Search Results

Search found 92562 results on 3703 pages for 'object file'.

Page 201/3703 | < Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >

  • Copy a Doctrine object with all relations

    - by elManolo
    I want to copy a record with all his relations. I'm trying with: $o = Doctrine::getTable('Table')->Find(x); $copy = $object->copy(); $relations = $o->getRelations(); foreach ($relations as $name => $relation) { $copy->$relation = $object->$relation->copy(); } $copy->save(); This code doesn't works, but I think it's on the way.

    Read the article

  • Convert any object to pretty HTML in java

    - by ripper234
    How can I convert a given object (in a generic way with reflection) to pretty printable HTML? What ready made library do you recommend that does this? I need support for simple nested objects (as long as they don't create loops in the object graph). I tried to convert it to JSON, but DefaultPrettyPrinter is not HTML friendly.

    Read the article

  • How to verify object creation in Django ?

    - by Martin
    So.. this never crossed my head before but now I just can't figure out how to do that !! I want to verify that the object I created was really created, and return True or False according to that : obj = object(name='plop') try: obj.save() return True except ???: return False Any idea ? Cheers, -M

    Read the article

  • Same object in different nib files?

    - by Michael
    View1 object, which is UIViewController subclass is the same object as File's Owner of View1 nib. So I should manually set the class in both places, one in MainWindow and another in View1 nib files? This sound artificial to me... Either I'm doing something wrong or there has to be better way.

    Read the article

  • Javascript this points to Window object

    - by terrani
    Hi, I have the following code. I expected to see "archive" object on my firebug console, but I see Window object. Is it normal? var archive = function(){} archive.prototype.action = { test: function(callback){ callback(); }, test2: function(){ console.log(this); } } var oArchive = new archive(); oArchive.action.test(oArchive.action.test2);

    Read the article

  • Define and send a JSON object array

    - by Eric
    I'm looking for a way to define and send a JSON object array. I've figured out how to define a single JSON object, turn it into a string and send it, but what about an array of this type? Probably something simple I'm overlooking... var myColumnSetting = { "ColumnName": name, "ColumnIndex": index } convert it to a string var myJSONText = JSON.stringify(myColumnSetting, false);

    Read the article

  • Redefine Object.defineProperty in Javascript

    - by kwicher
    I would like to learn if it is possible to redefine the "definePropery" function of the Object(.prototype) in a subclass(.prototype) so that the setter not only sets the value of the property but also eg executes an additional method. I have tried something like that: Myclass.prototype.defineProperty = function (obj, prop, meth) { Object.defineProperty.call(this, obj, prop, { get: function () { return obj[prop] }, set: function () { obj[prop] = n; alert("dev") } }) } But id does not work

    Read the article

  • django update object

    - by John
    Hi, How do I run an update and select statement on the same queryset rather than having to do 2 querys, ones to select the object and one to update the object? the sql would be something like update my_table set field_1 = 'some value' where pk_field = some_value Thanks

    Read the article

  • How to set a native object property

    - by theunilife
    ok so im creating a jquery plugin that will allow me to use the new html5 Audio interface and im trying to create an option that is an object that you will be able to set the various listeners but i dont seem to be able to set those options to the listener property of the Audio object.

    Read the article

  • regarding object recycling

    - by ajaycv
    I have a question. What is wrong with regards to the below code: ArrayList tempList2 = new ArrayList(); tempList2 = getXYZ(tempList1, tempList2); //method getXYZ getXYZ(ArrayList tempList1, ArrayList tempList2) { //does some logic and adds objects into tempList2 return tempList2; } The code will get executed but it seems by passing tempList2 to the getXYZ method argument, it is doing object recycling. My question is, Is recycling the tempList2 arraylist object correct?

    Read the article

  • saveOrUpdate(Object) method of Hibernate

    - by Vikram
    when i use saveOrUpdate(Object) method of Hibernate. How can I know that row is updated or new row added into table??? Return type of method saveOrUpdate(Object) is void, so am not able to find out the result after calling this method. kindly help me.

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • No root file system is defined error after installation

    - by LearnCode
    I installed ubuntu through Wubi and once i rebooted I get no root file system defined error. here's the output of the boot_info_script.Could anyone point me out where the error is. Boot Info Script 0.60 from 17 May 2011 ============================= Boot Info Summary: =============================== => Windows is installed in the MBR of /dev/sda. => Windows is installed in the MBR of /dev/sdb. sda1: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /bootmgr /Boot/BCD /Windows/System32/winload.exe /ntldr /ntdetect.com /wubildr /ubuntu/winboot/wubildr /wubildr.mbr /ubuntu/winboot/wubildr.mbr /ubuntu/disks/root.disk /ubuntu/disks/swap.disk sda1/Wubi: _____________________________________________________________________ File system: Boot sector type: Unknown Boot sector info: Mounting failed: mount: unknown filesystem type '' sda2: __________________________________________________________________________ File system: vfat Boot sector type: Unknown Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: /boot.ini /ntldr /NTDETECT.COM sdb1: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 160.0 GB, 160041885696 bytes 240 heads, 63 sectors/track, 20673 cylinders, total 312581808 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 63 301,250,879 301,250,817 7 NTFS / exFAT / HPFS /dev/sda2 301,250,943 312,575,759 11,324,817 c W95 FAT32 (LBA) GUID Partition Table detected, but does not seem to be used. Partition Start Sector End Sector # of Sectors System /dev/sda1 323,465,741,313,502,988275,962,973,585-323,465,465,350,529,402 - /dev/sda2 242,728,591,638,290,720578,721,383,108,845,578335,992,791,470,554,859 - /dev/sda3 1,827,498,311,425,204,2562,091,935,274,843,009,907264,436,963,417,805,652 - /dev/sda4 579,711,218,081,401,3572,006,665,459,744,645,1521,426,954,241,663,243,796 - /dev/sda11 270,286,346,402,038,1183,786,543,326,404,525,9543,516,256,980,002,487,837 - /dev/sda12 4,179,681,002,230,769,6684,179,389,374,010,033,387-291,628,220,736,280 - /dev/sda13 232,556,480,979,456,1311,160,152,593,793,119,235927,596,112,813,663,105 - /dev/sda14 98,342,784,050,266,9183,691,264,578,843,725,1953,592,921,794,793,458,278 - /dev/sda15 2,307,845,219,957,882,4961,850,841,032,955,276,350-457,004,187,002,606,145 - /dev/sda16 512,592,046,878,946,497368,458,231,024,779,444-144,133,815,854,167,052 - /dev/sda17 2,504,135,232,870,384,3923,665,087,872,719,320,8291,160,952,639,848,936,438 - /dev/sda18 3,783,181,605,270,691,304122,034,509,624,708,942-3,661,147,095,645,982,361 - /dev/sda19 3,519,661,520,275,829,5122,376,243,094,723,723,587-1,143,418,425,552,105,924 - /dev/sda20 3,867,920,076,859,0744,494,691,111,933,625,1044,490,823,191,856,766,031 - /dev/sda21 1,500,144,061,909,253,7612,511,182,033,846,676,3401,011,037,971,937,422,580 - /dev/sda22 13,035,625,499,900,0062,360,168,613,941,394,9472,347,132,988,441,494,942 - /dev/sda23 4,228,978,682,068,599,48813,159,423,631,648,263-4,215,819,258,436,951,224 - /dev/sda24 3,695,955,742,872,046,9084,561,928,726,501,845,776865,972,983,629,798,869 - /dev/sda25 1,297,460,286,683,948,0461,444,350,486,339,417,957146,890,199,655,469,912 - /dev/sda26 1,228,858,248,533,131,831 0-1,228,858,248,533,131,830 - /dev/sda121 3,189,184,846,146,487,1461,849,820,258,006,914,852-1,339,364,588,139,572,293 - /dev/sda122 1,226,215,547,991,800,578389,781,518,734,546,300-836,434,029,257,254,277 - /dev/sda123 3,851,660,168,574,583,4654,046,215,657,583,031,556194,555,489,008,448,092 - /dev/sda124 1,197,460,980,174,153,341699,103,965,005,093,246-498,357,015,169,060,094 - Drive: sdb _____________________________________________________________________ Disk /dev/sdb: 750.2 GB, 750153367552 bytes 255 heads, 63 sectors/track, 91200 cylinders, total 1465143296 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sdb1 2,048 1,465,143,295 1,465,141,248 7 NTFS / exFAT / HPFS "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/loop0 iso9660 Ubuntu 11.04 amd64 /dev/loop1 squashfs /dev/sda1 E814B55B14B52E06 ntfs /dev/sda2 01CD-023B vfat HP_RECOVERY /dev/sdb1 7836F22A36F1E8D0 ntfs Elements ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /cdrom iso9660 (ro,noatime) /dev/loop1 /rofs squashfs (ro,noatime) /dev/sdb1 /mnt fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) ================================ sda2/boot.ini: ================================ -------------------------------------------------------------------------------- [boot loader] timeout=0 default=C:\CMDCONS\BOOTSECT.DAT [operating systems] multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional" /fastdetect C:\CMDCONS\BOOTSECT.DAT="Microsoft Windows Recovery Console" /cmdcons -------------------------------------------------------------------------------- ======================== Unknown MBRs/Boot Sectors/etc: ======================== Unknown GPT Partiton Type c104043000e9b9040dff24b580010100 Unknown GPT Partiton Type 46313020746f20737461727420746865 Unknown GPT Partiton Type 65727920706172746974696f6e207761 Unknown GPT Partiton Type 727920706172746974696f6e0d0a0000 Unknown GPT Partiton Type 000f84e5f7668b162404e82804744066 Unknown GPT Partiton Type ce01e8dc038bfe66391624047505e8d9 Unknown GPT Partiton Type 0345086603f0e881030bd2740333d240 Unknown GPT Partiton Type bece01e8db0287fec645041266895508 Unknown GPT Partiton Type 01f60634010175078b363b01e854f5e8 Unknown GPT Partiton Type 313825740ffec03865107408fec03824 Unknown GPT Partiton Type 02f60634014074088bfdbece01e85101 Unknown GPT Partiton Type 263401f9e894f30f858ef4e8e201e8ec Unknown GPT Partiton Type f7e960f35245434f5645525966606633 Unknown GPT Partiton Type 660faf1e00106603dac3668b0e001066 Unknown GPT Partiton Type 8bfd386d04740583c710e2f6c36660c6 Unknown GPT Partiton Type 04ebf132c0b91000f3aac3bf0c04ebf3 Unknown GPT Partiton Type 02662bc1660fb71e0e02662bc366031e Unknown GPT Partiton Type f4b40ebb0700b901003c08751381ff25 Unknown GPT Partiton Type 534f465448494e4b90653f62011b0100 Unknown GPT Partiton Type 0b050900027777772e68702e636f6d00 Unknown GPT Partiton Type d441a0f5030003000ecb744a08bb3746 Unknown GPT Partiton Type f8579a116b4a7aa931cde97a4b9b5c09 Unknown GPT Partiton Type 7229990415b77c0a1970e7e824237a3a Unknown GPT Partiton Type afb6e34d6b4bd8c7c0eada19a9786cc3 Unknown BootLoader on sda1/Wubi 00000000 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 |0000000000000000| * 00000200 Unknown BootLoader on sda2 00000000 e9 a7 00 52 45 43 4f 56 45 52 59 00 02 08 20 00 |...RECOVERY... .| 00000010 02 00 00 00 00 f8 00 00 3f 00 f0 00 7f b9 f4 11 |........?.......| 00000020 8c cd ac 00 1e 2b 00 00 00 00 00 00 02 00 00 00 |.....+..........| 00000030 01 00 06 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 00000040 80 00 29 3b 02 cd 01 20 20 20 20 20 20 20 20 20 |..);... | 00000050 20 20 46 41 54 33 32 20 20 20 8b d0 c1 e2 02 80 | FAT32 ......| 00000060 e6 01 66 c1 e8 07 66 3b 46 f8 74 2a 66 89 46 f8 |..f...f;F.t*f.F.| 00000070 66 03 46 f4 66 0f b6 5e 28 80 e3 0f 74 0f 3a 5e |f.F.f..^(...t.:^| 00000080 10 0f 83 90 00 66 0f af 5e 24 66 03 c3 bb e0 07 |.....f..^$f.....| 00000090 b9 01 00 e8 cf 00 8b da 66 8b 87 00 7e 66 25 ff |........f...~f%.| 000000a0 ff ff 0f 66 3d f8 ff ff 0f c3 33 c9 8e d9 8e c1 |...f=.....3.....| 000000b0 8e d1 66 bc f4 7b 00 00 bd 00 7c 66 0f b6 46 10 |..f..{....|f..F.| 000000c0 66 f7 66 24 66 0f b7 56 0e 66 03 56 1c 66 89 56 |f.f$f..V.f.V.f.V| 000000d0 f4 66 03 c2 66 89 46 fc 66 c7 46 f8 ff ff ff ff |.f..f.F.f.F.....| 000000e0 66 8b 46 2c 66 50 e8 af 00 bb 70 00 b9 01 00 e8 |f.F,fP....p.....| 000000f0 73 00 bf 00 07 b1 0b be a9 7d f3 a6 74 2a 03 f9 |s........}..t*..| 00000100 83 c7 15 81 ff 00 09 72 ec 66 40 4a 75 db 66 58 |[email protected]| 00000110 e8 47 ff 72 cf be b4 7d ac 84 c0 74 09 b4 0e bb |.G.r...}...t....| 00000120 07 00 cd 10 eb f2 cd 19 66 58 ff 75 09 ff 75 0f |........fX.u..u.| 00000130 66 58 bb 00 20 66 83 f8 02 72 da 66 3d f8 ff ff |fX.. f...r.f=...| 00000140 0f 73 d2 66 50 e8 50 00 0f b6 4e 0d e8 16 00 c1 |.s.fP.P...N.....| 00000150 e1 05 03 d9 66 58 53 e8 00 ff 5b 72 d8 8a 56 40 |....fXS...[r..V@| 00000160 ea 00 00 00 20 66 60 66 6a 00 66 50 53 6a 00 66 |.... f`fj.fPSj.f| 00000170 68 10 00 01 00 8b f4 b8 00 42 8a 56 40 cd 13 be |h........B.V@...| 00000180 c7 7d 72 94 67 83 44 24 06 20 66 67 ff 44 24 08 |.}r.g.D$. fg.D$.| 00000190 e2 e3 83 c4 10 66 61 c3 66 48 66 48 66 0f b6 56 |.....fa.fHfHf..V| 000001a0 0d 66 f7 e2 66 03 46 fc c3 4e 54 4c 44 52 20 20 |.f..f.F..NTLDR | 000001b0 20 20 20 20 0d 0a 4e 6f 20 53 79 73 74 65 6d 20 | ..No System | 000001c0 44 69 73 6b 20 6f 72 0d 0a 44 69 73 6b 20 49 2f |Disk or..Disk I/| 000001d0 4f 20 65 72 72 6f 72 0d 0a 50 72 65 73 73 20 61 |O error..Press a| 000001e0 20 6b 65 79 20 74 6f 20 72 65 73 74 61 72 74 0d | key to restart.| 000001f0 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa |..............U.| 00000200 =============================== StdErr Messages: =============================== umount: /isodevice: device is busy. (In some cases useful info about processes that use the device is found by lsof(8) or fuser(1))

    Read the article

< Previous Page | 197 198 199 200 201 202 203 204 205 206 207 208  | Next Page >