Search Results

Search found 25180 results on 1008 pages for 'post processing'.

Page 211/1008 | < Previous Page | 207 208 209 210 211 212 213 214 215 216 217 218  | Next Page >

  • Running Jetty under Windows Azure Using RoleEntryPoint in a Worker Role

    - by Shawn Cicoria
    This post is built upon the work of Mario Kosmiskas and David C. Chou’s prior postings – from here: http://blogs.msdn.com/b/mariok/archive/2011/01/05/deploying-java-applications-in-azure.aspx  http://blogs.msdn.com/b/dachou/archive/2010/03/21/run-java-with-jetty-in-windows-azure.aspx As Mario points out in his post, when you need to have more control over the process that starts, it generally is better left to a RoleEntryPoint capability that as of now, requires the use of a CLR based assembly that is deployed as part of the package to Azure. There were things I liked especially about Mario’s post – specifically, the ability to pull down the JRE and Jetty runtimes at role startup and instantiate the process using the extracted bits.  The way Mario initialized the java process (and Jetty) was to take advantage of a role startup task configured as part of the service definition.  This is a great quick way to kick off processes or tasks prior to your role entry point.  However, if you need access to service configuration values or role events, that’s where RoleEntryPoint comes in.  For this PoC sample I moved the logic for retrieving the bits for the jre and jetty to the worker roles OnStart – in addition to moving the process kickoff to the OnStart method.  The Run method at this point is there to loop and just report the status of the java process. Beyond just making things more parameterized, both Mario’s and David’s articles still form the essence of the approach. The solution that accompanies this post provides all the necessary .NET based Visual Studio project.  In addition, you’ll need: 1. Jetty 7 runtime http://www.eclipse.org/jetty/downloads.php 2. JRE http://www.oracle.com/technetwork/java/javase/downloads/index.html Once you have these the first step is to create archives (zips) of the distributions.  For this PoC, the structure of the archive requires that the root of the archive looks as follows: JRE6.zip jetty---.zip Upload the contents to a storage container (block blob), and for this example I used /archives as the location.  The service configuration has several settings that allow, which is the advantage of using RoleEntryPoint, the ability to provide these things via native configuration support from Azure in a worker role. Storage Explorer You can use development storage for testing this out – the zipped version of the solution is configured for development storage.  When you’re ready to deploy, you update the two settings – 1 for diagnostics and the other for the storage container where the /archives are going to be stored. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="HostedJetty" osFamily="2" osVersion="*"> <Role name="JettyWorker"> <Instances count="1" /> <ConfigurationSettings> <!--<Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="DefaultEndpointsProtocol=https;AccountName=<accountName>;AccountKey=<accountKey>" />--> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="JettyArchive" value="jetty-distribution-7.3.0.v20110203b.zip" /> <Setting name="StartRole" value="true" /> <Setting name="BlobContainer" value="archives" /> <Setting name="JreArchive" value="jre6.zip" /> <!--<Setting name="StorageCredentials" value="DefaultEndpointsProtocol=https;AccountName=<accountName>;AccountKey=<accountKey>"/>--> <Setting name="StorageCredentials" value="UseDevelopmentStorage=true" />   For interacting with Storage you can use several tools – one tool that I like is from the Windows Azure CAT team located here: http://appfabriccat.com/2011/02/exploring-windows-azure-storage-apis-by-building-a-storage-explorer-application/  and shown in the prior picture At runtime, during role initialization and startup, Azure will call into your RoleEntryPoint.  At that time the code will do a dynamic pull of the 2 archives and extract – using the Sharp Zip Lib <link> as Mario had demonstrated in his sample.  The only different here is the use of CLR code vs. PowerShell (which is really CLR, but that’s another discussion). At this point, once the 2 zips are extracted, the Role’s file system looks as follows: Worker Role approot From there, the OnStart method (which also does the download and unzip using a simple StorageHelper class) kicks off the Java path and now you have Java! Task Manager Jetty Sample Page A couple of things I’m working on to enhance this is to extract the jre and jetty bits not to the appRoot but to a resource location defined as part of the service definition. ServiceDefinition.csdef <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="HostedJetty" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="JettyWorker"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> <Endpoints> <InputEndpoint name="JettyPort" protocol="tcp" port="80" localPort="8080" /> </Endpoints> <LocalResources> <LocalStorage name="Archives" cleanOnRoleRecycle="false" sizeInMB="100" /> </LocalResources>   As the concept matures a bit, being able to update dynamically the content or jar files as part of a running java solution is something that is possible through continued enhancement of this simple model. The Visual Studio 2010 Solution is located here: HostingJavaSln_NDA.zip

    Read the article

  • JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue

    - by John-Brown.Evans
    JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue ol{margin:0;padding:0} .c18_3{vertical-align:top;width:487.3pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c20_3{vertical-align:top;width:487.3pt;border-style:solid;border-color:#ffffff;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c19_3{background-color:#ffffff} .c17_3{list-style-type:circle;margin:0;padding:0} .c12_3{list-style-type:disc;margin:0;padding:0} .c6_3{font-style:italic;font-weight:bold} .c10_3{color:inherit;text-decoration:inherit} .c1_3{font-size:10pt;font-family:"Courier New"} .c2_3{line-height:1.0;direction:ltr} .c9_3{padding-left:0pt;margin-left:72pt} .c15_3{padding-left:0pt;margin-left:36pt} .c3_3{color:#1155cc;text-decoration:underline} .c5_3{height:11pt} .c14_3{border-collapse:collapse} .c7_3{font-family:"Courier New"} .c0_3{background-color:#ffff00} .c16_3{font-size:18pt} .c8_3{font-weight:bold} .c11_3{font-size:24pt} .c13_3{font-style:italic} .c4_3{direction:ltr} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}.subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. In the first post, JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g we looked at how to create a JMS queue and its dependent objects in WebLogic Server. In the previous post, JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue I showed how to write a message to that JMS queue using the QueueSend.java sample program. In this article, we will use a similar sample, the QueueReceive.java program to read the message from that queue. Please review the previous posts if you have not already done so, as they contain prerequisites for executing the sample in this article. 1. Source code The following java code will be used to read the message(s) from the JMS queue. As with the previous example, it is based on a sample program shipped with the WebLogic Server installation. The sample is not installed by default, but needs to be installed manually using the WebLogic Server Custom Installation option, together with many, other useful samples. You can either copy-paste the following code into your editor, or install all the samples. The knowledge base article in My Oracle Support: How To Install WebLogic Server and JMS Samples in WLS 10.3.x (Doc ID 1499719.1) describes how to install the samples. QueueReceive.java package examples.jms.queue; import java.util.Hashtable; import javax.jms.*; import javax.naming.Context; import javax.naming.InitialContext; import javax.naming.NamingException; /** * This example shows how to establish a connection to * and receive messages from a JMS queue. The classes in this * package operate on the same JMS queue. Run the classes together to * witness messages being sent and received, and to browse the queue * for messages. This class is used to receive and remove messages * from the queue. * * @author Copyright (c) 1999-2005 by BEA Systems, Inc. All Rights Reserved. */ public class QueueReceive implements MessageListener { // Defines the JNDI context factory. public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory"; // Defines the JMS connection factory for the queue. public final static String JMS_FACTORY="jms/TestConnectionFactory"; // Defines the queue. public final static String QUEUE="jms/TestJMSQueue"; private QueueConnectionFactory qconFactory; private QueueConnection qcon; private QueueSession qsession; private QueueReceiver qreceiver; private Queue queue; private boolean quit = false; /** * Message listener interface. * @param msg message */ public void onMessage(Message msg) { try { String msgText; if (msg instanceof TextMessage) { msgText = ((TextMessage)msg).getText(); } else { msgText = msg.toString(); } System.out.println("Message Received: "+ msgText ); if (msgText.equalsIgnoreCase("quit")) { synchronized(this) { quit = true; this.notifyAll(); // Notify main thread to quit } } } catch (JMSException jmse) { System.err.println("An exception occurred: "+jmse.getMessage()); } } /** * Creates all the necessary objects for receiving * messages from a JMS queue. * * @param ctx JNDI initial context * @param queueName name of queue * @exception NamingException if operation cannot be performed * @exception JMSException if JMS fails to initialize due to internal error */ public void init(Context ctx, String queueName) throws NamingException, JMSException { qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY); qcon = qconFactory.createQueueConnection(); qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); queue = (Queue) ctx.lookup(queueName); qreceiver = qsession.createReceiver(queue); qreceiver.setMessageListener(this); qcon.start(); } /** * Closes JMS objects. * @exception JMSException if JMS fails to close objects due to internal error */ public void close()throws JMSException { qreceiver.close(); qsession.close(); qcon.close(); } /** * main() method. * * @param args WebLogic Server URL * @exception Exception if execution fails */ public static void main(String[] args) throws Exception { if (args.length != 1) { System.out.println("Usage: java examples.jms.queue.QueueReceive WebLogicURL"); return; } InitialContext ic = getInitialContext(args[0]); QueueReceive qr = new QueueReceive(); qr.init(ic, QUEUE); System.out.println( "JMS Ready To Receive Messages (To quit, send a \"quit\" message)."); // Wait until a "quit" message has been received. synchronized(qr) { while (! qr.quit) { try { qr.wait(); } catch (InterruptedException ie) {} } } qr.close(); } private static InitialContext getInitialContext(String url) throws NamingException { Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY); env.put(Context.PROVIDER_URL, url); return new InitialContext(env); } } 2. How to Use This Class 2.1 From the file system on Linux This section describes how to use the class from the file system of a WebLogic Server installation. Log in to a machine with a WebLogic Server installation and create a directory to contain the source and code matching the package name, e.g. span$HOME/examples/jms/queue. Copy the above QueueReceive.java file to this directory. Set the CLASSPATH and environment to match the WebLogic server environment. Go to $MIDDLEWARE_HOME/user_projects/domains/base_domain/bin  and execute . ./setDomainEnv.sh Collect the following information required to run the script: The JNDI name of the JMS queue to use In the WebLogic server console > Services > Messaging > JMS Modules > Module name, (e.g. TestJMSModule) > JMS queue name, (e.g. TestJMSQueue) select the queue and note its JNDI name, e.g. jms/TestJMSQueue The JNDI name of the connection factory to use to connect to the queue Follow the same path as above to get the connection factory for the above queue, e.g. TestConnectionFactory and its JNDI name e.g. jms/TestConnectionFactory The URL and port of the WebLogic server running the above queue Check the JMS server for the above queue and the managed server it is targeted to, for example soa_server1. Now find the port this managed server is listening on, by looking at its entry under Environment > Servers in the WLS console, e.g. 8001 The URL for the server to be passed to the QueueReceive program will therefore be t3://host.domain:8001 e.g. t3://jbevans-lx.de.oracle.com:8001 Edit Queue Receive .java and enter the above queue name and connection factory respectively under ... public final static String JMS_FACTORY="jms/TestConnectionFactory"; ... public final static String QUEUE="jms/TestJMSQueue"; ... Compile Queue Receive .java using javac Queue Receive .java Go to the source’s top-level directory and execute it using java examples.jms.queue.Queue Receive   t3://jbevans-lx.de.oracle.com:8001 This will print a message that it is ready to receive messages or to send a “quit” message to end. The program will read all messages in the queue and print them to the standard output until it receives a message with the payload “quit”. 2.2 From JDeveloper The steps from JDeveloper are the same as those used for the previous program QueueSend.java, which is used to send a message to the queue. So we won't repeat them here. Please see the previous blog post at JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue and apply the same steps in that example to the QueueReceive.java program. This concludes the example. In the following post we will create a BPEL process which writes a message based on an XML schema to the queue.

    Read the article

  • My VS 2010 and ASP.NET 4 Talks Online

    - by ScottGu
    The past 7 years I’ve done an annual all day event in Arizona – organized by the most excellent Scott Cate (who always does a phenomenal job organizing the event and making it a great one). Earlier this month I visited and presented 4+ hours of content covering VS 2010, ASP.NET 4 and ASP.NET MVC 2.  NextSlide.com – a great .NET shop local to Arizona who has a great product for sharing presentations – volunteered to record the talks and publish them for free using their online presentation tool.  The recordings they did turned out really, really great – and their online player (which combines slides + camera of me + demos in one experience) is awesome.  Below you can watch the first two segments of my event – which cover VS 2010 and ASP.NET 4 – for free online using the NextSlide.com player experience.  I’ll post a link to my ASP.NET MVC 2 segment a little later in a separate blog post.  If you’ve never seen my present these talks before and are interested in the content then I’d recommend checking them out – as these recordings do a really good job capturing them. Part 1 - VS 2010 This is a 49 minute segment that starts the event and covers a bunch of the new improvements in VS 2010.  You can launch the presentation directly here or watch it inline below.  You can download powerpoint versions of my slides here. Part 2- ASP.NET 4 This 61 minute segment comes next and drills into some of the framework improvements with ASP.NET 4.  It also goes further on some of the web specific tooling improvements in VS 2010 – and towards the end demonstrates some of the great new end-to-end web deployment features provided with VS 2010 (which work for both ASP.NET Web Forms and ASP.NET MVC applications). You can launch the presentation directly here or watch it inline below: Learning More about VS 2010 and ASP.NET 4 I’ve been working on a series of blog post about VS 2010 and .NET 4.  Many of the features I covered in my two talks above are described in more detail in posts within the series.  You can read all of them here. I’ll be continuing adding to the series via my blog, so stay tuned for more in-depth posts about a bunch more new features. Hope this helps, Scott P.S. People often ask whether they can re-use the slides+demos I use in my talks for talks of their own.  The answer to this is always absolutely! No need to ask permission.  Feel free to re-use all of my slides for talks of your own. P.P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • What are some great resources about programming contemporary GUIs and GUI architecture patterns?

    - by snitko
    So I've read Martin Fowler's old blog post http://martinfowler.com/eaaDev/uiArchs.html which describes various approaches to building GUI from an architecture point of view, discussing patterns and how they were used. But this blog post was written in 2006. Since then, there must have been some new ideas in the field? I was curious whether anyone knows about a similar guide to GUI architectures, but describing contemporary systems? The reason I'm interested in something abstract and theoretical to read is because it really is difficult and time consuming to ACTUALLY learn how ALL of the contemporary frameworks work, given their diversity and the diversity of the languages they are written in. I am primarily a web developer, so I'm familiar with Rails and some Javascript frameworks. But I would also like to know how GUI is built on Android or in Cocoa or in Windows, but without having to learn all of those things.

    Read the article

  • Asserting with JustMock

    In this post, i will be digging in a bit deep on Mock.Assert. This is the continuation from previous post and covers up the ways you can use assert for your mock expectations. I have used another traditional sample of Talisker that has a warehouse [Collaborator] and an order class [SUT] that will call upon the warehouse to see the stock and fill it up with items. Our sample, interface of warehouse and order looks similar to : public interface IWarehouse { bool HasInventory(string productName,...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • SELECT * FROM Sql tweeters WHERE location = ‘UK’

    - by blakmk
    Alright this is actually a follow up post from Gethyn Ellis post SELECT * FROM SQLBLOGGERS WHERE LOCATION = ‘UK’ . Where he composed a list of UK bloggers so I thought id summarize a list of Sql folk that tweet, but rather than make the list static I will just point you towards the list which I will keep up to date: http://twitter.com/#!/blakmk/sqlserver-uk It actually summarises people titles pretty well when viewed through DABR http://dabr.co.uk/lists/blakmk/sqlserver-uk I will keep this list updated so you are welcome to follow if you find it useful. If anyone feels left out, contact me and I will happily add you to the list.

    Read the article

  • ASP.NET 4.0 meta tags and Search engine optimisation

    - by nikolaosk
    I am thinking to create a new series of posts regarding ASP.NET and SEO (Search Engine Optimisation). I am going to start with this post , talking about some new features that make our asp.net apps more SEO friendly. At the end of the day, there is no point having a great application and somehow "scare" the search engines away. This is going to be a short post so let's quickly have a look at meta keywords and ASP.NET 4.0. Meta keywords and description are important elements of a page and make it...(read more)

    Read the article

  • Silverlight Cream for January 01, 2011 -- #1020

    - by Dave Campbell
    In this short New Year's Day 2011 Issue, 3 Mikes: Mike Taulty, Mike Snow, and Mike Ormond. Above the Fold: Silverlight: "Native Extensions for Silverlight (NESL)?" Mike Taulty WP7: "Monitoring Memory Usage on Windows Phone 7" Mike Ormond From SilverlightCream.com: Native Extensions for Silverlight (NESL)? Mike Taulty has a really good write-up on Native Extensions for Silverlight... he describes what that project is about and gives guidance on best practices. Win7 Mobile: Uniquely Identifying a Device or User Mike Snow has a post up describing how to uniquely identify the phone or device your app is running on using the Microsoft.Phone.Info.DeviceExtendedProperties namespace Monitoring Memory Usage on Windows Phone 7 Mike Ormond has a post up showing how to turn on and make use of the framerate counters in WP7 Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Monitora&ccedil;&atilde;o com Oracle Enteprrise Manager

    - by fernando.galdino
    A figura abaixo oferece uma visão geral das possibilidades de monitoramento providas pelo Oracle Enterprise Manager (OEM), que é uma ferramenta que permite gerenciar a infraestrutura de TI da empresa. Um componente importante da solução é chanado OEM Grid Control. Esse componente permite gerenciar, visualizar e monitorar diversos elementos a partir de uma mesma console. E que elementos podem ser monitorados? No conceito utilizado pelo OEM, os elementos que podem ser monitorados são chamados de Targets, e esses targets envolvem a monitoração de hosts (Windows, Linux, Solaris), Banco de Dados, Middleware, Aplicações Web, Serviços que podem ser customizados pelo administrador, Sistemas e Grupos de targets, além dos aplicativos Oracle. Cada elemento monitorado é ativado através de packs de gerenciamento. Ou seja, há uma série de packs que podem ser adquiridas conforme a necessidade, para permitir a monitoração a partir do próprio OEM Grid Control. Existem packs de monitoramento especiais para banco de dados Oracle, packs de monitoramento para Tomcat, Jboss, WebLogic, SOA Suite, Identity Management. A lista é bem extensa e darei mais detalhes em um novo post. Mas caso queira visitar, veja: http://download.oracle.com/docs/cd/B16240_01/doc/nav/overview.htm Além das packs de monitoramento, existem também plugins e conectores. Os plugins permitem o gerenciamento de elementos adicionais, tais como dispositivos de rede, servidores, banco de dados de terceiros (DB2, SQL Server), Vmware, etc. Já os conectores permitem a integração com outros softwares, tais como gerenciadores de requisições de helpdesk, de modo a integrar os alertas gerados pela ferramenta e gerar tickets em ferramentas como CA Service Desk, BMC Remedy e outros. A extensão de funcionalidades é realmente bem vasta. Num próximo post irei comentar sobre o Ops Center, um novo componente que surgiu após a aquisição da Sun. Além do Grid Control e do Ops Center, há outros componentes bem interessantes. A figura abaixo ilustra diversas camadas onde o ferramental Oracle pode ser usado para monitoração. Há uma pack que permite gerenciar os níveis de serviços em todas as camadas ilustradas. Dada uma requisição, pode-se decompor os dados de SLA em cada camada. E há também o Real User Monitoring, que trata de medir a experiência com o usuário. Falarei disso num novo post, mas basicamente a ferramenta permite acompanhar todo o tráfego de rede gerado dos usuários finais até os servidores web, e com isso rastrear como cada usuário usa a aplicação, quanto tempo ele navega pelo site, se ele enfrentou algum tipo de problema, se houve algum pedido não finalizado devido a algum problema na infraestrutura. É uma ferramenta bem interessante, falarei um pouco mais dela depois. E claro, há também componentes para a realização de testes funcionais e de carga. Em breve, aqui no blog :)

    Read the article

  • Silverlight Cream for January 14, 2011 -- #1027

    - by Dave Campbell
    In this Issue: Sigurd Snørteland, Yochay Kiriaty, WindowsPhoneGeek(-2-), Jesse Liberty(-2-), Kunal Chowdhury, Martin Krüger(-2-), Jonathan Cardy. Above the Fold: Silverlight: "Image Viewer using a GridSplitter control" Martin Krüger WP7: "Implementing WP7 ToggleImageControl from the ground up: Part1" WindowsPhoneGeek VS2010 Templates: "MVVM Project Templates for Visual Studio 2010" Jonathan Cardy From SilverlightCream.com: BabySmash7 - a WP7 children's game (source code included) Sigurd Snørteland not only brings Scott Hanselman's Baby Smash to WP7, but he's delivering the source to us as well as discussion of the app. Windows Push Notification Server Side Helper Library Yochay Kiriaty has a tutorial up on Push Notification... not explaining them, but a discussion of a WP7 Push Recipe that provides an easy way for sending all 3 kinds of push notification messages currently supported. Implementing WP7 ToggleImageControl from the ground up: Part1 WindowsPhoneGeek has a great 2-part series up on building a useful WP7 custom control -- a ToggleImage control... this part 1 is definition, deciding on Visual states, etc... buckle up... this is good stuff Implementing WP7 ToggleImageControl from the ground up: Part2 Part 2 in WindowsPhoneGeek's series is also up and where the real fun lives -- implementing the behavior of the control... and the source is available at the end of this post. The Full Stack #5 – Entity Framework Code First Jesse Liberty has episode 5 of the "Full Stack" series he and Jon Galloway are doing and are discussing Entity Framework Code First. Windows Phone From Scratch #18 – MVVM Light Toolkit Soup To Nuts 3 Jesse Liberty also has part 3 of his MVVMLight and WP7 post up and is digging into messaging in this one... for example view <--> ViewModel communication. Exploring Ribbon Control for Silverlight (Part - 1) Kunal Chowdhury has part 1 of a series up on using the Silverlight Ribbon Control from DevComponents... lots of information and a great intro to a great control. Image Viewer using a GridSplitter control Martin Krüger has a very nice picture viewer up as a demo and code available that simply uses the GridSplitter to implement tha aperture... check it out. How to: Gentle animation of a magnify effect Martin Krüger's latest is a take-off on a prior post he links to called 'just for fun' in which he smoothly animates a magnify effect... just very cool animation... explanation and source. MVVM Project Templates for Visual Studio 2010 Jonathan Cardy has a couple resources you probably wanna grab... two MVVM project templates for VS2010... one WPF and one Silverlight Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Windows Azure Evolution &ndash; Preview Developer Portal

    - by Shaun
    With the MEET Windows Azure event on 7th June, there are many new features and updates in windows azure platform. In the coming several posts I will try to cover some of them. And in the first post here I would like to just have a quick walkthrough of the new preview developer portal.   History of the Developer Portal If you have been working with windows azure since 2009 or 2010, you should remember the first version of the developer portal. It was built in HTML with very limited features. I have the impression when I was using is old one. The layout is not that attractive and you have very limited features. On November, 2010 alone with the SDK 1.3 release, the developer portal was getting a big jump. In order to give more usability and features this it turned to be built on Silverlight. Hence it runs like a desktop application with many windows, lists, commands and context menus. From 2010 till now many features were involved into this portal, such as the remote desktop, co-admin, virtual connect, VM role, etc.. And the portal itself became more and more complicated. But it brought some problems by using the Silverlight. The first one is the browser capability. As you know in most mobile and tablet device the browser doesn’t allow the rich content plugin, such as Flash and Silverlight. This means people cannot open and configure their azure services from their iPad, iPhone and Windows Phone, etc., even though what they need may just be restart a hosted service, or view the status of their databases. Another problem is the performance. Silverlight provides rich experience to the users, but also needs more bandwidth. So in this upgrade the preview developer portal will be back to use HTML, with JavaScript, as a mobile friendly, cross browser, interactively web site.   Preview Portal vs. Silverlight Portal Before I started to talk about the new preview portal I’d better highlight that, this preview portal is a PREVIEW version, which means even though you can do almost all features that already in the old one, as long as some cool new features I will mention in the coming several posts, there are something still under developed and migrated. So sometimes you need to switch back to the old one. For example, in preview portal there is no co-admin manage function, no remote desktop function and the SQL database manage function will take you back to the old SQL Azure Manage Portal. But as Microsoft said these missing features will be moved in the preview portal in the couple of next few months. Since the public URL of the developer portal, https://windows.azure.com/, had been changed to point to this preview one, you need to click to preview button on top of the page and click the “Take me to the previous portal” link.   Overview There are four parts in the preview portal. On the top is the header which shows the account you are currently logging in. If you click on the header it will show the top menu of windows azure, where you can navigate to the windows azure home page, the price information page, community and account, etc.. The navigation bar is on the left hand side, with the categories listed below. ALL ITEMS All items in your windows azure account, includes the web sites, services, databases, etc.. WEB SITES The web sites in your windows azure account. It will only show the web sites you have. The linked resources will be shown if you drill down into a web site. VIRTUAL MACHINES The virtual machines that you had been deployed to azure. CLOUD SERVICES All windows azure hosted services in your account. SQL DATABASES All SQL databases (SQL Azure) in your account. STORAGE All windows azure storage services in your account. NETWORKS The virtual network (Windows Azure Connect) you had been created. The available items will be listed in the main part of the page based on which category your currently selected. If there’s no item it will show the link to you to quick create. At the bottom of the page there will be the command and information bar. Based on what is selected and what is performed by the user, it will show the related information and commands. For example, in the image below when I was creating a new web site, the information bar told me that my web site is being provisioned; and there are two commands in the command bar. And once it ready the command bar will show some commands that I can do to my new web site. The “Web Sites” is a new feature introduced alone with this upgrade. It gives us an easier and quicker way to establish a website from the scratch or from some existing library. I will introduce it more details in the coming next post. Also in the command bar you can create a service by clicking the NEW button. It will slide the creation panel up to you.   Where’s My Hosted Services The Windows Azure Hosted Services had been renamed to the Cloud Services. Create a new service would be very easy. Just click the NEW button at the bottom of the page, and select the CLOUD SERVICE and QIUICK CREATE. This will create a blank hosted service without deployment and certificate. It just needs you to specify the service URL and the affinity/region. Then the service will be shown in the list. If you clicked the item all information will be shown in the main part. Since there’s no package deployed to this service so currently we cannot see any information about it. But we can upload the package by using the command at the bottom. And as you can see, we could manage the configuration, instances, certificates and we can scale up and down (change the VM size), in and out (increase and decrease the instance count) to our service. Assuming I had created an ASP.NET MVC 3 web role project in Visual Studio and completed the package. Then I can click the UPLOAD button in this page to deploy my package. In the popping up window I just specify my deployment name, package file and configure file. Also I can check the box below so that it will NOT warn me if only one instance of this deployment. Once we clicked the OK button our package will be uploaded and provisioned by the platform. After a while we can see the service was ready from the information bar. We can have the basic information about this service and deployment if we to the dashboard page. For example the usage overview diagram, status, URL, public IP address, etc.. In the configure page we can view and change the CSCFG content such as the monitor setting, connection strings, OS family. In scale page we can increase and decrease the count of the instances. And in the instances page we can view all instances status. And, if your services is using some SQL databases and storages they will be shown as the linked resources under the linked resources page. And you can manage the certificates of this service as well under the certificates page.   How About My Storage Services The storage service can be managed by clicking into the STORAGES link in the navigation bar. And we can create a new storage service from the NEW button. After specify the storage name and region it will be previsioned by the platform. If you want to copy or manage the storage key you can just click the Manage Keys button at the bottom, which is very easy. What I want to highlight here is that, you can monitor your storage service by enabling the monitor configuration. Click the storage item in the list and navigate to the configure page. As you can see in the page you can enable the monitoring for blob, table and queue. And you can also enable the logging when any requests come to the storage. But as the tooltip shown in the page, enabling the monitoring and logging will increase the usage of the storage, which means increase the bill of them. So make sure you enable them properly.   And My SQL Databases (SQL Azure) The last thing I want to quick introduce is the SQL databases, which was formally named SQL Azure. You can create a new SQL Database Server and a new database by clicking the ADD button under the SQL Database navigation item. In the popping up windows just specify the database name, the edition, size, collation and the server. You can select an existing SQL Database Server if you have, or cerate a new one. If you selected to create a new server, there will be another step you need to do, which is specify the server login, password and the region. Once it ready you can mange your databases as well as the servers in the portal. In a particular server you can update the firewall settings in its Configure page. So, What Else There are some other area on the preview portal I didn’t cover, such as the virtual machines, virtual network and web sites. Regarding the virtual machines and web sites I will talk about them in the future separated post. Regarding the virtual network, it the Windows Azure Connect we are familiar with. But as I mention in the beginning of this post, the preview portal is still under developed. Some features are not available here. For example, you cannot manage the co-admin of your subscriptions, you cannot open the remote desktop on your hosted services, and you cannot navigate to the Windows Azure Service Bus, Access Control and Caching, which formally named Windows Azure AppFabric directly. In these cases you need to navigate back to the old portal. So in the coming several months we might need to use both these two sites.   Summary In this post I quick introduced the new windows azure developer portal. Since it had been rearranged and renamed I demonstrated some features that existing in the old portal, such as how to create and deploy a hosted service, how to provision a storage service and SQL database. All features in the old portal had been, is being and will be migrated into this new portal, but some of them were in a different category and page we need to figure out.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Windows Azure Evolution &ndash; TFS Integration (WAWS Part 2)

    - by Shaun
    So this is the fourth blog post about the new features of Windows Azure and the second part of Windows Azure Web Sites. But this is not just focus on the WAWS since the function I’m going to introduce is available in both Windows Azure Web Sites and Windows Azure Cloud Service (a.k.a. hosted service). In the previous post I talked about the Windows Azure Web Sites and how to use its gallery to build a WordPress personal blog without coding. Besides the gallery we can create an empty web site and upload our website from vary approaches. And one of the highlighted feature here is that, we can make our web site integrated with a source control service, such as TFS and Git, so that it will be deployed automatically once a new commit or build available.   Create New Empty Web Site In the developer portal when creating a new web site, we can select QUICK CREATE item. This will create an empty web site with only one shared instance without any database associated. Let’s specify the URL, region and subscription and click OK. After a few seconds our website will be ready. And now we can click the BROWSE button to open this empty website. As you can see there is a welcome page available in my website even thought I didn’t upload or deploy anything. This means even though the website will be charged even before anything was deployed, similar as the cloud service (hosted service). It is because once we created a website, Windows Azure platform had arranged a hosting process (w3wp.exe) in the group of virtual machines.   Create Project in TFS Preview Service and Setup Link Currently the Windows Azure Web Sites can integrate with TFS and Git as its deployment source, and it only support the Microsoft TFS Preview Service for now. I will not deep into how to use the TFS preview service in this post but once we click into the website we had just created and then clicked the “Set up TFS publishing”, there will be a dialog helping us to connect to this service. If you don’t have an account you can click the link shown below to request one. Assuming we have already had an account of TFS service then we need to create a new project firstly. Go to your TFS service website and create a new project, giving the project name, description and the process template. Then, back to the developer portal and clicked the “Set up TFS publishing” link. In the popping up window I will provide my TFS service URL and click the “Authorize now” link. Click “Accept” button to allow my windows azure to connect to my TFS service. Then it will be back to the developer portal and list all projects in my account. Just select the one I had just created and click OK. Then our website is linking to the TFS project I specified and finally it will show similar like this below. This means the web site had been linked to the TFS successfully.   Work with TFS Preview Service in VS2010 In the figure above there are some links to guide us how to connect to the TFS server through Visual Studio 2010 and 2012 RC. If you are using Visual Studio 2012 RC, you don’t need any extension. But if you are using Visual Studio 2010 you must have SP1 and KB2581206 installed. To connect to my TFS service just open the Visual Studio and in the Team Explorer, we can add a new TFS server and paste the URL of my TFS service from the developer portal. And select the project I had just created, then it will be listed in my Team Explorer. Now let’s start to build our website. Since the website we are going to build will be deployed to WAWS, it’s NOT a cloud service, NOT a web role. So in this case we need to create a normal ASP.NET web application. For example, an ASP.NET MVC 3 web application. Next, right click on the solution and select “Add Solution to Source Control”, select the project I had just created. Then check my code in. Once the check-in finished we can see that there is a build running in the TFS server. And if we back to the developer portal, we will see in our web site deployment page there’s a deployment running. In fact, once we linked our web site to our TFS then it will create a new build definition in our TFS project. It will be triggered by each check-in and deploy to the web site we linked automatically. So that when our code had been compiled it will be published to our web site from our TFS server. Once the build and deployment finished we can see it’s now active on our developer portal. Now we can see the web site that created from my Visual Studio and deployed by my TFS.   Continue Deployment through VS and TFS A big benefit when using TFS publishing is the continue deployment. Now if I changed some code in my Visual Studio, for example update some text on the home page and check in my changes, then it will trigger an new build and deploy to my WAWS automatically. And even more, if we wanted to rollback to a previous version we can just select an existing deployment listed in the portal and click REDEPLOY at the bottom.   Q&A: Can Web Site use Storage work with a Worker Role? Stacy asked a question in my previous post, which was “can a web site use Windows Azure Storage and furthermore working with a worker role”. Since the web site is deployed on the windows azure virtual machines in data center, it must be able to use all windows azure features such as the storage, SQL databases, CDN, etc.. But since when using web site we normally have a standard ASP.NET web application, PHP website or NodeJS, the windows azure SDK was not referenced by default. But we can add them by ourselves. In our sample project let’s right click on my MVC project and clicked the “Manage NuGet packages”. And in the dialog I will search windows azure packages and select the “Windows Azure Storage” to install. Then we will have the assemblies to access windows azure storage such as tables, queues and blobs. Since I have a storage account already, let’s have a quick demo, just to list all blobs in a container. The code would be like this. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Web; 5: using System.Web.Mvc; 6: using Microsoft.WindowsAzure; 7: using Microsoft.WindowsAzure.StorageClient; 8:  9: namespace WAASTFSDemo.Controllers 10: { 11: public class HomeController : Controller 12: { 13: public ActionResult Index() 14: { 15: ViewBag.Message = "Welcome to Windows Azure!"; 16:  17: var credentials = new StorageCredentialsAccountAndKey("[STORAGE_ACCOUNT]", "[STORAGE_KEY]"); 18: var account = new CloudStorageAccount(credentials, false); 19: var client = account.CreateCloudBlobClient(); 20: var container = client.GetContainerReference("shared"); 21: ViewBag.Blobs = container.ListBlobs().Select(b => b.Uri.AbsoluteUri); 22:  23: return View(); 24: } 25:  26: public ActionResult About() 27: { 28: return View(); 29: } 30: } 31: } 1: @{ 2: ViewBag.Title = "Home Page"; 3: } 4:  5: <h2>@ViewBag.Message</h2> 6: <p> 7: To learn more about ASP.NET MVC visit <a href="http://asp.net/mvc" title="ASP.NET MVC Website">http://asp.net/mvc</a>. 8: </p> 9: <div> 10: <ul> 11: @foreach (var blob in ViewBag.Blobs) 12: { 13: <li>@blob</li> 14: } 15: </ul> 16: </div> And then just check in the code, it will be deployed to my web site. Finally we can see the blobs in my storage.   This is just an example but it proves that web sites can connect to storage, table, blob and queue as well. So the answer to Stacy should be “yes”. The web site can use queue storage to work with worker role.   Summary In this post I demonstrated how to integrate with TFS from Windows Azure Web Sites. You can see our website can be built, uploaded and deployed automatically by TFS service. All we need to do is to provide the TFS name and select the project. Not only the Windows Azure Web Site, in this upgrade the Windows Azure Cloud Services (hosted service) can be published through TFS as well. Very similar as what we have shown below. But currently, only Microsoft TFS Service Preview can be integrated with Windows Azure. But I think in the future we can link the TFS in our enterprise and some 3rd party TFS such as CodePlex to Windows Azure.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • CQRS - Benefits

    - by Dylan Smith
    Thanks to all the comments and feedback from the last post I think I have a better understanding now of the benefits of CQRS (separate from the benefits of Event Sourcing). I’m going to try and sum it up here, and point out some areas where I could still use some advice: CQRS Benefits Sounds like the primary benefit of CQRS as an architecture is it allows you to create a simpler domain model by sucking out everything related to queries. I can definitely see the benefit to this, in general the domain logic related to commands is the high-value behavior in the software, but the logic required to service the queries would add a lot of low-value “noise” to the domain model that would dilute the high-value (command) behavior – sorting, paging, filtering, pre-fetch paths, etc. Also the most appropriate domain structure for implementing commands might not be the most optimal for implementing queries. To paraphrase Greg, this usually results in a domain model that is mediocre at both, piss-poor at one, or more likely piss-poor at both commands and queries. Not only will you be able to simplify your domain model by pulling out all the query logic, but at least a handful of commands in most systems will probably be “pass-though” type commands with little to no logic that just generate events. If these can be implemented directly in the command-handler and never touch the domain model, this allows you to slim down the domain model even more. Also, if you were to do event sourcing without CQRS, you no longer have a database containing the current state (only the domain model would) which makes it difficult (or impossible) to support ad-hoc querying and/or reporting that is common in most business software. Of course CQRS provides some great scalability benefits, not only scalability but I have to assume that it provides extremely low latency for most operations, especially if you have an asynchronous event bus. I know Greg says that you get a 3x scaling (Commands, Queries, Client) of your ability to perform parallel development, but IMHO, it seems like it only provides 1.5x scaling since even without CQRS you’re going to have your client loosely coupled to your domain - which is still a great benefit to be able to realize. Questions / Concerns If all the queries against an aggregate get pulled out to the Query layer, what if the only commands for that aggregate can be handled in a “pass-through” manner with the command handler directly generating events. Is it possible to have an aggregate that isn’t modeled in the domain model? Are there any issues or downsides to this? I know in the feedback from my previous posts it was suggested that having one domain model handling both commands and queries requires implementing a lot of traversals between objects that wouldn’t be necessary if it was only servicing commands. My question is, do you include traversals in your domain model based on the needs of the code, or based on the conceptual domain model? If none of my Commands require a Customer.Orders traversal, but the conceptual domain includes the concept of a set of orders belonging to a customer – should I model that in my domain model or not? I like the idea of using the Query side of the architecture as a place to put junior devs where the risk of them screwing something up has minimal impact. But I’m not sold on the idea that you can actually outsource it. Like I said in one of my comments on my previous post, the code to handle a query and generate DTO’s is going to be dead simple, but the code to process events and apply them to the tables on the query side is going to require a significant amount of domain knowledge to know which events to listen for to update each of the de-normalized tables (and what changes need to be made when each event is processed). I don’t know about everybody else, but having Indian/Russian/whatever outsourced developers have to do anything that requires significant domain knowledge has never been successful in my experience. And if you need to spec out for each new query which events to listen to and what to do with each one, well that’s probably going to be just as much work to document as it would be to just implement it. Greg made the point in a comment that doing an aggregate query like “Total Sales By Customer” is going to be inefficient if you use event sourcing but not CQRS. I don’t understand why that would be the case. I imagine in that case you’d simply have a method/property on the Customer object that calculated total sales for that customer by enumerating over the Orders collection. Then the application services layer would generate DTO’s off of the Customers collection that included say the CustomerID, CustomerName, TotalSales, or whatever the case may be. As long as you use a snapshotting implementation, I don’t see why that would be anymore inefficient in a DDD+Event Sourcing implementation than in a typical DDD implementation. Like I mentioned in my last post I still have some questions about query logic that haven’t been answered yet, but before I start asking those I want to make sure I have a strong grasp on what benefits CQRS provides.  My main concern with the query logic was that I know I could just toss it all into the query side, but I was concerned that I would be losing the benefits of using CQRS in the first place if I did that.  I want to elaborate more on this though with some example situations in an upcoming post.

    Read the article

  • Microsoft Sql Server driver for Nodejs - Part 2

    - by chanderdhall
    Nodejs, Sql server and Json response with Rest This post is part 2 of Microsoft Sql Server driver for Node js.In this post we will look at the JSON responses from the Microsoft Sql Server driver for Node js. Pre-requisites: If you have read the Part 1 of the series, you should be good. We will be using a framework for Rest within Nodejs - Restify, but that would need no prior learning. Restify: Restify is a simple node module for building RESTful services. It is slimmer than Express. Express is a complete module that has all what you need to create a full-blown browser app. However, Restify does not have additional overhead of templating, rendering etc that would be needed if your app has views. So, as the name suggests it's an awesome framework for building RESTful services and is very light-weight. Set up - You can continue with the same directory or project structure we had in the previous post, or can start a new one. Install restify using npm and you are good to go. npm install restify Go to Server.js and include Restify in your solution. Then create the server object using restify.CreateServer() - SLICK - ha? var restify = require('restify'); var server = restify.createServer(); server.listen(8080, function () { console.log('%s listening at %s', server.name, server.url); }); Then make sure you provide a port for the Server to listen at. The call back function is optional but helps you for debugging purposes. Once you are done, save the file and then go to the command prompt and hit 'node server.js' and you should see the following:   To test the server, go to your browser and type the address 'http://localhost:8080/' and oops you will see an error.   Why is that? - Well because we haven't defined any routes. Let's go ahead and create a route. To begin with I'd like to return whatever is typed in the url after my name and the following code should do it. server.get('/ChanderDhall/:status', function respond(req, res, next) { res.end("hello " + req.params.name + "") }); You can also avoid writing call backs inline. Something like this. function respond(req, res, next) { res.end("Chander Dhall " + req.params.name + ""); } server.get('/hello/:name', respond); Now if you go ahead and type http://localhost:8080/ChanderDhall/LovesNode you will get the response 'Chander Dhall loves node'. NOTE: Make sure your url has the right case as it's case-sensitive. You could have also typed it in as 'server.get('/chanderdhall/:name', respond);' Stored procedure: We've talked a lot about Restify now, but keep in mind the post is about being able to use Sql server with Node and return JSON. To see this in action, let's go ahead and create another route to a list of Employees from a stored procedure. server.get('/Employees', Employees); The following code will return a JSON response.  function Employees(req, res, next) { res.header("Content-Type: application/json"); //Need to specify the Content-Type which is //JSON in our case. sql.open(conn_str, function (err, conn) { if (err) { //Logs an error console.log("Error opening the database connection!"); return; } console.log("before query!"); conn.queryRaw("exec sp_GetEmployees", function (err, results) { if (err) { //Connection is open but an error occurs whileWhat else can be done? May be create a formatter or may be even come up with a hypermedia type but that may upset some pragmatists. Well, that's going to be a totally different discussion and is really not part of this series. Summary: We've discussed how to execute a stored procedure using Microsoft Sql Server driver for Node. Also, we have discussed how to format and send out a clean JSON to the app calling this API.  

    Read the article

  • Persisting settings without using Options dialog in Visual Studio

    - by Utkarsh Shigihalli
    Originally posted on: http://geekswithblogs.net/onlyutkarsh/archive/2013/11/02/persisting-settings-without-using-options-dialog-in-visual-studio.aspxIn one of my previous blog post we have seen persisting settings using Visual Studio's options dialog. Visual Studio options has many advantages in automatically persisting user options for you. However, during our latest Team Rooms extension development, we decided to provide our users; ability to use our preferences directly from Team Explorer. The main reason was that we had only one simple option for user and we thought it is cumbersome for user to go to Tools –> Options dialog to change this. Another reason was, we wanted to highlight this setting to user as soon as he is using our extension.   So if you are in such a scenario where you do not want to use VS options window, but still would like to persist the settings, this post will guide you through. Visual Studio SDK provides two ways to persist settings in your extensions. One is using DialogPage as shown in my previous post. Another way is to use by implementing IProfileManager interface which I will explain in this post. Please note that the class implementing IProfileManager should be independent class. This is because, VS instantiates this class during Tools –> Import and Export Settings. IProfileManager provides 2 different sets of methods (total 4 methods) to persist the settings. They are LoadSettingsFromXml and SaveSettingsToXml – Implement these methods to persist settings to disk from VS settings storage. The VS will persist your settings along with other options to disk. LoadSettingsFromStorage and SaveSettingsToStorage – Implement these methods to persist settings to local storage, usually it be registry. VS calls LoadSettingsFromStorage method when it is initializing the package too. We are going to use the 2nd set of methods for this example. First, we are creating a separate class file called UserOptions.cs. Please note that, we also need to implement IComponent, which can be done by inheriting Component along with IProfileManager. [ComVisible(true)] [Guid("XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX")] public class UserOptions : Component, IProfileManager { private const string SUBKEY_NAME = "TForVS2013"; private const string TRAY_NOTIFICATIONS_STRING = "TrayNotifications"; ... } Define the property so that it can be used to set and get from other classes. public bool TrayNotifications { get; set; } Implement the members of IProfileManager. public void LoadSettingsFromStorage() { RegistryKey reg = null; try { using (reg = Package.UserRegistryRoot.OpenSubKey(SUBKEY_NAME)) { if (reg != null) { // Key already exists, so just update this setting. TrayNotifications = Convert.ToBoolean(reg.GetValue(TRAY_NOTIFICATIONS_STRING, true)); } } } catch (TeamRoomException exception) { TrayNotifications = true; ExceptionReporting.Report(exception); } finally { if (reg != null) { reg.Close(); } } } public void LoadSettingsFromXml(IVsSettingsReader reader) { reader.ReadSettingBoolean(TRAY_NOTIFICATIONS_STRING, out _isTrayNotificationsEnabled); TrayNotifications = (_isTrayNotificationsEnabled == 1); } public void ResetSettings() { } public void SaveSettingsToStorage() { RegistryKey reg = null; try { using (reg = Package.UserRegistryRoot.OpenSubKey(SUBKEY_NAME, true)) { if (reg != null) { // Key already exists, so just update this setting. reg.SetValue(TRAY_NOTIFICATIONS_STRING, TrayNotifications); } else { reg = Package.UserRegistryRoot.CreateSubKey(SUBKEY_NAME); reg.SetValue(TRAY_NOTIFICATIONS_STRING, TrayNotifications); } } } catch (TeamRoomException exception) { ExceptionReporting.Report(exception); } finally { if (reg != null) { reg.Close(); } } } public void SaveSettingsToXml(IVsSettingsWriter writer) { writer.WriteSettingBoolean(TRAY_NOTIFICATIONS_STRING, TrayNotifications ? 1 : 0); } Let me elaborate on the method implementation. The Package class provides UserRegistryRoot (which is HKCU\Microsoft\VisualStudio\12.0 for VS2013) property which can be used to create and read the registry keys. So basically, in the methods above, I am checking if the registry key exists already and if not, I simply create it. Also, in case there is an exception I return the default values. If the key already exists, I update the value. Also, note that you need to make sure that you close the key while exiting from the method. Very simple right? Accessing and settings is simple too. We just need to use the exposed property. UserOptions.TrayNotifications = true; UserOptions.SaveSettingsToStorage(); Reading settings is as simple as reading a property. UserOptions.LoadSettingsFromStorage(); var trayNotifications = UserOptions.TrayNotifications; Lastly, the most important step. We need to tell Visual Studio shell that our package exposes options using the UserOptions class. For this we need to decorate our package class with ProvideProfile attribute as below. [ProvideProfile(typeof(UserOptions), "TForVS2013", "TeamRooms", 110, 110, false, DescriptionResourceID = 401)] public sealed class TeamRooms : Microsoft.VisualStudio.Shell.Package { ... } That's it. If everything is alright, once you run the package you will also see your options appearing in "Import Export settings" window, which allows you to export your options.

    Read the article

  • Multi-Device Development in Visual Studio

    - by Daniel Moth
    You've read on Soma's blog post that Microsoft is broadening Visual Studio's reach to other platforms (including for example Android)…  specifically this is what Soma wrote: "With bring-your-own-device trends in the enterprise, and heterogeneity in the consumer mobile device market, developers are increasingly focused on building apps that can target a variety of devices. We are committed to enabling developers to build apps for this heterogeneous, mobile-first world with Visual Studio for the technology of your choice - whether .NET, C++ or JavaScript." If you live in Washington state in the USA (or are willing to relocate here) I am looking for a Program Manager to help with this effort – read the rest of the job description here which is also where you can apply for the position (or email me). Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • SQL SERVER – Powershell – Importing CSV File Into Database – Video

    - by pinaldave
    Laerte Junior is my very dear friend and Powershell Expert. On my request he has agreed to share Powershell knowledge with us. Laerte Junior is a SQL Server MVP and, through his technology blog and simple-talk articles, an active member of the Microsoft community in Brasil. He is a skilled Principal Database Architect, Developer, and Administrator, specializing in SQL Server and Powershell Programming with over 8 years of hands-on experience. He holds a degree in Computer Science, has been awarded a number of certifications (including MCDBA), and is an expert in SQL Server 2000 / SQL Server 2005 / SQL Server 2008 technologies. Let us read the blog post in his own words. I was reading an excellent post from my great friend Pinal about loading data from CSV files, SQL SERVER – Importing CSV File Into Database – SQL in Sixty Seconds #018 – Video,   to SQL Server and was honored to write another guest post on SQL Authority about the magic of the PowerShell. The biggest stuff in TechEd NA this year was PowerShell. Fellows, if you still don’t know about it, it is better to run. Remember that The Core Servers to SQL Server are the future and consequently the Shell. You don’t want to be out of this, right? Let’s see some PowerShell Magic now. To start our tour, first we need to download these two functions from Powershell and SQL Server Master Jedi Chad Miller.Out-DataTable and Write-DataTable. Save it in a module and add it in your profile. In my case, the module is called functions.psm1. To have some data to play, I created 10 csv files with the same content. I just put the SQL Server Errorlog into a csv file and created 10 copies of it. #Just create a CSV with data to Import. Using SQLErrorLog [reflection.assembly]::LoadWithPartialName(“Microsoft.SqlServer.Smo”) $ServerInstance=new-object (“Microsoft.SqlServer.Management.Smo.Server“) $Env:Computername $ServerInstance.ReadErrorLog() | export-csv-path“c:\SQLAuthority\ErrorLog.csv”-NoTypeInformation for($Count=1;$Count-le 10;$count++)  {       Copy-Item“c:\SQLAuthority\Errorlog.csv”“c:\SQLAuthority\ErrorLog$($count).csv” } Now in my path c:\sqlauthority, I have 10 csv files : Now it is time to create a table. In my case, the SQL Server is called R2D2 and the Database is SQLServerRepository and the table is CSV_SQLAuthority. CREATE TABLE [dbo].[CSV_SQLAuthority]( [LogDate] [datetime] NULL, [Processinfo] [varchar](20) NULL, [Text] [varchar](MAX) NULL ) Let’s play a little bit. I want to import synchronously all csv files from the path to the table: #Importing synchronously $DataImport=Import-Csv-Path ( Get-ChildItem“c:\SQLAuthority\*.csv”) $DataTable=Out-DataTable-InputObject$DataImport Write-DataTable-ServerInstanceR2D2-DatabaseSQLServerRepository-TableNameCSV_SQLAuthority-Data$DataTable Very cool, right? Let’s do it asynchronously and in background using PowerShell  Jobs: #If you want to do it to all asynchronously Start-job-Name‘ImportingAsynchronously‘ ` -InitializationScript  {IpmoFunctions-Force-DisableNameChecking} ` -ScriptBlock {    ` $DataImport=Import-Csv-Path ( Get-ChildItem“c:\SQLAuthority\*.csv”) $DataTable=Out-DataTable-InputObject$DataImport Write-DataTable   -ServerInstance“R2D2″`                   -Database“SQLServerRepository“`                   -TableName“CSV_SQLAuthority“`                   -Data$DataTable             } Oh, but if I have csv files that are large in size and I want to import each one asynchronously. In this case, this is what should be done: Get-ChildItem“c:\SQLAuthority\*.csv” | % { Start-job-Name“$($_)” ` -InitializationScript  {IpmoFunctions-Force-DisableNameChecking} ` -ScriptBlock { $DataImport=Import-Csv-Path$args[0]                $DataTable=Out-DataTable-InputObject$DataImport                Write-DataTable-ServerInstance“R2D2″`                               -Database“SQLServerRepository“`                               -TableName“CSV_SQLAuthority“`                               -Data$DataTable             } -ArgumentList$_.fullname } How cool is that? Let’s make the funny stuff now. Let’s schedule it on an SQL Server Agent Job. If you are using SQL Server 2012, you can use the PowerShell Job Step. Otherwise you need to use a CMDexec job step calling PowerShell.exe. We will use the second option. First, create a ps1 file called ImportCSV.ps1 with the script above and save it in a path. In my case, it is in c:\temp\automation. Just add the line at the end: Get-ChildItem“c:\SQLAuthority\*.csv” | % { Start-job-Name“$($_)” ` -InitializationScript  {IpmoFunctions-Force-DisableNameChecking} ` -ScriptBlock { $DataImport=Import-Csv-Path$args[0]                $DataTable=Out-DataTable-InputObject$DataImport                Write-DataTable-ServerInstance“R2D2″`                               -Database“SQLServerRepository“`                               -TableName“CSV_SQLAuthority“`                               -Data$DataTable             } -ArgumentList$_.fullname } Get-Job | Wait-Job | Out-Null Remove-Job -State Completed Why? See my post Dooh PowerShell Trick–Running Scripts That has Posh Jobs on a SQL Agent Job Remember, this trick is for  ALL scripts that will use PowerShell Jobs and any kind of schedule tool (SQL Server agent, Windows Schedule) Create a Job Called ImportCSV and a step called Step_ImportCSV and choose CMDexec. Then you just need to schedule or run it. I did a short video (with matching good background music) and you can see it at: That’s it guys. C’mon, join me in the #PowerShellLifeStyle. You will love it. If you want to check what we can do with PowerShell and SQL Server, don’t miss Laerte Junior LiveMeeting on July 18. You can have more information in : LiveMeeting VC PowerShell PASS–Troubleshooting SQL Server With PowerShell–English Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology, Video Tagged: Powershell

    Read the article

  • An OLAP client!

    - by Davide Mauri
    While surfing CodePlex I’ve come across a very interesting tool for all BI Developers who misses a decent OLAP client where to write, run & test MDX queries http://ranetuilibraryolap.codeplex.com/ I’ve not tested it yet, but I’ll surely do this week and I’ll post my impressions ASAP. The first impression, just looking the CodePlex page, is that tool Rocks!!!!! Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • SQL SERVER – Public Training and Private Training – Differences and Similarities

    - by pinaldave
    Earlier this year, I was on Road SQL Server Seminars. I did many SQL Server Performance Trainings and SQL Server Performance Consultations throughout the year but I feel the most rewarding exercise is always the one when instructor learns something from students, too. I was just talking to my wife, Nupur – she manages my logistics and administration related activities – and she pointed out that this year I have done 62% consultations and 38% trainings. I was bit surprised as I thought the numbers would be reversed. Every time I review the year, I think of training done at organizations. Well, I cannot argue with reality, I have done more consultations (some would call them projects) than training. I told my wife that I enjoy consultations more than training. She promptly asked me a question which was not directly related but made me think for long time, and in the end resulted in this blog post. Nupur asked me: what do I enjoy the most, public training or private training? I had a long conversation with her on this subject. I am not going to write long blog post which can change your life here. This is rather a small post condensing my one hour discussion into 200 words. Public Training is fun because… There are lots of different kinds of attendees There are always vivid questions Lots of questions on questions Less interest in theory and more interest in demos Good opportunity of future business Private Training is fun because… There is a focused interest One question is discussed deeply because of existing company issues More interest in “how it happened” concepts – under the hood operations Good connection with attendees This is also a good opportunity of future business Here I will stop my monologue and I want to open up this question to all of you: Question to Attendees - Which one do you enjoy the most – Public Training or Private Training? Question to Trainers - What do you enjoy the most – Public Training or Private Training? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Training, SQLAuthority News, T SQL, Technology

    Read the article

  • Denali Paging–Key seek lookups

    - by Dave Ballantyne
    In my previous post “Denali Paging – is it win.win ?” I demonstrated the use of using the Paging functionality within Denali.  On reflection,  I think i may of been a little unfair and should of continued always planned to continue my investigations to the next step. In Pauls article, he uses a combination of ctes to first scan the ordered keys which is then filtered using TOP and rownumber and then uses those keys to seek the data.  So what happens if we replace the scanning portion of the code with the denali paging functionality. Heres the original procedure,  we are going to replace the functionality of the Keys and SelectedKeys ctes : CREATE  PROCEDURE dbo.FetchPageKeySeek         @PageSize   BIGINT,         @PageNumber BIGINT AS BEGIN         -- Key-Seek algorithm         WITH    Keys         AS      (                 -- Step 1 : Number the rows from the non-clustered index                 -- Maximum number of rows = @PageNumber * @PageSize                 SELECT  TOP (@PageNumber * @PageSize)                         rn = ROW_NUMBER() OVER (ORDER BY P1.post_id ASC),                         P1.post_id                 FROM    dbo.Post P1                 ORDER   BY                         P1.post_id ASC                 ),                 SelectedKeys         AS      (                 -- Step 2 : Get the primary keys for the rows on the page we want                 -- Maximum number of rows from this stage = @PageSize                 SELECT  TOP (@PageSize)                         SK.rn,                         SK.post_id                 FROM    Keys SK                 WHERE   SK.rn > ((@PageNumber - 1) * @PageSize)                 ORDER   BY                         SK.post_id ASC                 )         SELECT  -- Step 3 : Retrieve the off-index data                 -- We will only have @PageSize rows by this stage                 SK.rn,                 P2.post_id,                 P2.thread_id,                 P2.member_id,                 P2.create_dt,                 P2.title,                 P2.body         FROM    SelectedKeys SK         JOIN    dbo.Post P2                 ON  P2.post_id = SK.post_id         ORDER   BY                 SK.post_id ASC; END; and here is the replacement procedure using paging: CREATE  PROCEDURE dbo.FetchOffsetPageKeySeek         @PageSize   BIGINT,         @PageNumber BIGINT AS BEGIN         -- Key-Seek algorithm         WITH    SelectedKeys         AS      (                 SELECT  post_id                 FROM    dbo.Post P1                 ORDER   BY post_id ASC                 OFFSET  @PageSize * (@PageNumber-1) ROWS                 FETCH NEXT @PageSize ROWS ONLY                 )         SELECT  P2.post_id,                 P2.thread_id,                 P2.member_id,                 P2.create_dt,                 P2.title,                 P2.body         FROM    SelectedKeys SK         JOIN    dbo.Post P2                 ON  P2.post_id = SK.post_id         ORDER   BY                 SK.post_id ASC; END; Notice how all i have done is replace the functionality with the Keys and SelectedKeys CTEs with the paging functionality. So , what is the comparative performance now ?. Exactly the same amount of IO and memory usage , but its now pretty obvious that in terms of CPU and overall duration we are onto a winner.    

    Read the article

  • T-SQL Tuesday #006: Tiger/Line Spatial Data

    - by Mike C
    This month’s T-SQL Tuesday post is about LOB data http://sqlblog.com/blogs/michael_coles/archive/2010/05/03/t-sql-tuesday-006-what-about-blob.aspx . For this one I decided to post a sample Tiger/Line SQL database I use all the time in live demos. For those who aren't familiar with it, Tiger/Line data is a dataset published by the U.S. Census Bureau . Tiger/Line has a lot of nice detailed geospatial data down to a very detailed level. It actually goes from the U.S. state level all the way down to...(read more)

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • SQL SERVER – A Puzzle – Fun with NULL – Fix Error 8117

    - by pinaldave
    During my 8 years of career, I have been involved in many interviews. Quite often, I act as the  interview. If I am the interviewer, I ask many questions – from easy questions to difficult ones. When I am the interviewee, I frequently get an opportunity to ask the interviewer some questions back. Regardless of the my capacity in attending the interview, I always make it a point to ask the interviewer at least one question. What is NULL? It’s always fun to ask this question during interviews, because in every interview, I get a different answer. NULL is often confused with false, absence of value or infinite value. Honestly, NULL is a very interesting subject as it bases its behavior in server settings. There are a few properties of NULL that are universal, but the knowledge about these properties is not known in a universal sense. Let us run this simple puzzle. Run the following T-SQL script: SELECT SUM(data) FROM (SELECT NULL AS data) t It will return the following error: Msg 8117, Level 16, State 1, Line 1 Operand data type NULL is invalid for sum operator. Now the error makes it very clear that NULL is invalid for sum Operator. Frequently enough, I have showed this simple query to many folks whom I came across. I asked them if they could modify the subquery and return the result as NULL. Here is what I expected: Even though this is a very simple looking query, so far I’ve got the correct answer from only 10% of the people to whom I have asked this question. It was common for me to receive this kind of answer – convert the NULL to some data type. However, doing so usually returns the value as 0 or the integer they passed. SELECT SUM(data) FROM (SELECT ISNULL(NULL,0) AS data) t I usually see many people modifying the outer query to get desired NULL result, but that is not allowed in this simple puzzle. This small puzzle made me wonder how many people have a clear understanding about NULL. Well, here is the answer to my simple puzzle. Just CAST NULL AS INT and it will return the final result as NULL: SELECT SUM(data) FROM (SELECT CAST(NULL AS INT) AS data) t Now that you know the answer, don’t you think it was very simple indeed? This blog post is especially dedicated to my friend Madhivanan who has written an excellent blog post about NULL. I am confident that after reading the blog post from Madhivanan, you will have no confusion regarding NULL in the future. Read: NULL, NULL, NULL and nothing but NULL. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Deploying Socket.IO App to Windows Azure Web Site with Azure CLI

    - by shiju
    In this blog post, I will demonstrate how to deploy Socket.IO app to Windows Azure Website using Windows Azure Cross-Platform Command-Line Interface, which leverages the Windows Azure Website’s new support for Web Sockets. Recently Windows Azure has announced lot of enhancements including the support for Web Sockets in Windows Azure Websites, which lets the Node.js developers deploy Socket.IO apps to Windows Azure Websites. In this blog post, I am using  Windows Azure CLI for create and deploy Windows Azure Website. Install  Windows Azure CLI The Windows Azure CLI available as a NPM module so that you can install Windows Azure CLI using  NPM as shown in the below command. After installing the azure-cli, just enter the command “azure” which will show the useful commands provided by Azure CLI. Import Windows Azure Subscription Account In order to import our Azure subscription account, we need to download the Windows Azure subscription profile. The Azure CLI command “account download” lets you download the  Windows Azure subscription profile as shown in the below command. The command redirect you login to Windows Azure portal and allow you to download the Windows Azure publish settings file. The account import command lets you import the downloaded publish settings file so that you can create and manage Websites, Cloud Services, Virtual Machines and Mobile Services in Windows Azure. Create Windows Azure Website and Enable Web Sockets In this post, we are going to deploy Socket.IO app to Windows Azure Website by using the Web Socket support provided by Windows Azure. Let’s create a Website named “socketiochatapp” using the Azure CLI. The above command will create a Windows Azure Website that will also initialize a Git repository with a remote named Azure. We can see the newly created Website from Azure portal. By default, the Web Sockets will be disabled. So let’s enable it by navigating to the Configure tab of the Website, and select “ON” in Web Sockets option and save the configuration changes. Deploy a Node.js Socket.IO App to Windows Azure Now, our Windows Azure Website supports Web Sockets so that we can easily deploy Socket.IO app to Windows Azure Website. Let’s add Node.js chat app which leverages Socket.IO module. Please note that you have to add npm module dependencies in the package.json file so that Windows Azure can install the dependencies when deploying the app. Let’s add the Node.js app and add the files to git repository. Let’s commit the changes to git repository. We have committed the changes to git local repository. Let’s push the changes to Windows Azure production environment. The successful deployment can see from the Windows Azure portal by navigating to the deployments tab of the selected Windows Azure Website. The screen shot below shows that our chat app is running successfully.   You can follow me on Twitter @shijucv

    Read the article

  • Code refactoring with Visual Studio 2010 Part-2

    - by Jalpesh P. Vadgama
    In previous post I have written about Extract Method Code refactoring option. In this post I am going to some other code refactoring features of Visual Studio 2010.  Renaming variables and methods is one of the most difficult task for a developer. Normally we do like this. First we will rename method or variable and then we will find all the references then do remaining over that stuff. This will be become difficult if your variable or method are referenced at so many files and so many place. But once you use refactor menu rename it will be bit Easy. I am going to use same code which I have created in my previous post. I am just once again putting that code here for your reference. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; Print(firstName, lastName); } private static void Print(string firstName, string lastName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } Now I want to rename print method in this code. To rename the method you can select method name and then select Refactor-> Rename . Once I selected Print method and then click on rename a dialog box will appear like following. Now I am renaming this Print method to PrintMyName like following.   Now once you click OK a dialog will appear with preview of code like following. It will show preview of code. Now once you click apply. You code will be changed like following. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; PrintMyName(firstName, lastName); } private static void PrintMyName(string firstName, string lastName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } So that’s it. This will work in multiple files also. Hope you liked it.. Stay tuned for more.. Till that Happy Programming.

    Read the article

< Previous Page | 207 208 209 210 211 212 213 214 215 216 217 218  | Next Page >