replacement ii quest-openssh 5.2p1_q13-1 Secure shell root@linserv9:~# What I'm doing wrong? thanks. Edit: root@linserv9:~# cat /etc/pam.d/sshd # PAM configuration for the Secure Shell service # Read environment variables from /etc/environment and # /etc/security/pam_env.conf. auth required pam_env.so # [1] # In Debian 4.0 (etch), locale-related environment variables were moved to # /etc/default/locale, so read that as well. auth required pam_env.so envfile=/etc/default/locale # Standard Un*x authentication. @include common-auth # Disallow non-root logins when /etc/nologin exists. account required pam_nologin.so # Uncomment and edit /etc/security/access.conf if you need to set complex # access limits that are hard to express in sshd_config. # account required pam_access.so # Standard Un*x authorization. @include common-account # Standard Un*x session setup and teardown. @include common-session # Print the message of the day upon successful login. session optional pam_motd.so # [1] # Print the status of the user's mailbox upon successful login. session optional pam_mail.so standard noenv # [1] # Set up user limits from /etc/security/limits.conf. session required pam_limits.so # Set up SELinux capabilities (need modified pam) # session required pam_selinux.so multiple # Standard Un*x password updating. @include common-password Edit2: UsePAM yes fails With this configuration ssh fails to start : root@linserv9:/home/admmarc# cat /etc/ssh/sshd_config |grep -vE "^[ \t]*$|^#" Port 22 Protocol 2 ListenAddress 0.0.0.0 RSAAuthentication yes PubkeyAuthentication yes AuthorizedKeysFile .ssh/authorized_keys ChallengeResponseAuthentication yes UsePAM yes Subsystem sftp /usr/lib/sftp-server root@linserv9:/home/admmarc# The error it gives is as follows root@linserv9:/home/admmarc# /etc/init.d/ssh start * Starting OpenBSD Secure Shell server sshd /etc/ssh/sshd_config: line 75: Bad configuration option: UsePAM /etc/ssh/sshd_config: terminating, 1 bad configuration options ...fail! root@linserv9:/home/admmarc#

    Read the article

  • Pairing Bluetooth device with PIN fails

    - by Pikaro
    I'm trying to pair my old BlackBerry 8310 to my Linux desktop (up-to-date Debian Sid, 3.15-10.dmz.1-liquorix-amd64) by using blueman and its associated tools. Scanning for the device works equally well for both sides; however, I am unable to pair the two once it comes to entering the PIN. If I scan from my PC, I have two options in blueman-manager regarding my phone: Directly selecting "pair", or selecting "setup". If I select "pair", nothing happens on my desktop, but the phone asks me to enter a PIN; if I do so, it reports that pairing has failed. During that, nothing is logged to the console. Selecting "setup" opens a configuration dialog that allows for entering or generating a PIN. Regardless, I get to a screen that tells me to enter the PIN on the phone, and at the same time, the phone pops up the equivalent dialog. This would be what one would expect to work; but whatever I enter (naturally, the same on both), both devices report that pairing has failed, and blueman-manager logs init_services (/usr/lib/python2.7/dist-packages/blueman/main/Device.py:73) Loading services org.bluez.Error.AuthenticationFailed: Authentication Failed If I instead try to pair from the phone, I cannot see any kind of reaction from my desktop - all I get is the equivalent "pairing failed" message from the BlackBerry after I entered a PIN in the dialog that pops up there. hcitool scan and hciconfig -a work without complaints, but I cannot find a way to try the pairing as a whole on the console since bluez-simple-agent seems to have been discontinued and this recommendation is everywhere on Google. hcitool cc as root opens the PIN dialog on the phone, then fails with "Input/Output error" once I enter it. The user is not permitted to execute this command. I also tried creating /usr/lib/bluetooth/<MAC>/pincodes to manually define a persistent PIN, which seems to have had no effect. The same goes for running the different commands as root, though I'm really confused about the internal structure of the Bluetooth subsystem now: They usually and inconsistently failed with Python or DBUS errors or just showed the same results. The only other Bluetooth device I have around are a pair of Creative speakers. Trying "setup" asks me to enter a key on them, which is impossible. If I try "pair", I'm asked for a PIN as I should, but no pairing takes place, and no errors appear on the console. (It just repeats their name a few times.) Interestingly, I tried that before writing my question, and nothing happened in terms of PIN questions, just like with the BlackBerry, which still shows no change. I don't think I actively changed anything since then. The BlackBerry can pair with and connect to the speakers, and everything goes as one would expect, so the problem is definitely with my desktop. So thus my questions: What is that PIN window generated by, and why does it seem to appear randomly? How can I find out what, exactly, fails after trying to add the speakers, as this may give me a clue? Is there any kind of complete log that concerns itself with Bluetooth? What data can I provide to make this more solvable?

    Read the article

  • Enterprise Library Logging / Exception handling and Postsharp

    - by subodhnpushpak
    One of my colleagues came-up with a unique situation where it was required to create log files based on the input file which is uploaded. For example if A.xml is uploaded, the corresponding log file should be A_log.txt. I am a strong believer that Logging / EH / caching are cross-cutting architecture aspects and should be least invasive to the business-logic written in enterprise application. I have been using Enterprise Library for logging / EH (i use to work with Avanade, so i have affection towards the library!! :D ). I have been also using excellent library called PostSharp for cross cutting aspect. Here i present a solution with and without PostSharp all in a unit test. Please see full source code at end of the this blog post. But first, we need to tweak the enterprise library so that the log files are created at runtime based on input given. Below is Custom trace listner which writes log into a given file extracted out of Logentry extendedProperties property. using Microsoft.Practices.EnterpriseLibrary.Common.Configuration; using Microsoft.Practices.EnterpriseLibrary.Logging.Configuration; using Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners; using Microsoft.Practices.EnterpriseLibrary.Logging; using System.IO; using System.Text; using System; using System.Diagnostics;   namespace Subodh.Framework.Logging { [ConfigurationElementType(typeof(CustomTraceListenerData))] public class LogToFileTraceListener : CustomTraceListener {   private static object syncRoot = new object();   public override void TraceData(TraceEventCache eventCache, string source, TraceEventType eventType, int id, object data) {   if ((data is LogEntry) & this.Formatter != null) { WriteOutToLog(this.Formatter.Format((LogEntry)data), (LogEntry)data); } else { WriteOutToLog(data.ToString(), (LogEntry)data); } }   public override void Write(string message) { Debug.Print(message.ToString()); }   public override void WriteLine(string message) { Debug.Print(message.ToString()); }   private void WriteOutToLog(string BodyText, LogEntry logentry) { try { //Get the filelocation from the extended properties if (logentry.ExtendedProperties.ContainsKey("filelocation")) { string fullPath = Path.GetFullPath(logentry.ExtendedProperties["filelocation"].ToString());   //Create the directory where the log file is written to if it does not exist. DirectoryInfo directoryInfo = new DirectoryInfo(Path.GetDirectoryName(fullPath));   if (directoryInfo.Exists == false) { directoryInfo.Create(); }   //Lock the file to prevent another process from using this file //as data is being written to it.   lock (syncRoot) { using (FileStream fs = new FileStream(fullPath, FileMode.Append, FileAccess.Write, FileShare.Write, 4096, true)) { using (StreamWriter sw = new StreamWriter(fs, Encoding.UTF8)) { Log(BodyText, sw); sw.Close(); } fs.Close(); } } } } catch (Exception ex) { throw new LoggingException(ex.Message, ex); } }   /// <summary> /// Write message to named file /// </summary> public static void Log(string logMessage, TextWriter w) { w.WriteLine("{0}", logMessage); } } }   The above can be “plugged into” the code using below configuration <loggingConfiguration name="Logging Application Block" tracingEnabled="true" defaultCategory="Trace" logWarningsWhenNoCategoriesMatch="true"> <listeners> <add listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.CustomTraceListenerData, Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.1.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" traceOutputOptions="None" filter="All" type="Subodh.Framework.Logging.LogToFileTraceListener, Subodh.Framework.Logging, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" name="Subodh Custom Trace Listener" initializeData="" formatter="Text Formatter" /> </listeners> Similarly we can use PostSharp to expose the above as cross cutting aspects as below using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Reflection; using PostSharp.Laos; using System.Diagnostics; using GC.FrameworkServices.ExceptionHandler; using Subodh.Framework.Logging;   namespace Subodh.Framework.ExceptionHandling { [Serializable] public sealed class LogExceptionAttribute : OnExceptionAspect { private string prefix; private MethodFormatStrings formatStrings;   // This field is not serialized. It is used only at compile time. [NonSerialized] private readonly Type exceptionType; private string fileName;   /// <summary> /// Declares a <see cref="XTraceExceptionAttribute"/> custom attribute /// that logs every exception flowing out of the methods to which /// the custom attribute is applied. /// </summary> public LogExceptionAttribute() { }   /// <summary> /// Declares a <see cref="XTraceExceptionAttribute"/> custom attribute /// that logs every exception derived from a given <see cref="Type"/> /// flowing out of the methods to which /// the custom attribute is applied. /// </summary> /// <param name="exceptionType"></param> public LogExceptionAttribute( Type exceptionType ) { this.exceptionType = exceptionType; }   public LogExceptionAttribute(Type exceptionType, string fileName) { this.exceptionType = exceptionType; this.fileName = fileName; }   /// <summary> /// Gets or sets the prefix string, printed before every trace message. /// </summary> /// <value> /// For instance <c>[Exception]</c>. /// </value> public string Prefix { get { return this.prefix; } set { this.prefix = value; } }   /// <summary> /// Initializes the current object. Called at compile time by PostSharp. /// </summary> /// <param name="method">Method to which the current instance is /// associated.</param> public override void CompileTimeInitialize( MethodBase method ) { // We just initialize our fields. They will be serialized at compile-time // and deserialized at runtime. this.formatStrings = Formatter.GetMethodFormatStrings( method ); this.prefix = Formatter.NormalizePrefix( this.prefix ); }   public override Type GetExceptionType( MethodBase method ) { return this.exceptionType; }   /// <summary> /// Method executed when an exception occurs in the methods to which the current /// custom attribute has been applied. We just write a record to the tracing /// subsystem. /// </summary> /// <param name="context">Event arguments specifying which method /// is being called and with which parameters.</param> public override void OnException( MethodExecutionEventArgs context ) { string message = String.Format("{0}Exception {1} {{{2}}} in {{{3}}}. \r\n\r\nStack Trace {4}", this.prefix, context.Exception.GetType().Name, context.Exception.Message, this.formatStrings.Format(context.Instance, context.Method, context.GetReadOnlyArgumentArray()), context.Exception.StackTrace); if(!string.IsNullOrEmpty(fileName)) { ApplicationLogger.LogException(message, fileName); } else { ApplicationLogger.LogException(message, Source.UtilityService); } } } } To use the above below is the unit test [TestMethod] [ExpectedException(typeof(NotImplementedException))] public void TestMethod1() { MethodThrowingExceptionForLog(); try { MethodThrowingExceptionForLogWithPostSharp(); } catch (NotImplementedException ex) { throw ex; } }   private void MethodThrowingExceptionForLog() { try { throw new NotImplementedException(); } catch (NotImplementedException ex) { // create file and then write log ApplicationLogger.TraceMessage("this is a trace message which will be logged in Test1MyFile", @"D:\EL\Test1Myfile.txt"); ApplicationLogger.TraceMessage("this is a trace message which will be logged in YetAnotherTest1Myfile", @"D:\EL\YetAnotherTest1Myfile.txt"); } }   // Automatically log details using attributes // Log exception using attributes .... A La WCF [FaultContract(typeof(FaultMessage))] style] [Log(@"D:\EL\Test1MyfileLogPostsharp.txt")] [LogException(typeof(NotImplementedException), @"D:\EL\Test1MyfileExceptionPostsharp.txt")] private void MethodThrowingExceptionForLogWithPostSharp() { throw new NotImplementedException(); } The good thing about the approach is that all the logging and EH is done at centralized location controlled by PostSharp. Of Course, if some other library has to be used instead of EL, it can easily be plugged in. Also, the coder ARE ONLY involved in writing business code in methods, which makes code cleaner. Here is the full source code. The third party assemblies provided are from EL and PostSharp and i presume you will find these useful. Do let me know your thoughts / ideas on the same. Technorati Tags: PostSharp,Enterprize library,C#,Logging,Exception handling

    Read the article

  • DHCPv6: Provide IPv6 information in your local network

    Even though IPv6 might not be that important within your local network it might be good to get yourself into shape, and be able to provide some details of your infrastructure automatically to your network clients. This is the second article in a series on IPv6 configuration: Configure IPv6 on your Linux system DHCPv6: Provide IPv6 information in your local network Enabling DNS for IPv6 infrastructure Accessing your web server via IPv6 Piece of advice: This is based on my findings on the internet while reading other people's helpful articles and going through a couple of man-pages on my local system. IPv6 addresses for everyone (in your network) Okay, after setting up the configuration of your local system, it might be interesting to enable all your machines in your network to use IPv6. There are two options to solve this kind of requirement... Either you're busy like a bee and you go around to configure each and every system manually, or you're more the lazy and effective type of network administrator and you prefer to work with Dynamic Host Configuration Protocol (DHCP). Obviously, I'm of the second type. Enabling dynamic IPv6 address assignments can be done with a new or an existing instance of a DHCPd. In case of Ubuntu-based installation this might be isc-dhcp-server. The isc-dhcp-server allows address pooling for IP and IPv6 within the same package, you just have to run to independent daemons for each protocol version. First, check whether isc-dhcp-server is already installed and maybe running your machine like so: $ service isc-dhcp-server6 status In case, that the service is unknown, you have to install it like so: $ sudo apt-get install isc-dhcp-server Please bear in mind that there is no designated installation package for IPv6. Okay, next you have to create a separate configuration file for IPv6 address pooling and network parameters called /etc/dhcp/dhcpd6.conf. This file is not automatically provided by the package, compared to IPv4. Again, use your favourite editor and put the following lines: $ sudo nano /etc/dhcp/dhcpd6.conf authoritative;default-lease-time 14400; max-lease-time 86400;log-facility local7;subnet6 2001:db8:bad:a55::/64 {    option dhcp6.name-servers 2001:4860:4860::8888, 2001:4860:4860::8844;    option dhcp6.domain-search "ios.mu";    range6 2001:db8:bad:a55::100 2001:db8:bad:a55::199;    range6 2001:db8:bad:a55::/64 temporary;} Next, save the file and start the daemon as a foreground process to see whether it is going to listen to requests or not, like so: $ sudo /usr/sbin/dhcpd -6 -d -cf /etc/dhcp/dhcpd6.conf eth0 The parameters are explained quickly as -6 we want to run as a DHCPv6 server, -d we are sending log messages to the standard error descriptor (so you should monitor your /var/log/syslog file, too), and we explicitely want to use our newly created configuration file (-cf). You might also use the command switch -t to test the configuration file prior to running the server. In my case, I ended up with a couple of complaints by the server, especially reporting that the necessary lease file wouldn't exist. So, ensure that the lease file for your IPv6 address assignments is present: $ sudo touch /var/lib/dhcp/dhcpd6.leases$ sudo chown dhcpd:dhcpd /var/lib/dhcp/dhcpd6.leases Now, you should be good to go. Stop your foreground process and try to run the DHCPv6 server as a service on your system: $ sudo service isc-dhcp-server6 startisc-dhcp-server6 start/running, process 15883 Check your log file /var/log/syslog for any kind of problems. Refer to the man-pages of isc-dhcp-server and you might check out Chapter 22.6 of Peter Bieringer's IPv6 Howto. The instructions regarding DHCPv6 on the Ubuntu Wiki are not as complete as expected and it might not be as helpful as this article or Peter's HOWTO. But see for yourself. Does the client get an IPv6 address? Running a DHCPv6 server on your local network surely comes in handy but it has to work properly. The following paragraphs describe briefly how to check the IPv6 configuration of your clients, Linux - ifconfig or ip command First, you have enable IPv6 on your Linux by specifying the necessary directives in the /etc/network/interfaces file, like so: $ sudo nano /etc/network/interfaces iface eth1 inet6 dhcp Note: Your network device might be eth0 - please don't just copy my configuration lines. Then, either restart your network subsystem, or enable the device manually using the dhclient command with IPv6 switch, like so: $ sudo dhclient -6 You would either use the ifconfig or (if installed) the ip command to check the configuration of your network device like so: $ sudo ifconfig eth1eth1      Link encap:Ethernet  HWaddr 00:1d:09:5d:8d:98            inet addr:192.168.160.147  Bcast:192.168.160.255  Mask:255.255.255.0          inet6 addr: 2001:db8:bad:a55::193/64 Scope:Global          inet6 addr: fe80::21d:9ff:fe5d:8d98/64 Scope:Link          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 Looks good, the client has an IPv6 assignment. Now, let's see whether DNS information has been provided, too. $ less /etc/resolv.conf # Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)#     DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTENnameserver 2001:4860:4860::8888nameserver 2001:4860:4860::8844nameserver 192.168.1.2nameserver 127.0.1.1search ios.mu Nicely done. Windows - netsh Per description on TechNet the netsh is defined as following: "Netsh is a command-line scripting utility that allows you to, either locally or remotely, display or modify the network configuration of a computer that is currently running. Netsh also provides a scripting feature that allows you to run a group of commands in batch mode against a specified computer. Netsh can also save a configuration script in a text file for archival purposes or to help you configure other servers." And even though TechNet states that it applies to Windows Server (only), it is also available on Windows client operating systems, like Vista, Windows 7 and Windows 8. In order to get or even set information related to IPv6 protocol, we have to switch the netsh interface context prior to our queries. Open a command prompt in Windows and run the following statements: C:\Users\joki>netshnetsh>interface ipv6netsh interface ipv6>show interfaces Select the device index from the Idx column to get more details about the IPv6 address and DNS server information (here: I'm going to use my WiFi device with device index 11), like so: netsh interface ipv6>show address 11 Okay, address information has been provided. Now, let's check the details about DNS and resolving host names: netsh interface ipv6> show dnsservers 11 Okay, that looks good already. Our Windows client has a valid IPv6 address lease with lifetime information and details about the configured DNS servers. Talking about DNS server... Your clients should be able to connect to your network servers via IPv6 using hostnames instead of IPv6 addresses. Please read on about how to enable a local named with IPv6.

    Read the article

  • General monitoring for SQL Server Analysis Services using Performance Monitor

    - by Testas
    A recent customer engagement required a setup of a monitoring solution for SSAS, due to the time restrictions placed upon this, native Windows Performance Monitor (Perfmon) and SQL Server Profiler Monitoring Tools was used as using a third party tool would have meant the customer providing an additional monitoring server that was not available.I wanted to outline the performance monitoring counters that was used to monitor the system on which SSAS was running. Due to the slow query performance that was occurring during certain scenarios, perfmon was used to establish if any pressure was being placed on the Disk, CPU or Memory subsystem when concurrent connections access the same query, and Profiler to pinpoint how the query was being managed within SSAS, profiler I will leave for another blogThis guide is not designed to provide a definitive list of what should be used when monitoring SSAS, different situations may require the addition or removal of counters as presented by the situation. However I hope that it serves as a good basis for starting your monitoring of SSAS. I would also like to acknowledge Chris Webb’s awesome chapters from “Expert Cube Development” that also helped shape my monitoring strategy:http://cwebbbi.spaces.live.com/blog/cns!7B84B0F2C239489A!6657.entrySimulating ConnectionsTo simulate the additional connections to the SSAS server whilst monitoring, I used ascmd to simulate multiple connections to the typical and worse performing queries that were identified by the customer. A similar sript can be downloaded from codeplex at http://www.codeplex.com/SQLSrvAnalysisSrvcs.     File name: ASCMD_StressTestingScripts.zip. Performance MonitorWithin performance monitor,  a counter log was created that contained the list of counters below. The important point to note when running the counter log is that the RUN AS property within the counter log properties should be changed to an account that has rights to the SSAS instance when monitoring MSAS counters. Failure to do so means that the counter log runs under the system account, no errors or warning are given while running the counter log, and it is not until you need to view the MSAS counters that they will not be displayed if run under the default account that has no right to SSAS. If your connection simulation takes hours, this could prove quite frustrating if not done beforehand JThe counters used……  Object Counter Instance Justification System Processor Queue legnth N/A Indicates how many threads are waiting for execution against the processor. If this counter is consistently higher than around 5 when processor utilization approaches 100%, then this is a good indication that there is more work (active threads) available (ready for execution) than the machine's processors are able to handle. System Context Switches/sec N/A Measures how frequently the processor has to switch from user- to kernel-mode to handle a request from a thread running in user mode. The heavier the workload running on your machine, the higher this counter will generally be, but over long term the value of this counter should remain fairly constant. If this counter suddenly starts increasing however, it may be an indicating of a malfunctioning device, especially if the Processor\Interrupts/sec\(_Total) counter on your machine shows a similar unexplained increase Process % Processor Time sqlservr Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process % Processor Time msmdsrv Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process Working Set sqlservr If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Process Working Set msmdsrv If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Processor % Processor Time _Total and individual cores measures the total utilization of your processor by all running processes. If multi-proc then be mindful only an average is provided Processor % Privileged Time _Total To see how the OS is handling basic IO requests. If kernel mode utilization is high, your machine is likely underpowered as it's too busy handling basic OS housekeeping functions to be able to effectively run other applications. Processor % User Time _Total To see how the applications is interacting from a processor perspective, a high percentage utilisation determine that the server is dealing with too many apps and may require increasing thje hardware or scaling out Processor Interrupts/sec _Total  The average rate, in incidents per second, at which the processor received and serviced hardware interrupts. Shoulr be consistant over time but a sudden unexplained increase could indicate a device malfunction which can be confirmed using the System\Context Switches/sec counter Memory Pages/sec N/A Indicates the rate at which pages are read from or written to disk to resolve hard page faults. This counter is a primary indicator of the kinds of faults that cause system-wide delays, this is the primary counter to watch for indication of possible insufficient RAM to meet your server's needs. A good idea here is to configure a perfmon alert that triggers when the number of pages per second exceeds 50 per paging disk on your system. May also want to see the configuration of the page file on the Server Memory Available Mbytes N/A is the amount of physical memory, in bytes, available to processes running on the computer. if this counter is greater than 10% of the actual RAM in your machine then you probably have more than enough RAM. monitor it regularly to see if any downward trend develops, and set an alert to trigger if it drops below 2% of the installed RAM. Physical Disk Disk Transfers/sec for each physical disk If it goes above 10 disk I/Os per second then you've got poor response time for your disk. Physical Disk Idle Time _total If Disk Transfers/sec is above  25 disk I/Os per second use this counter. which measures the percent time that your hard disk is idle during the measurement interval, and if you see this counter fall below 20% then you've likely got read/write requests queuing up for your disk which is unable to service these requests in a timely fashion. Physical Disk Disk queue legnth For the OLAP and SQL physical disk A value that is consistently less than 2 means that the disk system is handling the IO requests against the physical disk Network Interface Bytes Total/sec For the NIC Should be monitored over a period of time to see if there is anb increase/decrease in network utilisation Network Interface Current Bandwidth For the NIC is an estimate of the current bandwidth of the network interface in bits per second (BPS). MSAS 2005: Memory Memory Limit High KB N/A Shows (as a percentage) the high memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Limit Low KB N/A Shows (as a percentage) the low memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Usage KB N/A Displays the memory usage of the server process. MSAS 2005: Memory File Store KB N/A Displays the amount of memory that is reserved for the Cache. Note if total memory limit in the msmdsrv.ini is set to 0, no memory is reserved for the cache MSAS 2005: Storage Engine Query Queries from Cache Direct / sec N/A Displays the rate of queries answered from the cache directly MSAS 2005: Storage Engine Query Queries from Cache Filtered / Sec N/A Displays the Rate of queries answered by filtering existing cache entry. MSAS 2005: Storage Engine Query Queries from File / Sec N/A Displays the Rate of queries answered from files. MSAS 2005: Storage Engine Query Average time /query N/A Displays the average time of a query MSAS 2005: Connection Current connections N/A Displays the number of connections against the SSAS instance MSAS 2005: Connection Requests / sec N/A Displays the rate of query requests per second MSAS 2005: Locks Current Lock Waits N/A Displays thhe number of connections waiting on a lock MSAS 2005: Threads Query Pool job queue Length N/A The number of queries in the job queue MSAS 2005:Proc Aggregations Temp file bytes written/sec N/A Shows the number of bytes of data processed in a temporary file MSAS 2005:Proc Aggregations Temp file rows written/sec N/A Shows the number of bytes of data processed in a temporary file 

    Read the article

  • Static background noise while using new headset Ubuntu 13.04

    - by ThundLayr
    Today I bought a new gaming headset (Gx-Gaming Lychas), and when I tried to record some gameplay-comentary I noticed that there always is a static background noise, I just recorded an example so you guys can listen it (no downloaded needed): http://www47.zippyshare.com/v/65167832/file.html I'm using Kubuntu 13.04 and Kernel version is 3.8.0-19, my laptop is an Acer Travelmate 5760Z, I tried tons of configurations on Alsamixer and none of them made result, I really need to get this working so any kind of help will be very aprecciated. cat /proc/asound/cards: 0 [PCH ]: HDA-Intel - HDA Intel PCH HDA Intel PCH at 0xc6400000 irq 44 cat /proc/asound/card0/codec#0 Codec: Conexant CX20588 Address: 0 AFG Function Id: 0x1 (unsol 1) Vendor Id: 0x14f1506c Subsystem Id: 0x10250574 Revision Id: 0x100003 No Modem Function Group found Default PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x1]: PCM Default Amp-In caps: N/A Default Amp-Out caps: N/A State of AFG node 0x01: Power states: D0 D1 D2 D3 D3cold CLKSTOP EPSS Power: setting=D0, actual=D0 GPIO: io=4, o=0, i=0, unsolicited=1, wake=0 IO[0]: enable=0, dir=0, wake=0, sticky=0, data=0, unsol=0 IO[1]: enable=0, dir=0, wake=0, sticky=0, data=0, unsol=0 IO[2]: enable=0, dir=0, wake=0, sticky=0, data=0, unsol=0 IO[3]: enable=0, dir=0, wake=0, sticky=0, data=0, unsol=0 Node 0x10 [Audio Output] wcaps 0xc1d: Stereo Amp-Out R/L Control: name="Headphone Playback Volume", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Control: name="Headphone Playback Switch", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Device: name="CX20588 Analog", type="Audio", device=0 Amp-Out caps: ofs=0x4a, nsteps=0x4a, stepsize=0x03, mute=1 Amp-Out vals: [0x4a 0x4a] Converter: stream=8, channel=0 PCM: rates [0x560]: 44100 48000 96000 192000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x11 [Audio Output] wcaps 0xc1d: Stereo Amp-Out R/L Control: name="Speaker Playback Volume", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Control: name="Speaker Playback Switch", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Amp-Out caps: ofs=0x4a, nsteps=0x4a, stepsize=0x03, mute=1 Amp-Out vals: [0x80 0x80] Converter: stream=8, channel=0 PCM: rates [0x560]: 44100 48000 96000 192000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x12 [Audio Output] wcaps 0x611: Stereo Digital Converter: stream=0, channel=0 Digital: Digital category: 0x0 IEC Coding Type: 0x0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x5]: PCM AC3 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x13 [Beep Generator Widget] wcaps 0x70000c: Mono Amp-Out Control: name="Beep Playback Volume", index=0, device=0 ControlAmp: chs=1, dir=Out, idx=0, ofs=0 Control: name="Beep Playback Switch", index=0, device=0 ControlAmp: chs=1, dir=Out, idx=0, ofs=0 Amp-Out caps: ofs=0x07, nsteps=0x07, stepsize=0x0f, mute=0 Amp-Out vals: [0x00] Node 0x14 [Audio Input] wcaps 0x100d1b: Stereo Amp-In R/L Control: name="Capture Volume", index=0, device=0 ControlAmp: chs=3, dir=In, idx=0, ofs=0 Control: name="Capture Switch", index=0, device=0 ControlAmp: chs=3, dir=In, idx=0, ofs=0 Device: name="CX20588 Analog", type="Audio", device=0 Amp-In caps: ofs=0x4a, nsteps=0x50, stepsize=0x03, mute=1 Amp-In vals: [0x50 0x50] [0x80 0x80] [0x80 0x80] [0x80 0x80] Converter: stream=4, channel=0 SDI-Select: 0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x17* 0x18 0x23 0x24 Node 0x15 [Audio Input] wcaps 0x100d1b: Stereo Amp-In R/L Amp-In caps: ofs=0x4a, nsteps=0x50, stepsize=0x03, mute=1 Amp-In vals: [0x4a 0x4a] [0x4a 0x4a] [0x4a 0x4a] [0x4a 0x4a] Converter: stream=0, channel=0 SDI-Select: 0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x17* 0x18 0x23 0x24 Node 0x16 [Audio Input] wcaps 0x100d1b: Stereo Amp-In R/L Amp-In caps: ofs=0x4a, nsteps=0x50, stepsize=0x03, mute=1 Amp-In vals: [0x4a 0x4a] [0x4a 0x4a] [0x4a 0x4a] [0x4a 0x4a] Converter: stream=0, channel=0 SDI-Select: 0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x1]: PCM Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x17* 0x18 0x23 0x24 Node 0x17 [Audio Selector] wcaps 0x30050d: Stereo Amp-Out Control: name="Mic Boost Volume", index=0, device=0 ControlAmp: chs=3, dir=Out, idx=0, ofs=0 Amp-Out caps: ofs=0x00, nsteps=0x04, stepsize=0x27, mute=0 Amp-Out vals: [0x04 0x04] Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x1a 0x1b* 0x1d 0x1e Node 0x18 [Audio Selector] wcaps 0x30050d: Stereo Amp-Out Amp-Out caps: ofs=0x00, nsteps=0x04, stepsize=0x27, mute=0 Amp-Out vals: [0x00 0x00] Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 4 0x1a* 0x1b 0x1d 0x1e Node 0x19 [Pin Complex] wcaps 0x400581: Stereo Control: name="Headphone Jack", index=0, device=0 Pincap 0x0000001c: OUT HP Detect Pin Default 0x04214040: [Jack] HP Out at Ext Right Conn = 1/8, Color = Green DefAssociation = 0x4, Sequence = 0x0 Pin-ctls: 0xc0: OUT HP Unsolicited: tag=01, enabled=1 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10* 0x11 Node 0x1a [Pin Complex] wcaps 0x400481: Stereo Control: name="Internal Mic Phantom Jack", index=0, device=0 Pincap 0x00001324: IN Detect Vref caps: HIZ 50 80 Pin Default 0x90a70130: [Fixed] Mic at Int N/A Conn = Analog, Color = Unknown DefAssociation = 0x3, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x24: IN VREF_80 Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x1b [Pin Complex] wcaps 0x400581: Stereo Control: name="Mic Jack", index=0, device=0 Pincap 0x00011334: IN OUT EAPD Detect Vref caps: HIZ 50 80 EAPD 0x0: Pin Default 0x04a19020: [Jack] Mic at Ext Right Conn = 1/8, Color = Pink DefAssociation = 0x2, Sequence = 0x0 Pin-ctls: 0x24: IN VREF_80 Unsolicited: tag=02, enabled=1 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10* 0x11 Node 0x1c [Pin Complex] wcaps 0x400581: Stereo Pincap 0x00000014: OUT Detect Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x40: OUT Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10* 0x11 Node 0x1d [Pin Complex] wcaps 0x400581: Stereo Pincap 0x00010034: IN OUT EAPD Detect EAPD 0x0: Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x40: OUT Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10* 0x11 Node 0x1e [Pin Complex] wcaps 0x400481: Stereo Pincap 0x00000024: IN Detect Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x00: Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x1f [Pin Complex] wcaps 0x400501: Stereo Control: name="Speaker Phantom Jack", index=0, device=0 Pincap 0x00000010: OUT Pin Default 0x92170110: [Fixed] Speaker at Int Front Conn = Analog, Color = Unknown DefAssociation = 0x1, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x40: OUT Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10 0x11* Node 0x20 [Pin Complex] wcaps 0x400781: Stereo Digital Pincap 0x00000010: OUT Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x00: Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 1 0x12 Node 0x21 [Audio Output] wcaps 0x611: Stereo Digital Converter: stream=0, channel=0 Digital: Digital category: 0x0 IEC Coding Type: 0x0 PCM: rates [0x160]: 44100 48000 96000 bits [0xe]: 16 20 24 formats [0x5]: PCM AC3 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x22 [Pin Complex] wcaps 0x400781: Stereo Digital Pincap 0x00000010: OUT Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x00: Unsolicited: tag=00, enabled=0 Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 1 0x21 Node 0x23 [Pin Complex] wcaps 0x40040b: Stereo Amp-In Amp-In caps: ofs=0x00, nsteps=0x04, stepsize=0x2f, mute=0 Amp-In vals: [0x00 0x00] Pincap 0x00000020: IN Pin Default 0x40f001f0: [N/A] Other at Ext N/A Conn = Unknown, Color = Unknown DefAssociation = 0xf, Sequence = 0x0 Misc = NO_PRESENCE Pin-ctls: 0x00: Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Node 0x24 [Audio Mixer] wcaps 0x20050b: Stereo Amp-In Amp-In caps: ofs=0x4a, nsteps=0x4a, stepsize=0x03, mute=1 Amp-In vals: [0x00 0x00] [0x00 0x00] Power states: D0 D1 D2 D3 D3cold EPSS Power: setting=D0, actual=D0 Connection: 2 0x10 0x11 Node 0x25 [Vendor Defined Widget] wcaps 0xf00000: Mono

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • DBCC CHECKDB on VVLDB and latches (Or: My Pain is Your Gain)

    - by Argenis
      Does your CHECKDB hurt, Argenis? There is a classic blog series by Paul Randal [blog|twitter] called “CHECKDB From Every Angle” which is pretty much mandatory reading for anybody who’s even remotely considering going for the MCM certification, or its replacement (the Microsoft Certified Solutions Master: Data Platform – makes my fingers hurt just from typing it). Of particular interest is the post “Consistency Options for a VLDB” – on it, Paul provides solid, timeless advice (I use the word “timeless” because it was written in 2007, and it all applies today!) on how to perform checks on very large databases. Well, here I was trying to figure out how to make CHECKDB run faster on a restored copy of one of our databases, which happens to exceed 7TB in size. The whole thing was taking several days on multiple systems, regardless of the storage used – SAS, SATA or even SSD…and I actually didn’t pay much attention to how long it was taking, or even bothered to look at the reasons why - as long as it was finishing okay and found no consistency errors. Yes – I know. That was a huge mistake, as corruption found in a database several days after taking place could only allow for further spread of the corruption – and potentially large data loss. In the last two weeks I increased my attention towards this problem, as we noticed that CHECKDB was taking EVEN LONGER on brand new all-flash storage in the SAN! I couldn’t really explain it, and were almost ready to blame the storage vendor. The vendor told us that they could initially see the server driving decent I/O – around 450Mb/sec, and then it would settle at a very slow rate of 10Mb/sec or so. “Hum”, I thought – “CHECKDB is just not pushing the I/O subsystem hard enough”. Perfmon confirmed the vendor’s observations. Dreaded @BlobEater What was CHECKDB doing all the time while doing so little I/O? Eating Blobs. It turns out that CHECKDB was taking an extremely long time on one of our frankentables, which happens to be have 35 billion rows (yup, with a b) and sucks up several terabytes of space in the database. We do have a project ongoing to purge/split/partition this table, so it’s just a matter of time before we deal with it. But the reality today is that CHECKDB is coming to a screeching halt in performance when dealing with this particular table. Checking sys.dm_os_waiting_tasks and sys.dm_os_latch_stats showed that LATCH_EX (DBCC_OBJECT_METADATA) was by far the top wait type. I remembered hearing recently about that wait from another post that Paul Randal made, but that was related to computed-column indexes, and in fact, Paul himself reminded me of his article via twitter. But alas, our pathologic table had no non-clustered indexes on computed columns. I knew that latches are used by the database engine to do internal synchronization – but how could I help speed this up? After all, this is stuff that doesn’t have a lot of knobs to tweak. (There’s a fantastic level 500 talk by Bob Ward from Microsoft CSS [blog|twitter] called “Inside SQL Server Latches” given at PASS 2010 – and you can check it out here. DISCLAIMER: I assume no responsibility for any brain melting that might ensue from watching Bob’s talk!) Failed Hypotheses Earlier on this week I flew down to Palo Alto, CA, to visit our Headquarters – and after having a great time with my Monkey peers, I was relaxing on the plane back to Seattle watching a great talk by SQL Server MVP and fellow MCM Maciej Pilecki [twitter] called “Masterclass: A Day in the Life of a Database Transaction” where he discusses many different topics related to transaction management inside SQL Server. Very good stuff, and when I got home it was a little late – that slow DBCC CHECKDB that I had been dealing with was way in the back of my head. As I was looking at the problem at hand earlier on this week, I thought “How about I set the database to read-only?” I remembered one of the things Maciej had (jokingly) said in his talk: “if you don’t want locking and blocking, set the database to read-only” (or something to that effect, pardon my loose memory). I immediately killed the CHECKDB which had been running painfully for days, and set the database to read-only mode. Then I ran DBCC CHECKDB against it. It started going really fast (even a bit faster than before), and then throttled down again to around 10Mb/sec. All sorts of expletives went through my head at the time. Sure enough, the same latching scenario was present. Oh well. I even spent some time trying to figure out if NUMA was hurting performance. Folks on Twitter made suggestions in this regard (thanks, Lonny! [twitter]) …Eureka? This past Friday I was still scratching my head about the whole thing; I was ready to start profiling with XPERF to see if I could figure out which part of the engine was to blame and then get Microsoft to look at the evidence. After getting a bunch of good news I’ll blog about separately, I sat down for a figurative smack down with CHECKDB before the weekend. And then the light bulb went on. A sparse column. I thought that I couldn’t possibly be experiencing the same scenario that Paul blogged about back in March showing extreme latching with non-clustered indexes on computed columns. Did I even have a non-clustered index on my sparse column? As it turns out, I did. I had one filtered non-clustered index – with the sparse column as the index key (and only column). To prove that this was the problem, I went and setup a test. Yup, that'll do it The repro is very simple for this issue: I tested it on the latest public builds of SQL Server 2008 R2 SP2 (CU6) and SQL Server 2012 SP1 (CU4). First, create a test database and a test table, which only needs to contain a sparse column: CREATE DATABASE SparseColTest; GO USE SparseColTest; GO CREATE TABLE testTable (testCol smalldatetime SPARSE NULL); GO INSERT INTO testTable (testCol) VALUES (NULL); GO 1000000 That’s 1 million rows, and even though you’re inserting NULLs, that’s going to take a while. In my laptop, it took 3 minutes and 31 seconds. Next, we run DBCC CHECKDB against the database: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; This runs extremely fast, as least on my test rig – 198 milliseconds. Now let’s create a filtered non-clustered index on the sparse column: CREATE NONCLUSTERED INDEX [badBadIndex] ON testTable (testCol) WHERE testCol IS NOT NULL; With the index in place now, let’s run DBCC CHECKDB one more time: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; In my test system this statement completed in 11433 milliseconds. 11.43 full seconds. Quite the jump from 198 milliseconds. I went ahead and dropped the filtered non-clustered indexes on the restored copy of our production database, and ran CHECKDB against that. We went down from 7+ days to 19 hours and 20 minutes. Cue the “Argenis is not impressed” meme, please, Mr. LaRock. My pain is your gain, folks. Go check to see if you have any of such indexes – they’re likely causing your consistency checks to run very, very slow. Happy CHECKDBing, -Argenis ps: I plan to file a Connect item for this issue – I consider it a pretty serious bug in the engine. After all, filtered indexes were invented BECAUSE of the sparse column feature – and it makes a lot of sense to use them together. Watch this space and my twitter timeline for a link.

    Read the article

  • Developing a Cost Model for Cloud Applications

    - by BuckWoody
    Note - please pay attention to the date of this post. As much as I attempt to make the information below accurate, the nature of distributed computing means that components, units and pricing will change over time. The definitive costs for Microsoft Windows Azure and SQL Azure are located here, and are more accurate than anything you will see in this post: http://www.microsoft.com/windowsazure/offers/  When writing software that is run on a Platform-as-a-Service (PaaS) offering like Windows Azure / SQL Azure, one of the questions you must answer is how much the system will cost. I will not discuss the comparisons between on-premise costs (which are nigh impossible to calculate accurately) versus cloud costs, but instead focus on creating a general model for estimating costs for a given application. You should be aware that there are (at this writing) two billing mechanisms for Windows and SQL Azure: “Pay-as-you-go” or consumption, and “Subscription” or commitment. Conceptually, you can consider the former a pay-as-you-go cell phone plan, where you pay by the unit used (at a slightly higher rate) and the latter as a standard cell phone plan where you commit to a contract and thus pay lower rates. In this post I’ll stick with the pay-as-you-go mechanism for simplicity, which should be the maximum cost you would pay. From there you may be able to get a lower cost if you use the other mechanism. In any case, the model you create should hold. Developing a good cost model is essential. As a developer or architect, you’ll most certainly be asked how much something will cost, and you need to have a reliable way to estimate that. Businesses and Organizations have been used to paying for servers, software licenses, and other infrastructure as an up-front cost, and power, people to the systems and so on as an ongoing (and sometimes not factored) cost. When presented with a new paradigm like distributed computing, they may not understand the true cost/value proposition, and that’s where the architect and developer can guide the conversation to make a choice based on features of the application versus the true costs. The two big buckets of use-types for these applications are customer-based and steady-state. In the customer-based use type, each successful use of the program results in a sale or income for your organization. Perhaps you’ve written an application that provides the spot-price of foo, and your customer pays for the use of that application. In that case, once you’ve estimated your cost for a successful traversal of the application, you can build that into the price you charge the user. It’s a standard restaurant model, where the price of the meal is determined by the cost of making it, plus any profit you can make. In the second use-type, the application will be used by a more-or-less constant number of processes or users and no direct revenue is attached to the system. A typical example is a customer-tracking system used by the employees within your company. In this case, the cost model is often created “in reverse” - meaning that you pilot the application, monitor the use (and costs) and that cost is held steady. This is where the comparison with an on-premise system becomes necessary, even though it is more difficult to estimate those on-premise true costs. For instance, do you know exactly how much cost the air conditioning is because you have a team of system administrators? This may sound trivial, but that, along with the insurance for the building, the wiring, and every other part of the system is in fact a cost to the business. There are three primary methods that I’ve been successful with in estimating the cost. None are perfect, all are demand-driven. The general process is to lay out a matrix of: components units cost per unit and then multiply that times the usage of the system, based on which components you use in the program. That sounds a bit simplistic, but using those metrics in a calculation becomes more detailed. In all of the methods that follow, you need to know your application. The components for a PaaS include computing instances, storage, transactions, bandwidth and in the case of SQL Azure, database size. In most cases, architects start with the first model and progress through the other methods to gain accuracy. Simple Estimation The simplest way to calculate costs is to architect the application (even UML or on-paper, no coding involved) and then estimate which of the components you’ll use, and how much of each will be used. Microsoft provides two tools to do this - one is a simple slider-application located here: http://www.microsoft.com/windowsazure/pricing-calculator/  The other is a tool you download to create an “Return on Investment” (ROI) spreadsheet, which has the advantage of leading you through various questions to estimate what you plan to use, located here: https://roianalyst.alinean.com/msft/AutoLogin.do?d=176318219048082115  You can also just create a spreadsheet yourself with a structure like this: Program Element Azure Component Unit of Measure Cost Per Unit Estimated Use of Component Total Cost Per Component Cumulative Cost               Of course, the consideration with this model is that it is difficult to predict a system that is not running or hasn’t even been developed. Which brings us to the next model type. Measure and Project A more accurate model is to actually write the code for the application, using the Software Development Kit (SDK) which can run entirely disconnected from Azure. The code should be instrumented to estimate the use of the application components, logging to a local file on the development system. A series of unit and integration tests should be run, which will create load on the test system. You can use standard development concepts to track this usage, and even use Windows Performance Monitor counters. The best place to start with this method is to use the Windows Azure Diagnostics subsystem in your code, which you can read more about here: http://blogs.msdn.com/b/sumitm/archive/2009/11/18/introducing-windows-azure-diagnostics.aspx This set of API’s greatly simplifies tracking the application, and in fact you can use this information for more than just a cost model. After you have the tracking logs, you can plug the numbers into ay of the tools above, which should give a representative cost or in some cases a unit cost. The consideration with this model is that the SDK fabric is not a one-to-one comparison with performance on the actual Windows Azure fabric. Those differences are usually smaller, but they do need to be considered. Also, you may not be able to accurately predict the load on the system, which might lead to an architectural change, which changes the model. This leads us to the next, most accurate method for a cost model. Sample and Estimate Using standard statistical and other predictive math, once the application is deployed you will get a bill each month from Microsoft for your Azure usage. The bill is quite detailed, and you can export the data from it to do analysis, and using methods like regression and so on project out into the future what the costs will be. I normally advise that the architect also extrapolate a unit cost from those metrics as well. This is the information that should be reported back to the executives that pay the bills: the past cost, future projected costs, and unit cost “per click” or “per transaction”, as your case warrants. The challenge here is in the model itself - statistical methods are not foolproof, and the larger the sample (in this case I recommend the entire population, not a smaller sample) is key. References and Tools Articles: http://blogs.msdn.com/b/patrick_butler_monterde/archive/2010/02/10/windows-azure-billing-overview.aspx http://technet.microsoft.com/en-us/magazine/gg213848.aspx http://blog.codingoutloud.com/2011/06/05/azure-faq-how-much-will-it-cost-me-to-run-my-application-on-windows-azure/ http://blogs.msdn.com/b/johnalioto/archive/2010/08/25/10054193.aspx http://geekswithblogs.net/iupdateable/archive/2010/02/08/qampa-how-can-i-calculate-the-tco-and-roi-when.aspx   Other Tools: http://cloud-assessment.com/ http://communities.quest.com/community/cloud_tools

    Read the article

  • What's new in Solaris 11.1?

    - by Karoly Vegh
    Solaris 11.1 is released. This is the first release update since Solaris 11 11/11, the versioning has been changed from MM/YY style to 11.1 highlighting that this is Solaris 11 Update 1.  Solaris 11 itself has been great. What's new in Solaris 11.1? Allow me to pick some new features from the What's New PDF that can be found in the official Oracle Solaris 11.1 Documentation. The updates are very numerous, I really can't include all.  I. New AI Automated Installer RBAC profiles have been introduced to enable delegation of installation tasks. II. The interactive installer now supports installing the OS to iSCSI targets. III. ASR (Auto Service Request) and OCM (Oracle Configuration Manager) have been enabled by default to proactively provide support information and create service requests to speed up support processes. This is optional and can be disabled but helps a lot in supportcases. For further information, see: http://oracle.com/goto/solarisautoreg IV. The new command svcbundle helps you to create SMF manifests without having to struggle with XML editing. (btw, do you know the interactive editprop subcommand in svccfg? The listprop/setprop subcommands are great for scripting and automating, but for an interactive property editing session try, for example, this: svccfg -s svc:/application/pkg/system-repository:default editprop )  V. pfedit: Ever wondered how to delegate editing permissions to certain files? It is well known "sudo /usr/bin/vi /etc/hosts" is not the right way, for sudo elevates the complete vi process to admin levels, and the user can "break" out of the session as root with simply starting a shell from that vi. Now, the new pfedit command provides a solution exactly to this challenge - an auditable, secure, per-user configurable editing possibility. See the pfedit man page for examples.   VI. rsyslog, the popular logging daemon (filters, SSL, formattable output, SQL collect...) has been included in Solaris 11.1 as an alternative to syslog.  VII: Zones: Solaris Zones - as a major Solaris differentiator - got lots of love in terms of new features: ZOSS - Zones on Shared Storage: Placing your zones to shared storage (FC, iSCSI) has never been this easy - via zonecfg.  parallell updates - with S11's bootenvironments updating zones was no problem and meant no downtime anyway, but still, now you can update them parallelly, a way faster update action if you are running a large number of zones. This is like parallell patching in Solaris 10, but with all the IPS/ZFS/S11 goodness.  per-zone fstype statistics: Running zones on a shared filesystems complicate the I/O debugging, since ZFS collects all the random writes and delivers them sequentially to boost performance. Now, over kstat you can find out which zone's I/O has an impact on the other ones, see the examples in the documentation: http://docs.oracle.com/cd/E26502_01/html/E29024/gmheh.html#scrolltoc Zones got RDSv3 protocol support for InfiniBand, and IPoIB support with Crossbow's anet (automatic vnic creation) feature.  NUMA I/O support for Zones: customers can now determine the NUMA I/O topology of the system from within zones.  VIII: Security got a lot of attention too:  Automated security/audit reporting, with builtin reporting templates e.g. for PCI (payment card industry) audits.  PAM is now configureable on a per-user basis instead of system wide, allowing different authentication requirements for different users  SSH in Solaris 11.1 now supports running in FIPS 140-2 mode, that is, in a U.S. government security accredited fashion.  SHA512/224 and SHA512/256 cryptographic hash functions are implemented in a FIPS-compliant way - and on a T4 implemented in silicon! That is, goverment-approved cryptography at HW-speed.  Generally, Solaris is currently under evaluation to be both FIPS and Common Criteria certified.  IX. Networking, as one of the core strengths of Solaris 11, has been extended with:  Data Center Bridging (DCB) - not only setups where network and storage share the same fabric (FCoE, anyone?) can have Quality-of-Service requirements. DCB enables peers to distinguish traffic based on priorities. Your NICs have to support DCB, see the documentation, and additional information on Wikipedia. DataLink MultiPathing, DLMP, enables link aggregation to span across multiple switches, even between those of different vendors. But there are essential differences to the good old bandwidth-aggregating LACP, see the documentation: http://docs.oracle.com/cd/E26502_01/html/E28993/gmdlu.html#scrolltoc VNIC live migration is now supported from one physical NIC to another on-the-fly  X. Data management:  FedFS, (Federated FileSystem) is new, it relies on Solaris 11's NFS referring mechanism to join separate shares of different NFS servers into a single filesystem namespace. The referring system has been there since S11 11/11, in Solaris 11.1 FedFS uses a LDAP - as the one global nameservice to bind them all.  The iSCSI initiator now uses the T4 CPU's HW-implemented CRC32 algorithm - thus improving iSCSI throughput while reducing CPU utilization on a T4 Storage locking improvements are now RAC aware, speeding up throughput with better locking-communication between nodes up to 20%!  XI: Kernel performance optimizations: The new Virtual Memory subsystem ("VM2") scales now to 100+ TB Memory ranges.  The memory predictor monitors large memory page usage, and adjust memory page sizes to applications' needs OSM, the Optimized Shared Memory allows Oracle DBs' SGA to be resized online XII: The Power Aware Dispatcher in now by default enabled, reducing power consumption of idle CPUs. Also, the LDoms' Power Management policies and the poweradm settings in Solaris 11 OS will cooperate. XIII: x86 boot: upgrade to the (Grand Unified Bootloader) GRUB2. Because grub2 differs in the configuration syntactically from grub1, one shall not edit the new grub configuration (grub.cfg) but use the new bootadm features to update it. GRUB2 adds UEFI support and also support for disks over 2TB. XIV: Improved viewing of per-CPU statistics of mpstat. This one might seem of less importance at first, but nowadays having better sorting/filtering possibilities on a periodically updated mpstat output of 256+ vCPUs can be a blessing. XV: Support for Solaris Cluster 4.1: The What's New document doesn't actually mention this one, since OSC 4.1 has not been released at the time 11.1 was. But since then it is available, and it requires Solaris 11.1. And it's only a "pkg update" away. ...aand I seriously need to stop here. There's a lot I missed, Edge Virtual Bridging, lofi tuning, ZFS sharing and crypto enhancements, USB3.0, pulseaudio, trusted extensions updates, etc - but if I mention all those then I effectively copy the What's New document. Which I recommend reading now anyway, it is a great extract of the 300+ new projects and RFE-followups in S11.1. And this blogpost is a summary of that extract.  For closing words, allow me to come back to Request For Enhancements, RFEs. Any customer can request features. Open up a Support Request, explain that this is an RFE, describe the feature you/your company desires to have in S11 implemented. The more SRs are collected for an RFE, the more chance it's got to get implemented. Feel free to provide feedback about the product, as well as about the Solaris 11.1 Documentation using the "Feedback" button there. Both the Solaris engineers and the documentation writers are eager to hear your input.Feel free to comment about this post too. Except that it's too long ;)  wbr,charlie

    Read the article

  • Unable to connect to Wireless after installing Ubuntu 12.10

    - by Moulik
    I am using Asus U56E laptop and after installing Ubuntu 12.10 alongside Windows 8, I am unable to connect to the Wireless. I have been trying to solve this problem since two weeks and couldn't solve it. Please help. Any answer would be appreciated. Here are some command-line results. lspci -v | grep -iA 7 network ubuntu@ubuntu:~$ lspci -v | grep -iA 7 network 02:00.0 Network controller: Intel Corporation Centrino Wireless-N + WiMAX 6150 (rev 67) Subsystem: Intel Corporation Centrino Wireless-N + WiMAX 6150 BGN Flags: bus master, fast devsel, latency 0, IRQ 52 Memory at de800000 (64-bit, non-prefetchable) [size=8K] Capabilities: <access denied> Kernel driver in use: iwlwifi Kernel modules: iwlwifi lsmod | grep iwlwifi ubuntu@ubuntu:~$ lsmod | grep iwlwifi iwlwifi 386826 0 mac80211 539908 1 iwlwifi cfg80211 206566 2 iwlwifi,mac80211 ubuntu@ubuntu:~$ dmesg | grep iwlwifi [ 57.846261] iwlwifi: Intel(R) Wireless WiFi Link AGN driver for Linux, in-tree: [ 57.846264] iwlwifi: Copyright(c) 2003-2012 Intel Corporation [ 57.846336] iwlwifi 0000:02:00.0: >pci_resource_len = 0x00002000 [ 57.846338] iwlwifi 0000:02:00.0: >pci_resource_base = ffffc90000c7c000 [ 57.846341] iwlwifi 0000:02:00.0: >HW Revision ID = 0x67 [ 57.846438] iwlwifi 0000:02:00.0: >irq 52 for MSI/MSI-X [ 59.558335] iwlwifi 0000:02:00.0: >loaded firmware version 41.28.5.1 build 33926 [ 59.558514] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEBUG disabled [ 59.558516] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEBUGFS enabled [ 59.558517] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEVICE_TRACING enabled [ 59.558519] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_DEVICE_TESTMODE enabled [ 59.558520] iwlwifi 0000:02:00.0: >CONFIG_IWLWIFI_P2P disabled [ 59.558522] iwlwifi 0000:02:00.0: >Detected Intel(R) Centrino(R) Wireless-N + WiMAX 6150 BGN, REV=0x84 [ 59.558583] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 59.569083] iwlwifi 0000:02:00.0: >device EEPROM VER=0x557, CALIB=0x6 [ 59.569085] iwlwifi 0000:02:00.0: >Device SKU: 0x150 [ 59.569087] iwlwifi 0000:02:00.0: >Valid Tx ant: 0x1, Valid Rx ant: 0x3 [ 59.569100] iwlwifi 0000:02:00.0: >Tunable channels: 13 802.11bg, 0 802.11a channels [ 70.208469] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 70.208648] iwlwifi 0000:02:00.0: >Radio type=0x1-0x2-0x0 [ 70.366319] iwlwifi 0000:02:00.0: >L1 Disabled; Enabling L0S [ 70.366470] iwlwifi 0000:02:00.0: >Radio type=0x1-0x2-0x0 sudo lshw -c network ubuntu@ubuntu:~$ sudo lshw -c network *-network description: Wireless interface product: Centrino Wireless-N + WiMAX 6150 vendor: Intel Corporation physical id: 0 bus info: pci@0000:02:00.0 logical name: wlan0 version: 67 serial: 40:25:c2:84:99:c4 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.5.0-17-generic firmware=41.28.5.1 build 33926 latency=0 link=no multicast=yes wireless=IEEE 802.11bgn resources: irq:52 memory:de800000-de801fff *-network description: Ethernet interface product: AR8151 v2.0 Gigabit Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c0 serial: 54:04:a6:2b:6a:ef capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI latency=0 link=no multicast=yes port=twisted pair resources: irq:54 memory:dd400000-dd43ffff ioport:a000(size=128) ifconfig ubuntu@ubuntu:~$ ifconfig eth0 Link encap:Ethernet HWaddr 54:04:a6:2b:6a:ef UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:176 errors:0 dropped:0 overruns:0 frame:0 TX packets:176 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:14368 (14.3 KB) TX bytes:14368 (14.3 KB) wlan0 Link encap:Ethernet HWaddr 40:25:c2:84:99:c4 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) iwconfig ubuntu@ubuntu:~$ iwconfig eth0 no wireless extensions. lo no wireless extensions. wlan0 IEEE 802.11bgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=15 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off iwlist scan ubuntu@ubuntu:~$ iwlist scan eth0 Interface doesn't support scanning. lo Interface doesn't support scanning. wlan0 No scan results nm-tool ubuntu@ubuntu:~$ nm-tool NetworkManager Tool State: disconnected - Device: eth0 ----------------------------------------------------------------- Type: Wired Driver: atl1c State: unavailable Default: no HW Address: 54:04:A6:2B:6A:EF Capabilities: Carrier Detect: yes Wired Properties Carrier: off - Device: wlan0 ---------------------------------------------------------------- Type: 802.11 WiFi Driver: iwlwifi State: disconnected Default: no HW Address: 40:25:C2:84:99:C4 Capabilities: Wireless Properties WEP Encryption: yes WPA Encryption: yes WPA2 Encryption: yes Wireless Access Points hypeness2: Infra, 00:21:29:DA:08:4F, Freq 2462 MHz, Rate 54 Mb/s, Strength 42 WPA love: Infra, 68:7F:74:17:02:66, Freq 2412 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 DIRECT-MwSCX-3400Pamela: Infra, 02:15:99:A3:3F:AC, Freq 2412 MHz, Rate 54 Mb/s, Strength 22 WPA2 router: Infra, 1C:AF:F7:D6:76:F3, Freq 2417 MHz, Rate 54 Mb/s, Strength 20 WPA2 wing: Infra, E8:40:F2:34:E4:F7, Freq 2437 MHz, Rate 54 Mb/s, Strength 20 WPA WPA2 132LINKSYS: Infra, 00:1A:70:80:1F:E9, Freq 2437 MHz, Rate 54 Mb/s, Strength 57 WEP VMITTAL: Infra, E0:46:9A:3C:F0:C4, Freq 2412 MHz, Rate 54 Mb/s, Strength 27 WEP HP-Print-10-LaserJet 1025: Infra, 7C:E9:D3:7E:F8:10, Freq 2437 MHz, Rate 54 Mb/s, Strength 59 ACNBB: Infra, 00:26:75:22:A6:2F, Freq 2437 MHz, Rate 54 Mb/s, Strength 20 SATKAIVAL: Infra, 00:18:E7:CE:69:A6, Freq 2412 MHz, Rate 54 Mb/s, Strength 69 WPA WPA2 hypeness: Infra, B8:E6:25:24:C3:B1, Freq 2437 MHz, Rate 54 Mb/s, Strength 54 WPA WPA2 CSNetwork: Infra, BC:14:01:58:C5:88, Freq 2437 MHz, Rate 54 Mb/s, Strength 25 WPA WPA2 tharma: Infra, BC:14:01:E2:06:18, Freq 2412 MHz, Rate 54 Mb/s, Strength 15 WPA WPA2 Active2.4: Infra, 10:6F:3F:0E:F3:8E, Freq 2462 MHz, Rate 54 Mb/s, Strength 17 WPA WPA2 ACNBB: Infra, 00:26:75:58:4E:7A, Freq 2437 MHz, Rate 54 Mb/s, Strength 85 KO: Infra, BC:14:01:2E:AF:A8, Freq 2452 MHz, Rate 54 Mb/s, Strength 22 WPA WPA2 FEAR: Infra, 00:18:4D:C0:BC:58, Freq 2462 MHz, Rate 54 Mb/s, Strength 17 WPA Pamela: Infra, BC:14:01:52:F6:F8, Freq 2412 MHz, Rate 54 Mb/s, Strength 24 WPA WPA2 bvrk2: Infra, 78:CD:8E:7B:3C:79, Freq 2457 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 BELL030: Infra, D8:6C:E9:17:AF:09, Freq 2462 MHz, Rate 54 Mb/s, Strength 22 WPA2 Desai: Infra, 00:1D:7E:52:FB:C5, Freq 2437 MHz, Rate 54 Mb/s, Strength 14 WEP Sritharan: Infra, BC:14:01:E5:59:78, Freq 2462 MHz, Rate 54 Mb/s, Strength 19 WPA WPA2 PFN: Infra, 00:13:10:8B:CF:45, Freq 2437 MHz, Rate 54 Mb/s, Strength 19 WEP rfkill list all ubuntu@ubuntu:~$ rfkill list all 0: asus-wlan: Wireless LAN Soft blocked: no Hard blocked: no 1: asus-wimax: WiMAX Soft blocked: yes Hard blocked: no 2: phy0: Wireless LAN Soft blocked: no Hard blocked: no so these are some more results sudo modprobe -r iwlwifi ubuntu@ubuntu:~$ sudo modprobe -r iwlwifi sudo modprobe iwlwifi 11n_disable=1 ubuntu@ubuntu:~$ sudo modprobe iwlwifi 11n_disable=1 echo "blacklist asus_wmi" | sudo tee -a /etcmodprobe.d/blacklist.conf ubuntu@ubuntu:~$ echo "blacklist asus_wmi" | sudo tee -a /etc/modprobe.d/blacklist.conf blacklist asus_wmi echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf ubuntu@ubuntu:~$ echo "options iwlwifi 11n_disable=1" | sudo tee /etc/modprobe.d/iwlwifi.conf options iwlwifi 11n_disable=1 sudo modprobe -rfv iwlwifi ubuntu@ubuntu:~$ sudo modprobe -rfv iwlwifi rmmod /lib/modules/3.5.0-17-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko rmmod /lib/modules/3.5.0-17-generic/kernel/net/mac80211/mac80211.ko rmmod /lib/modules/3.5.0-17-generic/kernel/net/wireless/cfg80211.ko sudo modprobe -v iwlwifi ubuntu@ubuntu:~$ sudo modprobe -v iwlwifi insmod /lib/modules/3.5.0-17-generic/kernel/net/wireless/cfg80211.ko insmod /lib/modules/3.5.0-17-generic/kernel/net/mac80211/mac80211.ko insmod /lib/modules/3.5.0-17-generic/kernel/drivers/net/wireless/iwlwifi/iwlwifi.ko 11n_disable=1

    Read the article

  • Wireless networks are not detected at start up in Ubuntu 12.04

    - by Kanhaiya Mishra
    I have recently (three four days ago) installed Ubuntu 12.04 via windows installer i.e. wubi.exe. After the installation completed wireless and Ethernet were both working well. But after restart wireless networks didn't show up while in the network manager both networking and wireless were enabled. Though sometimes after boot it did show the networks available but very rarely. So I went through various posts regarding wireless issues in Ubuntu 12.04 and tried so many things but ended up in nothing satisfactory. I have Broadcom 4313 LAN network controller and brcmsmac driver. Then relying on some suggestions I tried to install bcm-wl driver but couldn't install due to some error in jockeyl.log file. Then i tried fresh installation of the same driver but still could resolve the startup issues with wireless. Then again I reinstalled Ubuntu inside windows using wubi installer. This time again same problem occurred after boot. But this time I successfully installed wl driver before disturbing file-system files of Ubuntu. But again the same issue. This time I noticed some new things: If I inserted Ethernet/LAN cable before startup then wireless networks are available and of course LAN(wired) networks also work. but if i don't plug in cable before startup and then plug it after startup then it didn't detect Ethernet network neither wireless. So I haven't noticed it before that LAN along with wifi also doesn't work after startup. But if i suspend the session and make it sleep and again login then it worked. I tried it every time that WLAN worked perfectly. But still i m unable to resolve that startup problem. Each time i boot first I have to suspend it once then only networks are available. It irritates me each time i reboot/boot my lappy. So please help out of this problem. Any ideas/help regarding this issue would be highly appreciated. Some of the commands that i run gave following results: # lspci 00:00.0 Host bridge: Intel Corporation Core Processor DRAM Controller (rev 12) 00:02.0 VGA compatible controller: Intel Corporation Core Processor Integrated Graphics Controller (rev 12) 00:16.0 Communication controller: Intel Corporation 5 Series/3400 Series Chipset HECI Controller (rev 06) 00:1a.0 USB controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 06) 00:1b.0 Audio device: Intel Corporation 5 Series/3400 Series Chipset High Definition Audio (rev 06) 00:1c.0 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 1 (rev 06) 00:1c.1 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 2 (rev 06) 00:1c.5 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 6 (rev 06) 00:1d.0 USB controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 06) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev a6) 00:1f.0 ISA bridge: Intel Corporation Mobile 5 Series Chipset LPC Interface Controller (rev 06) 00:1f.2 SATA controller: Intel Corporation 5 Series/3400 Series Chipset 6 port SATA AHCI Controller (rev 06) 00:1f.3 SMBus: Intel Corporation 5 Series/3400 Series Chipset SMBus Controller (rev 06) 00:1f.6 Signal processing controller: Intel Corporation 5 Series/3400 Series Chipset Thermal Subsystem (rev 06) 03:00.0 Network controller: Broadcom Corporation BCM4313 802.11b/g/n Wireless LAN Controller (rev 01) 04:00.0 Ethernet controller: Atheros Communications Inc. AR8152 v1.1 Fast Ethernet (rev c1) ff:00.0 Host bridge: Intel Corporation Core Processor QuickPath Architecture Generic Non-core Registers (rev 02) ff:00.1 Host bridge: Intel Corporation Core Processor QuickPath Architecture System Address Decoder (rev 02) ff:02.0 Host bridge: Intel Corporation Core Processor QPI Link 0 (rev 02) ff:02.1 Host bridge: Intel Corporation Core Processor QPI Physical 0 (rev 02) ff:02.2 Host bridge: Intel Corporation Core Processor Reserved (rev 02) ff:02.3 Host bridge: Intel Corporation Core Processor Reserved (rev 02) # sudo lshw -C network *-network description: Wireless interface product: BCM4313 802.11b/g/n Wireless LAN Controller vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: eth1 version: 01 serial: 70:f1:a1:49:b6:ab width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=5.100.82.38 ip=192.168.1.7 latency=0 multicast=yes wireless=IEEE 802.11 resources: irq:17 memory:f0500000-f0503fff *-network description: Ethernet interface product: AR8152 v1.1 Fast Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c1 serial: b8:ac:6f:6b:f7:4a capacity: 100Mbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI firmware=N/A latency=0 link=no multicast=yes port=twisted pair resources: irq:44 memory:f0400000-f043ffff ioport:2000(size=128) # lsmod | grep wl wl 2568210 0 lib80211 14381 2 lib80211_crypt_tkip,wl # sudo iwlist eth1 scanning eth1 Scan completed : Cell 01 - Address: 30:46:9A:85:DA:9A ESSID:"BH DASHIR 2" Mode:Managed Frequency:2.462 GHz (Channel 11) Quality:4/5 Signal level:-60 dBm Noise level:-98 dBm IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : CCMP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK IE: Unknown: DD7F0050F204104A00011010440001021041000100103B000103104700109AFE7D908F8E2D381860668BA2E8D8771021000D4E4554474541522C20496E632E10230009574752363134763130102400095747523631347631301042000538333235381054000800060050F204000110110009574752363134763130100800020084 Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s 24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s 12 Mb/s; 48 Mb/s Cell 02 - Address: C0:3F:0E:EB:45:14 ESSID:"BH DASHIR 3" Mode:Managed Frequency:2.462 GHz (Channel 11) Quality:2/5 Signal level:-71 dBm Noise level:-98 dBm IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : CCMP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK IE: Unknown: DD7F0050F204104A00011010440001021041000100103B00010310470010F3C9BBE499D140540F530E7EBEDE2F671021000D4E4554474541522C20496E632E10230009574752363134763130102400095747523631347631301042000538333235381054000800060050F204000110110009574752363134763130100800020084 Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s 24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s 12 Mb/s; 48 Mb/s Cell 03 - Address: A0:21:B7:A8:2F:C0 ESSID:"BH DASHIR 4" Mode:Managed Frequency:2.422 GHz (Channel 3) Quality:1/5 Signal level:-86 dBm Noise level:-98 dBm IE: IEEE 802.11i/WPA2 Version 1 Group Cipher : CCMP Pairwise Ciphers (1) : CCMP Authentication Suites (1) : PSK IE: Unknown: DD8B0050F204104A0001101044000102103B0001031047001000000000000010000000A021B7A82FC01021000D4E6574676561722C20496E632E10230009574E523130303076321024000456324831104200046E6F6E651054000800060050F20400011011001B574E5231303030763228576972656C6573732041502D322E344729100800020086103C000103 Encryption key:on Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 6 Mb/s 9 Mb/s; 12 Mb/s; 18 Mb/s; 24 Mb/s; 36 Mb/s 48 Mb/s; 54 Mb/s

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • SQL SERVER – Guest Post – Jonathan Kehayias – Wait Type – Day 16 of 28

    - by pinaldave
    Jonathan Kehayias (Blog | Twitter) is a MCITP Database Administrator and Developer, who got started in SQL Server in 2004 as a database developer and report writer in the natural gas industry. After spending two and a half years working in TSQL, in late 2006, he transitioned to the role of SQL Database Administrator. His primary passion is performance tuning, where he frequently rewrites queries for better performance and performs in depth analysis of index implementation and usage. Jonathan blogs regularly on SQLBlog, and was a coauthor of Professional SQL Server 2008 Internals and Troubleshooting. On a personal note, I think Jonathan is extremely positive person. In every conversation with him I have found that he is always eager to help and encourage. Every time he finds something needs to be approved, he has contacted me without hesitation and guided me to improve, change and learn. During all the time, he has not lost his focus to help larger community. I am honored that he has accepted to provide his views on complex subject of Wait Types and Queues. Currently I am reading his series on Extended Events. Here is the guest blog post by Jonathan: SQL Server troubleshooting is all about correlating related pieces of information together to indentify where exactly the root cause of a problem lies. In my daily work as a DBA, I generally get phone calls like, “So and so application is slow, what’s wrong with the SQL Server.” One of the funny things about the letters DBA is that they go so well with Default Blame Acceptor, and I really wish that I knew exactly who the first person was that pointed that out to me, because it really fits at times. A lot of times when I get this call, the problem isn’t related to SQL Server at all, but every now and then in my initial quick checks, something pops up that makes me start looking at things further. The SQL Server is slow, we see a number of tasks waiting on ASYNC_IO_COMPLETION, IO_COMPLETION, or PAGEIOLATCH_* waits in sys.dm_exec_requests and sys.dm_exec_waiting_tasks. These are also some of the highest wait types in sys.dm_os_wait_stats for the server, so it would appear that we have a disk I/O bottleneck on the machine. A quick check of sys.dm_io_virtual_file_stats() and tempdb shows a high write stall rate, while our user databases show high read stall rates on the data files. A quick check of some performance counters and Page Life Expectancy on the server is bouncing up and down in the 50-150 range, the Free Page counter consistently hits zero, and the Free List Stalls/sec counter keeps jumping over 10, but Buffer Cache Hit Ratio is 98-99%. Where exactly is the problem? In this case, which happens to be based on a real scenario I faced a few years back, the problem may not be a disk bottleneck at all; it may very well be a memory pressure issue on the server. A quick check of the system spec’s and it is a dual duo core server with 8GB RAM running SQL Server 2005 SP1 x64 on Windows Server 2003 R2 x64. Max Server memory is configured at 6GB and we think that this should be enough to handle the workload; or is it? This is a unique scenario because there are a couple of things happening inside of this system, and they all relate to what the root cause of the performance problem is on the system. If we were to query sys.dm_exec_query_stats for the TOP 10 queries, by max_physical_reads, max_logical_reads, and max_worker_time, we may be able to find some queries that were using excessive I/O and possibly CPU against the system in their worst single execution. We can also CROSS APPLY to sys.dm_exec_sql_text() and see the statement text, and also CROSS APPLY sys.dm_exec_query_plan() to get the execution plan stored in cache. Ok, quick check, the plans are pretty big, I see some large index seeks, that estimate 2.8GB of data movement between operators, but everything looks like it is optimized the best it can be. Nothing really stands out in the code, and the indexing looks correct, and I should have enough memory to handle this in cache, so it must be a disk I/O problem right? Not exactly! If we were to look at how much memory the plan cache is taking by querying sys.dm_os_memory_clerks for the CACHESTORE_SQLCP and CACHESTORE_OBJCP clerks we might be surprised at what we find. In SQL Server 2005 RTM and SP1, the plan cache was allowed to take up to 75% of the memory under 8GB. I’ll give you a second to go back and read that again. Yes, you read it correctly, it says 75% of the memory under 8GB, but you don’t have to take my word for it, you can validate this by reading Changes in Caching Behavior between SQL Server 2000, SQL Server 2005 RTM and SQL Server 2005 SP2. In this scenario the application uses an entirely adhoc workload against SQL Server and this leads to plan cache bloat, and up to 4.5GB of our 6GB of memory for SQL can be consumed by the plan cache in SQL Server 2005 SP1. This in turn reduces the size of the buffer cache to just 1.5GB, causing our 2.8GB of data movement in this expensive plan to cause complete flushing of the buffer cache, not just once initially, but then another time during the queries execution, resulting in excessive physical I/O from disk. Keep in mind that this is not the only query executing at the time this occurs. Remember the output of sys.dm_io_virtual_file_stats() showed high read stalls on the data files for our user databases versus higher write stalls for tempdb? The memory pressure is also forcing heavier use of tempdb to handle sorting and hashing in the environment as well. The real clue here is the Memory counters for the instance; Page Life Expectancy, Free List Pages, and Free List Stalls/sec. The fact that Page Life Expectancy is fluctuating between 50 and 150 constantly is a sign that the buffer cache is experiencing constant churn of data, once every minute to two and a half minutes. If you add to the Page Life Expectancy counter, the consistent bottoming out of Free List Pages along with Free List Stalls/sec consistently spiking over 10, and you have the perfect memory pressure scenario. All of sudden it may not be that our disk subsystem is the problem, but is instead an innocent bystander and victim. Side Note: The Page Life Expectancy counter dropping briefly and then returning to normal operating values intermittently is not necessarily a sign that the server is under memory pressure. The Books Online and a number of other references will tell you that this counter should remain on average above 300 which is the time in seconds a page will remain in cache before being flushed or aged out. This number, which equates to just five minutes, is incredibly low for modern systems and most published documents pre-date the predominance of 64 bit computing and easy availability to larger amounts of memory in SQL Servers. As food for thought, consider that my personal laptop has more memory in it than most SQL Servers did at the time those numbers were posted. I would argue that today, a system churning the buffer cache every five minutes is in need of some serious tuning or a hardware upgrade. Back to our problem and its investigation: There are two things really wrong with this server; first the plan cache is excessively consuming memory and bloated in size and we need to look at that and second we need to evaluate upgrading the memory to accommodate the workload being performed. In the case of the server I was working on there were a lot of single use plans found in sys.dm_exec_cached_plans (where usecounts=1). Single use plans waste space in the plan cache, especially when they are adhoc plans for statements that had concatenated filter criteria that is not likely to reoccur with any frequency.  SQL Server 2005 doesn’t natively have a way to evict a single plan from cache like SQL Server 2008 does, but MVP Kalen Delaney, showed a hack to evict a single plan by creating a plan guide for the statement and then dropping that plan guide in her blog post Geek City: Clearing a Single Plan from Cache. We could put that hack in place in a job to automate cleaning out all the single use plans periodically, minimizing the size of the plan cache, but a better solution would be to fix the application so that it uses proper parameterized calls to the database. You didn’t write the app, and you can’t change its design? Ok, well you could try to force parameterization to occur by creating and keeping plan guides in place, or we can try forcing parameterization at the database level by using ALTER DATABASE <dbname> SET PARAMETERIZATION FORCED and that might help. If neither of these help, we could periodically dump the plan cache for that database, as discussed as being a problem in Kalen’s blog post referenced above; not an ideal scenario. The other option is to increase the memory on the server to 16GB or 32GB, if the hardware allows it, which will increase the size of the plan cache as well as the buffer cache. In SQL Server 2005 SP1, on a system with 16GB of memory, if we set max server memory to 14GB the plan cache could use at most 9GB  [(8GB*.75)+(6GB*.5)=(6+3)=9GB], leaving 5GB for the buffer cache.  If we went to 32GB of memory and set max server memory to 28GB, the plan cache could use at most 16GB [(8*.75)+(20*.5)=(6+10)=16GB], leaving 12GB for the buffer cache. Thankfully we have SQL Server 2005 Service Pack 2, 3, and 4 these days which include the changes in plan cache sizing discussed in the Changes to Caching Behavior between SQL Server 2000, SQL Server 2005 RTM and SQL Server 2005 SP2 blog post. In real life, when I was troubleshooting this problem, I spent a week trying to chase down the cause of the disk I/O bottleneck with our Server Admin and SAN Admin, and there wasn’t much that could be done immediately there, so I finally asked if we could increase the memory on the server to 16GB, which did fix the problem. It wasn’t until I had this same problem occur on another system that I actually figured out how to really troubleshoot this down to the root cause.  I couldn’t believe the size of the plan cache on the server with 16GB of memory when I actually learned about this and went back to look at it. SQL Server is constantly telling a story to anyone that will listen. As the DBA, you have to sit back and listen to all that it’s telling you and then evaluate the big picture and how all the data you can gather from SQL about performance relate to each other. One of the greatest tools out there is actually a free in the form of Diagnostic Scripts for SQL Server 2005 and 2008, created by MVP Glenn Alan Berry. Glenn’s scripts collect a majority of the information that SQL has to offer for rapid troubleshooting of problems, and he includes a lot of notes about what the outputs of each individual query might be telling you. When I read Pinal’s blog post SQL SERVER – ASYNC_IO_COMPLETION – Wait Type – Day 11 of 28, I noticed that he referenced Checking Memory Related Performance Counters in his post, but there was no real explanation about why checking memory counters is so important when looking at an I/O related wait type. I thought I’d chat with him briefly on Google Talk/Twitter DM and point this out, and offer a couple of other points I noted, so that he could add the information to his blog post if he found it useful.  Instead he asked that I write a guest blog for this. I am honored to be a guest blogger, and to be able to share this kind of information with the community. The information contained in this blog post is a glimpse at how I do troubleshooting almost every day of the week in my own environment. SQL Server provides us with a lot of information about how it is running, and where it may be having problems, it is up to us to play detective and find out how all that information comes together to tell us what’s really the problem. This blog post is written by Jonathan Kehayias (Blog | Twitter). Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: MVP, Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • CodePlex Daily Summary for Wednesday, January 12, 2011

    CodePlex Daily Summary for Wednesday, January 12, 2011Popular ReleasesGoogle URL Shortener API for .NET: Google URL Shortener API v1: According follow specification: http://code.google.com/apis/urlshortener/v1/reference.htmljGestures: a jQuery plugin for gesture events: 0.81: added event substitution for IE updated index.htmlStyleCop for ReSharper: StyleCop for ReSharper 5.1.14986.000: A considerable amount of work has gone into this release: Features: Huge focus on performance around the violation scanning subsystem: - caching added to reduce IO operations around reading and merging of settings files - caching added to reduce creation of expensive objects Users should notice condsiderable perf boost and a decrease in memory usage. Bug Fixes: - StyleCop's new ObjectBasedEnvironment object does not resolve the StyleCop installation path, thus it does not return the ...SQL Monitor - tracking sql server activities: SQL Monitor 3.1 beta 1: 1. support alert message template 2. dynamic toolbar commands depending on functionality 3. fixed some bugs 4. refactored part of the code, now more stable and more clean upFacebook C# SDK: 4.2.1: - Authentication bug fixes - Updated Json.Net to version 4.0.0 - BREAKING CHANGE: Removed cookieSupport config setting, now automatic. This download is also availible on NuGet: Facebook FacebookWeb FacebookWebMvcUmbraco CMS: Umbraco 4.6: The Umbraco 4.6 (codename JUNO) release contains many new features focusing on an improved installation experience, a number of robust developer features, and contains nearly 200 bug fixes since the 4.5.2 release. Improved installer experience Updated Starter Kits (Simple, Blog, Personal, Business) Beautiful, free, customizable skins included Skinning engine and Skin customization (see Skinning Documentation Kit) Default dashboards on install with hide option Updated Login timeout ...ArcGIS Editor for OpenStreetMap: ArcGIS Editor for OpenStreetMap 1.1 beta2: This is the beta2 release for the ArcGIS Editor for OpenStreetMap version 1.1. Changes from version 1.0: Multi-part geometries are now supported. Homogeneous relations (consisting of only lines or only polygons) are converted into the appropriate multi-part geometry. Mixed relations and super relations are maintained and tracked in a stand-alone relation table. The underlying editing logic has changed. As opposed to tracking the editing changes upon "Save edit" or "Stop edit" the changes a...Hawkeye - The .Net Runtime Object Editor: Hawkeye 1.2.5: In the case you are running an x86 Windows and you installed Release 1.2.4, you should consider upgrading to this release (1.2.5) as it appears Hawkeye is broken on x86 OS. I apologize for the inconvenience, but it appears Hawkeye 1.2.4 (and probably previous versions) doesn't run on x86 Windows (See issue http://hawkeye.codeplex.com/workitem/7791). This maintenance release fixes this broken behavior. This release comes in two flavors: Hawkeye.125.N2 is the standard .NET 2 build, was compile...Phalanger - The PHP Language Compiler for the .NET Framework: 2.0 (January 2011): Another release build for daily use; it contains many new features, enhanced compatibility with latest PHP opensource applications and several issue fixes. To improve the performance of your application using MySQL, please use Managed MySQL Extension for Phalanger. Changes made within this release include following: New features available only in Phalanger. Full support of Multi-Script-Assemblies was implemented; you can build your application into several DLLs now. Deploy them separately t...EnhSim: EnhSim 2.3.0: 2.3.0This release supports WoW patch 4.03a at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 - Changed how flame shoc...AutoLoL: AutoLoL v1.5.3: A message will be displayed when there's an update available Shows a list of recent mastery files in the Editor Tab (requested by quite a few people) Updater: Update information is now scrollable Added a buton to launch AutoLoL after updating is finished Updated the UI to match that of AutoLoL Fix: Detects and resolves 'Read Only' state on Version.xmlTweetSharp: TweetSharp v2.0.0.0 - Preview 7: Documentation for this release may be found at http://tweetsharp.codeplex.com/wikipage?title=UserGuide&referringTitle=Documentation. Note: This code is currently preview quality. Preview 7 ChangesFixes the regression issue in OAuth from Preview 6 Preview 6 ChangesMaintenance release with user reported fixes Preview 5 ChangesMaintenance release with user reported fixes Third Party Library VersionsHammock v1.0.6: http://hammock.codeplex.com Json.NET 3.5 Release 8: http://json.codeplex.comExtended WPF Toolkit: Extended WPF Toolkit - 1.3.0: What's in the 1.3.0 Release?BusyIndicator ButtonSpinner ChildWindow ColorPicker - Updated (Breaking Changes) DateTimeUpDown - New Control Magnifier - New Control MaskedTextBox - New Control MessageBox NumericUpDown RichTextBox RichTextBoxFormatBar - Updated .NET 3.5 binaries and SourcePlease note: The Extended WPF Toolkit 3.5 is dependent on .NET Framework 3.5 and the WPFToolkit. You must install .NET Framework 3.5 and the WPFToolkit in order to use any features in the To...sNPCedit: sNPCedit v0.9d: added elementclient coordinate catcher to catch coordinates select a target (ingame) i.e. your char, npc or monster than click the button and coordinates+direction will be transfered to the selected row in the table corrected labels from Rot to Direction (because it is a vector)Ionics Isapi Rewrite Filter: 2.1 latest stable: V2.1 is stable, and is in maintenance mode. This is v2.1.1.25. It is a bug-fix release. There are no new features. 28629 29172 28722 27626 28074 29164 27659 27900 many documentation updates and fixes proper x64 build environment. This release includes x64 binaries in zip form, but no x64 MSI file. You'll have to manually install x64 servers, following the instructions in the documentation.VivoSocial: VivoSocial 7.4.1: New release with bug fixes and updates for performance.UltimateJB: Ultimate JB 2.03 PL3 KAKAROTO + HERMES + Spoof 3.5: Voici une version attendu avec impatience pour beaucoup : - La version PL3 KAKAROTO intégre ses dernières modification et intégre maintenant le firmware 2.43 !!! Conclusion : - UltimateJB203PSXXXDEFAULTKAKAROTO=> Pas de spoof mais disponible pour les PS3 suivantes : 3.41_kiosk 3.41 3.40 3.30 3.21 3.15 3.10 3.01 2.76 2.70 2.60 2.53 2.43 - UltimateJB203PS341_HERMES => Pas de spoof mais version hermes 4b - UltimateJB203PS341HERMESSPOOF35X => hermes 4b + spoof des firmwares 3.50 et 3.55 au li....NET Extensions - Extension Methods Library for C# and VB.NET: Release 2011.03: Added lot's of new extensions and new projects for MVC and Entity Framework. object.FindTypeByRecursion Int32.InRange String.RemoveAllSpecialCharacters String.IsEmptyOrWhiteSpace String.IsNotEmptyOrWhiteSpace String.IfEmptyOrWhiteSpace String.ToUpperFirstLetter String.GetBytes String.ToTitleCase String.ToPlural DateTime.GetDaysInYear DateTime.GetPeriodOfDay IEnumberable.RemoveAll IEnumberable.Distinct ICollection.RemoveAll IList.Join IList.Match IList.Cast Array.IsNullOrEmpty Array.W...EFMVC - ASP.NET MVC 3 and EF Code First: EFMVC 0.5- ASP.NET MVC 3 and EF Code First: Demo web app ASP.NET MVC 3, Razor and EF Code FirstVidCoder: 0.8.0: Added x64 version. Made the audio output preview more detailed and accurate. If the chosen encoder or mixdown is incompatible with the source, the fallback that will be used is displayed. Added "Auto" to the audio mixdown choices. Reworked non-anamorphic size calculation to work better with non-standard pixel aspect ratios and cropping. Reworked Custom anamorphic to be more intuitive and allow display width to be set automatically (Thanks, Statick). Allowing higher bitrates for 6-ch...New ProjectsASP.NET MVC Scaffolding: Scaffolding package for ASP.NETAstor: OData Explorer: OData ExplorerBasic Users Community: A simple user community with threads and posts.Bukkit Server Manager: BSM makes server managing easy we have multiple type and database support including: MySql, SQLite types: VPS, Dedicated, Home PCCh4CP: Chamber 4 control programDotNetNuke Telerik Library: A set of Telerik wrappers for DotNetNuke module developers to utilize which aren't yet included as of 5.6.1. Eventually this will be offloaded to the core. Enjoy Life: our fypFolderSizeChecker: It suppose to check the size of big folders in specific partition and help user to find the most disk usage location. (It's simple project so please don't expect big and complex algorithms)HomeTeamOnline: This is project of HomeTeamOnlineICSWorld: This is project of ICSWorldIMAP Client for .NET 4.0 using LumiSoft: Develop an IMAP client using this sample project based on the LumiSoft .NET open source project. This project compiles in .NET 4.0 and demonstrates how to pull email using IMAP. The purpose of the project is for email auto processing.MUIExt (Multilingual User Interface Extender): MUIExt makes it easier for SharePoint 2010 users to create multilingual sites. You'll no longer have to live with the MUI limitations or have to manage variations. It's developed in csharp.Phoenix Service Bus: The goal of this pServiceBus is to provide an API and Service Components that would make implementing an ESB Infrastructure in your environment. It's developed in C#, and also have API written for Javascript Clients PhotoSnapper: Home project just to rename photos or .mov files in a folder starting from from a user defined number.redditfier: A windows application to notify redditors with new posts.SharePoint Field Updater: Automatically update sub fields according to a lookup field. For example: Updating field "Contact" will automatically put "Contact Email" and "Address" in the appropriate text fields.TXLCMS: emptyUmbraco Spark engine: Spark macro engine for UmbracoUrdu Translation: Urdu Translation Project WFTestDesign: BizUnit WF is based on BizUnit solution that allows user to define a test using WorkFlow UI, custom activities designed in this extension and general Workflow activities.It's enable also to use breakpoint in test. It's developed in C#.WPF Date Range Slider: A WPF Date Range Slider user control written with C# to allow your users to choose a range of dates using a double thumbed slider control.WPMind Framework for WP7: This project is used to provide some Windows Phone 7 controls for Windows Phone 7 Silverlight developer. Please join us if you are interested in this project.

    Read the article

  • NEC uPD720200 USB 3.0 not working on Ubuntu 12.04

    - by Jagged
    I've recently installed Ubuntu 12.04 64-bit on a HP Envy 15 1104tx. Most stuff appears to be working fine with the exception of the two USB3 ports (USB2 port works fine). I've read a lot of articles but so far have not been able to find a solution. I've tried adding 'pci=nomsi' to '/etc/default/grub' but this made no difference. Some articles suggest booting into Windows and upgrading the firmware on the uPD720200. Any body had any experience of this? Is there a way I can checked the firmware version of the NEC uPD720200 in Linux to see if there is an update available? Any help appreciated. uname -a: Linux HP-ENVY-15-1104tx 3.2.0-26-generic #41-Ubuntu SMP Thu Jun 14 17:49:24 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux lshw: hp-envy-15-1104tx description: Notebook product: HP ENVY 15 Notebook PC (WF591PA#ABG) vendor: Hewlett-Packard version: 0492110000241910001420000 serial: CNF0301C79 width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: boot=normal chassis=notebook family=103C_5335KV sku=WF591PA#ABG uuid=434E4630-3330-3143-3739-60EB6906688F *-core description: Motherboard product: 1522 vendor: Hewlett-Packard physical id: 0 version: 36.35 serial: CNF0301C79 slot: Base Board Chassis Location *-firmware description: BIOS vendor: Hewlett-Packard physical id: 0 version: F.2B date: 10/12/2010 size: 1MiB capacity: 1472KiB capabilities: pci upgrade shadowing cdboot bootselect edd int13floppynec int13floppytoshiba int13floppy360 int13floppy1200 int13floppy720 int13floppy2880 int9keyboard int10video acpi usb biosbootspecification *-memory description: System Memory physical id: 13 slot: System board or motherboard size: 16GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 0 serial: E13C4316 slot: Bottom size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 1 serial: E03C3E16 slot: Bottom size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 2 serial: 672279CC slot: On Board size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:3 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 3 serial: 652286CC slot: On Board size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-cpu description: CPU product: Intel(R) Core(TM) i7 CPU Q 820 @ 1.73GHz vendor: Intel Corp. physical id: 1d bus info: cpu@0 version: Intel(R) Core(TM) i7 CPU Q 820 @ 1.73GHz slot: CPU size: 1199MHz capacity: 1199MHz width: 64 bits clock: 1066MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm ida tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=4 threads=8 *-cache:0 description: L3 cache physical id: 1e slot: L3 Cache size: 8MiB capacity: 8MiB capabilities: synchronous internal write-through unified *-cache:1 description: L2 cache physical id: 20 slot: L2 Cache size: 256KiB capacity: 256KiB capabilities: synchronous internal write-through unified *-cache:2 description: L1 cache physical id: 21 slot: L1 Cache size: 32KiB capacity: 32KiB capabilities: synchronous internal write-through instruction *-cache description: L1 cache physical id: 1f slot: L1 Cache size: 32KiB capacity: 32KiB capabilities: synchronous internal write-through data *-pci:0 description: Host bridge product: Core Processor DMI vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 11 width: 32 bits clock: 33MHz *-pci:0 description: PCI bridge product: Core Processor PCI Express Root Port 1 vendor: Intel Corporation physical id: 3 bus info: pci@0000:00:03.0 version: 11 width: 32 bits clock: 33MHz capabilities: pci msi pciexpress pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 ioport:4000(size=4096) memory:d4100000-d41fffff ioport:c0000000(size=268435456) *-display description: VGA compatible controller product: Broadway PRO [Mobility Radeon HD 5800 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=fglrx_pci latency=0 resources: irq:58 memory:c0000000-cfffffff memory:d4100000-d411ffff ioport:4000(size=256) memory:d4140000-d415ffff *-multimedia description: Audio device product: Juniper HDMI Audio [Radeon HD 5700 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0.1 bus info: pci@0000:01:00.1 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:56 memory:d4120000-d4123fff *-pci:1 description: PCI bridge product: Core Processor PCI Express Root Port 3 vendor: Intel Corporation physical id: 5 bus info: pci@0000:00:05.0 version: 11 width: 32 bits clock: 33MHz capabilities: pci msi pciexpress pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 memory:d4000000-d40fffff *-usb description: USB controller product: uPD720200 USB 3.0 Host Controller vendor: NEC Corporation physical id: 0 bus info: pci@0000:02:00.0 version: 03 width: 64 bits clock: 33MHz capabilities: pm msi msix pciexpress xhci bus_master cap_list configuration: driver=xhci_hcd latency=0 resources: irq:16 memory:d4000000-d4001fff *-generic:0 UNCLAIMED description: System peripheral product: Core Processor System Management Registers vendor: Intel Corporation physical id: 8 bus info: pci@0000:00:08.0 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:1 UNCLAIMED description: System peripheral product: Core Processor Semaphore and Scratchpad Registers vendor: Intel Corporation physical id: 8.1 bus info: pci@0000:00:08.1 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:2 UNCLAIMED description: System peripheral product: Core Processor System Control and Status Registers vendor: Intel Corporation physical id: 8.2 bus info: pci@0000:00:08.2 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:3 UNCLAIMED description: System peripheral product: Core Processor Miscellaneous Registers vendor: Intel Corporation physical id: 8.3 bus info: pci@0000:00:08.3 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-generic:4 UNCLAIMED description: System peripheral product: Core Processor QPI Link vendor: Intel Corporation physical id: 10 bus info: pci@0000:00:10.0 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-generic:5 UNCLAIMED description: System peripheral product: Core Processor QPI Routing and Protocol Registers vendor: Intel Corporation physical id: 10.1 bus info: pci@0000:00:10.1 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-multimedia description: Audio device product: 5 Series/3400 Series Chipset High Definition Audio vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:55 memory:d4200000-d4203fff *-pci:2 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 05 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 ioport:3000(size=4096) memory:d3000000-d3ffffff ioport:d0000000(size=16777216) *-network description: Wireless interface product: Centrino Advanced-N 6200 vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 35 serial: 00:27:10:40:e4:68 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.2.0-26-generic firmware=9.221.4.1 build 25532 latency=0 link=no multicast=yes wireless=IEEE 802.11abgn resources: irq:54 memory:d3000000-d3001fff *-pci:3 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 05 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 ioport:2000(size=4096) memory:d2000000-d2ffffff ioport:d1000000(size=16777216) *-network description: Ethernet interface product: AR8131 Gigabit Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c0 serial: 60:eb:69:06:68:8f size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI duplex=full firmware=N/A ip=10.161.0.147 latency=0 link=yes multicast=yes port=twisted pair speed=1Gbit/s resources: irq:57 memory:d2000000-d203ffff ioport:2000(size=128) *-usb description: USB controller product: 5 Series/3400 Series Chipset USB2 Enhanced Host Controller vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:20 memory:d4205800-d4205bff *-pci:4 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: a5 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list *-isa description: ISA bridge product: Mobile 5 Series Chipset LPC Interface Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-storage description: RAID bus controller product: 82801 Mobile SATA Controller [RAID mode] vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 version: 05 width: 32 bits clock: 66MHz capabilities: storage msi pm bus_master cap_list emulated configuration: driver=ahci latency=0 resources: irq:45 ioport:5048(size=8) ioport:5054(size=4) ioport:5040(size=8) ioport:5050(size=4) ioport:5020(size=32) memory:d4205000-d42057ff *-disk description: ATA Disk product: OCZ-VERTEX3 physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 2.15 serial: OCZ-0350P6H316X5KUQE size: 223GiB (240GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000592dd *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: e741f18c-cfc5-4bce-b1e7-f80e517a3a22 size: 207GiB capacity: 207GiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2012-06-15 06:49:27 filesystem=ext4 lastmountpoint=/ modified=2012-06-14 21:23:42 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,user_xattr,barrier=1,data=ordered mounted=2012-07-10 16:18:20 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 15GiB capacity: 15GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 15GiB capabilities: nofs *-serial UNCLAIMED description: SMBus product: 5 Series/3400 Series Chipset SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:d4205c00-d4205cff ioport:5000(size=32) *-pci:1 description: Host bridge product: Core Processor QuickPath Architecture Generic Non-Core Registers vendor: Intel Corporation physical id: 101 bus info: pci@0000:ff:00.0 version: 04 width: 32 bits clock: 33MHz *-pci:2 description: Host bridge product: Core Processor QuickPath Architecture System Address Decoder vendor: Intel Corporation physical id: 102 bus info: pci@0000:ff:00.1 version: 04 width: 32 bits clock: 33MHz *-pci:3 description: Host bridge product: Core Processor QPI Link 0 vendor: Intel Corporation physical id: 103 bus info: pci@0000:ff:02.0 version: 04 width: 32 bits clock: 33MHz *-pci:4 description: Host bridge product: Core Processor QPI Physical 0 vendor: Intel Corporation physical id: 104 bus info: pci@0000:ff:02.1 version: 04 width: 32 bits clock: 33MHz *-pci:5 description: Host bridge product: Core Processor Integrated Memory Controller vendor: Intel Corporation physical id: 105 bus info: pci@0000:ff:03.0 version: 04 width: 32 bits clock: 33MHz *-pci:6 description: Host bridge product: Core Processor Integrated Memory Controller Target Address Decoder vendor: Intel Corporation physical id: 106 bus info: pci@0000:ff:03.1 version: 04 width: 32 bits clock: 33MHz *-pci:7 description: Host bridge product: Core Processor Integrated Memory Controller Test Registers vendor: Intel Corporation physical id: 107 bus info: pci@0000:ff:03.4 version: 04 width: 32 bits clock: 33MHz *-pci:8 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Control Registers vendor: Intel Corporation physical id: 108 bus info: pci@0000:ff:04.0 version: 04 width: 32 bits clock: 33MHz *-pci:9 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Address Registers vendor: Intel Corporation physical id: 109 bus info: pci@0000:ff:04.1 version: 04 width: 32 bits clock: 33MHz *-pci:10 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Rank Registers vendor: Intel Corporation physical id: 10a bus info: pci@0000:ff:04.2 version: 04 width: 32 bits clock: 33MHz *-pci:11 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Thermal Control Registers vendor: Intel Corporation physical id: 10b bus info: pci@0000:ff:04.3 version: 04 width: 32 bits clock: 33MHz *-pci:12 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Control Registers vendor: Intel Corporation physical id: 10c bus info: pci@0000:ff:05.0 version: 04 width: 32 bits clock: 33MHz *-pci:13 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Address Registers vendor: Intel Corporation physical id: 10d bus info: pci@0000:ff:05.1 version: 04 width: 32 bits clock: 33MHz *-pci:14 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Rank Registers vendor: Intel Corporation physical id: 10e bus info: pci@0000:ff:05.2 version: 04 width: 32 bits clock: 33MHz *-pci:15 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Thermal Control Registers vendor: Intel Corporation physical id: 10f bus info: pci@0000:ff:05.3 version: 04 width: 32 bits clock: 33MHz *-battery description: Lithium Ion Battery product: NK06053 vendor: SMP-ATL24 physical id: 1 slot: Primary capacity: 4800mWh configuration: voltage=11.1V lspci: 02:00.0 USB controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) (prog-if 30 [XHCI]) Subsystem: Hewlett-Packard Company Device 1522 Flags: bus master, fast devsel, latency 0, IRQ 16 Memory at d4000000 (64-bit, non-prefetchable) [size=8K] Capabilities: [50] Power Management version 3 Capabilities: [70] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [90] MSI-X: Enable+ Count=8 Masked- Capabilities: [a0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [140] Device Serial Number ff-ff-ff-ff-ff-ff-ff-ff Capabilities: [150] Latency Tolerance Reporting Kernel driver in use: xhci_hcd lsusb (with thumb drive plugged into USB3 port): Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 002: ID 8087:0020 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 003: ID 5986:01d0 Acer, Inc Bus 001 Device 004: ID 03f0:231d Hewlett-Packard

    Read the article

< Previous Page | 13 14 15 16 17 18 19 20  | Next Page >