Search Results

Search found 43978 results on 1760 pages for 'select case'.

Page 223/1760 | < Previous Page | 219 220 221 222 223 224 225 226 227 228 229 230  | Next Page >

  • Please help translate this in linq to ef

    - by user3487644
    StringBuilder sb = new StringBuilder(); sb.AppendLine("SELECT"); sb.AppendLine(String.Format(" (SELECT TOP 1 CAST(ProspectID AS VARCHAR(5)) FROM Lead_Import_Fail Where ProspectID < {0} AND ProspectFullName = '{1}')", Convert.ToInt64(lead.LeadID), lead.Name)); sb.AppendLine(String.Format(", (SELECT TOP 1 CAST(ProspectID AS VARCHAR(5)) FROM Lead_Import_Fail Where ProspectID < {0} AND ProspectNRICPassport = '{1}')", Convert.ToInt64(lead.LeadID), lead.NRIC)); Thanks in advance.

    Read the article

  • How to pass a variable to a IN clause?

    - by Thanu
    Lets say I have a SP that has a SELECT statements as follows, SELECT product_id, product_price FROM product WHERE product_type IN ('AA','BB','CC'); But data goes to that IN clause must be through a single variable that contains the string of values. Something link below SELECT product_id, product_price FROM product WHERE product_type IN (input_variables); But its not working that way. Any idea how to do this?

    Read the article

  • Which is faster join

    - by Costa
    Hi Which is faster SELECT * FROM X INNER JOIN Y ON x.Record_ID = y.ForignKey_NotIndexed_NotUnique or SELECT * FROM X INNER JOIN Y ON y.ForignKey_NotIndexed_NotUnique = x.Record_ID

    Read the article

  • Python - Submit Information on a Website to Extract Data from Resulting Page

    - by bloodstorm17
    So I am trying to figure out how to post on a website that uses a drop down menu which is holding the values like this (based on the page source): <td valign="top" align="right"><span class="emphasis">Select Item Option : </span></td> <td align="left"> <span class="notranslate"> <select name="ItemOption1"> <option value="">Select Item Option</option> <option value="321_cba">Item Option 1</option> <option value="123_abcd">Item Option 2</option> ... Now there are two of these drop down menus on top of each other. I want to be able to select an item from drop down menu 1 and drop down menu 2 and then submit the page. Now based on the code it submits the information using the following code: <td colspan="2" align="center"> <input type="submit" value="View Result" onclick="return check()"> </td> </tr> </table> <input type="hidden" name="ItemOption1" value=""> <input type="hidden" name="ItemOption2" value=""> I have no idea how to select the items in the drop down menu and then submit the page and capture the information on the resulting page into a text file. Can someone please help me with this?

    Read the article

  • Search in Repeater

    - by user2797643
    On pageload i want to show all fields in repeater control and on typing licenseid in the textbox i want to show that specific licenceid details IF I place below code in the datasource of repeater,First one is not working.In the second one i placed a textbox and put its value to 0 on pageload.it is working.But i want both to be working. SELECT * FROM License WHERE (0 = @selectAll OR LicenseID=@LicenseID) -> Not working SELECT * FROM License WHERE (0 = @selectAll ) ->working SELECT * FROM License WHERE (LicenseID=@LicenseID)-> working Thanks in advance for the help

    Read the article

  • escape % in objective c

    - by Saurabh
    Hello All, I want to make an sql statement - sqlStatement = [NSString stringWithFormat:@"SELECT * FROM movies where title like '%%@%'",searchKeyword]; But sqlStatement is becoming - "SELECT * FROM movies where title like '%@'" I want to make it "SELECT * FROM movies where title like '%searchKeyword%'" How can I escape the "%" character? Thanks

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Intermittent lockups, unable to diagnose in over a year

    - by Magsol
    Here's a real doosie; I may just give my firstborn child to whomever helps me solve this problem. In July 2008, I assembled what would be my desktop computer for graduate school. Here are the specs of the machine I built: Thermaltake 750W PSU Corsair Dominator 2x2GB 240-pin SDRAM Thermaltake Tower Asus P5K Deluxe Motherboard Intel Core 2 Quad Q9300 2.5GHz CPU 2 x GeForce 8600 GT WD Caviar Blue 640GB hard drive CD burner DVD burner Soon thereafter, I ordered a new motherboard (because I was an idiot; that first motherboard supported CrossFire, not SLI), an Asus P5N-D. I was originally running Windows XP SP3. Pretty much right into the start of the fall semester, my desktop would simply lock up after awhile. If my system was largely idling, it would be after 1-3 days. If was gaming, it often happened an hour or two into my gaming session, indicating a link to activity level. Here's where it started getting interesting. I started looking at the system temps. The CPU was warmer than it should have been (~60s C), so I purchased some more efficient cooling compound a way better cooler for it. Now it hardly goes over 40 C. Intel was even kind enough to swap it out for free, just to rule it out. Lockups continued. The graphics cards were also running pretty warm: about 60 C idling. Removing one of them seemed to improve stability a little bit...as in, it wouldn't lock up quite as frequently, but still always eventually locked up. But it didn't matter which card I used or removed, the lockups continued. I reverted back to the original motherboard, the P5K Deluxe. Lockups continued. I purchased an entirely new motherboard, eVGA's nForce 750i. Lockups continued. Ran memtest86+ over and over and over, with no errors. Even RMA'd the memory. Lockups continued. Replaced the PSU with a Corsair 750W PSU. Lockups continued. Tried disconnecting all IDE drives (HDDs are SATA). Lockups continued. Replaced both graphics cards with a single Radeon HD 4980. Average temps are now always around 50 C when idling, 60 C only when gaming. Lockups continued. Throughout the whole ordeal, the system has been upgraded from Windows XP SP3 to Vista 32-bit, to Vista 64-bit, and is now at Windows 7 64-bit. Lockups have occurred at every step along the way (each OS was in place for at least a few months before the next upgrade). Edit: By "upgrade" I mean clean install each time. In addition to those reformats, I have performed many, many other reformats of the system and a reinstall of whatever OS had been previously installed in an attempt to rectify this problem, to no avail./Edit When the system locks up, there's no blue screen, no reboot, no error message of any kind. It simply freezes in place until I hit the reset button. Very, very rarely, once Windows boots back up, the system informs me that Windows has recovered from an error, but it can never find the source aside from some piece of hardware. I've swapped out every component in this computer, and there are more fans in it than I care to count...though for the sake of completeness: top 80mm case fan (out) rear 80mm case fan (out) rear 120mm case fan (out) front 120mm case fan (in) side 250mm case fan (in) giant CPU fan on-board motherboard fan (the eVGA board) triple-fan memory setup (came with the memory) PSU internal fan another 120mm fan I stuck on the underside of the video card to keep hot air from collecting at the bottom of the case I'm truly out of ideas. ANY help at all would be oh-so-very GREATLY appreciated. Thank you!

    Read the article

  • After each command tmux prints: ps1_update: command not found

    - by B.I.
    On Linux Ubuntu 11.04, after each command (cd, ls, vim...) successful or not, tmux prints out as a last line ps1_update: command not found. Is there any config option I am missing? Thank you very much! tmux.conf # http://lukaszwrobel.pl/blog/tmux-tutorial-split-terminal-windows-easily # just remember that after every modification, tmux must be refreshed # to take new settings into account. # This can be achieved either by restarting it or by typing in: # tmux source-file .tmux.conf # Here is a list of a few basic tmux commands: # Ctrl+b " - split pane horizontally. # Ctrl+b % - split pane vertically. # Ctrl+b arrow key - switch pane. # Hold Ctrl+b, don't release it and hold one of the arrow keys - resize pane. # !Ctrl+b c - (c)reate a new window. # !Ctrl+b n - move to the (n)ext window. # Ctrl+b p - move to the (p)revious window. # Shift+LMB - select text. # ALT+Arrows to move among panes. # rebind default prefix to C-a unbind C-b set -g prefix C-a # use ALT+Arrows to move around panes bind -n M-Left select-pane -L bind -n M-Right select-pane -R bind -n M-Up select-pane -U bind -n M-Down select-pane -D # activity monitoring setw -g monitor-activity on set -g visual-activity on # highlight current pane set-window-option -g window-status-current-bg yellow # enable pane switching with mouse set-option -g mouse-select-pane on # read bashrc source ~/.bashrc # Sane scrolling set -g terminal-overrides 'xterm*:smcup@:rmcup@' commandline print out ($(cat)user@tiki:~/.vim$ ls autoload bash_profile bashrc bundle README.md tmux.conf vimrc xmonad xmonad-ubuntu-conf xsessionrc ps1_update: command not found ($(cat)user@tiki:~/.vim$ ll total 56 drwxrwxr-x 2 user user 4096 Mar 17 10:20 autoload/ -rw-rw-r-- 1 user user 170 Mar 17 10:20 bash_profile -rw-rw-r-- 1 user user 4004 Apr 2 11:37 bashrc drwxrwxr-x 20 user user 4096 Aug 20 10:55 bundle/ -rw-rw-r-- 1 user user 11170 Aug 20 11:24 README.md -rw-rw-r-- 1 user user 1243 Mar 17 10:20 tmux.conf ps1_update: command not found ($(cat)user@tiki:~/.vim$ And the following is plain terminal output, without tmux running user@tiki:~$ ls backup_list.md Documents Dropbox examples.desktop hakers_and_painters.md~ hyundai Music projects ror Ubuntu One Videos windows.sh Desktop Downloads elif.txt hakers_and_painters.md help.txt maqola.txt Pictures Public tmp update_background.sh VirtualBox VMs user@tiki:~$ ll total 116 -rw-rw-r-- 1 user user 380 Aug 9 17:34 backup_list.md drwxr-xr-x 6 user user 4096 Jul 15 09:26 Desktop/ drwxr-xr-x 2 user user 4096 Jul 7 11:26 Documents/ drwxr-xr-x 11 user user 20480 Aug 20 13:53 Downloads/ -rwx------ 1 user user 729 May 7 14:45 update_background.sh* drwxr-xr-x 2 user user 4096 Dec 10 2013 Videos/ drwxrwxr-x 4 user user 4096 Sep 10 2013 VirtualBox VMs/ -rwxrwxr-x 1 user user 36 Jan 11 2014 windows.sh* user@tiki:~$ cd Desktop/ user@tiki:~/Desktop$ ll total 36 -rw-rw-r-- 1 user user 3388 Jul 14 17:10 daily--report.md -rw-rw-r-- 1 user user 71 Jan 28 2014 fernandez readme.md -rw-rw-r-- 1 user user 23 Jan 28 2014 fernandez readme.md~ drwx------ 4 user user 4096 Mar 23 14:02 my_docs/ drwx------ 2 user user 4096 Feb 3 2014 Origami/ drwx------ 7 user user 4096 Feb 1 2013 Plants_vs._Zombies_v1.2.0.1065/ -rwxr-xr-x 1 user user 301 Apr 15 11:28 Sky Fight.desktop* drwx------ 2 user user 4096 Feb 11 2014 webdesign/ -rwxrwxr-x 1 user user 26 Jan 11 2014 windows.sh~* user@tiki:~/Desktop$

    Read the article

  • How To Activate Your Free Office 2007 to 2010 Tech Guarantee Upgrade

    - by Matthew Guay
    Have you purchased Office 2007 since March 5th, 2010?  If so, here’s how you can activate and download your free upgrade to Office 2010! Microsoft Office 2010 has just been released, and today you can purchase upgrades from most retail stores or directly from Microsoft via download.  But if you’ve purchased a new copy of Office 2007 or a new computer that came with Office 2007 since March 5th, 2010, then you’re entitled to an absolutely free upgrade to Office 2010.  You’ll need enter information about your Office 2007 and then download the upgrade, so we’ll step you through the process. Getting Started First, if you’ve recently purchased Office 2007 but haven’t installed it, you’ll need to go ahead and install it before you can get your free Office 2010 upgrade.  Install it as normal.   Once Office 2007 is installed, run any of the Office programs.  You’ll be prompted to activate Office.  Make sure you’re connected to the internet, and then click Next to activate. Get your Free Upgrade to Office 2010 Now you’re ready to download your upgrade to Office 2010.  Head to the Office Tech Guarantee site (link below), and click Upgrade now. You’ll need to enter some information about your Office 2007.  Check that you purchased your copy of Office 2007 after March 5th, select your computer manufacturer, and check that you agree to the terms. Now you’re going to need the Product ID number from Office 2007.  To find this, open Word or any other Office 2007 application.  Click the Office Orb, and select Options on the bottom. Select the Resources button on the left, and then click About. Near the bottom of this dialog, you’ll see your Product ID.  This should be a number like: 12345-123-1234567-12345   Go back to the Office Tech Guarantee signup page in your browser, and enter this Product ID.  Select the language of your edition of Office 2007, enter the verification code, and then click Submit. It may take a few moments to validate your Product ID. When it is finished, you’ll be taken to an order page that shows the edition of Office 2010 you’re eligible to receive.  The upgrade download is free, but if you’d like to purchase a backup DVD of Office 2010, you can add it to your order for $13.99.  Otherwise, simply click Continue to accept. Do note that the edition of Office 2010 you receive may be different that the edition of Office 2007 you purchased, as the number of editions has been streamlined in the Office 2010 release.  Here’s a chart you can check to see what edition you’ll receive.  Note that you’ll still be allowed to install Office on the same number of computers; for example, Office 2007 Home and Student allows you to install it on up to 3 computers in the same house, and your Office 2010 upgrade will allow the same. Office 2007 Edition Office 2010 Upgrade You’ll Receive Office 2007 Home and Student Office Home and Student 2010 Office Basic 2007Office Standard 2007 Office Home and Business 2010 Office Small Business 2007Office Professional 2007Office Ultimate 2007 Office Professional 2010 Office Professional 2007 AcademicOffice Ultimate 2007 Academic Office Professional Academic 2010 Sign in with your Windows Live ID, or create a new one if you don’t already have one. Enter your name, select your country, and click Create My Account.  Note that Office will send Office 2010 tips to your email address; if you don’t wish to receive them, you can unsubscribe from the emails later.   Finally, you’re ready to download Office 2010!  Click the Download Now link to start downloading Office 2010.  Your Product Key will appear directly above the Download link, so you can copy it and then paste it in the installer when your download is finished.  You will additionally receive an email with the download links and product key, so if your download fails you can always restart it from that link. If your edition of Office 2007 included the Office Business Contact Manager, you will be able to download it from the second Download link.  And, of course, even if you didn’t order a backup DVD, you can always burn the installers to a DVD for a backup.   Install Office 2010 Once you’re finished downloading Office 2010, run the installer to get it installed on your computer.  Enter your Product Key from the Tech Guarantee website as above, and click Continue. Accept the license agreement, and then click Upgrade to upgrade to the latest version of Office.   The installer will remove all of your Office 2007 applications, and then install their 2010 counterparts.  If you wish to keep some of your Office 2007 applications instead, click Customize and then select to either keep all previous versions or simply keep specific applications. By default, Office 2010 will try to activate online automatically.  If it doesn’t activate during the install, you’ll need to activate it when you first run any of the Office 2010 apps.   Conclusion The Tech Guarantee makes it easy to get the latest version of Office if you recently purchased Office 2007.  The Tech Guarantee program is open through the end of September, so make sure to grab your upgrade during this time.  Actually, if you find a great deal on Office 2007 from a major retailer between now and then, you could also take advantage of this program to get Office 2010 cheaper. And if you need help getting started with Office 2010, check out our articles that can help you get situated in your new version of Office! Link Activate and Download Your free Office 2010 Tech Guarantee Upgrade Similar Articles Productive Geek Tips Remove Office 2010 Beta and Reinstall Office 2007Upgrade Office 2003 to 2010 on XP or Run them Side by SideCenter Pictures and Other Objects in Office 2007 & 2010Change the Default Color Scheme in Office 2010Show Two Time Zones in Your Outlook 2007 Calendar TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Windows Media Player Plus! – Cool WMP Enhancer Get Your Team’s World Cup Schedule In Google Calendar Backup Drivers With Driver Magician TubeSort: YouTube Playlist Organizer XPS file format & XPS Viewer Explained Microsoft Office Web Apps Guide

    Read the article

  • Using JCA Adapter with OSB 11.1.1.3

    - by James Taylor
    In OSB 10g to use the JCA adapters you were required to use JDeveloper to create the necessary WSDLs and XSDs etc using the associated adapter wizard. These files were imported into Oracle Workshop (Eclipse) and used to create the business service as you would any other web service. In 11g unfortunately JDeveloper is still required. The process has changed slightly as described below. As an example I have used the JCA DB adapter as an example. Start JDeveloper 11.1.1.3 Create a new SOA Application Create a new SOA Project and call it DBAdapters. Choose the Empty Composite Template Drag a Database Adapter Component to the External References panel on the composite. Provide a service name. Create a new database connection, or use an existing one Take note of the JNDI Name, e.g. eis/DB/MyConnection This will be used to configure the DB connection in the WebLogic Console. In my example I use a stored procedure, but you can use what ever operation you require. Please refer to the following link for other options: User's Guide for Technology Adapters Select a schema and stored procedure Once the procedure has been selected, accept the defaults and finish. Startup your OEPE version of Eclipse. Create a new Oracle Service Bus Configuration Project (you can use an existing project if you have one) Create a new Oracle Service Bus Project in the configuration project created above. Instead of importing the WSDL and XSD files you import the jca file created in JDeveloper. In Eclipse right click the Oracle Service Bus Project and select Import –> Import    Choose File System Browse to the directory where JDeveloper stores its project Select the jca, wsdl, and xsd files based on the service you created in step 5. Also check the ‘Create selected folders only’ radio button. When you import you may have a little red x indicating the files are invalid. This is due to the location of the files. Open the invalid files and fix the path in relation to where you store your files in the OSB project.   Once you have the files all valid, Right-Click the jca file and select Oracle Service Bus –> Generate Service. This will create a new Business Service. In the WebLogic Console configure the JNDI name defined in step 7. You can now deploy your project and test

    Read the article

  • How to Add Proprietary Drivers to Ubuntu 10.04

    - by Matthew Guay
    Does the hardware on your Ubuntu system need proprietary drivers work at peak performance?  Today we take a look how easy version 10.04 makes it to install them. Ubuntu 10.04 finally automatically recognizes and installs drivers for most hardware today, it even recognized and configured Wi-Fi drivers correctly every time in our tests.  This is in contrast to the past, when it was often difficult to get hardware to work in Linux.  However, most video cards still need proprietary drivers from their manufacturer to get full hardware video acceleration. Even though Ubuntu doesn’t include any non-open source components, it still makes it easy to install proprietary drivers if you wish.  When you first install and boot into Ubuntu, you may see a popup informing you that “restricted” drivers are available. You may see a notification asking you if you’d like to install optional drivers from your graphics card manufacturer when you try to enable advanced desktop effects.  Click Enable to directly install the drivers right there. Or, you can select the tray icon from the first popup, and click Install drivers. Alternately, if the tray icon has disappeared, click System, then Administration, and select Hardware Drivers.   This will open a dialog showing all the proprietary drivers available for your system, which may include drivers for your video card and other hardware depending on your computer.  Select the driver you wish to install, and click Activate. Enter your password, and then Ubuntu will download and install the driver without any more input.  After installation you may be prompted to reboot your system. Now, you should be able to take full advantage of your hardware, including fancy desktop effects with hardware acceleration. If you ever wish to remove these drivers, simply re-open the drivers dialog as above, select the driver, and click Remove.  Once again, a reboot may be required to finish the process. Conclusion Ubuntu has definitely made it easier to use Linux on your desktop computer, no matter what hardware you have.  If your video card or other hardware require proprietary drivers, it makes them available and simple to install.  And, best of all, all of your drivers stay updated with your software updates, so you can be sure you’re always running the latest. Similar Articles Productive Geek Tips Adding extra Repositories on UbuntuBackup and Restore Hardware Drivers the Easy Way with Double DriverCopy Windows Drivers From One Machine to AnotherInstalling PHP4 and Apache on UbuntuInstalling PHP5 and Apache on Ubuntu TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 Acronis Online Backup Gmail Button Addon (Firefox) Hyperwords addon (Firefox) Backup Outlook 2010 Daily Motivator (Firefox) FetchMp3 Can Download Videos & Convert Them to Mp3 Use Flixtime To Create Video Slideshows

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 1

    - by rajbk
    This tutorial walks you through creating an report based on the Northwind sample database. You will add a client report definition file (RDLC), create a dataset for the RDLC, define queries using LINQ to Entities, design the report and add a ReportViewer web control to render the report in a ASP.NET web page. The report will have a chart control. Different results will be generated by changing filter criteria. At the end of the walkthrough, you should have a UI like the following.  From the UI below, a user is able to view the product list and can see a chart with the sum of Unit price for a given category. They can filter by Category and Supplier. The drop downs will auto post back when the selection is changed.  This demo uses Visual Studio 2010 RTM. This post is split into three parts. The last part has the sample code attached. Creating an ASP.NET report using Visual Studio 2010 - Part 2 Creating an ASP.NET report using Visual Studio 2010 - Part 3   Lets start by creating a new ASP.NET empty web application called “NorthwindReports” Creating the Data Access Layer (DAL) Add a web form called index.aspx to the root directory. You do this by right clicking on the NorthwindReports web project and selecting “Add item..” . Create a folder called “DAL”. We will store all our data access methods and any data transfer objects in here.   Right click on the DAL folder and add a ADO.NET Entity data model called Northwind. Select “Generate from database” and click Next. Create a connection to your database containing the Northwind sample database and click Next.   From the table list, select Categories, Products and Suppliers and click next. Our Entity data model gets created and looks like this:    Adding data transfer objects Right click on the DAL folder and add a ProductViewModel. Add the following code. This class contains properties we need to render our report. public class ProductViewModel { public int? ProductID { get; set; } public string ProductName { get; set; } public System.Nullable<decimal> UnitPrice { get; set; } public string CategoryName { get; set; } public int? CategoryID { get; set; } public int? SupplierID { get; set; } public bool Discontinued { get; set; } } Add a SupplierViewModel class. This will be used to render the supplier DropDownlist. public class SupplierViewModel { public string CompanyName { get; set; } public int SupplierID { get; set; } } Add a CategoryViewModel class. public class CategoryViewModel { public string CategoryName { get; set; } public int CategoryID { get; set; } } Create an IProductRepository interface. This will contain the signatures of all the methods we need when accessing the entity model.  This step is not needed but follows the repository pattern. interface IProductRepository { IQueryable<Product> GetProducts(); IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID); IQueryable<SupplierViewModel> GetSuppliers(); IQueryable<CategoryViewModel> GetCategories(); } Create a ProductRepository class that implements the IProductReposity above. The methods available in this class are as follows: GetProducts – returns an IQueryable of all products. GetProductsProjected – returns an IQueryable of ProductViewModel. The method filters all the products based on SupplierId and CategoryId if any. It then projects the result into the ProductViewModel. GetSuppliers() – returns an IQueryable of all suppliers projected into a SupplierViewModel GetCategories() – returns an IQueryable of all categories projected into a CategoryViewModel  public class ProductRepository : IProductRepository { /// <summary> /// IQueryable of all Products /// </summary> /// <returns></returns> public IQueryable<Product> GetProducts() { var dataContext = new NorthwindEntities(); var products = from p in dataContext.Products select p; return products; }   /// <summary> /// IQueryable of Projects projected /// into the ProductViewModel class /// </summary> /// <returns></returns> public IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID) { var projectedProducts = from p in GetProducts() select new ProductViewModel { ProductID = p.ProductID, ProductName = p.ProductName, UnitPrice = p.UnitPrice, CategoryName = p.Category.CategoryName, CategoryID = p.CategoryID, SupplierID = p.SupplierID, Discontinued = p.Discontinued }; // Filter on SupplierID if (supplierID.HasValue) { projectedProducts = projectedProducts.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { projectedProducts = projectedProducts.Where(a => a.CategoryID == categoryID); }   return projectedProducts; }     public IQueryable<SupplierViewModel> GetSuppliers() { var dataContext = new NorthwindEntities(); var suppliers = from s in dataContext.Suppliers select new SupplierViewModel { SupplierID = s.SupplierID, CompanyName = s.CompanyName }; return suppliers; }   public IQueryable<CategoryViewModel> GetCategories() { var dataContext = new NorthwindEntities(); var categories = from c in dataContext.Categories select new CategoryViewModel { CategoryID = c.CategoryID, CategoryName = c.CategoryName }; return categories; } } Your solution explorer should look like the following. Build your project and make sure you don’t get any errors. In the next part, we will see how to create the client report definition file using the Report Wizard.   Creating an ASP.NET report using Visual Studio 2010 - Part 2

    Read the article

  • Why do apache2 upgrades remove and not re-install libapache2-mod-php5?

    - by nutznboltz
    We repeatedly see that when an apache2 update arrives and is installed it causes the libapache2-mod-php5 package to be removed and does not subsequently re-install it automatically. We must subsequently re-install the libapache2-mod-php5 manually in order to restore functionality to our web server. Please see the following github gist, it is a contiguous section of our server's dpkg.log showing the November 14, 2011 update to apache2: https://gist.github.com/1368361 it includes 2011-11-14 11:22:18 remove libapache2-mod-php5 5.3.2-1ubuntu4.10 5.3.2-1ubuntu4.10 Is this a known issue? Do other people see this too? I could not find any launchpad bug reports about it. Platform details: $ lsb_release -ds Ubuntu 10.04.3 LTS $ uname -srvm Linux 2.6.38-12-virtual #51~lucid1-Ubuntu SMP Thu Sep 29 20:27:50 UTC 2011 x86_64 $ dpkg -l | awk '/ii.*apache/ {print $2 " " $3 }' apache2 2.2.14-5ubuntu8.7 apache2-mpm-prefork 2.2.14-5ubuntu8.7 apache2-utils 2.2.14-5ubuntu8.7 apache2.2-bin 2.2.14-5ubuntu8.7 apache2.2-common 2.2.14-5ubuntu8.7 libapache2-mod-authnz-external 3.2.4-2+squeeze1build0.10.04.1 libapache2-mod-php5 5.3.2-1ubuntu4.10 Thanks At a high-level the update process looks like: package package_name do action :upgrade case node[:platform] when 'centos', 'redhat', 'scientific' options '--disableplugin=fastestmirror' when 'ubuntu' options '-o Dpkg::Options::="--force-confdef" -o Dpkg::Options::="--force-confold"' end end But at a lower level def install_package(name, version) run_command_with_systems_locale( :command = "apt-get -q -y#{expand_options(@new_resource.options)} install #{name}=#{version}", :environment = { "DEBIAN_FRONTEND" = "noninteractive" } ) end def upgrade_package(name, version) install_package(name, version) end So Chef is using "install" to do "update". This sort of moves the question around to "how does apt-get safe-upgrade" remember to re-install libapache-mod-php5? The exact sequence of packages that triggered this was: apache2 apache2-mpm-prefork apache2-mpm-worker apache2-utils apache2.2-bin apache2.2-common But the code is attempting to run checks to make sure the packages in that list are installed already before attempting to "upgrade" them. case node[:platform] when 'debian', 'centos', 'fedora', 'redhat', 'scientific', 'ubuntu' # first primitive way is to define the updates in the recipe # data bags will be used later %w/ apache2 apache2-mpm-prefork apache2-mpm-worker apache2-utils apache2.2-bin apache2.2-common /.each{ |package_name| Chef::Log.debug("is #{package_name} among local packages available for changes?") next unless node[:packages][:changes].keys.include?(package_name) Chef::Log.debug("is #{package_name} available for upgrade?") next unless node[:packages][:changes][package_name][:action] == 'upgrade' package package_name do action :upgrade case node[:platform] when 'centos', 'redhat', 'scientific' options '--disableplugin=fastestmirror' when 'ubuntu' options '-o Dpkg::Options::="--force-confdef" -o Dpkg::Options::="--force-confold"' end end tag('upgraded') } # after upgrading everything, run yum cache updater if tagged?('upgraded') # Remove old orphaned dependencies and kernel images and kernel headers etc. # Remove cached deb files. case node[:platform] when 'ubuntu' execute 'apt-get -y autoremove' execute 'apt-get clean' # Re-check what updates are available soon. when 'centos', 'fedora', 'redhat', 'scientific' node[:packages][:last_time_we_looked_at_yum] = 0 end untag('upgraded') end end But it's clear that it fails since the dpkg.log has 2011-11-14 11:22:25 install apache2-mpm-worker 2.2.14-5ubuntu8.7 on a system which does not currently have apache2-mpm-worker. I will have to discuss this with the author, thanks again.

    Read the article

  • Perform Unit Conversions with the Windows 7 Calculator

    - by Matthew Guay
    Want to easily convert area, volume, temperature, and many other units?  With the Calculator in Windows 7, it’s easy to convert most any unit into another. The New Calculator in Windows 7 Calculator received a visual overhaul in Windows 7, but at first glance it doesn’t seem to have any new functionality.  Here’s Windows 7’s Calculator on the left, with Vista’s calculator on the right.   But, looks can be deceiving.  Window’s 7’s calculator has lots of new exciting features.  Let’s try them out.  Simply type Calculator in the start menu search. To uncover the new features, click the View menu.  Here you can select many different modes, including Unit Conversion mode which we will look at. When you select the Unit Conversion mode, the Calculator will expand with a form on the left side. This conversions pane has 3 drop-down menus.  From the top one, select the type of unit you want to convert. In the next two menus, select which values you wish to convert to and from.  For instance, here we selected Temperature in the first menu, Degrees Fahrenheit in the second menu, and Degrees Celsius in the third menu. Enter the value you wish to convert in the From box, and the conversion will automatically appear in the bottom box. The Calculator contains dozens of conversion values, including more uncommon ones.  So if you’ve ever wanted to know how many US gallons are in a UK gallon, or how many knots a supersonic jet travels in an hour, this is a great tool for you!   Conclusion Windows 7 is filled with little changes that give you an all-around better experience in Windows to help you work more efficiently and productively.  With the new features in the Calculator, you just might feel a little smarter, too! Similar Articles Productive Geek Tips Add Windows Calculator to the Excel 2007 Quick Launch ToolbarEnjoy Quick & Easy Unit Conversion with Convert for WindowsCalculate with Qalculate on LinuxDisable the Annoying “This device can perform faster” Balloon Message in Windows 7Get stats on your Ruby on Rails code TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Install, Remove and HIDE Fonts in Windows 7 Need Help with Your Home Network? Awesome Lyrics Finder for Winamp & Windows Media Player Download Videos from Hulu Pixels invade Manhattan Convert PDF files to ePub to read on your iPad

    Read the article

  • Getting MySQL work with Entity Framework 4.0

    - by DigiMortal
    Does MySQL work with Entity Framework 4.0? The answer is: yes, it works! I just put up one experimental project to play with MySQL and Entity Framework 4.0 and in this posting I will show you how to get MySQL data to EF. Also I will give some suggestions how to deploy your applications to hosting and cloud environments. MySQL stuff As you may guess you need MySQL running somewhere. I have MySQL installed to my development machine so I can also develop stuff when I’m offline. The other thing you need is MySQL Connector for .NET Framework. Currently there is available development version of MySQL Connector/NET 6.3.5 that supports Visual Studio 2010. Before you start download MySQL and Connector/NET: MySQL Community Server Connector/NET 6.3.5 If you are not big fan of phpMyAdmin then you can try out free desktop client for MySQL – HeidiSQL. I am using it and I am really happy with this program. NB! If you just put up MySQL then create also database with couple of table there. To use all features of Entity Framework 4.0 I suggest you to use InnoDB or other engine that has support for foreign keys. Connecting MySQL to Entity Framework 4.0 Now create simple console project using Visual Studio 2010 and go through the following steps. 1. Add new ADO.NET Entity Data Model to your project. For model insert the name that is informative and that you are able later recognize. Now you can choose how you want to create your model. Select “Generate from database” and click OK. 2. Set up database connection Change data connection and select MySQL Database as data source. You may also need to set provider – there is only one choice. Select it if data provider combo shows empty value. Click OK and insert connection information you are asked about. Don’t forget to click test connection button to see if your connection data is okay. If everything works then click OK. 3. Insert context name Now you should see the following dialog. Insert your data model name for application configuration file and click OK. Click next button. 4. Select tables for model Now you can select tables and views your classes are based on. I have small database with events data. Uncheck the checkbox “Include foreign key columns in the model” – it is damn annoying to get them away from model later. Also insert informative and easy to remember name for your model. Click finish button. 5. Define your classes Now it’s time to define your classes. Here you can see what Entity Framework generated for you. Relations were detected automatically – that’s why we needed foreign keys. The names of classes and their members are not nice yet. After some modifications my class model looks like on the following diagram. Note that I removed attendees navigation property from person class. Now my classes look nice and they follow conventions I am using when naming classes and their members. NB! Don’t forget to see properties of classes (properties windows) and modify their set names if set names contain numbers (I changed set name for Entity from Entity1 to Entities). 6. Let’s test! Now let’s write simple testing program to see if MySQL data runs through Entity Framework 4.0 as expected. My program looks for events where I attended. using(var context = new MySqlEntities()) {     var myEvents = from e in context.Events                     from a in e.Attendees                     where a.Person.FirstName == "Gunnar" &&                             a.Person.LastName == "Peipman"                     select e;       Console.WriteLine("My events: ");       foreach(var e in myEvents)     {         Console.WriteLine(e.Title);     } }   Console.ReadKey(); And when I run it I get the result shown on screenshot on right. I checked out from database and these results are correct. At first run connector seems to work slow but this is only the effect of first run. As connector is loaded to memory by Entity Framework it works fast from this point on. Now let’s see what we have to do to get our program work in hosting and cloud environments where MySQL connector is not installed. Deploying application to hosting and cloud environments If your hosting or cloud environment has no MySQL connector installed you have to provide MySQL connector assemblies with your project. Add the following assemblies to your project’s bin folder and include them to your project (otherwise they are not packaged by WebDeploy and Azure tools): MySQL.Data MySQL.Data.Entity MySQL.Web You can also add references to these assemblies and mark references as local so these assemblies are copied to binary folder of your application. If you have references to these assemblies then you don’t have to include them to your project from bin folder. Also add the following block to your application configuration file. <?xml version="1.0" encoding="utf-8"?> <configuration> ...   <system.data>     <DbProviderFactories>         <add              name=”MySQL Data Provider”              invariant=”MySql.Data.MySqlClient”              description=”.Net Framework Data Provider for MySQL”              type=”MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data,                   Version=6.2.0.0, Culture=neutral,                   PublicKeyToken=c5687fc88969c44d”          />     </DbProviderFactories>   </system.data> ... </configuration> Conclusion It was not hard to get MySQL connector installed and MySQL connected to Entity Framework 4.0. To use full power of Entity Framework we used InnoDB engine because it supports foreign keys. It was also easy to query our model. To get our project online we needed some easy modifications to our project and configuration files.

    Read the article

  • OFM 11g: OAM SSO for Forms and ADF Faces

    - by olaf.heimburger
    In my blog entry OFM 11g: Implementing OAM SSO with Forms we set the foundation for providing a complete Single Sign-On solution based on Oracle Access Manager (OAM). This foundation should now be used to combine Forms 11g and ADF Faces 11g applications with a transparent login. The Beginning Before we start, lets re-consider the requirements to achieve the ultimate goal. These are:- Access to the Forms 11g Application must be authenticated by OAM (protected). Access to the ADF Faces 11g Application must be authenticated by OAM (protected). Switching from one application to the other should not result in a re-authentication (aka single sign-on). User identity should be availble to the application without any extra work in the application code. All these are the common requirements for a single sign-on solution. The challenge here is that Forms relies on Oracle AS SSO (OSSO or "the old SSO") while ADF Faces is quite open and can be protected by Oracle AS SSO and Oracle Access Manager SSO (OAM SSO or "the modern SSO"). Both application types can use their own login mechanism. The Forms 11g Application To demonstrate the SSO functionality, we use the standard Forms test (/forms/frmservlet?form=test.fmx). Although this shows nothing specific in the Forms application, it is good enough to demonstrate that it is protected. The ADF Faces 11g Application With ADF 11g you can develop quite a number of useful Faces based applications. Among many features, it comes with the ADF Security feature that provides you with functionality to protect your pages, regions, and even TaskFlows from un-authenticated usage in a declarative way.To demonstrate that functionality a sample application with different access levels plus a login dialog is used. This application comes with a publc page that has protected content (a button). Once you are authenticated for the application, the protected content and some personalisation (the users name) is shown. Protecting Forms 11g As already explained in the OFM 11g: Implementing OAM SSO with Forms, the easiest way to protect a Forms application is to configure it as a OSSO partner application, setup mod_osso, test it, migrate OSSO to OAM SSO with the Upgrade Agent, reconfigure mod_osso, and you are done.Sort of. By default the OAM is configured to run in co-exist mode. This means that a user has to re-authenticate to the Forms application when logged into an OAM SSO application before. To avoid this, you must disable the co-exist mode, for example by using WLST and issue the disableCoexistMode on the OAM server. Protecting ADF Faces 11g To protect an ADF Faces 11g application we have to consider two scenarios: Use a HTTPD server in front of WLS Use WLS without a HTTPD server Both scenarios have their pro's and cons' and we won't get into details and just describe how to configure both. Scenario 1: HTTPD Server with WLS In this scenario we have to setup the environment in some steps:- Configure a WebGate at OAMThis configuration can be done through the OAM console or by a script. No matter which way you choose, the WebGate configuration files will be created for you. Install the OAM WebGate into an HTTPD serverThe type of webgate you need to install depends on you HTTPD server. With Oracle HTTP Server 11g you can use the latest OAM 11g WebGate. With other HTTPD servers you must resort to OAM 10g WebGates. A OAM 11g WebGate can use the pre-created configuration files supplied during the WebGate configuration at OAM. An OAM 10g WebGate asks for the specific configuration and verifies it during installation. Configure the WLS plugin to forward the requests to WLSAgain, depending on your HTTPD Server you have different plugins to forward requests to WLS. With OHS 11g you can use the pre-installed mod_wl_ohs plugin. Its configuration is quite simple and straightforward. Configure an OAM SSPI Provider as a IdentityAsserter in WLS to retrieve the user identifierThis configuration is quite important as it retrieves the user identifier for the next step. If you have a SOA Suite installation within your OFM_HOME, the necessary software is already installed and you only need to setup your Security Realm within WLS.You can do this by pointing your browser to the WLS Console, log in as administrator, select the Security Realm (usually myrealm), and select Providers. We add the OAMIdentityAsserter as the first SSPI Provider. It is important that the Control Flag is set to SUFFICIENT. Every other configuration can be left as is, no changes are necessary here. Configure an OAM Identity Provider to get the real user identityIn OFM 11g: Implementing OAM SSO with Forms we have configured an OID as Identity Store. To get the user identity we need to configure the same OID as an SSPI Provider for WLS. This will retrieve the real user information from OID and creates the JAAS Subject and Principals to be used by any application within WLS.Again, you can do this by pointing your browser to the WLS Console, log in as administrator, select the Security Realm (usually myrealm), and select Providers. Now add the OIDAuthenticator as the second SSPI Provider. It is important that the Control Flag is set to OPTIONAL. After we saved this setup, we need to configure this provider by setting the Provider Specific details to access OID. Scenario 2: WLS only This scenario is a bit easier but requires more work in the WLS setup:- Configure a WebGate at OAMThis configuration can be done through the OAM console or by a script. No matter which way you choose, the WebGate configuration files will be created for you. Configure the OAM SSPI Provider as IdentityAuthenticator to authenticate and set the user identifierWhen using the OAM SSPI Provider as OAMAuthenticator we create it with the Control Flag as SUFFICIENT. Afte saving it, the Provider Specific settings must be configured to allow the OAM SSPI Provider to connect to the OAM Server. Configure an OAM Identity Provider to get the real user identity providerAgain, you can do this by pointing your browser to the WLS Console, log in as administrator, select the Security Realm (usually myrealm), and select Providers. Now add the OIDAuthenticator as the second SSPI Provider. It is important that the Control Flag is set to OPTIONAL. After we saved this setup, we need to configure this provider by setting the Provider Specific details to access OID. Configure ADF 11g Application for OAM Actually, there are no changes to be made within the ADF application. We only need to add the value CLIENT_CERT to the <auth-mode> tag in the <login-config> tag in the web.xml file. Testing To test the configuration, simply point your browser to one of both appliction URLs. OAM should kick in and redirect you to the OAM Login page. After you have entered the correct credentials, access to the URLs is granted and you will see the application. Enjoy!

    Read the article

  • Blend for Visual Studio 2013 Prototyping Applications with SketchFlow

    - by T
    Originally posted on: http://geekswithblogs.net/tburger/archive/2014/08/10/blend-for-visual-studio-2013-prototyping-applications-with-sketchflow.aspxSketchFlow enables rapid creating of dynamic interface mockups very quickly. The SketchFlow workspace is the same as the standard Blend workspace with the inclusion of three panels: the SketchFlow Feedback panel, the SketchFlow Animation panel and the SketchFlow Map panel. By using SketchFlow to prototype, you can get feedback early in the process. It helps to surface possible issues, lower development iterations, and increase stakeholder buy in. SketchFlow prototypes not only provide an initial look but also provide a way to add additional ideas and input and make sure the team is on track prior to investing in complete development. When you have completed the prototyping, you can discard the prototype and just use the lessons learned to design the application from or extract individual elements from your prototype and include them in the application. I don’t recommend trying to transition the entire project into a development project. Objects that you add with the SketchFlow style have a hand-sketched look. The sketch style is used to remind stakeholders that this is a prototype. This encourages them to focus on the flow and functionality without getting distracted by design details. The sketchflow assets are under sketchflow in the asset panel and are identifiable by the postfix “–Sketch”. For example “Button-Sketch”. You can mix sketch and standard controls in your interface, if required. Be creative, if there is a missing control or your interface has a different look and feel than the out of the box one, reuse other sketch controls to mimic the functionality or look and feel. Only use standard controls if it doesn’t distract from the idea that this is a prototype and not a standard application. The SketchFlow Map panel provides information about the structure of your application. To create a new screen in your prototype: Right-click the map surface and choose “Create a Connected Screen”. Name the screens with names that are meaningful to the stakeholders. The start screen is the one that has the green arrow. To change the start screen, right click on any other screen and set to start screen. Only one screen can be the start screen at a time. Rounded screen are component screens to mimic reusable custom controls that will be built into the final application. You can change the colors of all of the boxes and should use colors to create functional groupings. The groupings can be identified in the SketchFlow Project Settings. To add connections between screens in the SketchFlow Map panel. Move the mouse over a screen in the SketchFlow and a menu will appear at the bottom of the screen node. In the menu, click Connect to an existing screen. Drag the arrow to another screen on the Map. You add navigation to your prototype by adding connections on the SketchFlow map or by adding navigation directly to items on your interface. To add navigation from objects on the artboard, right click the item then from the menu, choose “Navigate to”. This will expose a sub-menu with available screens, backward, or forward. When the map has connected screens, the SketchFlow Player displays the connected screens on the Navigate sidebar. All screens show in the SketchFlow Player Map. To see the SketchFlow Player, run your SketchFlow prototype. The Navigation sidebar is meant to show the desired user work flow. The map can be used to view the different screens regardless of suggested navigation in the navigation bar. The map is able to be hidden and shown. As mentioned, a component screen is a shared screen that is used in more than one screen and generally represents what will be a custom object in the application. To create a component screen, you can create a screen, right click on it in the SketchFlow Map and choose “Make into component screen”. You can mouse over a screen and from the menu that appears underneath, choose create and insert component screen. To use an existing screen, select if from the Asset panel under SketchFlow, Components. You can use Storyboards and Visual State animations in your SketchFlow project. However, SketchFlow also offers its own animation technique that is simpler and better suited for prototyping. The SketchFlow Animation panel is above your artboard by default. In SketchFlow animation, you create frames and then position the elements on your interface for each frame. You then specify elapsed time and any effects you want to apply to the transition. The + at the top is what creates new frames. Once you have a new Frame, select it and change the property you want to animate. In the example above, I changed the Text of the result box. You can adjust the time between frames in the lower area between the frames. The easing and effects functions are changed in the center between each frame. You edit the hold time for frames by clicking the clock icon in the lower left and the hold time will appear on each frame and can be edited. The FluidLayout icon (also located in the lower left) will create smooth transitions. Next to the FluidLayout icon is the name of that Animation. You can rename the animation by clicking on it and editing the name. The down arrow chevrons next to the name allow you to view the list of all animations in this prototype and select them for editing. To add the animation to the interface object (such as a button to start the animation), select the PlaySketchFlowAnimationAction from the SketchFlow behaviors in the Assets menu and drag it to an object on your interface. With the PlaySketchFlowAnimationAction that you just added selected in the Objects and Timeline, edit the properties to change the EventName to the event you want and choose the SketchFlowAnimation you want from the drop down list. You may want to add additional information to your screens that isn’t really part of the prototype but is relevant information or a request for clarification or feedback from the reviewer. You do this with annotations or notes. Both appear on the user interface, however, annotations can be switched on or off at design and review time. Notes cannot be switched off. To add an Annotation, chose the Create Annotation from the Tools menu. The annotation appears on the UI where you will add the notes. To display or Hide annotations, click the annotation toggle at the bottom right on the artboard . After to toggle annotations on, the identifier of the person who created them appears on the artboard and you must click that to expand the notes. To add a note to the artboard, simply select the Note-Sketch from Assets ->SketchFlow ->Styles ->Sketch Styles. Drag and drop it to the artboard and place where you want it. When you are ready for users to review the prototype, you have a few options available. Click File -> Export and choose one of the options from the list: Publish to Sharepoint, Package SketchFlowProject, Export to Microsoft Word, or Export as Images. I suggest you play with as many of the options as you can to see what they do. Both the Sharepoint and Packaged SketchFlowProject allow you to collect feedback from one or more users that you can import into the project. The user can make notes on the UI and in the Feedback area in the bottom left corner of the player. When the user is done adding feedback, it is exported from the right most folder icon in the My Feedback panel. Feeback is imported on a panel named SketchFlow Feedback. To get that panel to show up, select Window -> SketchFlow Feedback. Once you have the panel showing, click the + in the upper right of the panel and find the notes you exported. When imported, they will show up in a list and on the artboard. To document your prototype, use the Export to Microsoft Word option from the File menu. That should get you started with prototyping.

    Read the article

  • Calculate Age using Date Field

    - by BRADINO
    So if you have a database table that has DOB borthdays as date fields, this is an easy way to query that table based on age parameters. The following examples assume that the date of birth date field is dob and the table name is people. Find people who are 30 years old SELECT DATE_FORMAT( FROM_DAYS( TO_DAYS( now( ) ) - TO_DAYS( `dob` ) ) , '%Y' ) +0 AS `age` FROM `people` HAVING `age` = 30 Find people who are 31-42 years old SELECT DATE_FORMAT( FROM_DAYS( TO_DAYS( now( ) ) - TO_DAYS( `dob` ) ) , '%Y' ) +0 AS `age` FROM `people` HAVING `age`>= 31 AND `age` <= 42 Find oldest person SELECT MAX(DATE_FORMAT( FROM_DAYS( TO_DAYS( now( ) ) - TO_DAYS( `dob` ) ) , '%Y' ) +0) AS `age` FROM `people` Find youngest person SELECT MIN(DATE_FORMAT( FROM_DAYS( TO_DAYS( now( ) ) - TO_DAYS( `dob` ) ) , '%Y' ) +0) AS `age` FROM `people`

    Read the article

  • How can I bend an object in OpenGL?

    - by mindnoise
    Is there a way one could bend an object, like a cylinder or a plane using OpenGL? I'm an OpenGL beginner (I'm using OpenGL ES 2.0, if that matters, although I suspect, math matters most in this case, so it's somehow version independent), I understand the basics: translate, rotate, matrix transformations, etc. I was wondering if there is a technique which allows you to actually change the geometry of your objects (in this case by bending them)? Any links, tutorials or other references are welcomed!

    Read the article

  • Create a Shortcut to Put Your Windows Computer into Hibernation

    - by Mysticgeek
    Putting your Windows computer into Hibernation Mode allows you to save power, and quickly access your desktop again when you need it. Here we show how to create a shortcut to put your PC in Hibernation Mode quickly. Note: Here we show how to create the shortcut in Windows 7 and add it to the Taskbar. But creating the shortcut should work in XP and Vista as well. Create Shortcut  Right-click an empty area on your desktop and select New \ Shortcut from the Context Menu. In the Create Shortcut window type or copy the following in the location field… C:\Windows\System32\rundll32.exe powrprof.dll, SetSuspendState 0,1,0 Now give the shortcut a name such as Hibernate Computer or whatever you want to call it. Now you have the shortcut on your desktop, but you might want to change the icon to something else. Change Shortcut Icon Right-click the shortcut icon and select Properties. Select the Shortcut Tab and click the Change Icon button. In the Look for icons in this file field copy and past the following then click OK. %SystemRoot%\system32\SHELL32.dll This brings up a list of included Windows icons you can choose from. Select whatever you want it to be. There are a couple of Power icons in the directory…click OK. Of course you can choose any icon you want, if you customize your icons just browse to the directory they are in. For more on selecting icons check out our article on how to customize your icons in Windows 7 or how to change a file type’s icon. Now you will see the icon in the Shortcut Properties window, click OK. Here we have a nice looking shortcut that you can use to put your machine into Hibernation. Or here we used a customized Star Trek icon just to make things more interesting… You can pin the shortcut to the Taskbar for easy access. Conclusion If Hibernation is not enabled on your Windows 7 system you can easily manage it. By creating a shortcut and pinning to the Taskbar, it allows you to put your machine into Hibernation Mode quick and easy. If you like to customize your desktop with unique icons check out our posts on a Sci-Fi icon pack or Video Game icon pack. Similar Articles Productive Geek Tips Create a Shortcut for Locking Your Computer Screen in Windows 7 or VistaCreate Shutdown / Restart / Lock Icons in Windows 7 or VistaHow To Manage Hibernate Mode in Windows 7Microsoft Releases Pre-SP1 Updates for Windows VistaCreate a Shortcut or Hotkey to Run CCleaner Silently TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 10 Superb Firefox Wallpapers OpenDNS Guide Google TV The iPod Revolution Ultimate Boot CD can help when disaster strikes Windows Firewall with Advanced Security – How To Guides

    Read the article

  • SQL SERVER – DMV – sys.dm_exec_query_optimizer_info – Statistics of Optimizer

    - by pinaldave
    Incredibly, SQL Server has so much information to share with us. Every single day, I am amazed with this SQL Server technology. Sometimes I find several interesting information by just querying few of the DMV. And when I present this info in front of my client during performance tuning consultancy, they are surprised with my findings. Today, I am going to share one of the hidden gems of DMV with you, the one which I frequently use to understand what’s going on under the hood of SQL Server. SQL Server keeps the record of most of the operations of the Query Optimizer. We can learn many interesting details about the optimizer which can be utilized to improve the performance of server. SELECT * FROM sys.dm_exec_query_optimizer_info WHERE counter IN ('optimizations', 'elapsed time','final cost', 'insert stmt','delete stmt','update stmt', 'merge stmt','contains subquery','tables', 'hints','order hint','join hint', 'view reference','remote query','maximum DOP', 'maximum recursion level','indexed views loaded', 'indexed views matched','indexed views used', 'indexed views updated','dynamic cursor request', 'fast forward cursor request') All occurrence values are cumulative and are set to 0 at system restart. All values for value fields are set to NULL at system restart. I have removed a few of the internal counters from the script above, and kept only documented details. Let us check the result of the above query. As you can see, there is so much vital information that is revealed in above query. I can easily say so many things about how many times Optimizer was triggered and what the average time taken by it to optimize my queries was. Additionally, I can also determine how many times update, insert or delete statements were optimized. I was able to quickly figure out that my client was overusing the Query Hints using this dynamic management view. If you have been reading my blog, I am sure you are aware of my series related to SQL Server Views SQL SERVER – The Limitations of the Views – Eleven and more…. With this, I can take a quick look and figure out how many times Views were used in various solutions within the query. Moreover, you can easily know what fraction of the optimizations has been involved in tuning server. For example, the following query would tell me, in total optimizations, what the fraction of time View was “reference“. As this View also includes system Views and DMVs, the number is a bit higher on my machine. SELECT (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'view reference') / (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'optimizations') AS ViewReferencedFraction Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Using Radio Button in GridView with Validation

    - by Vincent Maverick Durano
    A developer is asking how to select one radio button at a time if the radio button is inside the GridView.  As you may know setting the group name attribute of radio button will not work if the radio button is located within a Data Representation control like GridView. This because the radio button inside the gridview bahaves differentely. Since a gridview is rendered as table element , at run time it will assign different "name" to each radio button. Hence you are able to select multiple rows. In this post I'm going to demonstrate how select one radio button at a time in gridview and add a simple validation on it. To get started let's go ahead and fire up visual studio and the create a new web application / website project. Add a WebForm and then add gridview. The mark up would look something like this: <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="false" > <Columns> <asp:TemplateField> <ItemTemplate> <asp:RadioButton ID="rb" runat="server" /> </ItemTemplate> </asp:TemplateField> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Col1" HeaderText="First Column" /> <asp:BoundField DataField="Col2" HeaderText="Second Column" /> </Columns> </asp:GridView> Noticed that I've added a templatefield column so that we can add the radio button there. Also I have set up some BoundField columns and set the DataFields as RowNumber, Col1 and Col2. These columns are just dummy columns and i used it for the simplicity of this example. Now where these columns came from? These columns are created by hand at the code behind file of the ASPX. Here's the code below: private DataTable FillData() { DataTable dt = new DataTable(); DataRow dr = null; //Create DataTable columns dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("Col1", typeof(string))); dt.Columns.Add(new DataColumn("Col2", typeof(string))); //Create Row for each columns dr = dt.NewRow(); dr["RowNumber"] = 1; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 2; dr["Col1"] = "AA"; dr["Col2"] = "BB"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 3; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 4; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 5; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); return dt; } And here's the code for binding the GridView with the dummy data above. protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { GridView1.DataSource = FillData(); GridView1.DataBind(); } } Okay we have now a GridView data with a radio button on each row. Now lets go ahead and switch back to ASPX mark up. In this example I'm going to use a JavaScript for validating the radio button to select one radio button at a time. Here's the javascript code below: function CheckOtherIsCheckedByGVID(rb) { var isChecked = rb.checked; var row = rb.parentNode.parentNode; if (isChecked) { row.style.backgroundColor = '#B6C4DE'; row.style.color = 'black'; } var currentRdbID = rb.id; parent = document.getElementById("<%= GridView1.ClientID %>"); var items = parent.getElementsByTagName('input'); for (i = 0; i < items.length; i++) { if (items[i].id != currentRdbID && items[i].type == "radio") { if (items[i].checked) { items[i].checked = false; items[i].parentNode.parentNode.style.backgroundColor = 'white'; items[i].parentNode.parentNode.style.color = '#696969'; } } } } The function above sets the row of the current selected radio button's style to determine that the row is selected and then loops through the radio buttons in the gridview and then de-select the previous selected radio button and set the row style back to its default. You can then call the javascript function above at onlick event of radio button like below: <asp:RadioButton ID="rb" runat="server" onclick="javascript:CheckOtherIsCheckedByGVID(this);" /> Here's the output below: On Load: After Selecting a Radio Button: As you have noticed, on initial load there's no default selected radio in the GridView. Now let's add a simple validation for that. We will basically display an error message if a user clicks a button that triggers a postback without selecting  a radio button in the GridView. Here's the javascript for the validation: function ValidateRadioButton(sender, args) { var gv = document.getElementById("<%= GridView1.ClientID %>"); var items = gv.getElementsByTagName('input'); for (var i = 0; i < items.length ; i++) { if (items[i].type == "radio") { if (items[i].checked) { args.IsValid = true; return; } else { args.IsValid = false; } } } } The function above loops through the rows in gridview and find all the radio buttons within it. It will then check each radio button checked property. If a radio is checked then set IsValid to true else set it to false.  The reason why I'm using IsValid is because I'm using the ASP validator control for validation. Now add the following mark up below under the GridView declaration: <br /> <asp:Label ID="lblMessage" runat="server" /> <br /> <asp:Button ID="btn" runat="server" Text="POST" onclick="btn_Click" ValidationGroup="GroupA" /> <asp:CustomValidator ID="CustomValidator1" runat="server" ErrorMessage="Please select row in the grid." ClientValidationFunction="ValidateRadioButton" ValidationGroup="GroupA" style="display:none"></asp:CustomValidator> <asp:ValidationSummary ID="ValidationSummary1" runat="server" ValidationGroup="GroupA" HeaderText="Error List:" DisplayMode="BulletList" ForeColor="Red" /> And then at Button Click event add this simple code below just to test if  the validation works: protected void btn_Click(object sender, EventArgs e) { lblMessage.Text = "Postback at: " + DateTime.Now.ToString("hh:mm:ss tt"); } Here's the output below that you can see in the browser:   That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,JavaScript,GridView

    Read the article

  • SQL SERVER – Rename Columnname or Tablename – SQL in Sixty Seconds #032 – Video

    - by pinaldave
    We all make mistakes at some point of time and we all change our opinion. There are quite a lot of people in the world who have changed their name after they have grown up. Some corrected their parent’s mistake and some create new mistake. Well, databases are not protected from such incidents. There are many reasons why developers may want to change the name of the column or table after it was initially created. The goal of this video is not to dwell on the reasons but to learn how we can rename the column and table. Earlier I have written the article on this subject over here: SQL SERVER – How to Rename a Column Name or Table Name. I have revised the same article over here and created this video. There is one very important point to remember that by changing the column name or table name one creates the possibility of errors in the application the columns and tables are used. When any column or table name is changed, the developer should go through every place in the code base, ad-hoc queries, stored procedures, views and any other place where there are possibility of their usage and change them to the new name. If this is one followed up religiously there are quite a lot of changes that application will stop working due to this name change.  One has to remember that changing column name does not change the name of the indexes, constraints etc and they will continue to reference the old name. Though this will not stop the show but will create visual un-comfort as well confusion in many cases. Here is my question back to you – have you changed ever column name or table name in production database (after project going live)? If yes, what was the scenario and need of doing it. After all it is just a name. Let me know what you think of this video. Here is the updated script. USE tempdb GO CREATE TABLE TestTable (ID INT, OldName VARCHAR(20)) GO INSERT INTO TestTable VALUES (1, 'First') GO -- Check the Tabledata SELECT * FROM TestTable GO -- Rename the ColumnName sp_RENAME 'TestTable.OldName', 'NewName', 'Column' GO -- Check the Tabledata SELECT * FROM TestTable GO -- Rename the TableName sp_RENAME 'TestTable', 'NewTable' GO -- Check the Tabledata - Error SELECT * FROM TestTable GO -- Check the Tabledata - New SELECT * FROM NewTable GO -- Cleanup DROP TABLE NewTable GO Related Tips in SQL in Sixty Seconds: SQL SERVER – How to Rename a Column Name or Table Name What would you like to see in the next SQL in Sixty Seconds video? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video Tagged: Excel

    Read the article

< Previous Page | 219 220 221 222 223 224 225 226 227 228 229 230  | Next Page >