Search Results

Search found 841 results on 34 pages for 'angle osaxon'.

Page 21/34 | < Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >

  • Routes on a sphere surface - Find geodesic?

    - by CaNNaDaRk
    I'm working with some friends on a browser based game where people can move on a 2D map. It's been almost 7 years and still people play this game so we are thinking of a way to give them something new. Since then the game map was a limited plane and people could move from (0, 0) to (MAX_X, MAX_Y) in quantized X and Y increments (just imagine it as a big chessboard). We believe it's time to give it another dimension so, just a couple of weeks ago, we began to wonder how the game could look with other mappings: Unlimited plane with continous movement: this could be a step forward but still i'm not convinced. Toroidal World (continous or quantized movement): sincerely I worked with torus before but this time I want something more... Spherical world with continous movement: this would be great! What we want Users browsers are given a list of coordinates like (latitude, longitude) for each object on the spherical surface map; browsers must then show this in user's screen rendering them inside a web element (canvas maybe? this is not a problem). When people click on the plane we convert the (mouseX, mouseY) to (lat, lng) and send it to the server which has to compute a route between current user's position to the clicked point. What we have We began writing a Java library with many useful maths to work with Rotation Matrices, Quaternions, Euler Angles, Translations, etc. We put it all together and created a program that generates sphere points, renders them and show them to the user inside a JPanel. We managed to catch clicks and translate them to spherical coords and to provide some other useful features like view rotation, scale, translation etc. What we have now is like a little (very little indeed) engine that simulates client and server interaction. Client side shows points on the screen and catches other interactions, server side renders the view and does other calculus like interpolating the route between current position and clicked point. Where is the problem? Obviously we want to have the shortest path to interpolate between the two route points. We use quaternions to interpolate between two points on the surface of the sphere and this seemed to work fine until i noticed that we weren't getting the shortest path on the sphere surface: We though the problem was that the route is calculated as the sum of two rotations about X and Y axis. So we changed the way we calculate the destination quaternion: We get the third angle (the first is latitude, the second is longitude, the third is the rotation about the vector which points toward our current position) which we called orientation. Now that we have the "orientation" angle we rotate Z axis and then use the result vector as the rotation axis for the destination quaternion (you can see the rotation axis in grey): What we got is the correct route (you can see it lays on a great circle), but we get to this ONLY if the starting route point is at latitude, longitude (0, 0) which means the starting vector is (sphereRadius, 0, 0). With the previous version (image 1) we don't get a good result even when startin point is 0, 0, so i think we're moving towards a solution, but the procedure we follow to get this route is a little "strange" maybe? In the following image you get a view of the problem we get when starting point is not (0, 0), as you can see starting point is not the (sphereRadius, 0, 0) vector, and as you can see the destination point (which is correctly drawn!) is not on the route. The magenta point (the one which lays on the route) is the route's ending point rotated about the center of the sphere of (-startLatitude, 0, -startLongitude). This means that if i calculate a rotation matrix and apply it to every point on the route maybe i'll get the real route, but I start to think that there's a better way to do this. Maybe I should try to get the plane through the center of the sphere and the route points, intersect it with the sphere and get the geodesic? But how? Sorry for being way too verbose and maybe for incorrect English but this thing is blowing my mind! EDIT: This code version is related to the first image: public void setRouteStart(double lat, double lng) { EulerAngles tmp = new EulerAngles ( Math.toRadians(lat), 0, -Math.toRadians(lng)); //set route start Quaternion qtStart.setInertialToObject(tmp); //do other stuff like drawing start point... } public void impostaDestinazione(double lat, double lng) { EulerAngles tmp = new AngoliEulero( Math.toRadians(lat), 0, -Math.toRadians(lng)); qtEnd.setInertialToObject(tmp); //do other stuff like drawing dest point... } public V3D interpolate(double totalTime, double t) { double _t = t/totalTime; Quaternion q = Quaternion.Slerp(qtStart, qtEnd, _t); RotationMatrix.inertialQuatToIObject(q); V3D p = matInt.inertialToObject(V3D.Xaxis.scale(sphereRadius)); //other stuff, like drawing point ... return p; } //mostly taken from a book! public static Quaternion Slerp(Quaternion q0, Quaternion q1, double t) { double cosO = q0.dot(q1); double q1w = q1.w; double q1x = q1.x; double q1y = q1.y; double q1z = q1.z; if (cosO < 0.0f) { q1w = -q1w; q1x = -q1x; q1y = -q1y; q1z = -q1z; cosO = -cosO; } double sinO = Math.sqrt(1.0f - cosO*cosO); double O = Math.atan2(sinO, cosO); double oneOverSinO = 1.0f / senoOmega; k0 = Math.sin((1.0f - t) * O) * oneOverSinO; k1 = Math.sin(t * O) * oneOverSinO; // Interpolate return new Quaternion( k0*q0.w + k1*q1w, k0*q0.x + k1*q1x, k0*q0.y + k1*q1y, k0*q0.z + k1*q1z ); } A little dump of what i get (again check image 1): Route info: Sphere radius and center: 200,000, (0.0, 0.0, 0.0) Route start: lat 0,000 °, lng 0,000 ° @v: (200,000, 0,000, 0,000), |v| = 200,000 Route end: lat 30,000 °, lng 30,000 ° @v: (150,000, 86,603, 100,000), |v| = 200,000 Qt dump: (w, x, y, z), rot. angle°, (x, y, z) rot. axis Qt start: (1,000, 0,000, -0,000, 0,000); 0,000 °; (1,000, 0,000, 0,000) Qt end: (0,933, 0,067, -0,250, 0,250); 42,181 °; (0,186, -0,695, 0,695) Route start: lat 30,000 °, lng 10,000 ° @v: (170,574, 30,077, 100,000), |v| = 200,000 Route end: lat 80,000 °, lng -50,000 ° @v: (22,324, -26,604, 196,962), |v| = 200,000 Qt dump: (w, x, y, z), rot. angle°, (x, y, z) rot. axis Qt start: (0,962, 0,023, -0,258, 0,084); 31,586 °; (0,083, -0,947, 0,309) Qt end: (0,694, -0,272, -0,583, -0,324); 92,062 °; (-0,377, -0,809, -0,450)

    Read the article

  • Pixel Shader Giving Black output

    - by Yashwinder
    I am coding in C# using Windows Forms and the SlimDX API to show the effect of a pixel shader. When I am setting the pixel shader, I am getting a black output screen but if I am not using the pixel shader then I am getting my image rendered on the screen. I have the following C# code using System; using System.Collections.Generic; using System.Linq; using System.Windows.Forms; using System.Runtime.InteropServices; using SlimDX.Direct3D9; using SlimDX; using SlimDX.Windows; using System.Drawing; using System.Threading; namespace WindowsFormsApplication1 { // Vertex structure. [StructLayout(LayoutKind.Sequential)] struct Vertex { public Vector3 Position; public float Tu; public float Tv; public static int SizeBytes { get { return Marshal.SizeOf(typeof(Vertex)); } } public static VertexFormat Format { get { return VertexFormat.Position | VertexFormat.Texture1; } } } static class Program { public static Device D3DDevice; // Direct3D device. public static VertexBuffer Vertices; // Vertex buffer object used to hold vertices. public static Texture Image; // Texture object to hold the image loaded from a file. public static int time; // Used for rotation caculations. public static float angle; // Angle of rottaion. public static Form1 Window =new Form1(); public static string filepath; static VertexShader vertexShader = null; static ConstantTable constantTable = null; static ImageInformation info; [STAThread] static void Main() { filepath = "C:\\Users\\Public\\Pictures\\Sample Pictures\\Garden.jpg"; info = new ImageInformation(); info = ImageInformation.FromFile(filepath); PresentParameters presentParams = new PresentParameters(); // Below are the required bare mininum, needed to initialize the D3D device. presentParams.BackBufferHeight = info.Height; // BackBufferHeight, set to the Window's height. presentParams.BackBufferWidth = info.Width+200; // BackBufferWidth, set to the Window's width. presentParams.Windowed =true; presentParams.DeviceWindowHandle = Window.panel2 .Handle; // DeviceWindowHandle, set to the Window's handle. // Create the device. D3DDevice = new Device(new Direct3D (), 0, DeviceType.Hardware, Window.Handle, CreateFlags.HardwareVertexProcessing, presentParams); // Create the vertex buffer and fill with the triangle vertices. (Non-indexed) // Remember 3 vetices for a triangle, 2 tris per quad = 6. Vertices = new VertexBuffer(D3DDevice, 6 * Vertex.SizeBytes, Usage.WriteOnly, VertexFormat.None, Pool.Managed); DataStream stream = Vertices.Lock(0, 0, LockFlags.None); stream.WriteRange(BuildVertexData()); Vertices.Unlock(); // Create the texture. Image = Texture.FromFile(D3DDevice,filepath ); // Turn off culling, so we see the front and back of the triangle D3DDevice.SetRenderState(RenderState.CullMode, Cull.None); // Turn off lighting D3DDevice.SetRenderState(RenderState.Lighting, false); ShaderBytecode sbcv = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\vertexShader.vs", "vs_main", "vs_1_1", ShaderFlags.None); constantTable = sbcv.ConstantTable; vertexShader = new VertexShader(D3DDevice, sbcv); ShaderBytecode sbc = ShaderBytecode.CompileFromFile("C:\\Users\\yashwinder singh\\Desktop\\pixelShader.txt", "ps_main", "ps_3_0", ShaderFlags.None); PixelShader ps = new PixelShader(D3DDevice, sbc); VertexDeclaration vertexDecl = new VertexDeclaration(D3DDevice, new[] { new VertexElement(0, 0, DeclarationType.Float3, DeclarationMethod.Default, DeclarationUsage.PositionTransformed, 0), new VertexElement(0, 12, DeclarationType.Float2 , DeclarationMethod.Default, DeclarationUsage.TextureCoordinate , 0), VertexElement.VertexDeclarationEnd }); Application.EnableVisualStyles(); MessagePump.Run(Window, () => { // Clear the backbuffer to a black color. D3DDevice.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.Black, 1.0f, 0); // Begin the scene. D3DDevice.BeginScene(); // Setup the world, view and projection matrices. //D3DDevice.VertexShader = vertexShader; //D3DDevice.PixelShader = ps; // Render the vertex buffer. D3DDevice.SetStreamSource(0, Vertices, 0, Vertex.SizeBytes); D3DDevice.VertexFormat = Vertex.Format; // Setup our texture. Using Textures introduces the texture stage states, // which govern how Textures get blended together (in the case of multiple // Textures) and lighting information. D3DDevice.SetTexture(0, Image); // Now drawing 2 triangles, for a quad. D3DDevice.DrawPrimitives(PrimitiveType.TriangleList , 0, 2); // End the scene. D3DDevice.EndScene(); // Present the backbuffer contents to the screen. D3DDevice.Present(); }); if (Image != null) Image.Dispose(); if (Vertices != null) Vertices.Dispose(); if (D3DDevice != null) D3DDevice.Dispose(); } private static Vertex[] BuildVertexData() { Vertex[] vertexData = new Vertex[6]; vertexData[0].Position = new Vector3(-1.0f, 1.0f, 0.0f); vertexData[0].Tu = 0.0f; vertexData[0].Tv = 0.0f; vertexData[1].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[1].Tu = 0.0f; vertexData[1].Tv = 1.0f; vertexData[2].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[2].Tu = 1.0f; vertexData[2].Tv = 0.0f; vertexData[3].Position = new Vector3(-1.0f, -1.0f, 0.0f); vertexData[3].Tu = 0.0f; vertexData[3].Tv = 1.0f; vertexData[4].Position = new Vector3(1.0f, -1.0f, 0.0f); vertexData[4].Tu = 1.0f; vertexData[4].Tv = 1.0f; vertexData[5].Position = new Vector3(1.0f, 1.0f, 0.0f); vertexData[5].Tu = 1.0f; vertexData[5].Tv = 0.0f; return vertexData; } } } And my pixel shader and vertex shader code are as following // Pixel shader input structure struct PS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Pixel shader output structure struct PS_OUTPUT { float4 Color : COLOR0; }; // Global variables sampler2D Tex0; // Name: Simple Pixel Shader // Type: Pixel shader // Desc: Fetch texture and blend with constant color // PS_OUTPUT ps_main( in PS_INPUT In ) { PS_OUTPUT Out; //create an output pixel Out.Color = tex2D(Tex0, In.Texture); //do a texture lookup Out.Color *= float4(0.9f, 0.8f, 0.0f, 1); //do a simple effect return Out; //return output pixel } // Vertex shader input structure struct VS_INPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Vertex shader output structure struct VS_OUTPUT { float4 Position : POSITION; float2 Texture : TEXCOORD0; }; // Global variables float4x4 WorldViewProj; // Name: Simple Vertex Shader // Type: Vertex shader // Desc: Vertex transformation and texture coord pass-through // VS_OUTPUT vs_main( in VS_INPUT In ) { VS_OUTPUT Out; //create an output vertex Out.Position = mul(In.Position, WorldViewProj); //apply vertex transformation Out.Texture = In.Texture; //copy original texcoords return Out; //return output vertex }

    Read the article

  • GLSL: Strange light reflections [Solved]

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices?

    Read the article

  • GLSL: Strange light reflections

    - by Tom
    According to this tutorial I'm trying to make a normal mapping using GLSL, but something is wrong and I can't find the solution. The output render is in this image: Image1 in this image is a plane with two triangles and each of it is different illuminated (that is bad). The plane has 6 vertices. In the upper left side of this plane are 2 identical vertices (same in the lower right). Here are some vectors same for each vertice: normal vector = 0, 1, 0 (red lines on image) tangent vector = 0, 0,-1 (green lines on image) bitangent vector = -1, 0, 0 (blue lines on image) here I have one question: The two identical vertices does need to have the same tangent and bitangent? I have tried to make other values to the tangents but the effect was still similar. Here are my shaders Vertex shader: #version 130 // Input vertex data, different for all executions of this shader. in vec3 vertexPosition_modelspace; in vec2 vertexUV; in vec3 vertexNormal_modelspace; in vec3 vertexTangent_modelspace; in vec3 vertexBitangent_modelspace; // Output data ; will be interpolated for each fragment. out vec2 UV; out vec3 Position_worldspace; out vec3 EyeDirection_cameraspace; out vec3 LightDirection_cameraspace; out vec3 LightDirection_tangentspace; out vec3 EyeDirection_tangentspace; // Values that stay constant for the whole mesh. uniform mat4 MVP; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Output position of the vertex, in clip space : MVP * position gl_Position = MVP * vec4(vertexPosition_modelspace,1); // Position of the vertex, in worldspace : M * position Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz; // Vector that goes from the vertex to the camera, in camera space. // In camera space, the camera is at the origin (0,0,0). vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz; EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace; // Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity. vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz; LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace; // UV of the vertex. No special space for this one. UV = vertexUV; // model to camera = ModelView vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace; vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace; vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace; mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); // You can use dot products instead of building this matrix and transposing it. See References for details. LightDirection_tangentspace = TBN * LightDirection_cameraspace; EyeDirection_tangentspace = TBN * EyeDirection_cameraspace; } Fragment shader: #version 130 // Interpolated values from the vertex shaders in vec2 UV; in vec3 Position_worldspace; in vec3 EyeDirection_cameraspace; in vec3 LightDirection_cameraspace; in vec3 LightDirection_tangentspace; in vec3 EyeDirection_tangentspace; // Ouput data out vec3 color; // Values that stay constant for the whole mesh. uniform sampler2D DiffuseTextureSampler; uniform sampler2D NormalTextureSampler; uniform sampler2D SpecularTextureSampler; uniform mat4 V; uniform mat4 M; uniform mat3 MV3x3; uniform vec3 LightPosition_worldspace; void main(){ // Light emission properties // You probably want to put them as uniforms vec3 LightColor = vec3(1,1,1); float LightPower = 40.0; // Material properties vec3 MaterialDiffuseColor = texture2D( DiffuseTextureSampler, vec2(UV.x,-UV.y) ).rgb; vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor; //vec3 MaterialSpecularColor = texture2D( SpecularTextureSampler, UV ).rgb * 0.3; vec3 MaterialSpecularColor = vec3(0.5,0.5,0.5); // Local normal, in tangent space. V tex coordinate is inverted because normal map is in TGA (not in DDS) for better quality vec3 TextureNormal_tangentspace = normalize(texture2D( NormalTextureSampler, vec2(UV.x,-UV.y) ).rgb*2.0 - 1.0); // Distance to the light float distance = length( LightPosition_worldspace - Position_worldspace ); // Normal of the computed fragment, in camera space vec3 n = TextureNormal_tangentspace; // Direction of the light (from the fragment to the light) vec3 l = normalize(LightDirection_tangentspace); // Cosine of the angle between the normal and the light direction, // clamped above 0 // - light is at the vertical of the triangle -> 1 // - light is perpendicular to the triangle -> 0 // - light is behind the triangle -> 0 float cosTheta = clamp( dot( n,l ), 0,1 ); // Eye vector (towards the camera) vec3 E = normalize(EyeDirection_tangentspace); // Direction in which the triangle reflects the light vec3 R = reflect(-l,n); // Cosine of the angle between the Eye vector and the Reflect vector, // clamped to 0 // - Looking into the reflection -> 1 // - Looking elsewhere -> < 1 float cosAlpha = clamp( dot( E,R ), 0,1 ); color = // Ambient : simulates indirect lighting MaterialAmbientColor + // Diffuse : "color" of the object MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) + // Specular : reflective highlight, like a mirror MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance); //color.xyz = E; //color.xyz = LightDirection_tangentspace; //color.xyz = EyeDirection_tangentspace; } I have replaced the original color value by EyeDirection_tangentspace vector and then I got other strange effect but I can not link the image (not eunogh reputation) Is it possible that with this shaders is something wrong, or maybe in other place in my code e.g with my matrices? SOLVED Solved... 3 days needed for changing one letter from this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(12*sizeof(float)) // array buffer offset ); to this: glBindBuffer(GL_ARRAY_BUFFER, vbo); glVertexAttribPointer ( 4, // attribute 3, // size GL_FLOAT, // type GL_FALSE, // normalized? sizeof(VboVertex), // stride (void*)(11*sizeof(float)) // array buffer offset ); see difference? :)

    Read the article

  • Optimizing transition/movement smoothness for a 2D flash game.

    - by Tom
    Update 6: Fenomenas suggested me to re-create everything as simple as possible. I had my doubts that this would make any difference as the algorithm remains the same, and performance did not seem to be the issue. Anyway, it was the only suggestion I got so here it is: 30 FPS: http://www.feedpostal.com/test/simple/30/SimpleMovement.html 40 FPS: http://www.feedpostal.com/test/simple/40/SimpleMovement.html 60 FPS: http://www.feedpostal.com/test/simple/60/SimpleMovement.html 100 FPS: http://www.feedpostal.com/test/simple/100/SimpleMovement.html The code: package { import flash.display.Sprite; import flash.events.Event; import flash.events.KeyboardEvent; import flash.utils.getTimer; [SWF(width="800", height="600", frameRate="40", backgroundColor="#000000")] public class SimpleMovement extends Sprite { private static const TURNING_SPEED:uint = 180; private static const MOVEMENT_SPEED:uint = 400; private static const RADIAN_DIVIDE:Number = Math.PI/180; private var playerObject:Sprite; private var shipContainer:Sprite; private var moving:Boolean = false; private var turningMode:uint = 0; private var movementTimestamp:Number = getTimer(); private var turningTimestamp:Number = movementTimestamp; public function SimpleMovement() { //step 1: create player object playerObject = new Sprite(); playerObject.graphics.lineStyle(1, 0x000000); playerObject.graphics.beginFill(0x6D7B8D); playerObject.graphics.drawRect(0, 0, 25, 50); //make it rotate around the center playerObject.x = 0 - playerObject.width / 2; playerObject.y = 0 - playerObject.height / 2; shipContainer = new Sprite(); shipContainer.addChild(playerObject); shipContainer.x = 100; shipContainer.y = 100; shipContainer.rotation = 180; addChild(shipContainer); //step 2: install keyboard hook when stage is ready addEventListener(Event.ADDED_TO_STAGE, stageReady, false, 0, true); //step 3: install rendering update poll addEventListener(Event.ENTER_FRAME, updatePoller, false, 0, true); } private function updatePoller(event:Event):void { var newTime:Number = getTimer(); //turning if (turningMode != 0) { var turningDeltaTime:Number = newTime - turningTimestamp; turningTimestamp = newTime; var rotation:Number = TURNING_SPEED * turningDeltaTime / 1000; if (turningMode == 1) shipContainer.rotation -= rotation; else shipContainer.rotation += rotation; } //movement if (moving) { var movementDeltaTime:Number = newTime - movementTimestamp; movementTimestamp = newTime; var distance:Number = MOVEMENT_SPEED * movementDeltaTime / 1000; var rAngle:Number = shipContainer.rotation * RADIAN_DIVIDE; //convert degrees to radian shipContainer.x += distance * Math.sin(rAngle); shipContainer.y -= distance * Math.cos(rAngle); } } private function stageReady(event:Event):void { //install keyboard hook stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDown, false, 0, true); stage.addEventListener(KeyboardEvent.KEY_UP, keyUp, false, 0, true); } private final function keyDown(event:KeyboardEvent):void { if ((event.keyCode == 87) && (!moving)) //87 = W { movementTimestamp = getTimer(); moving = true; } if ((event.keyCode == 65) && (turningMode != 1)) //65 = A { turningTimestamp = getTimer(); turningMode = 1; } else if ((event.keyCode == 68) && (turningMode != 2)) //68 = D { turningTimestamp = getTimer(); turningMode = 2; } } private final function keyUp(event:KeyboardEvent):void { if ((event.keyCode == 87) && (moving)) moving = false; //87 = W if (((event.keyCode == 65) || (event.keyCode == 68)) && (turningMode != 0)) turningMode = 0; //65 = A, 68 = D } } } The results were as I expected. Absolutely no improvement. I really hope that someone has another suggestion as this thing needs fixing. Also, I doubt it's my system as I have a pretty good one (8GB RAM, Q9550 QuadCore intel, ATI Radeon 4870 512MB). Also, everyone else I asked so far had the same issue with my client. Update 5: another example of a smooth flash game just to demonstrate that my movement definitely is different! See http://www.spel.nl/game/bumpercraft.html Update 4: I traced the time before rendering (EVENT.RENDER) and right after rendering (EVENT.ENTER_FRAME), the results: rendering took: 14 ms rendering took: 14 ms rendering took: 12 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 14 ms rendering took: 12 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 14 ms rendering took: 12 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 14 ms rendering took: 14 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 24 ms rendering took: 18 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 232 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms rendering took: 14 ms rendering took: 16 ms rendering took: 12 ms rendering took: 14 ms rendering took: 12 ms The range is 12-16 ms. During these differences, the shocking/warping/flickering movement was already going on. There is also 1 peak of 232ms, at this time there was a relatively big warp. This is however not the biggest problme, the biggest problem are the continuous small warps during normal movement. Does this give anyone a clue? Update 3: After testing, I know that the following factors are not causing my problem: Bitmap's quality - changed with photoshop to an uglier 8 colours optimized graphic, no improvement at all. Constant rotation of image while turning - disabled it, no improvement at all Browser rendering - tried to use the flash player standalone, no improvement at all I am 100% convinced that the problem lies in either my code or in my algorithm. Please, help me out. It has been almost two weeks (1 week that I asked this question on SO) now and I still have to get my golden answer. Update 1: see bottom for full flex project source and a live demo demonstrating my problem. I'm working on a 2d flash game. Player ships are created as an object: ships[id] = new GameShip(); When movement and rotation information is available, this is being directed to the corresponding ship: ships[id].setMovementMode(1); //move forward Now, within this GameShip object movement works using the "Event.ENTER_FRAME" event: addEventListener(Event.ENTER_FRAME, movementHandler); The following function is then being run: private final function movementHandler(event:Event):void { var newTimeStamp:uint = UtilLib.getTimeStamp(); //set current timeStamp var distance:Number = (newTimeStamp - movementTimeStamp) / 1000 * movementSpeed; //speed = x pixels forward every 1 second movementTimeStamp = newTimeStamp; //update old timeStamp var diagonalChange:Array = getDiagonalChange(movementAngle, distance); //the diagonal position update based on angle and distance charX += diagonalChange[0]; charY += diagonalChange[1]; if (shipContainer) { //when the container is ready to be worked with shipContainer.x = charX; shipContainer.y = charY; } } private final function getDiagonalChange(angle:Number, distance:Number):Array { var rAngle:Number = angle * Math.PI/180; //convert degrees to radian return [Math.sin(rAngle) * distance, (Math.cos(rAngle) * distance) * -1]; } When the object is no longer moving, the event listener will be removed. The same method is being used for rotation. Everything works almost perfect. I've set the project's target FPS to 100 and created a FPS counter. According to the FPS counter, the average FPS in firefox is around 100, while the top is 1000 and the bottom is 22. I think that the bottom and top FPSs are only happening during the initialization of the client (startup). The problem is that the ship appears to be almost perfectly smooth, while it should be just that without the "almost" part. It's almost as if the ship is "flickering" very very fast, you can't actually see it but it's hard to focus on the object while it's moving with your eyes. Also, every now and then, there seems to be a bit of a framerate spike, as if the client is skipping a couple of frames, you then see it quickly warp. It is very difficult to explain what the real problem is, but in general it's that the movement is not perfectly smooth. So, do you have any suggestions on how to make the movement or transition of objects perfectly smooth? Update 1: I re-created the client to demonstrate my problem. Please check it out. The client: http://feedpostal.com/test/MovementTest.html The Actionscript Project (full source): http://feedpostal.com/test/MovementTest.rar An example of a smooth flash game (not created by me): http://www.gamesforwork.com/games/swf/Mission%20Racing_august_10th_2009.swf It took me a pretty long time to recreate this client side version, I hope this will help with solving the problem. Please note: yes, it is actually pretty smooth. But it is definitely not smooth enough.

    Read the article

  • Working with Resources in WPF

    - by Coesy
    I am wanting to use the example from http://blogs.microsoft.co.il/blogs/tomershamam/archive/2008/09/22/lt-howto-gt-replace-listview-columns-with-rows-lt-howto-gt.aspx However I don't want to put this into the App.xaml code as this will apply to ALL gridviews, how do I apply this example to a select few gridviews in the application? The Resources look like this <Style TargetType="{x:Type GridViewHeaderRowPresenter}"> <Setter Property="Height" Value="80" /> <Setter Property="LayoutTransform"> <Setter.Value> <TransformGroup> <RotateTransform Angle="-90" /> <ScaleTransform ScaleY="-1" /> </TransformGroup> </Setter.Value> </Setter> </Style> <Style TargetType="{x:Type GridViewRowPresenter}"> <Setter Property="LayoutTransform"> <Setter.Value> <TransformGroup> <RotateTransform Angle="-90" /> <ScaleTransform ScaleY="-1" /> </TransformGroup> </Setter.Value> </Setter> </Style> <LinearGradientBrush x:Key="GridViewColumnHeaderBackground" EndPoint="0,1" StartPoint="0,0"> <GradientStop Color="#FFFFFFFF" Offset="0"/> <GradientStop Color="#FFFFFFFF" Offset="0.4091"/> <GradientStop Color="#FFF7F8F9" Offset="1"/> </LinearGradientBrush> <LinearGradientBrush x:Key="GridViewColumnHeaderBorderBackground" EndPoint="0,1" StartPoint="0,0"> <GradientStop Color="#FFF2F2F2" Offset="0"/> <GradientStop Color="#FFD5D5D5" Offset="1"/> </LinearGradientBrush> <LinearGradientBrush x:Key="GridViewColumnHeaderHoverBackground" EndPoint="0,1" StartPoint="0,0"> <GradientStop Color="#FFBDEDFF" Offset="0"/> <GradientStop Color="#FFB7E7FB" Offset="1"/> </LinearGradientBrush> <LinearGradientBrush x:Key="GridViewColumnHeaderPressBackground" EndPoint="0,1" StartPoint="0,0"> <GradientStop Color="#FF8DD6F7" Offset="0"/> <GradientStop Color="#FF8AD1F5" Offset="1"/> </LinearGradientBrush> <Style x:Key="GridViewColumnHeaderGripper" TargetType="{x:Type Thumb}"> <Setter Property="Canvas.Right" Value="-9"/> <Setter Property="Width" Value="18"/> <Setter Property="Height" Value="{Binding Path=ActualHeight, RelativeSource={RelativeSource TemplatedParent}}"/> <Setter Property="Padding" Value="0"/> <Setter Property="Background" Value="{StaticResource GridViewColumnHeaderBorderBackground}"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type Thumb}"> <Border Background="Transparent" Padding="{TemplateBinding Padding}"> <Rectangle Fill="{TemplateBinding Background}" HorizontalAlignment="Center" Width="1"/> </Border> </ControlTemplate> </Setter.Value> </Setter> </Style> <Style TargetType="{x:Type GridViewColumnHeader}"> <Setter Property="HorizontalContentAlignment" Value="Center"/> <Setter Property="VerticalContentAlignment" Value="Center"/> <Setter Property="Background" Value="{StaticResource GridViewColumnHeaderBackground}"/> <Setter Property="BorderBrush" Value="{StaticResource GridViewColumnHeaderBorderBackground}"/> <Setter Property="BorderThickness" Value="0"/> <Setter Property="Padding" Value="2,0,2,0"/> <Setter Property="Foreground" Value="{DynamicResource {x:Static SystemColors.ControlTextBrushKey}}"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type GridViewColumnHeader}"> <Grid SnapsToDevicePixels="true"> <Border x:Name="HeaderBorder" Background="{TemplateBinding Background}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="0,1,0,1"> <Grid> <Grid.RowDefinitions> <RowDefinition MaxHeight="7"/> <RowDefinition/> </Grid.RowDefinitions> <Rectangle Fill="#FFE3F7FF" x:Name="UpperHighlight" Visibility="Collapsed"/> <Border Grid.RowSpan="2" Padding="{TemplateBinding Padding}"> <ContentPresenter HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}" Margin="0,0,0,1" x:Name="HeaderContent" VerticalAlignment="{TemplateBinding VerticalContentAlignment}" SnapsToDevicePixels="{TemplateBinding SnapsToDevicePixels}" RecognizesAccessKey="True"> <ContentPresenter.LayoutTransform> <TransformGroup> <ScaleTransform ScaleY="-1" /> <RotateTransform Angle="90" /> </TransformGroup> </ContentPresenter.LayoutTransform> </ContentPresenter> </Border> </Grid> </Border> <Border Margin="1,1,0,0" x:Name="HeaderHoverBorder" BorderThickness="1,0,1,1"/> <Border Margin="1,0,0,1" x:Name="HeaderPressBorder" BorderThickness="1,1,1,0"/> <Canvas> <Thumb x:Name="PART_HeaderGripper" Style="{StaticResource GridViewColumnHeaderGripper}"/> </Canvas> </Grid> <ControlTemplate.Triggers> <Trigger Property="IsMouseOver" Value="true"> <Setter Property="Background" TargetName="HeaderBorder" Value="{StaticResource GridViewColumnHeaderHoverBackground}"/> <Setter Property="BorderBrush" TargetName="HeaderHoverBorder" Value="#FF88CBEB"/> <Setter Property="Visibility" TargetName="UpperHighlight" Value="Visible"/> <Setter Property="Background" TargetName="PART_HeaderGripper" Value="Transparent"/> </Trigger> <Trigger Property="IsPressed" Value="true"> <Setter Property="Background" TargetName="HeaderBorder" Value="{StaticResource GridViewColumnHeaderPressBackground}"/> <Setter Property="BorderBrush" TargetName="HeaderHoverBorder" Value="#FF95DAF9"/> <Setter Property="BorderBrush" TargetName="HeaderPressBorder" Value="#FF7A9EB1"/> <Setter Property="Visibility" TargetName="UpperHighlight" Value="Visible"/> <Setter Property="Fill" TargetName="UpperHighlight" Value="#FFBCE4F9"/> <Setter Property="Visibility" TargetName="PART_HeaderGripper" Value="Hidden"/> <Setter Property="Margin" TargetName="HeaderContent" Value="1,1,0,0"/> </Trigger> <Trigger Property="Height" Value="Auto"> <Setter Property="MinHeight" Value="20"/> </Trigger> <Trigger Property="IsEnabled" Value="false"> <Setter Property="Foreground" Value="{DynamicResource {x:Static SystemColors.GrayTextBrushKey}}"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> <Style.Triggers> <Trigger Property="Role" Value="Floating"> <Setter Property="Opacity" Value="0.4082"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type GridViewColumnHeader}"> <Canvas x:Name="PART_FloatingHeaderCanvas"> <Rectangle Fill="#FF000000" Width="{TemplateBinding ActualWidth}" Height="{TemplateBinding ActualHeight}" Opacity="0.4697"/> </Canvas> </ControlTemplate> </Setter.Value> </Setter> </Trigger> <Trigger Property="Role" Value="Padding"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type GridViewColumnHeader}"> <Border x:Name="HeaderBorder" Background="{TemplateBinding Background}" BorderBrush="{TemplateBinding BorderBrush}" BorderThickness="0,1,0,1"/> <ControlTemplate.Triggers> <Trigger Property="Height" Value="Auto"> <Setter Property="MinHeight" Value="20"/> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Trigger> </Style.Triggers> </Style> I have tried creating a usercontrol and sticking that lot in the UserControl.Resources section but it didn't work, I can only get this example to work if i put them into the Application.Resources section which i obviously don't want. Help!! :-)

    Read the article

  • Convert OpenGL code to DirectX

    - by Fredrik Boston Westman
    First of all, this is kind of a follow up question on @byte56 excellent anwser on this question concerning picking algorithms. I'm trying to convert one of his code examples to directX 11 however I have run into some problems ( I can pick but the picking is way off), and I wanted to make sure I had done it right before moving on and checking the rest of my code. I am not that familiar with openGl but I can imagine openGl has different coordinations systems, and functions that alters how you must implement to code a bit. The getPickRay function on the answer linked is what I'm trying to convert. This is the part of my code that I think is giving me trouble when converting from openGl to directX Because I'm unsure on how their different coordination systems differs from one another. PRVecX = ((( 2.0f * mouseX) / ClientWidth ) - 1 ) * tan((viewAngle)/2); PRVecY = (1-(( 2.0f * mouseY) / ClientHeight)) * tan((viewAngle)/2); Another thing that I am unsure about is this part: XMVECTOR worldSpaceNear = XMVector3TransformCoord(cameraSpaceNear, invMat); XMVECTOR worldSpaceFar = XMVector3TransformCoord(cameraSpaceFar, invMat); A couple of notes: The mouse coordinates are already converted so that the top left corner of the client window would be (0,0) and the bottom right (800,600) ( or whatever resolution you would have) The viewAngle is the same angle that I used when setting the camera view with XMMatrixPerspectiveFovLH. I removed the variables aspectRatio and zoomFactor because I assumed that they were related to some specific function of his game. To summarize it up to questions : Does the openGL coordination system differ in such a way that this equation in the first of my code examples wouldn't be valid when used in DirectX 11 ( with its respective screen coordination system)? Is the openGL method Matrix4f.transform(a, b, c) equal to the directX method c = XMVector3TransformCoord(b,a)? (where a is a matrix and b,c are vectors). Because I know when it comes to matrices order is important.

    Read the article

  • Simulating the effects of wind

    - by jernej
    I am developing a mobile game for Android. It is a 3D jumping game (like ski jump) where wind plays a important role so i need to simulate it. How could I achieve this? The game uses libgdx for rendering and a port of Bullet physics engine for physics. To simulate the jump I have 2 spheres which are placed at the start and at the end of the player and gravity is applied to them (they role down the hill and jump at the end). I use them to calculate the angle and the position of the player. If a button is pressed some extra y speed is applied to them (to simulate the jump before the end of the jumping ramp). But now I have to add wind to it. How is this usually done? Which collision box/method should I use? The way I understand it I only have to apply some force with direction to the player while in mid air. How can I do this in Bullet?

    Read the article

  • Unity - Mecanim & Rigidbody on Third Person Controller - Gravity bug?

    - by Celtc
    I'm working on a third person controller which uses physX to interact with the other objects (using the Rigidbody component) and Mecanim to animate the character. All the animations used are baked to Y, and the movement on this axis is controlled by the gravity applied by the rigidbody component. The configuration of the falling animation: And the character components configuration: Since the falling animation doesn't have root motion on XZ, I move the character on XZ by code. Like this: // On the Ground if (IsGrounded()) { GroundedMovementMgm(); // Stores the velocity velocityPreFalling = rigidbody.velocity; } // Mid-Air else { // Continue the pre falling velocity rigidbody.velocity = new Vector3(velocityPreFalling.x, rigidbody.velocity.y, velocityPreFalling.z); } The problem is that when the chracter starts falling and hit against a wall in mid air, it gets stuck to the wall. Here are some pics which explains the problems: Hope someone can help me. Thanks and sory for my bad english! PD.: I was asked for the IsGrounded() function, so I'm adding it: void OnCollisionEnter(Collision collision) { if (!grounded) TrackGrounded(collision); } void OnCollisionStay(Collision collision) { TrackGrounded(collision); } void OnCollisionExit() { grounded = false; } public bool IsGrounded() { return grounded; } private void TrackGrounded(Collision collision) { var maxHeight = capCollider.bounds.min.y + capCollider.radius * .9f; foreach (var contact in collision.contacts) { if (contact.point.y < maxHeight && Vector3.Angle(contact.normal, Vector3.up) < maxSlopeAngle) { grounded = true; break; } } } I'll also add a LINK to download the project if someone wants it.

    Read the article

  • Vim: Show the index of tabs in the tabline

    - by bitmask
    Lets say I opened file1.txt, file2.txt, file3a.txt and file3b.txt such that the tabline (the thing on the top) looks like this: file1.txt file2.txt 2 file3a.txt (Note how file3b.txt. is missing because it is shown in a split, in the same tab as file3a.txt) To move more quickly between tabs (with <Number>gt), I would like each tab to display its index, along the filename. Like so: 1:<file1.txt> 2:<file2.txt> 3:<2 file3a.txt> The formatting (the angle braces in particular) are optional; I just want the index to appear there (the 1:, 2: and so on). No clues on :h tab-page-commands or google whatsoever.

    Read the article

  • Keystone Correction using 3D-Points of Kinect

    - by philllies
    With XNA, I am displaying a simple rectangle which is projected onto the floor. The projector can be placed at an arbitrary position. Obviously, the projected rectangle gets distorted according to the projectors position and angle. A Kinect scans the floor looking for the four corners. Now my goal is to transform the original rectangle such that the projection is no longer distorted by basically pre-warping the rectangle. My first approach was to do everything in 2D: First compute a perspective transformation (using OpenCV's warpPerspective()) from the scanned points to the internal rectangle's points und apply the inverse to the rectangle. This seemed to work but was too slow as it couldn't be rendered on the GPU. The second approach was to do everything in 3D in order to use XNA's rendering features. First, I would display a plane, scan its corners with Kinect and map the received 3D-Points to the original plane. Theoretically, I could apply the inverse of the perspective transformation to the plane, as I did in the 2D-approach. However, in since XNA works with a view and projection matrix, I can't just call a function such as warpPerspective() and get the desired result. I would need to compute the new parameters for the camera's view and projection matrix. Question: Is it possible to compute these parameters and split them into two matrices (view and projection)? If not, is there another approach I could use?

    Read the article

  • gpupdate failing when using Samba 4 AD DC

    - by darthfoolish
    I have a Samba 4 AD domain running with 2 DCs on Centos 6.5, with a named DNS backend. I have multiple Windows 7 machines joined to this domain, which is fine. However, I can't get GPOs to apply. When running gpupdate, I get the following output The processing of Group Policy failed. Windows attempted to read the file \\sysvol\\Policies{31B2F340-016D-11D2-945F-00C04FB984F9}\gpt.ini Obviously, you don't normally see what it's trying to connect to when it's successful, but I would have thought the first place shows up, I should be seeing So, what governs what data gets put in between those angle brackets? If it is just supposed to be the domain, then what else could be going wrong? Thanks in advance for any help.

    Read the article

  • Libgdx - 2D Mesh rendering overlap glitch

    - by user46858
    I am trying to render a 2D circle segment mesh (quarter circle)using Libgdx/Opengl ES 2.0 but I seem to be getting an overlapping issue as seen in the picture attached. I cant seem to find the cause of the problem but the overlapping disappears/reappears if I drag and resize the window to random sizes. The problem occurs on both pc and android. The strange thing is the first two segments atleast dont seem to be causing any overlapping only the third and/or forth segment.......even though they are all rendered using the same mesh object..... I have spent ages trying to find the cause of the problem before posting here for help so ANY help/advice in finding the cause of this problem would be really appreciated. public class MyGdxGame extends Game { private SpriteBatch batch; private Texture texture; private OrthographicCamera myCamera; private float w; private float h; private ShaderProgram circleSegShader; private Mesh circleScaleSegMesh; private Stage stage; private float TotalSegments; Vector3 virtualres; @Override public void create() { w = Gdx.graphics.getWidth(); h = Gdx.graphics.getHeight(); batch = new SpriteBatch(); ViewPortsize = new Vector2(); TotalSegments = 4.0f; virtualres = new Vector3(1280.0f, 720.0f, 0.0f); myCamera = new OrthographicCamera(); myCamera.setToOrtho(false, w, h); texture = new Texture(Gdx.files.internal("data/libgdx.png")); texture.setFilter(TextureFilter.Linear, TextureFilter.Linear); circleScaleSegMesh = createCircleMesh_V3(0.0f,0.0f,200.0f, 30.0f,3, (360.0f /TotalSegments) ); circleSegShader = loadShaderFromFile(new String("circleseg.vert"), new String("circleseg.frag")); shaderProgram.pedantic = false; stage = new Stage(); stage.setViewport(new ExtendViewport(w, h)); Gdx.input.setInputProcessor(stage); } @Override public void render() { .... //render renderInit(); renderCircleScaledSegment(); } @Override public void resize(int width, int height) { stage.getViewport().update(width, height, true); myCamera.position.set( virtualres.x/2.0f, virtualres.y/2.0f, 0.0f); myCamera.update(); } public void renderInit(){ Gdx.gl20.glClearColor(1.0f, 1.0f, 1.0f, 0.0f); Gdx.gl20.glClear(GL20.GL_COLOR_BUFFER_BIT | GL20.GL_DEPTH_BUFFER_BIT); batch.setShader(null); batch.setProjectionMatrix(myCamera.combined); } public void renderCircleScaledSegment(){ Gdx.gl20.glEnable(GL20.GL_DEPTH_TEST); Gdx.gl20.glBlendFunc(GL20.GL_SRC_ALPHA, GL20.GL_ONE_MINUS_SRC_ALPHA); Gdx.gl20.glEnable(GL20.GL_BLEND); batch.begin(); circleSegShader.begin(); Matrix4 modelMatrix = new Matrix4(); Matrix4 cameraMatrix = new Matrix4(); Matrix4 cameraMatrix2 = new Matrix4(); Matrix4 cameraMatrix3 = new Matrix4(); Matrix4 cameraMatrix4 = new Matrix4(); cameraMatrix = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f)).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix.mul(modelMatrix); cameraMatrix2 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f) +(360.0f /TotalSegments) ).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix2.mul(modelMatrix); cameraMatrix3 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f), 0.0f - ((360.0f /TotalSegments)/ 2.0f) +(2*(360.0f /TotalSegments))).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix3.mul(modelMatrix); cameraMatrix4 = myCamera.combined.cpy(); modelMatrix.idt().rotate(new Vector3(0.0f,0.0f,1.0f),0.0f - ((360.0f /TotalSegments)/ 2.0f) +(3*(360.0f /TotalSegments)) ).trn(virtualres.x/2.0f,virtualres.y/2.0f, 0.0f); cameraMatrix4.mul(modelMatrix); Vector3 box2dpos = new Vector3(0.0f, 0.0f, 0.0f); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix2); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix3); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.setUniformMatrix("u_projTrans", cameraMatrix4); circleSegShader.setUniformf("u_box2dpos", box2dpos); circleSegShader.setUniformi("u_texture", 0); texture.bind(); circleScaleSegMesh.render(circleSegShader, GL20.GL_TRIANGLES); circleSegShader.end(); batch.flush(); batch.end(); Gdx.gl20.glDisable(GL20.GL_DEPTH_TEST); Gdx.gl20.glDisable(GL20.GL_BLEND); } public Mesh createCircleMesh_V3(float cx, float cy, float r_out, float r_in, int num_segments, float segmentSizeDegrees){ float theta = (float) (2.0f * MathUtils.PI / (num_segments * (360.0f / segmentSizeDegrees))); float c = MathUtils.cos(theta);//precalculate the sine and cosine float s = MathUtils.sin(theta); float t,t2; float x = r_out;//we start at angle = 0 float y = 0; float x2 = r_in;//we start at angle = 0 float y2 = 0; float[] meshCoords = new float[num_segments *2 *3 *7]; int arrayIndex = 0; //array for triangles without indices for(int ii = 0; ii < num_segments; ii++) { meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; t = x; x = c * x - s * y; y = s * t + c * y; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; meshCoords[arrayIndex] = x+cx; meshCoords[arrayIndex +1] = y+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; t2 = x2; x2 = c * x2 - s * y2; y2 = s * t2 + c * y2; meshCoords[arrayIndex] = x2+cx; meshCoords[arrayIndex +1] = y2+cy; meshCoords[arrayIndex +2] = 0.0f; meshCoords[arrayIndex +3] = 63.0f/255.0f; meshCoords[arrayIndex +4] = 139.0f/255.0f; meshCoords[arrayIndex +5] = 217.0f/255.0f; meshCoords[arrayIndex +6] = 0.7f; arrayIndex = arrayIndex + 7; } Mesh myMesh = new Mesh(VertexDataType.VertexArray, false, meshCoords.length, 0, new VertexAttribute(VertexAttributes.Usage.Position, 3, "a_position"), new VertexAttribute(VertexAttributes.Usage.Color, 4, "a_color")); myMesh.setVertices(meshCoords); return myMesh; } }

    Read the article

  • SQL SERVER – Difference between COUNT(DISTINCT) vs COUNT(ALL)

    - by pinaldave
    This blog post is written in response to the T-SQL Tuesday hosted by Jes Schultz Borland. Earlier today, I was presenting a 45-minute session at the Community College about “The Beginning SQL Server Database”. One of the students asked me the following question. What is the difference between COUNT(DISTINCT) vs COUNT(ALL)? I found this question from the student very interesting. He seems to have read the documentation (Book Online) and was then asking me this question. I always carry laptop which has SQL Server installed. I quickly opened it and ran the following script. After looking at the result, I think it was clear to everybody. Here is the script: SELECT COUNT([Title]) Value FROM [AdventureWorks].[Person].[Contact] GO SELECT COUNT(ALL [Title]) ALLValue FROM [AdventureWorks].[Person].[Contact] GO SELECT COUNT(DISTINCT [Title]) DistinctValue FROM [AdventureWorks].[Person].[Contact] GO The above script will give me the following results. You can clearly notice from the result set that COUNT (ALL ColumnName) is the same as COUNT(ColumnName). The reality is that the “ALL” is actually  the default option and it needs not to be specified. The ALL keyword includes all the non-NULL values. I know this is very simple and may be it does not change how we work; however looking at the whole angle, I really enjoyed the question. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLAuthority News, T SQL, Technology

    Read the article

  • Fixing sticky keys without removing the keys?

    - by Earlz
    Hello, we had an E-Machine netbook brought in today that has sticky keys. (don't ask me why we said we'd fix it) Well, I've looked at a few howtos for fixing it, but they all require removing the keys. When I tried to remove the keys, I got the key to like a 45 degree angle and it still didn't budge, so I'm pretty sure the keys are non-removable. Is it common for places to even be able to find a replacement keyboard for netbooks and is there a way to fix sticky keys without removing the keys?

    Read the article

  • Export SharePoint Wiki to PDF from the Command Line

    - by Wyatt Barnett
    We use a SharePoint wiki* at the office to serve as a knowledgebase for our IT operations. Recently we went through a disaster recovery exercise where we realized we had a key hole in our plans: how do you restore the services if your instruction manual is down because some services are offline? Anyhow, we did realize that the wiki angle was definitely something we wanted to keep, but rather that we should explore a way to create offline backups of the wiki which could be easily read using common software we should be able to setup without any knowledge from the wiki. So, does anyone know of a good utility that can take a SharePoint wiki and dump it to PDF/Word/RTF/[INSERT HUMAN FRIENDLY FORMAT] easily from the command line? *-Yes, there are better solutions out there. But this was easy and used existing infrastructure and generally does what we need it to do.

    Read the article

  • Rotation of bitmap using a frame by frame animation

    - by pengume
    Hey every one I know this has probably been asked a ton of times but I just wanted to clarify if I am approaching this correctly, since I ran into some problems rotating a bitmap. So basically I have one large bitmap that has four frames drawn on it and I only draw one at a time by looping through the bitmap by increments to animate walking. I can get the bitmap to rotate correctly when it is not moving but once the animation starts it starts to cut off alot of the image and sometimes becomes very fuzzy. I have tried public void draw(Canvas canvas,int pointerX, int pointerY) { Matrix m; if (setRotation){ // canvas.save(); m = new Matrix(); m.reset(); // spriteWidth and spriteHeight are for just the current frame showed m.setTranslate(spriteWidth / 2, spriteHeight / 2); //get and set rotation for ninja based off of joystick m.preRotate((float) GameControls.getRotation()); //create the rotated bitmap flipedSprite = Bitmap.createBitmap(bitmap , 0, 0,bitmap.getWidth(),bitmap.getHeight() , m, true); //set new bitmap to rotated ninja setBitmap(flipedSprite); // canvas.restore(); Log.d("Ninja View", "angle of rotation= " +(float) GameControls.getRotation()); setRotation = false; } And then the Draw Method here // create the destination rectangle for the ninjas current animation frame // pointerX and pointerY are from the joystick moving the ninja around destRect = new Rect(pointerX, pointerY, pointerX + spriteWidth, pointerY + spriteHeight); canvas.drawBitmap(bitmap, getSourceRect(), destRect, null); The animation is four frames long and gets incremented by 66 (the size of one of the frames on the bitmap) for every frame and then back to 0 at the end of the loop.

    Read the article

  • How to fix issue with my 3D first person camera?

    - by dxCUDA
    My camera moves and rotates, but relative to the worlds origin, instead of the players. I am having difficulty rotating the camera and then translating the camera in the direction relative to the camera facing angle. I have been able to translate the camera and rotate relative to the players origin, but not then rotate and translate in the direction relative to the cameras facing direction. My goal is to have a standard FPS-style camera. float yaw, pitch, roll; D3DXMATRIX rotationMatrix; D3DXVECTOR3 Direction; D3DXMATRIX matRotAxis,matRotZ; D3DXVECTOR3 RotAxis; // Set the yaw (Y axis), pitch (X axis), and roll (Z axis) rotations in radians. pitch = m_rotationX * 0.0174532925f; yaw = m_rotationY * 0.0174532925f; roll = m_rotationZ * 0.0174532925f; up = D3DXVECTOR3(0.0f, 1.0f, 0.0f);//Create the up vector //Build eye ,lookat and rotation vectors from player input data eye = D3DXVECTOR3(m_fCameraX, m_fCameraY, m_fCameraZ); lookat = D3DXVECTOR3(m_fLookatX, m_fLookatY, m_fLookatZ); rotation = D3DXVECTOR3(m_rotationX, m_rotationY, m_rotationZ); D3DXVECTOR3 camera[3] = {eye,//Eye lookat,//LookAt up };//Up RotAxis.x = pitch; RotAxis.y = yaw; RotAxis.z = roll; D3DXVec3Normalize(&Direction, &(camera[1] - camera[0]));//Direction vector D3DXVec3Cross(&RotAxis, &Direction, &camera[2]);//Strafe vector D3DXVec3Normalize(&RotAxis, &RotAxis); // Create the rotation matrix from the yaw, pitch, and roll values. D3DXMatrixRotationYawPitchRoll(&matRotAxis, pitch,yaw, roll); //rotate direction D3DXVec3TransformCoord(&Direction,&Direction,&matRotAxis); //Translate up vector D3DXVec3TransformCoord(&camera[2], &camera[2], &matRotAxis); //Translate in the direction of player rotation D3DXVec3TransformCoord(&camera[0], &camera[0], &matRotAxis); camera[1] = Direction + camera[0];//Avoid gimble locking D3DXMatrixLookAtLH(&in_viewMatrix, &camera[0], &camera[1], &camera[2]);

    Read the article

  • VBO and shaders confusion, what's their connection?

    - by Jeffrey
    Considering OpenGL 2.1 VBOs and 1.20 GLSL shaders: When creating an entity like "Zombie", is it good to initialize just the VBO buffer with the data once and do N glDrawArrays() calls per each N zombies? Is there a more efficient way? (With a single call we cannot pass different uniforms to the shader to calculate an offset, see point 3) When dealing with logical object (player, tree, cube etc), should I always use the same shader or should I customize (or be able to customize) the shaders per each object? Considering an entity class, should I create and define the shader at object initialization? When having a movable object such as a human, is there any more powerful way to deal with its coordinates than to initialize its VBO object at 0,0 and define an uniform offset to pass to the shader to calculate its real position? Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombielist class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie }

    Read the article

  • Bot strategy in an arena

    - by joulesm
    I am writing the player's behavior for an arena game, and I'm wondering if you could offer some strategies. I'm writing it in Python, but I'm just interested in the high level game play. Here are the game aspects: Arena is a circle of a given size. The arena's size shrinks every round to help break any ties. Players are much smaller circles, and can be on teams of 1 or 2 players. Players attack by colliding with other players, and based on the physics of the collision (speed of both players, angle), one could force another player out of the arena. Once a player is out of the arena, they are out of the game (for that round). The goal is to be on the only team with players left in the arena. All other players have been pushed (through collisions or mistakes) out of the arena. It is possible for there to be no winner if the last two players exit the arena at the same time. Once the player has been programmed, the game just runs. There is no human intervention in the game. I'm thinking it's easiest to implement a few simple programmatic rules for my player to follow. For example, stay close to center of the arena, attack opponents from the inner side of the arena, etc. Are there any good simple game strategies? Would adding a random aspect to the game help? For example, to avoid predictability by the other team or something. Thanks in advance.

    Read the article

  • Restricting joystick within a radius of center

    - by Phil
    I'm using Unity3d iOs and am using the example joysticks that came with one of the packages. It works fine but the area the joystick moves in is a rectangle which is unintuitive for my type of game. I can figure out how to see if the distance between the center and the current point is too far but I can't figure out how to constrain it to a certain distance without interrupting the finger tracking. Here's the relevant code: using UnityEngine; using System.Collections; public class Boundary { public Vector2 min = Vector2.zero; public Vector2 max = Vector2.zero; } public class Joystick : MonoBehaviour{ static private Joystick[] joysticks; // A static collection of all joysticks static private bool enumeratedJoysticks=false; static private float tapTimeDelta = 0.3f; // Time allowed between taps public bool touchPad; // Is this a TouchPad? public Rect touchZone; public Vector2 deadZone = Vector2.zero; // Control when position is output public bool normalize = false; // Normalize output after the dead-zone? public Vector2 position; // [-1, 1] in x,y public int tapCount; // Current tap count private int lastFingerId = -1; // Finger last used for this joystick private float tapTimeWindow; // How much time there is left for a tap to occur private Vector2 fingerDownPos; private float fingerDownTime; private float firstDeltaTime = 0.5f; private GUITexture gui; // Joystick graphic private Rect defaultRect; // Default position / extents of the joystick graphic private Boundary guiBoundary = new Boundary(); // Boundary for joystick graphic public Vector2 guiTouchOffset; // Offset to apply to touch input private Vector2 guiCenter; // Center of joystick private Vector3 tmpv3; private Rect tmprect; private Color tmpclr; public float allowedDistance; public enum JoystickType { movement, rotation } public JoystickType joystickType; public void Start() { // Cache this component at startup instead of looking up every frame gui = (GUITexture) GetComponent( typeof(GUITexture) ); // Store the default rect for the gui, so we can snap back to it defaultRect = gui.pixelInset; if ( touchPad ) { // If a texture has been assigned, then use the rect ferom the gui as our touchZone if ( gui.texture ) touchZone = gui.pixelInset; } else { // This is an offset for touch input to match with the top left // corner of the GUI guiTouchOffset.x = defaultRect.width * 0.5f; guiTouchOffset.y = defaultRect.height * 0.5f; // Cache the center of the GUI, since it doesn't change guiCenter.x = defaultRect.x + guiTouchOffset.x; guiCenter.y = defaultRect.y + guiTouchOffset.y; // Let's build the GUI boundary, so we can clamp joystick movement guiBoundary.min.x = defaultRect.x - guiTouchOffset.x; guiBoundary.max.x = defaultRect.x + guiTouchOffset.x; guiBoundary.min.y = defaultRect.y - guiTouchOffset.y; guiBoundary.max.y = defaultRect.y + guiTouchOffset.y; } } public void Disable() { gameObject.active = false; enumeratedJoysticks = false; } public void ResetJoystick() { if (joystickType != JoystickType.rotation) { //Don't do anything if turret mode // Release the finger control and set the joystick back to the default position gui.pixelInset = defaultRect; lastFingerId = -1; position = Vector2.zero; fingerDownPos = Vector2.zero; if ( touchPad ){ tmpclr = gui.color; tmpclr.a = 0.025f; gui.color = tmpclr; } } else { //gui.pixelInset = defaultRect; lastFingerId = -1; position = position; fingerDownPos = fingerDownPos; if ( touchPad ){ tmpclr = gui.color; tmpclr.a = 0.025f; gui.color = tmpclr; } } } public bool IsFingerDown() { return (lastFingerId != -1); } public void LatchedFinger( int fingerId ) { // If another joystick has latched this finger, then we must release it if ( lastFingerId == fingerId ) ResetJoystick(); } public void Update() { if ( !enumeratedJoysticks ) { // Collect all joysticks in the game, so we can relay finger latching messages joysticks = (Joystick[]) FindObjectsOfType( typeof(Joystick) ); enumeratedJoysticks = true; } //CHeck if distance is over the allowed amount //Get centerPosition //Get current position //Get distance //If over, don't allow int count = iPhoneInput.touchCount; // Adjust the tap time window while it still available if ( tapTimeWindow > 0 ) tapTimeWindow -= Time.deltaTime; else tapCount = 0; if ( count == 0 ) ResetJoystick(); else { for(int i = 0;i < count; i++) { iPhoneTouch touch = iPhoneInput.GetTouch(i); Vector2 guiTouchPos = touch.position - guiTouchOffset; bool shouldLatchFinger = false; if ( touchPad ) { if ( touchZone.Contains( touch.position ) ) shouldLatchFinger = true; } else if ( gui.HitTest( touch.position ) ) { shouldLatchFinger = true; } // Latch the finger if this is a new touch if ( shouldLatchFinger && ( lastFingerId == -1 || lastFingerId != touch.fingerId ) ) { if ( touchPad ) { tmpclr = gui.color; tmpclr.a = 0.15f; gui.color = tmpclr; lastFingerId = touch.fingerId; fingerDownPos = touch.position; fingerDownTime = Time.time; } lastFingerId = touch.fingerId; // Accumulate taps if it is within the time window if ( tapTimeWindow > 0 ) { tapCount++; print("tap" + tapCount.ToString()); } else { tapCount = 1; print("tap" + tapCount.ToString()); //Tell gameobject that player has tapped turret joystick if (joystickType == JoystickType.rotation) { //TODO: Call! } tapTimeWindow = tapTimeDelta; } // Tell other joysticks we've latched this finger foreach ( Joystick j in joysticks ) { if ( j != this ) j.LatchedFinger( touch.fingerId ); } } if ( lastFingerId == touch.fingerId ) { // Override the tap count with what the iPhone SDK reports if it is greater // This is a workaround, since the iPhone SDK does not currently track taps // for multiple touches if ( touch.tapCount > tapCount ) tapCount = touch.tapCount; if ( touchPad ) { // For a touchpad, let's just set the position directly based on distance from initial touchdown position.x = Mathf.Clamp( ( touch.position.x - fingerDownPos.x ) / ( touchZone.width / 2 ), -1, 1 ); position.y = Mathf.Clamp( ( touch.position.y - fingerDownPos.y ) / ( touchZone.height / 2 ), -1, 1 ); } else { // Change the location of the joystick graphic to match where the touch is tmprect = gui.pixelInset; tmprect.x = Mathf.Clamp( guiTouchPos.x, guiBoundary.min.x, guiBoundary.max.x ); tmprect.y = Mathf.Clamp( guiTouchPos.y, guiBoundary.min.y, guiBoundary.max.y ); //Check distance float distance = Vector2.Distance(new Vector2(defaultRect.x, defaultRect.y), new Vector2(tmprect.x, tmprect.y)); float angle = Vector2.Angle(new Vector2(defaultRect.x, defaultRect.y), new Vector2(tmprect.x, tmprect.y)); if (distance < allowedDistance) { //Ok gui.pixelInset = tmprect; } else { //This is where I don't know what to do... } } if ( touch.phase == iPhoneTouchPhase.Ended || touch.phase == iPhoneTouchPhase.Canceled ) ResetJoystick(); } } } if ( !touchPad ) { // Get a value between -1 and 1 based on the joystick graphic location position.x = ( gui.pixelInset.x + guiTouchOffset.x - guiCenter.x ) / guiTouchOffset.x; position.y = ( gui.pixelInset.y + guiTouchOffset.y - guiCenter.y ) / guiTouchOffset.y; } // Adjust for dead zone float absoluteX = Mathf.Abs( position.x ); float absoluteY = Mathf.Abs( position.y ); if ( absoluteX < deadZone.x ) { // Report the joystick as being at the center if it is within the dead zone position.x = 0; } else if ( normalize ) { // Rescale the output after taking the dead zone into account position.x = Mathf.Sign( position.x ) * ( absoluteX - deadZone.x ) / ( 1 - deadZone.x ); } if ( absoluteY < deadZone.y ) { // Report the joystick as being at the center if it is within the dead zone position.y = 0; } else if ( normalize ) { // Rescale the output after taking the dead zone into account position.y = Mathf.Sign( position.y ) * ( absoluteY - deadZone.y ) / ( 1 - deadZone.y ); } } } So the later portion of the code handles the updated position of the joystick thumb. This is where I'd like it to track the finger position in a direction it still is allowed to move (like if the finger is too far up and slightly to the +X I'd like to make sure the joystick is as close in X and Y as allowed within the radius) Thanks for reading!

    Read the article

  • LWJGL Determining whether or not a polygon is on-screen.

    - by Brandon oubiub
    Not sure whether this is an LWJGL or math question. I want to check whether a shape is on-screen, so that I don't have to render it if it isn't. First of all, is there any simple way to do this that I am overlooking? Like some method or something that I haven't found? I'm going to assume there isn't. I tried using my trigonometry skills, but it is hard to do this because of how glRotate also distorts the image a little for perspective and realism. Or, is there any way to easily determine if a ray starting from the camera, and going outward in a straight line intersects a shape? (I can probably do it with my math skillz, but is there an easier way?) By the way, I can easily determine the angle at which the camera is facing around the x and y axis. EDIT: Or, possibly, I could get the angles of a vector from the camera to the object, and compare those angles to my camera angles. But I have a feeling that the distorts from glRotate and glTranslate would be an issue. I'll try it though.

    Read the article

  • Example of DOD design (on a generic Zombie game)

    - by Jeffrey
    I can't seem to find a nice explanation of the Data Oriented Design for a generic zombie game (it's just an example, pretty common example). Could you make an example of the Data Oriented Design on creating a generic zombie class? Is the following good? Zombie list class: class ZombieList { GLuint vbo; // generic zombie vertex model std::vector<color>; // object default color std::vector<texture>; // objects textures std::vector<vector3D>; // objects positions public: unsigned int create(); // return object id void move(unsigned int objId, vector3D offset); void rotate(unsigned int objId, float angle); void setColor(unsigned int objId, color c); void setPosition(unsigned int objId, color c); void setTexture(unsigned int, unsigned int); ... void update(Player*); // move towards player, attack if near } Example: Player p; Zombielist zl; unsigned int first = zl.create(); zl.setPosition(first, vector3D(50, 50)); zl.setTexture(first, texture("zombie1.png")); ... while (running) { // main loop ... zl.update(&p); zl.draw(); // draw every zombie } Or would creating a generic World container that contains every action from bite(zombieId, playerId) to moveTo(playerId, vector) to createPlayer() to shoot(playerId, vector) to face(radians)/face(vector); and contains: std::vector<zombie> std::vector<player> ... std::vector<mapchunk> ... std::vector<vbobufferid> player_run_animation; ... be a good example? Whats the proper way to organize a game with DOD?

    Read the article

  • ArchBeat Link-o-Rama for 2012-06-21

    - by Bob Rhubart
    Software Architects Need Not Apply | Dustin Marx "I think there is a place for software architecture," says Dustin Marx, "but a portion of our fellow software architects have harmed the reputation of the discipline." For another angle on this subject, check out Out of the Tower, Into the Trenches from the Nov/Dec edition of Oracle Magazine. Oracle Data Integrator 11g - Faster Files | David Allan David Allan illustrates "a big step for regular file processing on the way to super-charging big data files using Hadoop." 2012 Oracle Fusion Middleware Innovation Awards - Win a FREE Pass to Oracle OpenWorld 2012 in SF Share your use of Oracle Fusion Middleware solutions and how they help your organization drive business innovation. You just might win a free pass to Oracle Openworld 2012 in San Francisco. Deadline for submissions in July 17, 2012. WLST Domain creation using dry-run | Michel Schildmeijer What to do "if you want to browse through your domain to check if settings you want to apply satisfy your requirements." Cloud opens up new vistas for service orientation at Netflix | Joe McKendrick "Many see service oriented architecture as laying the groundwork for cloud. But at one well-known company, cloud has instigated the move to SOA." How to avoid the Portlet Skin mismatch | Martin Deh Detailed how-to from WebCenter A-Team blogger Martin Deh. Internationalize WebCenter Portal - Content Presenter | Stefan Krantz Stefan Krantz explains "how to get Content Presenter and its editorials to comply with the current selected locale for the WebCenter Portal session." Oracle Public Cloud Architecture | Tyler Jewell Tyler Jewell discusses the multi-tenancy model and elasticity solution implemented by Oracle Cloud in this QCon presentation. A Distributed Access Control Architecture for Cloud Computing The authors of this InfoQ article discuss a distributed architecture based on the principles from security management and software engineering. Thought for the Day "Let us change our traditional attitude to the construction of programs. Instead of imagining that our main task is to instruct a computer what to to, let us concentrate rather on explaining to human beings what we want a computer to do." — Donald Knuth Source: Quotes for Software Engineers

    Read the article

  • What are the maths behind 'Raiden 2' purple laser?

    - by Aybe
    The path of the laser is affected by user input and enemies present on the screen. Here is a video, at 5:00 minutes the laser in question is shown : Raiden II (PS) - 1 Loop Clear - Part 2 UPDATE Here is a test using Inkscape, ship is at bottom, the first 4 enemies are targeted by the plasma. There seems to be a sort of pattern. I moved the ship first, then the handle from it to form a 45° angle, then while trying to fit the curve I found a pattern of parallel handles and continued so until I reached the last enemy. Update, 5/26/2012 : I started an XNA project using beziers, there is still some work needed, will update the question next week. Stay tuned ! Update : 5/30/2012 : It really seems that they are using Bézier curves, I think I will be able to replicate/imitate a plasma of such grade. There are two new topics I discovered since last time : Arc length, Runge's phenomenon, first one should help in having a linear movement possible over a Bézier curve, second should help in optimizing the number of vertices. Next time I will put a video so you can see the progress 8-)

    Read the article

< Previous Page | 17 18 19 20 21 22 23 24 25 26 27 28  | Next Page >