Search Results

Search found 5954 results on 239 pages for 'cpu cores'.

Page 231/239 | < Previous Page | 227 228 229 230 231 232 233 234 235 236 237 238  | Next Page >

  • Top Tweets SOA Partner Community – March 2012

    - by JuergenKress
    Send your tweets @soacommunity #soacommunity and follow us at http://twitter.com/soacommunity SOA Community ?SOA Community Newsletter February 2012 wp.me/p10C8u-o0 Marc ?Reading through the #OFM 11.1.1.6 , patchset 5 documentation. What is the best way to upgrade your whole dev…prd street. SOA Community Thanks for the successful and super interesting #sbidays ! Wonderful discussions around the Integration, case management and security tracks Torsten Winterberg Schon den neuen Opitz Technology-Blog gebookmarked? The Cattle Crew bit.ly/yLPwBD wird ab sofort regelmäßig Erkenntnisse posten. OTNArchBeat ? Unit Testing Asynchronous BPEL Processes Using soapUI | @DanielAmadei bit.ly/x9NsS9 Rolando Carrasco ?Video de Human Task en BPM 11g. Por @edwardo040. bit.ly/wki9CA cc @OracleBPM @OracleSOA @soacommunity View video Marcel Mertin SOA Security Hands-On by Dirk Krafzig and Mamoon Yunus at #sbidays is also great! SOA Community Workshop day #sbidays #BPMN2.0 by Volker Stiehl from #SAP great training – now I can model & execute in #bpmsuite #soacommunity Simone Geib ?Just updated our advanced #soasuite #otn page with a number of very interesting @orclateamsoa blog posts: bit.ly/advancedsoasui… OTNArchBeat ? Start Small, Grow Fast: SOA Best Practices article by @biemond, @rluttikhuizen, @demed bit.ly/yem9Zv Steffen Miller ? Nice new features in SOA Suite Business Rules #PS5 Testing rules with scenarios and output validation bit.ly/zj64Q3 @SOACOMMUNITY OTNArchBeat ? Reply SOA Blackbelt training by David Shaffer, April 30th–May 4th 2012 bit.ly/xGdC24 OTNArchBeat ? What have BPM, big data, social tools, and business models got in common? | Andy Mulholland bit.ly/xUkOGf SOA Community ? Live hacking at #sbidays – cheaper shopping, bias cracking, payment systems, secure your SOA! pic.twitter.com/y7YaIdug SOA Community Future #BPM & #ACM solutions can make use of ontology’s, based on #sqarql #sbidays pic.twitter.com/xLb1Z5zs Simone Geib ? @soacommunity: SOA Blackbelt training by David Shaffer, April 30th–May 4th 2012 wp.me/p10C8u-nX Biemond Changing your ADF Connections in Enterprise Manager with PS5: With Patch Set 5 of Fusion Middleware you can fina… bit.ly/zF7Rb1 Marc ? HUGE (!) CPU and Heap improvement on Oracle Fusion Middleware tinyurl.com/762drzp @wlscommunity @soacommunity #OSB #SOA #WLS SOA Community ?Networking @ SOA & BPM Partner Community blogs.oracle.com/soacommunity/e… #soacommunity #otn #opn #oracle SOA Community ?Published the SOA Partner Community newsletter February edition – READ it. Not yet a member? oracle.com/goto/emea/soa #soacommunity #otn #opn AMIS, Oracle & Java Blog by Lucas Jellema: "Book Review: Do More with SOA Integration: Best of Packt (december 2011, various authors)" bit.ly/wq633E Jon petter hjulstad @SOASimone Excellent summary! Lots of new features! Simone Geib ?Do you want to know what’s new in #soasuite #PS5? Go to bit.ly/xBX06f and let me know what you think SOA Community ? Unit Testing Asynchronous BPEL Processes Using soapUI oracle.com/technetwork/ar… #soacommunity #soa #otn #oracle #bpel Retweeted by SOA Community View media Retweeted by SOA Community Eric Elzinga ? Oracle Fusion Middleware Partner Community Forum Malage, The Overview, bit.ly/AA9BKd #ofmforum SOA&Cloud Symposium ? The February issue of the Service Technology Magazine is now published. servicetechmag.com SOA Community ? Oracle SOA Suite 11g Database Growth Management – must read! oracle.com/technetwork/da… #soacommunity #soa #purging demed ? Have you exposed internal processes to mobile devices using #oraclesoa? Interested in an article? DM me! #osb #rest #multichannel #mobile orclateamsoa ? A-Team SOA Blog: Enhanced version of Thread Dump Analyzer (TDA A-Team) ow.ly/1hpk7l SOA Community Reply BPM Suite #PS5 (11.1.1.6) available for download soacommunity.wordpress.com/2012/02/22/soa… Send us your feedback! #soacommunity #bpmsuite #opn SOA Community ? SOA Suite #PS5 (11.1.1.6) available for download soacommunity.wordpress.com/2012/02/22/soa… Send us your feedback! #soacommunity #soasuite SOA Community BPM Suite #PS5 1(1.1.1.6) available for download. List of new BPM features blogs.oracle.com/soacommunity/e… #soacommunity #bpm #bpmsuite #opn OracleBlogs BPM in Utilties Industry ow.ly/1hC3fp Retweeted by SOA Community OTNArchBeat ? Demystifying Oracle Enterprise Gateway | Naresh Persaud bit.ly/xtDNe2 OTNArchBeat ? Architect’s Guide to Big Data; Test BPEL Processes Using SoapUI; Development Debate bit.ly/xbDYSo Frank Nimphius ? Finished my book review of "Do More with SOA Integration: Best of Packt ". Here are my review comments: bit.ly/x2k9OZ Lucas Jellema ? That is my one stop-and-go download center for #PS5 : edelivery.oracle.com/EPD/Download/g… Lucas Jellema ? Interesting piece of documentation: Fusion Applications Extensibility Guide – docs.oracle.com/cd/E15586_01/f… source for design time @ run time inspira Lucas Jellema ? Strongly improved support for testing Business Rules at Design Time in #PS5 see docs.oracle.com/cd/E23943_01/u… Lucas Jellema ? SOA Suite 11gR1 PS5: new BPEL Component testing – docs.oracle.com/cd/E23943_01/d… Lucas Jellema ? PS5 available for CEP (Complex Event Processing) – a personal favorite of mine : oracle.com/technetwork/mi… Lucas Jellema ?What’s New in Fusion Developer’s Guide 11gR1 PS5: docs.oracle.com/cd/E23943_01/w… Lucas Jellema ? BPMN Correlation (FMW 11gR1 PS5): docs.oracle.com/cd/E23943_01/d… Lucas Jellema ? Modifying running BPM Process instances (FMW 11gR1 PS5): docs.oracle.com/cd/E23943_01/d… Lucas Jellema ? SOA Suite 11gR1 PS5 – new aggregation pattern: docs.oracle.com/cd/E23943_01/d… routing multiple messages to same instance Melvin van der Kuijl ? Automating Testing of SOA Composite Applications in PS5. docs.oracle.com/cd/E23943_01/d… Cato Aune ? SOA suite PS5 Enterprise Deployment Guide is available in ePub docs.oracle.com/cd/E23943_01/c… . Much better than pdf on Galaxy Note SOA Community ?JDeveloper 11.1.1.6 is available for download bit.ly/wGYrwE #soacommunity SOA Community ? Your first experience #PS5 – let us know @soacommunity – send us your tweets and blog posts! #soacommunity Jon petter hjulstad ? WLS 10.3.6 New features, ex better logging of jdbc use: docs.oracle.com/cd/E23943_01/w… Heidi Buelow ? Get it now! RT @soacommunity: BPM Suite PS5 11.1.1.6 available for download bit.ly/AgagT5 #bpm #soacommunity Jon petter hjulstad ?SOA Suite PS5 EDG contains OSB! docs.oracle.com/cd/E23943_01/c… Jon petter hjulstad ? Testing Oracle Rules from JDeveloper is easier in PS5: docs.oracle.com/cd/E23943_01/u… Biemond® ? What’s New in Oracle Service Bus 11.1.1.6.0 oracle.com/technetwork/mi… Jon petter hjulstad ? Adminguide New and Changed Features for PS5, ex GridLink data sources: docs.oracle.com/cd/E23943_01/c… Retweeted by SOA Community Andreas Koop ? Unbelievable! #OFM Doc Lib growth from 11gPS4->11gPS5 by 1.2G! View media SOA Community ?ODI PS5 is available oracle.com/technetwork/mi… #odi #soacommunity 22 Feb View media SOA Community Service Bus 11g Development Cookbook soacommunity.wordpress.com/2012/02/20/ser… #osb #soacommunity #ace #opn View media For regular information on Oracle SOA Suite become a member in the SOA Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) Blog Twitter LinkedIn Mix Forum Technorati Tags: soacommunity,twitter,Oracle,SOA Community,Jürgen Kress,OPN,SOA,BPM

    Read the article

  • Anunciando Windows Azure Mobile Services (Serviços Móveis da Windows Azure)

    - by Leniel Macaferi
    Estou animado para anunciar uma nova capacidade que estamos adicionando à Windows Azure hoje: Windows Azure Mobile Services (Serviços Móveis da Windows Azure) Os Serviços Móveis da Windows Azure tornam incrivelmente fácil conectar um backend da nuvem escalável em suas aplicações clientes e móveis. Estes serviços permitem que você facilmente armazene dados estruturados na nuvem que podem abranger dispositivos e usuários, integrando tais dados com autenticação do usuário. Você também pode enviar atualizações para os clientes através de notificações push. O lançamento de hoje permite que você adicione essas capacidades em qualquer aplicação Windows 8 em literalmente minutos, e fornece uma maneira super produtiva para que você transforme rapidamente suas ideias em aplicações. Também vamos adicionar suporte para permitir esses mesmos cenários para o Windows Phone, iOS e dispositivos Android em breve. Leia este tutorial inicial (em Inglês) que mostra como você pode construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) que é habilitada para a nuvem usando os Serviços Móveis da Windows Azure. Ou assista este vídeo (em Inglês) onde mostro como construí-la passo a passo. Começando Se você ainda não possui uma conta na Windows Azure, você pode se inscrever usando uma assinatura gratuita sem compromisso. Uma vez inscrito, clique na seção "preview features" logo abaixo da tab "account" (conta) no website www.windowsazure.com e ative sua conta para ter acesso ao preview dos "Mobile Services" (Serviços Móveis). Instruções sobre como ativar estes novos recursos podem ser encontradas aqui (em Inglês). Depois de habilitar os Serviços Móveis, entre no Portal da Windows Azure, clique no botão "New" (Novo) e escolha o novo ícone "Mobile Services" (Serviços Móveis) para criar o seu primeiro backend móvel. Uma vez criado, você verá uma página de início rápido como a mostrada a seguir com instruções sobre como conectar o seu serviço móvel a uma aplicação Windows 8 cliente já existente, a qual você já tenha começado a implementar, ou como criar e conectar uma nova aplicação Windows 8 cliente ao backend móvel: Leia este tutorial inicial (em Inglês) com explicações passo a passo sobre como construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) que armazena os dados na Windows Azure. Armazenamento Dados na Nuvem Armazenar dados na nuvem com os Serviços Móveis da Windows Azure é incrivelmente fácil. Quando você cria um Serviço Móvel da Windows Azure, nós automaticamente o associamos com um banco de dados SQL dentro da Windows Azure. O backend do Serviço Móvel da Windows Azure então fornece suporte nativo para permitir que aplicações remotas armazenem e recuperem dados com segurança através dele (usando end-points REST seguros, através de um formato OData baseado em JSON) - sem que você tenha que escrever ou implantar qualquer código personalizado no servidor. Suporte integrado para o gerenciamento do backend é fornecido dentro do Portal da Windows Azure para a criação de novas tabelas, navegação pelos dados, criação de índices, e controle de permissões de acesso. Isto torna incrivelmente fácil conectar aplicações clientes na nuvem, e permite que os desenvolvedores de aplicações desktop que não têm muito conhecimento sobre código que roda no servidor sejam produtivos desde o início. Eles podem se concentrar na construção da experiência da aplicação cliente, tirando vantagem dos Serviços Móveis da Windows Azure para fornecer os serviços de backend da nuvem que se façam necessários.  A seguir está um exemplo de código Windows 8 C#/XAML do lado do cliente que poderia ser usado para consultar os dados de um Serviço Móvel da Windows Azure. Desenvolvedores de aplicações que rodam no cliente e que usam C# podem escrever consultas como esta usando LINQ e objetos fortemente tipados POCO, os quais serão mais tarde traduzidos em consultas HTTP REST que são executadas em um Serviço Móvel da Windows Azure. Os desenvolvedores não precisam escrever ou implantar qualquer código personalizado no lado do servidor para permitir que o código do lado do cliente mostrado a seguir seja executado de forma assíncrona preenchendo a interface (UI) do cliente: Como os Serviços Móveis fazem parte da Windows Azure, os desenvolvedores podem escolher mais tarde se querem aumentar ou estender sua solução adicionando funcionalidades no lado do servidor bem como lógica de negócio mais avançada, se quiserem. Isso proporciona o máximo de flexibilidade, e permite que os desenvolvedores ampliem suas soluções para atender qualquer necessidade. Autenticação do Usuário e Notificações Push Os Serviços Móveis da Windows Azure também tornam incrivelmente fácil integrar autenticação/autorização de usuários e notificações push em suas aplicações. Você pode usar esses recursos para habilitar autenticação e controlar as permissões de acesso aos dados que você armazena na nuvem de uma maneira granular. Você também pode enviar notificações push para os usuários/dispositivos quando os dados são alterados. Os Serviços Móveis da Windows Azure suportam o conceito de "scripts do servidor" (pequenos pedaços de script que são executados no servidor em resposta a ações), os quais tornam a habilitação desses cenários muito fácil. A seguir estão links para alguns tutoriais (em Inglês) no formato passo a passo para cenários comuns de autenticação/autorização/push que você pode utilizar com os Serviços Móveis da Windows Azure e aplicações Windows 8: Habilitando Autenticação do Usuário Autorizando Usuários  Começando com Push Notifications Push Notifications para múltiplos Usuários Gerencie e Monitore seu Serviço Móvel Assim como todos os outros serviços na Windows Azure, você pode monitorar o uso e as métricas do backend de seu Serviço Móvel usando a tab "Dashboard" dentro do Portal da Windows Azure. A tab Dashboard fornece uma visão de monitoramento que mostra as chamadas de API, largura de banda e ciclos de CPU do servidor consumidos pelo seu Serviço Móvel da Windows Azure. Você também usar a tab "Logs" dentro do portal para ver mensagens de erro.  Isto torna fácil monitorar e controlar como sua aplicação está funcionando. Aumente a Capacidade de acordo com o Crescimento do Seu Negócio Os Serviços Móveis da Windows Azure agora permitem que cada cliente da Windows Azure crie e execute até 10 Serviços Móveis de forma gratuita, em um ambiente de hospedagem compartilhado com múltiplos banco de dados (onde o backend do seu Serviço Móvel será um dos vários aplicativos sendo executados em um conjunto compartilhado de recursos do servidor). Isso fornece uma maneira fácil de começar a implementar seus projetos sem nenhum custo algum (nota: cada conta gratuita da Windows Azure também inclui um banco de dados SQL de 1GB que você pode usar com qualquer número de aplicações ou Serviços Móveis da Windows Azure). Se sua aplicação cliente se tornar popular, você pode clicar na tab "Scale" (Aumentar Capacidade) do seu Serviço Móvel e mudar de "Shared" (Compartilhado) para o modo "Reserved" (Reservado). Isso permite que você possa isolar suas aplicações de maneira que você seja o único cliente dentro de uma máquina virtual. Isso permite que você dimensione elasticamente a quantidade de recursos que suas aplicações consomem - permitindo que você aumente (ou diminua) sua capacidade de acordo com o tráfego de dados: Com a Windows Azure você paga por capacidade de processamento por hora - o que te permite dimensionar para cima e para baixo seus recursos para atender apenas o que você precisa. Isso permite um modelo super flexível que é ideal para novos cenários de aplicações móveis, bem como para novas empresas que estão apenas começando. Resumo Eu só toquei na superfície do que você pode fazer com os Serviços Móveis da Windows Azure - há muito mais recursos para explorar. Com os Serviços Móveis da Windows Azure, você será capaz de construir cenários de aplicações móveis mais rápido do que nunca, permitindo experiências de usuário ainda melhores - conectando suas aplicações clientes na nuvem. Visite o centro de desenvolvimento dos Serviços Móveis da Windows Azure (em Inglês) para aprender mais, e construa sua primeira aplicação Windows 8 conectada à Windows Azure hoje. E leia este tutorial inicial (em Inglês) com explicações passo a passo que mostram como você pode construir (em menos de 5 minutos) uma simples aplicação Windows 8 "Todo List" (Lista de Tarefas) habilitada para a nuvem usando os Serviços Móveis da Windows Azure. Espero que ajude, - Scott P.S. Além do blog, eu também estou utilizando o Twitter para atualizações rápidas e para compartilhar links. Siga-me em: twitter.com/ScottGu Texto traduzido do post original por Leniel Macaferi.

    Read the article

  • Thursday Community Keynote: "By the Community, For the Community"

    - by Janice J. Heiss
    Sharat Chander, JavaOne Community Chairperson, began Thursday's Community Keynote. As part of the morning’s theme of "By the Community, For the Community," Chander noted that 60% of the material at the 2012 JavaOne conference was presented by Java Community members. "So next year, when the call for papers starts, put-in your submissions," he urged.From there, Gary Frost, Principal Member of Technical Staff, AMD, expanded upon Sunday's Strategy Keynote exploration of Project Sumatra, an OpenJDK project targeted at bringing Java to heterogeneous computing platforms (which combine the CPU and the parallel processor of the GPU into a single piece of silicon). Sumatra entails enhancing the JVM to make maximum use of these advanced platforms. Within this development space, AMD created the Aparapi API, which converts Java bytecode into OpenCL for execution on such GPU devices. The Aparapi API was open sourced in September 2011.Whether it was zooming-in on a Mandelbrot set, "the game of life," or a swarm of 10,000 Dukes in a space-bound gravitational dance, Frost's demos, using an Aparapi/OpenCL implementation, produced stunningly faster display results. He indicated that the Java 9 timeframe is where they see Project Sumatra coming to ultimate fruition, employing the Lamdas of Java 8.Returning to the theme of the keynote, Donald Smith, Director, Java Product Management, Oracle, explored a mind map graphic demonstrating the importance of Community in terms of fostering innovation. "It's the sharing and mixing of culture, the diversity, and the rapid prototyping," he said. Within this topic, Smith, brought up a panel of representatives from Cloudera, Eclipse, Eucalyptus, Perrone Robotics, and Twitter--ideal manifestations of community and innovation in the world of Java.Marten Mickos, CEO, Eucalyptus Systems, explored his company's open source cloud software platform, written in Java, and used by gaming companies, technology companies, media companies, and more. Chris Aniszczyk, Operations Engineering,Twitter, noted the importance of the JVM in terms of their multiple-language development environment. Mike Olson, CEO, Cloudera, described his company's Apache Hadoop-based software, support, and training. Mike Milinkovich, Executive Director, Eclipse Foundation, noted that they have about 270 tools projects at Eclipse, with 267 of them written in Java. Milinkovich added that Eclipse will even be going into space in 2013, as part of the control software on various experiments aboard the International Space Station. Lastly, Paul Perrone, CEO, Perrone Robotics, detailed his company's robotics and automation software platform built 100% on Java, including Java SE and Java ME--"on rat, to cat, to elephant-sized systems." Milinkovic noted that communities are by nature so good at innovation because of their very openness--"The more open you make your innovation process, the more ideas are challenged, and the more developers are focused on justifying their choices all the way through the process."From there, Georges Saab, VP Development Java SE OpenJDK, continued the topic of innovation and helping the Java Community to "Make the Future Java." Martijn Verburg, representing the London Java Community (winner of a Duke's Choice Award 2012 for their activity in OpenJDK and JCP), soon joined Saab onstage. Verburg detailed the LJC's "Adopt a JSR" program--"to get day-to-day developers more involved in the innovation that's happening around them."  From its London launching pad, the innovative program has spread to Brazil, Morocco, Latvia, India, and more.Other active participants in the program joined Verburg onstage--Ben Evans, London Java Community; James Gough, Stackthread; Bruno Souza, SOUJava; Richard Warburton, jClarity; and Cecelia Borg, Oracle--OpenJDK Onboarding. Together, the group explored the goals and tasks inherent in the Adopt a JSR program--from organizing hack days (testing prototype implementations), to managing mailing lists and forums, to triaging issues, to evangelism—all with the goal of fostering greater community/developer involvement, but equally importantly, building better open standards. “Come join us, and make your ecosystem better!" urged Verburg.Paul Perrone returned to profile the latest in his company's robotics work around Java--including the AARDBOTS family of smaller robotic vehicles, running the Perrone MAX platform on top of the Java JVM. Perrone took his "Rumbles" four-wheeled robot out for a spin onstage--a roaming, ARM-based security-bot vehicle, complete with IR, ultrasonic, and "cliff" sensors (the latter, for the raised stage at JavaOne). As an ultimate window into the future of robotics, Perrone displayed a "head-set" controller--a sensor directed at the forehead to monitor brainwaves, for the someday-implementation of brain-to-robot control.Then, just when it seemed this might be the end of the day's futuristic offerings, a mystery voice from offstage pronounced "I've got some toys"--proving to be guest-visitor James Gosling, there to explore his cutting-edge work with Liquid Robotics. While most think of robots as something with wheels or arms or lasers, Gosling explained, the Liquid Robotics vehicle is an entirely new and innovative ocean-going 'bot. Looking like a floating surfboard, with an attached set of underwater wings, the autonomous devices roam the oceans using only the energy of ocean waves to propel them, and a single actuated rudder to steer. "We have to accomplish all guidance just by wiggling the rudder," Gosling said. The devices offer applications from self-installing weather buoy, to pollution monitoring station, to marine mammal monitoring device, to climate change data gathering, to even ocean life genomic sampling. The early versions of the vehicle used C code on very tiny industrial micro controllers, where they had to "count the bytes one at a time."  But the latest generation vehicles, which just hit the water a week or so ago, employ an ARM processor running Linux and the ARM version of JDK 7. Gosling explained that vehicle communication from remote locations is achieved via the Iridium satellite network. But because of the costs of this communication path, the data must be sent in very small bursts--using SBD short burst data. "It costs $1/kb, so that rules everything in the software design,” said Gosling. “If you were trying to stream a Netflix video over this, it would cost a million dollars a movie. …We don't have a 'big data' problem," he quipped. There are currently about 150 Liquid Robotics vehicles out traversing the oceans. Gosling demonstrated real time satellite tracking of several vehicles currently at sea, noting that Java is actually particularly good at AI applications--due to the language having garbage collection, which facilitates complex data structures. To close-out his time onstage, Gosling of course participated in the ceremonial Java tee-shirt toss out to the audience…In parting, Chander passed the JavaOne Community Chairperson baton to Stephen Chin, Java Technology Evangelist, Oracle. Onstage in full motorcycle gear, Chin noted that he'll soon be touring Europe by motorcycle, meeting Java Community Members and streaming live via UStream--the ultimate manifestation of community and technology!  He also reminded attendees of the upcoming JavaOne Latin America 2012, São Paulo, Brazil (December 4-6, 2012), and stated that the CFP (call for papers) at the conference has been extended for one more week. "Remember, December is summer in Brazil!" Chin said.

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Monitor your Hard Drive’s Health with Acronis Drive Monitor

    - by Matthew Guay
    Are you worried that your computer’s hard drive could die without any warning?  Here’s how you can keep tabs on it and get the first warning signs of potential problems before you actually lose your critical data. Hard drive failures are one of the most common ways people lose important data from their computers.  As more of our memories and important documents are stored digitally, a hard drive failure can mean the loss of years of work.  Acronis Drive Monitor helps you avert these disasters by warning you at the first signs your hard drive may be having trouble.  It monitors many indicators, including heat, read/write errors, total lifespan, and more. It then notifies you via a taskbar popup or email that problems have been detected.  This early warning lets you know ahead of time that you may need to purchase a new hard drive and migrate your data before it’s too late. Getting Started Head over to the Acronis site to download Drive Monitor (link below).  You’ll need to enter your name and email, and then you can download this free tool. Also, note that the download page may ask if you want to include a trial of their for-pay backup program.  If you wish to simply install the Drive Monitor utility, click Continue without adding. Run the installer when the download is finished.  Follow the prompts and install as normal. Once it’s installed, you can quickly get an overview of your hard drives’ health.  Note that it shows 3 categories: Disk problems, Acronis backup, and Critical Events.  On our computer, we had Seagate DiskWizard, an image backup utility based on Acronis Backup, installed, and Acronis detected it. Drive Monitor stays running in your tray even when the application window is closed.  It will keep monitoring your hard drives, and will alert you if there’s a problem. Find Detailed Information About Your Hard Drives Acronis’ simple interface lets you quickly see an overview of how the drives on your computer are performing.  If you’d like more information, click the link under the description.  Here we see that one of our drives have overheated, so click Show disks to get more information. Now you can select each of your drives and see more information about them.  From the Disk overview tab that opens by default, we see that our drive is being monitored, has been running for a total of 368 days, and that it’s health is good.  However, it is running at 113F, which is over the recommended max of 107F.   The S.M.A.R.T. parameters tab gives us more detailed information about our drive.  Most users wouldn’t know what an accepted value would be, so it also shows the status.  If the value is within the accepted parameters, it will report OK; otherwise, it will show that has a problem in this area. One very interesting piece of information we can see is the total number of Power-On Hours, Start/Stop Count, and Power Cycle Count.  These could be useful indicators to check if you’re considering purchasing a second hand computer.  Simply load this program, and you’ll get a better view of how long it’s been in use. Finally, the Events tab shows each time the program gave a warning.  We can see that our drive, which had been acting flaky already, is routinely overheating even when our other hard drive was running in normal temperature ranges. Monitor Acronis Backups And Critical Errors In addition to monitoring critical stats of your hard drives, Acronis Drive Monitor also keeps up with the status of your backup software and critical events reported by Windows.  You can access these from the front page, or via the links on the left hand sidebar.  If you have any edition of any Acronis Backup product installed, it will show that it was detected.  Note that it can only monitor the backup status of the newest versions of Acronis Backup and True Image. If no Acronis backup software was installed, it will show a warning that the drive may be unprotected and will give you a link to download Acronis backup software.   If you have another backup utility installed that you wish to monitor yourself, click Configure backup monitoring, and then disable monitoring on the drives you’re monitoring yourself. Finally, you can view any detected Critical events from the Critical events tab on the left. Get Emailed When There’s a Problem One of Drive Monitor’s best features is the ability to send you an email whenever there’s a problem.  Since this program can run on any version of Windows, including the Server and Home Server editions, you can use this feature to stay on top of your hard drives’ health even when you’re not nearby.  To set this up, click Options in the top left corner. Select Alerts on the left, and then click the Change settings link to setup your email account. Enter the email address which you wish to receive alerts, and a name for the program.  Then, enter the outgoing mail server settings for your email.  If you have a Gmail account, enter the following information: Outgoing mail server (SMTP): smtp.gmail.com Port: 587 Username and Password: Your gmail address and password Check the Use encryption box, and then select TLS from the encryption options.   It will now send a test message to your email account, so check and make sure it sent ok. Now you can choose to have the program automatically email you when warnings and critical alerts appear, and also to have it send regular disk status reports.   Conclusion Whether you’ve got a brand new hard drive or one that’s seen better days, knowing the real health of your it is one of the best ways to be prepared before disaster strikes.  It’s no substitute for regular backups, but can help you avert problems.  Acronis Drive Monitor is a nice tool for this, and although we wish it wasn’t so centered around their backup offerings, we still found it a nice tool. Link Download Acronis Drive Monitor (registration required) Similar Articles Productive Geek Tips Quick Tip: Change Monitor Timeout From Command LineAnalyze and Manage Hard Drive Space with WinDirStatMonitor CPU, Memory, and Disk IO In Windows 7 with Taskbar MetersDefrag Multiple Hard Drives At Once In WindowsFind Your Missing USB Drive on Windows XP TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Windows 7’s WordPad is Actually Good Greate Image Viewing and Management with Zoner Photo Studio Free Windows Media Player Plus! – Cool WMP Enhancer Get Your Team’s World Cup Schedule In Google Calendar Backup Drivers With Driver Magician TubeSort: YouTube Playlist Organizer

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Announcing Windows Azure Mobile Services

    - by ScottGu
    I’m excited to announce a new capability we are adding to Windows Azure today: Windows Azure Mobile Services Windows Azure Mobile Services makes it incredibly easy to connect a scalable cloud backend to your client and mobile applications.  It allows you to easily store structured data in the cloud that can span both devices and users, integrate it with user authentication, as well as send out updates to clients via push notifications. Today’s release enables you to add these capabilities to any Windows 8 app in literally minutes, and provides a super productive way for you to quickly build out your app ideas.  We’ll also be adding support to enable these same scenarios for Windows Phone, iOS, and Android devices soon. Read this getting started tutorial to walkthrough how you can build (in less than 5 minutes) a simple Windows 8 “Todo List” app that is cloud enabled using Windows Azure Mobile Services.  Or watch this video of me showing how to do it step by step. Getting Started If you don’t already have a Windows Azure account, you can sign up for a no-obligation Free Trial.  Once you are signed-up, click the “preview features” section under the “account” tab of the www.windowsazure.com website and enable your account to support the “Mobile Services” preview.   Instructions on how to enable this can be found here. Once you have the mobile services preview enabled, log into the Windows Azure Portal, click the “New” button and choose the new “Mobile Services” icon to create your first mobile backend.  Once created, you’ll see a quick-start page like below with instructions on how to connect your mobile service to an existing Windows 8 client app you have already started working on, or how to create and connect a brand-new Windows 8 client app with it: Read this getting started tutorial to walkthrough how you can build (in less than 5 minutes) a simple Windows 8 “Todo List” app  that stores data in Windows Azure. Storing Data in the Cloud Storing data in the cloud with Windows Azure Mobile Services is incredibly easy.  When you create a Windows Azure Mobile Service, we automatically associate it with a SQL Database inside Windows Azure.  The Windows Azure Mobile Service backend then provides built-in support for enabling remote apps to securely store and retrieve data from it (using secure REST end-points utilizing a JSON-based ODATA format) – without you having to write or deploy any custom server code.  Built-in management support is provided within the Windows Azure portal for creating new tables, browsing data, setting indexes, and controlling access permissions. This makes it incredibly easy to connect client applications to the cloud, and enables client developers who don’t have a server-code background to be productive from the very beginning.  They can instead focus on building the client app experience, and leverage Windows Azure Mobile Services to provide the cloud backend services they require.  Below is an example of client-side Windows 8 C#/XAML code that could be used to query data from a Windows Azure Mobile Service.  Client-side C# developers can write queries like this using LINQ and strongly typed POCO objects, which are then translated into HTTP REST queries that run against a Windows Azure Mobile Service.   Developers don’t have to write or deploy any custom server-side code in order to enable client-side code below to execute and asynchronously populate their client UI: Because Mobile Services is part of Windows Azure, developers can later choose to augment or extend their initial solution and add custom server functionality and more advanced logic if they want.  This provides maximum flexibility, and enables developers to grow and extend their solutions to meet any needs. User Authentication and Push Notifications Windows Azure Mobile Services also make it incredibly easy to integrate user authentication/authorization and push notifications within your applications.  You can use these capabilities to enable authentication and fine grain access control permissions to the data you store in the cloud, as well as to trigger push notifications to users/devices when the data changes.  Windows Azure Mobile Services supports the concept of “server scripts” (small chunks of server-side script that executes in response to actions) that make it really easy to enable these scenarios. Below are some tutorials that walkthrough common authentication/authorization/push scenarios you can do with Windows Azure Mobile Services and Windows 8 apps: Enabling User Authentication Authorizing Users  Get Started with Push Notifications Push Notifications to multiple Users Manage and Monitor your Mobile Service Just like with every other service in Windows Azure, you can monitor usage and metrics of your mobile service backend using the “Dashboard” tab within the Windows Azure Portal. The dashboard tab provides a built-in monitoring view of the API calls, Bandwidth, and server CPU cycles of your Windows Azure Mobile Service.   You can also use the “Logs” tab within the portal to review error messages.  This makes it easy to monitor and track how your application is doing. Scale Up as Your Business Grows Windows Azure Mobile Services now allows every Windows Azure customer to create and run up to 10 Mobile Services in a free, shared/multi-tenant hosting environment (where your mobile backend will be one of multiple apps running on a shared set of server resources).  This provides an easy way to get started on projects at no cost beyond the database you connect your Windows Azure Mobile Service to (note: each Windows Azure free trial account also includes a 1GB SQL Database that you can use with any number of apps or Windows Azure Mobile Services). If your client application becomes popular, you can click the “Scale” tab of your Mobile Service and switch from “Shared” to “Reserved” mode.  Doing so allows you to isolate your apps so that you are the only customer within a virtual machine.  This allows you to elastically scale the amount of resources your apps use – allowing you to scale-up (or scale-down) your capacity as your traffic grows: With Windows Azure you pay for compute capacity on a per-hour basis – which allows you to scale up and down your resources to match only what you need.  This enables a super flexible model that is ideal for new mobile app scenarios, as well as startups who are just getting going.  Summary I’ve only scratched the surface of what you can do with Windows Azure Mobile Services – there are a lot more features to explore.  With Windows Azure Mobile Services you’ll be able to build mobile app experiences faster than ever, and enable even better user experiences – by connecting your client apps to the cloud. Visit the Windows Azure Mobile Services development center to learn more, and build your first Windows 8 app connected with Windows Azure today.  And read this getting started tutorial to walkthrough how you can build (in less than 5 minutes) a simple Windows 8 “Todo List” app that is cloud enabled using Windows Azure Mobile Services. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Computer crashes on resume from standby almost every time

    - by Los Frijoles
    I am running Ubuntu 12.04 on a Core i5 2500K and ASRock Z68 Pro3-M motherboard (no graphics card, hd is a WD Green 1TB, and cd drive is some cheap lite-on drive). Since installing 12.04, my computer has been freezing after resume, but not every time. When I start to resume, it starts going normally with a blinking cursor on the screen and then sometimes it will continue on to the gnome 3 unlock screen. Most of the time, however, it will blink for a little bit and then the monitor will flip modes and shut off due to no signal. Pressing keys on the keyboard gets no response (num lock light doesn't respond, Ctrl-Alt-F1 fails to drop it into a terminal, Ctrl-Alt-Backspace doesn't work) and so I assume the computer is crashed. The worst part is, the logs look entirely normal. Here is my system log during one of these crashes and my subsequent hard poweroff and restart: Jun 6 21:54:43 kcuzner-desktop udevd[10448]: inotify_add_watch(6, /dev/dm-2, 10) failed: No such file or directory Jun 6 21:54:43 kcuzner-desktop udevd[10448]: inotify_add_watch(6, /dev/dm-2, 10) failed: No such file or directory Jun 6 21:54:43 kcuzner-desktop udevd[10448]: inotify_add_watch(6, /dev/dm-1, 10) failed: No such file or directory Jun 6 21:54:43 kcuzner-desktop udevd[12419]: inotify_add_watch(6, /dev/dm-0, 10) failed: No such file or directory Jun 6 21:54:43 kcuzner-desktop udevd[10448]: inotify_add_watch(6, /dev/dm-0, 10) failed: No such file or directory Jun 6 22:09:01 kcuzner-desktop CRON[9061]: (root) CMD ( [ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) ! -execdir fuser -s {} 2>/dev/null \; -delete) Jun 6 22:17:01 kcuzner-desktop CRON[22142]: (root) CMD ( cd / && run-parts --report /etc/cron.hourly) Jun 6 22:39:01 kcuzner-desktop CRON[26909]: (root) CMD ( [ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) ! -execdir fuser -s {} 2>/dev/null \; -delete) Jun 6 22:54:21 kcuzner-desktop kernel: [57905.560822] show_signal_msg: 36 callbacks suppressed Jun 6 22:54:21 kcuzner-desktop kernel: [57905.560828] chromium-browse[9139]: segfault at 0 ip 00007f3a78efade0 sp 00007fff7e2d2c18 error 4 in chromium-browser[7f3a76604000+412b000] Jun 6 23:05:43 kcuzner-desktop kernel: [58586.415158] chromium-browse[21025]: segfault at 0 ip 00007f3a78efade0 sp 00007fff7e2d2c18 error 4 in chromium-browser[7f3a76604000+412b000] Jun 6 23:09:01 kcuzner-desktop CRON[13542]: (root) CMD ( [ -x /usr/lib/php5/maxlifetime ] && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) ! -execdir fuser -s {} 2>/dev/null \; -delete) Jun 6 23:12:43 kcuzner-desktop kernel: [59006.317590] usb 2-1.7: USB disconnect, device number 8 Jun 6 23:12:43 kcuzner-desktop kernel: [59006.319672] sd 7:0:0:0: [sdg] Synchronizing SCSI cache Jun 6 23:12:43 kcuzner-desktop kernel: [59006.319737] sd 7:0:0:0: [sdg] Result: hostbyte=DID_NO_CONNECT driverbyte=DRIVER_OK Jun 6 23:17:01 kcuzner-desktop CRON[26580]: (root) CMD ( cd / && run-parts --report /etc/cron.hourly) Jun 6 23:19:04 kcuzner-desktop acpid: client connected from 29925[0:0] Jun 6 23:19:04 kcuzner-desktop acpid: 1 client rule loaded Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Successfully made thread 30131 of process 30131 (n/a) owned by '104' high priority at nice level -11. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Supervising 1 threads of 1 processes of 1 users. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Successfully made thread 30162 of process 30131 (n/a) owned by '104' RT at priority 5. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Supervising 2 threads of 1 processes of 1 users. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Successfully made thread 30163 of process 30131 (n/a) owned by '104' RT at priority 5. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Supervising 3 threads of 1 processes of 1 users. Jun 6 23:19:07 kcuzner-desktop bluetoothd[1140]: Endpoint registered: sender=:1.239 path=/MediaEndpoint/HFPAG Jun 6 23:19:07 kcuzner-desktop bluetoothd[1140]: Endpoint registered: sender=:1.239 path=/MediaEndpoint/A2DPSource Jun 6 23:19:07 kcuzner-desktop bluetoothd[1140]: Endpoint registered: sender=:1.239 path=/MediaEndpoint/A2DPSink Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Successfully made thread 30166 of process 30166 (n/a) owned by '104' high priority at nice level -11. Jun 6 23:19:07 kcuzner-desktop rtkit-daemon[1835]: Supervising 4 threads of 2 processes of 1 users. Jun 6 23:19:07 kcuzner-desktop pulseaudio[30166]: [pulseaudio] pid.c: Daemon already running. Jun 6 23:19:10 kcuzner-desktop acpid: client 2942[0:0] has disconnected Jun 6 23:19:10 kcuzner-desktop acpid: client 29925[0:0] has disconnected Jun 6 23:19:10 kcuzner-desktop acpid: client connected from 1286[0:0] Jun 6 23:19:10 kcuzner-desktop acpid: 1 client rule loaded Jun 6 23:19:31 kcuzner-desktop bluetoothd[1140]: Endpoint unregistered: sender=:1.239 path=/MediaEndpoint/HFPAG Jun 6 23:19:31 kcuzner-desktop bluetoothd[1140]: Endpoint unregistered: sender=:1.239 path=/MediaEndpoint/A2DPSource Jun 6 23:19:31 kcuzner-desktop bluetoothd[1140]: Endpoint unregistered: sender=:1.239 path=/MediaEndpoint/A2DPSink Jun 6 23:28:12 kcuzner-desktop kernel: imklog 5.8.6, log source = /proc/kmsg started. Jun 6 23:28:12 kcuzner-desktop rsyslogd: [origin software="rsyslogd" swVersion="5.8.6" x-pid="1053" x-info="http://www.rsyslog.com"] start Jun 6 23:28:12 kcuzner-desktop rsyslogd: rsyslogd's groupid changed to 103 Jun 6 23:28:12 kcuzner-desktop rsyslogd: rsyslogd's userid changed to 101 Jun 6 23:28:12 kcuzner-desktop rsyslogd-2039: Could not open output pipe '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ] Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Ericsson MBM Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Sierra Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Generic Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Huawei Jun 6 23:28:12 kcuzner-desktop modem-manager[1070]: <info> Loaded plugin Linktop Jun 6 23:28:12 kcuzner-desktop bluetoothd[1072]: Failed to init gatt_example plugin Jun 6 23:28:12 kcuzner-desktop bluetoothd[1072]: Listening for HCI events on hci0 Jun 6 23:28:12 kcuzner-desktop NetworkManager[1080]: <info> NetworkManager (version 0.9.4.0) is starting... Jun 6 23:28:12 kcuzner-desktop NetworkManager[1080]: <info> Read config file /etc/NetworkManager/NetworkManager.conf Jun 6 23:28:12 kcuzner-desktop NetworkManager[1080]: <info> VPN: loaded org.freedesktop.NetworkManager.pptp Jun 6 23:28:12 kcuzner-desktop NetworkManager[1080]: <info> DNS: loaded plugin dnsmasq Jun 6 23:28:12 kcuzner-desktop kernel: [ 0.000000] Initializing cgroup subsys cpuset Jun 6 23:28:12 kcuzner-desktop kernel: [ 0.000000] Initializing cgroup subsys cpu Sorry it's so huge; the restart happens at 23:28:12 I believe and all I see is that chromium segfaulted a few times. I wouldn't think a segfault from an individual program on the computer would crash it, but could that be the issue?

    Read the article

  • The Proper Use of the VM Role in Windows Azure

    - by BuckWoody
    At the Professional Developer’s Conference (PDC) in 2010 we announced an addition to the Computational Roles in Windows Azure, called the VM Role. This new feature allows a great deal of control over the applications you write, but some have confused it with our full infrastructure offering in Windows Hyper-V. There is a proper architecture pattern for both of them. Virtualization Virtualization is the process of taking all of the hardware of a physical computer and replicating it in software alone. This means that a single computer can “host” or run several “virtual” computers. These virtual computers can run anywhere - including at a vendor’s location. Some companies refer to this as Cloud Computing since the hardware is operated and maintained elsewhere. IaaS The more detailed definition of this type of computing is called Infrastructure as a Service (Iaas) since it removes the need for you to maintain hardware at your organization. The operating system, drivers, and all the other software required to run an application are still under your control and your responsibility to license, patch, and scale. Microsoft has an offering in this space called Hyper-V, that runs on the Windows operating system. Combined with a hardware hosting vendor and the System Center software to create and deploy Virtual Machines (a process referred to as provisioning), you can create a Cloud environment with full control over all aspects of the machine, including multiple operating systems if you like. Hosting machines and provisioning them at your own buildings is sometimes called a Private Cloud, and hosting them somewhere else is often called a Public Cloud. State-ful and Stateless Programming This paradigm does not create a new, scalable way of computing. It simply moves the hardware away. The reason is that when you limit the Cloud efforts to a Virtual Machine, you are in effect limiting the computing resources to what that single system can provide. This is because much of the software developed in this environment maintains “state” - and that requires a little explanation. “State-ful programming” means that all parts of the computing environment stay connected to each other throughout a compute cycle. The system expects the memory, CPU, storage and network to remain in the same state from the beginning of the process to the end. You can think of this as a telephone conversation - you expect that the other person picks up the phone, listens to you, and talks back all in a single unit of time. In “Stateless” computing the system is designed to allow the different parts of the code to run independently of each other. You can think of this like an e-mail exchange. You compose an e-mail from your system (it has the state when you’re doing that) and then you walk away for a bit to make some coffee. A few minutes later you click the “send” button (the network has the state) and you go to a meeting. The server receives the message and stores it on a mail program’s database (the mail server has the state now) and continues working on other mail. Finally, the other party logs on to their mail client and reads the mail (the other user has the state) and responds to it and so on. These events might be separated by milliseconds or even days, but the system continues to operate. The entire process doesn’t maintain the state, each component does. This is the exact concept behind coding for Windows Azure. The stateless programming model allows amazing rates of scale, since the message (think of the e-mail) can be broken apart by multiple programs and worked on in parallel (like when the e-mail goes to hundreds of users), and only the order of re-assembling the work is important to consider. For the exact same reason, if the system makes copies of those running programs as Windows Azure does, you have built-in redundancy and recovery. It’s just built into the design. The Difference Between Infrastructure Designs and Platform Designs When you simply take a physical server running software and virtualize it either privately or publicly, you haven’t done anything to allow the code to scale or have recovery. That all has to be handled by adding more code and more Virtual Machines that have a slight lag in maintaining the running state of the system. Add more machines and you get more lag, so the scale is limited. This is the primary limitation with IaaS. It’s also not as easy to deploy these VM’s, and more importantly, you’re often charged on a longer basis to remove them. your agility in IaaS is more limited. Windows Azure is a Platform - meaning that you get objects you can code against. The code you write runs on multiple nodes with multiple copies, and it all works because of the magic of Stateless programming. you don’t worry, or even care, about what is running underneath. It could be Windows (and it is in fact a type of Windows Server), Linux, or anything else - but that' isn’t what you want to manage, monitor, maintain or license. You don’t want to deploy an operating system - you want to deploy an application. You want your code to run, and you don’t care how it does that. Another benefit to PaaS is that you can ask for hundreds or thousands of new nodes of computing power - there’s no provisioning, it just happens. And you can stop using them quicker - and the base code for your application does not have to change to make this happen. Windows Azure Roles and Their Use If you need your code to have a user interface, in Visual Studio you add a Web Role to your project, and if the code needs to do work that doesn’t involve a user interface you can add a Worker Role. They are just containers that act a certain way. I’ll provide more detail on those later. Note: That’s a general description, so it’s not entirely accurate, but it’s accurate enough for this discussion. So now we’re back to that VM Role. Because of the name, some have mistakenly thought that you can take a Virtual Machine running, say Linux, and deploy it to Windows Azure using this Role. But you can’t. That’s not what it is designed for at all. If you do need that kind of deployment, you should look into Hyper-V and System Center to create the Private or Public Infrastructure as a Service. What the VM Role is actually designed to do is to allow you to have a great deal of control over the system where your code will run. Let’s take an example. You’ve heard about Windows Azure, and Platform programming. You’re convinced it’s the right way to code. But you have a lot of things you’ve written in another way at your company. Re-writing all of your code to take advantage of Windows Azure will take a long time. Or perhaps you have a certain version of Apache Web Server that you need for your code to work. In both cases, you think you can (or already have) code the the software to be “Stateless”, you just need more control over the place where the code runs. That’s the place where a VM Role makes sense. Recap Virtualizing servers alone has limitations of scale, availability and recovery. Microsoft’s offering in this area is Hyper-V and System Center, not the VM Role. The VM Role is still used for running Stateless code, just like the Web and Worker Roles, with the exception that it allows you more control over the environment of where that code runs.

    Read the article

  • CodePlex Daily Summary for Saturday, April 03, 2010

    CodePlex Daily Summary for Saturday, April 03, 2010New ProjectsASP.NET MVC Demo: aspnetmvcdemoClasslessInterDomainRouting: ClasslessInterDomainRouting provides a class that is designed to detail with CIDR requests and ranges, it is developed within the C# Langauge and f...ClientSideRefactor: Plugin for Visual Studio.ColinTest: ColinTestePMS: An educational project to learn ASP.Net MVC, entity framework using vs 2010Extensible ASP.NET: Extensible Framework on top of ASP.NET - infrastructure level. Uses MEF for extensibility.Franchise Computing Model: Franchise Computing is a client-centric, contract-oriented, consumption-based computing model. Its framework allows service providers and consumers...GameEngine ReactorFX: Set of tools and code snippets for creation DirectX based games. Also provides a number of ideas, algorythms and problem-solutions.It's All Just Ones And Zeros: Utility code libraries for Vault API developers.Live Writer Picasa Plugin: Live Writer Picasa Plugin is a plugin for Windows Live Writer that allows you to embed photos from your Picasa Web Albums into your blog posts. Liv...Managed SDK for Meizu Cell Phone: The goal of this project is to deliver an open source managed SDK for Meizu cell phones, currently for M8. Media Player Field Type: Display a media player in a column of you document library. The library can contain movie files of diferent formats. The player will appear in the ...praca magisterska: This is my thesis: Algebraical aspects of modern cryptography,Pyx: An experimental programming language for statistics.SharpHydroLiDAR: A C# version of Lidar Hydrographic ExtractionSql Server Mds Destination: SSIS destination transform component for SQL Server Master Data ServicesStackOverflow.Net: A C# library for the StackOverflow API (currently in beta). Provides methods for every call currently in the StackOverflow API.TRX Merger Utility: People working on test projects that involve test management and execution from Visual Studio Team System 2008 and who do not have a TFS server for...UniPlanner: The UniPlanner project goal is to develop a web application able to visualize and schedule a university timetable.WikiNETParser: Wiki .NET Parser, Open Source project powered by ANTLR. Syntax defined in 3(4) files Lexer, Grammar, AST Parser.New ReleasesaaronERP builder - a framework to create customized ERP solutions: aaronERP_0.4.0.0: Changes (compared to version 0.3.0.0) : Businesslayer : - Caching of data-tables - ITranslatable Interface for mutli-language DAOs Web-Frontend: ...BatterySaver: Version 0.5: Add support for executing a power state event manually (Issue) Add support for battery percentage thresholds (Issue)ColinTest: asdfzxcv: asdfasdfComposer: V1.0.402.2001 Beta: Minor bug fixes Minor changes in interfaces Added documentation to the setup packageDynamic Configuration: Dynamic Configuration Release 2: Added ConfigurationChanged event fired whenever changes in .config file detected. Improved file watching filtering.Facebook Developer Toolkit: Version 3.1 BETA: Lots of bug fixes. Issues addressed: http://facebooktoolkit.codeplex.com/WorkItem/View.aspx?WorkItemId=14808 http://facebooktoolkit.codeplex.com/W...iExporter - iTunes playlist exporting: iExporter gui v2.5.0.0 - console v1.2.1.0: Paypal donate! New features and redesign for iExporter Gui You can now select/deselect all visible items with one click in the overview When yo...Line Counter: 1.5.5: The Line Counter is a tool to calculate lines of your code files. The tool was written in .NET 2.0. Line Counter 1.5.5 Fixed bugs in C# counter an...Live Writer Picasa Plugin: Live Writer Picasa Plugin 1.0.0: Changelog Since this is the first version there are no changes.Media Player Field Type: Media Player Field Type v1.0: Display a media player in a column of you document library. The library can contain movie files of diferent formats. The player will appear in the ...Numina Application/Security Framework: Numina.Framework Core 49601: Added .LESS library for CSS Updated default style and logo Added a few methods and method overloads to the .NET libraryOver Store: OverStore 1.16.0.0: Version 1.16.0.0 Runtime components uses PersistingRuntimeException instead of many exception types. PersistingRuntimeException message includes...patterns & practices Web Client Developer Guidance: Web Client Software Factory 2010 beta source code: The Web Client Software Factory 2010 provides an integrated set of guidance that assists architects and developers in creating web client applicati...SCSI Interface for Multimedia and Block Devices: Release 12 - View CD-DVD Drive Features: Changes in this version: - Added the ability to view the features of a CD/DVD device (e.g.: what discs it supports, whether it supports Mount Raini...SharePoint Labs: SPLab5006A-FRA-Level100: SPLab5006A-FRA-Level100 This SharePoint Lab will teach you how to create a Feature within Visual Studio, how to brand it, how to incorporate ressou...SharePoint Labs: SPLab5007A-FRA-Level300: SPLab5007A-FRA-Level300 This SharePoint Lab will teach you how to create a reusable and distributable project model for developping Features within...SharePoint Labs: SPLab5008A-FRA-Level100: SPLab5008A-FRA-Level100 This SharePoint Lab will teach you how to add an option in the ECB menu (Edit Control Block) only for specific file types w...SharePoint Labs: SPLab5009A-FRA-Level100: SPLab5009A-FRA-Level100 This SharePoint Lab will teach you the "Site Pages" model and the differences between customized/uncustomized pages (ghoste...SharePoint Labs: SPLab5010A-FRA-Level100: SPLab5010A-FRA-Level100 This SharePoint Lab will teach you the "Application Pages" model and the differences between "Site Pages" and "Application ...SharePoint Labs: SPLab5011A-FRA-Level100: SPLab5011A-FRA-Level100 This SharePoint Lab will teach you how to create a basic Application Page in the 12\TEMPLATE\LAYOUTS. Lab Language : French...sPATCH: sPatch v0.9b: + Fixed: an issue most webservers need leading slash to return filestreamsTASKedit: sTASKedit (pre-Alpha Release): This release is only for playing around, currently not useful Supported Files:Open 1.3.6 client tasks.data Export to 1.3.6 client tasks.data E...TRX Merger Utility: TRX Merger v1.0: First versionttgLib: ttgLib-0.01-beta1: In beta-version we've implemented basic functionality of ttgLib - now it can solve various problems using CPU+GPU bundle. Most important things: ...WikiNETParser: Wiki .NET Parser 2.5: Wiki .NET Parser 2.5 The documentation, binaries and source code could be downloaded from http://catarsa.com portal The latest release to downloa...WPF Zen Garden: Release 1.0: This is the first release.XNA 3D World Studio Content Pipeline: XNA 3DWS Content Pipeline - R2: This version adds terrains and brush based modelsMost Popular ProjectsRawrWBFS ManagerMicrosoft SQL Server Product Samples: DatabaseASP.NET Ajax LibrarySilverlight ToolkitAJAX Control ToolkitWindows Presentation Foundation (WPF)ASP.NETMicrosoft SQL Server Community & SamplesDotNetNuke® Community EditionMost Active ProjectsGraffiti CMSRawrjQuery Library for SharePoint Web ServicesFacebook Developer ToolkitBlogEngine.NETN2 CMSBase Class LibrariesFarseer Physics EngineLINQ to TwitterMicrosoft Biology Foundation

    Read the article

  • SPARC T3-1 Record Results Running JD Edwards EnterpriseOne Day in the Life Benchmark with Added Batch Component

    - by Brian
    Using Oracle's SPARC T3-1 server for the application tier and Oracle's SPARC Enterprise M3000 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne applications Day in the Life benchmark run concurrently with a batch workload. The SPARC T3-1 server based result has 25% better performance than the IBM Power 750 POWER7 server even though the IBM result did not include running a batch component. The SPARC T3-1 server based result has 25% better space/performance than the IBM Power 750 POWER7 server as measured by the online component. The SPARC T3-1 server based result is 5x faster than the x86-based IBM x3650 M2 server system when executing the online component of the JD Edwards EnterpriseOne 9.0.1 Day in the Life benchmark. The IBM result did not include a batch component. The SPARC T3-1 server based result has 2.5x better space/performance than the x86-based IBM x3650 M2 server as measured by the online component. The combination of SPARC T3-1 and SPARC Enterprise M3000 servers delivered a Day in the Life benchmark result of 5000 online users with 0.875 seconds of average transaction response time running concurrently with 19 Universal Batch Engine (UBE) processes at 10 UBEs/minute. The solution exercises various JD Edwards EnterpriseOne applications while running Oracle WebLogic Server 11g Release 1 and Oracle Web Tier Utilities 11g HTTP server in Oracle Solaris Containers, together with the Oracle Database 11g Release 2. The SPARC T3-1 server showed that it could handle the additional workload of batch processing while maintaining the same number of online users for the JD Edwards EnterpriseOne Day in the Life benchmark. This was accomplished with minimal loss in response time. JD Edwards EnterpriseOne 9.0.1 takes advantage of the large number of compute threads available in the SPARC T3-1 server at the application tier and achieves excellent response times. The SPARC T3-1 server consolidates the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth. A number of Oracle advanced technology and features were used to obtain this result: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle WebLogic Server 11g Release 1, Oracle Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and SPARC64 VII+ based servers. This is the first published result running both online and batch workload concurrently on the JD Enterprise Application server. No published results are available from IBM running the online component together with a batch workload. The 9.0.1 version of the benchmark saw some minor performance improvements relative to 9.0. When comparing between 9.0.1 and 9.0 results, the reader should take this into account when the difference between results is small. Performance Landscape JD Edwards EnterpriseOne Day in the Life Benchmark Online with Batch Workload This is the first publication on the Day in the Life benchmark run concurrently with batch jobs. The batch workload was provided by Oracle's Universal Batch Engine. System RackUnits Online Users Resp Time (sec) BatchConcur(# of UBEs) BatchRate(UBEs/m) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII+ (2.86 GHz), Solaris 10 4 5000 0.88 19 10 9.0.1 Resp Time (sec) — Response time of online jobs reported in seconds Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs Batch Rate (UBEs/m) — Batch transaction rate in UBEs/minute. JD Edwards EnterpriseOne Day in the Life Benchmark Online Workload Only These results are for the Day in the Life benchmark. They are run without any batch workload. System RackUnits Online Users ResponseTime (sec) Version SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10 M3000, 1xSPARC64 VII (2.75 GHz), Solaris 10 4 5000 0.52 9.0.1 IBM Power 750, 1xPOWER7 (3.55 GHz), IBM i7.1 4 4000 0.61 9.0 IBM x3650M2, 2xIntel X5570 (2.93 GHz), OVM 2 1000 0.29 9.0 IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere Configuration Summary Hardware Configuration: 1 x SPARC T3-1 server 1 x 1.65 GHz SPARC T3 128 GB memory 16 x 300 GB 10000 RPM SAS 1 x Sun Flash Accelerator F20 PCIe Card, 92 GB 1 x 10 GbE NIC 1 x SPARC Enterprise M3000 server 1 x 2.86 SPARC64 VII+ 64 GB memory 1 x 10 GbE NIC 2 x StorageTek 2540 + 2501 Software Configuration: JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3 Oracle Database 11g Release 2 Oracle 11g WebLogic server 11g Release 1 version 10.3.2 Oracle Web Tier Utilities 11g Oracle Solaris 10 9/10 Mercury LoadRunner 9.10 with Oracle Day in the Life kit for JD Edwards EnterpriseOne 9.0.1 Oracle’s Universal Batch Engine - Short UBEs and Long UBEs Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE workload of 15 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large UBEs, and the QPROCESS queue for short UBEs run concurrently. One of the Oracle Solaris Containers ran 4 Long UBEs, while another Container ran 15 short UBEs concurrently. The mixed size UBEs ran concurrently from the SPARC T3-1 server with the 5000 online users driven by the LoadRunner. Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers. See Also SPARC T3-1 oracle.com SPARC Enterprise M3000 oracle.com Oracle Solaris oracle.com JD Edwards EnterpriseOne oracle.com Oracle Database 11g Release 2 Enterprise Edition oracle.com Disclosure Statement Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 6/27/2011.

    Read the article

  • Running TeamCity from Amazon EC2 - Cloud based scalable build and continuous Integration

    - by RoyOsherove
    I’ve been having fun playing with the amazon EC2 cloud service. I set up a server running TeamCity, and an image of a server that just runs a TeamCity agent. I also setup TeamCity  to automatically instantiate agents on EC2 and shut them down based upon availability of free agents. Here’s how I did it: The first step was setting up the teamcity server. Create an account on amazon EC2 (BTW, amazon’s sites works better in IE than it does in chrome.. who knew!?) Open the EC2 dashboard, and click “Launch Instance” . From the “Quick Start” tab I selected from the list: “Getting Started on Microsoft Windows Server 2008 (AMI Id: ami-c5e40dac)” .  it’s good enough to just run teamcity. In the instance details, I used the default (Small instance, 1.7 GB mem). You might want to choose a close availability zone based on where you are. We want to “Launch instances” so click continue. Select the default kernel, RAM disk and all. No need to enable monitoring for now (you can do that later). click continue. If you don’t have a key pair, you will be prompted to create one. Once you do, select it in the list. Now you’ll be prompted to create a security group. I named mine “TC” as in “TeamCity”. each group is a bunch of settings on which ports can be let through into and out of a hosted machine.  keep it as the default settings. We will change them later. Click continue,  review and then click “Launch”. Now you’ll be able to see the new instance in the running instances list on your site. Now, you need to install stuff on that instance (TeamCity!) . To do that, you’ll need to Remote desktop into that instance. To do that, we’ll get the admin password for that instance: Check it on the list, and click “Instance Actions” - “Get Windows Admin Password”. You might have to wait about 10 minutes or so for the password to be generated for you. Once you have the password, you will remote desktop (start-run-‘mstsc’) into the instance. It’s address is a dns address shown below the list under “Public DNS”. it looks something like: ec2-256-226-194-91.compute-1.amazonaws.com Once you’re inside the instance – you’ll need to open IE (it is in hardened mode so you’ll have to relax its security settings to download stuff). I first downloaded chrome and using chrome I downloaded TeamCity. Note that the download speed is FAST. several MBs per second. To be able to see TeamCity from the outside, you will need to open the advanced firewall settings inside the remote machine, and add incoming and outgoing rules for port 80 (HTTP). Once you do that, you should be able to see the machine from the outside. If you still can’t, see the next step. I also enabled ports 9090 since I will use this machine to create an agent image later as well. Now configure the security group (TC) to enable talking to agents: IN the EC2 dashboard click on “Security Groups” and select your group. To add a rule, click on the empty list under the ‘protocol’ header. select TCP. from and ‘to’ ports are 9090. source ip is 0.0.0.0/0 (every ip is allowed). click “Save.  Also make sure you can see “HTTP” tcp 80 in that list. if you can’t see it, add it or you won’t be able to browse to the machine’s teamcity server home page. I also set an elastic IP for the machine: so I always have the same IP for the machine instance. Allocate and set one through the”Elastic IP” link on the EC2 dashboard.   you should now have a working instance of teamcity.   Now let’s create an agent image. Repeat steps 1-9, but this time, make sure you select a machine that fits what an agent might do. I selected Instance type – Hihg-CPU medium machine,  that is much faster. On that machine, I installed what I needed (VS 2010, PostSharp etc..). downloading VS 2010 from MSDN (2 GB took less than 10 min!) Now, instead of installing teamcity, browse using the browser to the teamcity homepage (from within the remote machine). go to the Administration page, and click the upper right link “Install agents”. Install the agent on he local machine – set it to the IP or DNS of the running TeamCity server. That way you’ll be able to check their connectivity live before making this machine your official agent image to reuse. Once the agent is installed, see that the TC server can see it and use it. see steps 13-14 above if they can’t. Once it works, you can take steps to make this image your agent image to be reused. next, here is a copy-paste of several steps to take from http://confluence.jetbrains.net/display/TCD5/Setting+Up+TeamCity+for+Amazon+EC2 Configure system so that agent it is started on machine boot (and make sure TeamCity server is accessible on machine boot). Test the setup by rebooting machine and checking that the agent connects normally to the server. Prepare the Image for bundling: Remove any temporary/history information in the system. Stop the agent (under Windows stop the service but leave it in Automatic startup type) Delete content agent logs and temp directories (not necessary) Delete "<Agent Home>/conf/amazon-*" file (not necessary) Change config/buildAgent.properties to remove properties: name, serverAddress, authToken (not necessary)   Now, we need to: Make AMI from the running instance. Configure TeamCity EC2 support on TeamCity server. Making an AMI: Check the instance of the agent in the EC2 dashboard instance list, and select instance actions->Create Image (EBS AMI) you’ll see the image pending in the APIs list in the EC2 dashboard. this could take 30 minutes or more. meanwhile we can configure the could support in the teamcity server. COPY THE AMI ID to the clipboard (looks like ami-a88aa4ce) Configuring TeamCity for Cloud: In TeamCity, click on “Agents” and then on “Cloud” tab. this is where you will control your cloud agents. to configure new cloud agents based on APIs, click on the right link to the “configuration page” Create a new profile and select AMazon EC2 as cloud type. Use your AMI ID that you copied to the clipboard into the “Images” field. Select an availability zone that is the same as the one your instance is running on for best communication perf between them make sure you select the ‘TC’ security group hopefully, that should be it, and teamcity will try to instantiate new instances on demand. Note that it may take around 10 minutes for an agent to become available to teamcity from the time it’s started.

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #035

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Row Overflow Data Explanation  In SQL Server 2005 one table row can contain more than one varchar(8000) fields. One more thing, the exclusions has exclusions also the limit of each individual column max width of 8000 bytes does not apply to varchar(max), nvarchar(max), varbinary(max), text, image or xml data type columns. Comparison Index Fragmentation, Index De-Fragmentation, Index Rebuild – SQL SERVER 2000 and SQL SERVER 2005 An old but like a gold article. Talks about lots of concepts related to Index and the difference from earlier version to the newer version. I strongly suggest that everyone should read this article just to understand how SQL Server has moved forward with the technology. Improvements in TempDB SQL Server 2005 had come up with quite a lots of improvements and this blog post describes them and explains the same. If you ask me what is my the most favorite article from early career. I must point out to this article as when I wrote this one I personally have learned a lot of new things. Recompile All The Stored Procedure on Specific TableI prefer to recompile all the stored procedure on the table, which has faced mass insert or update. sp_recompiles marks stored procedures to recompile when they execute next time. This blog post explains the same with the help of a script.  2008 SQLAuthority Download – SQL Server Cheatsheet You can download and print this cheat sheet and use it for your personal reference. If you have any suggestions, please let me know and I will see if I can update this SQL Server cheat sheet. Difference Between DBMS and RDBMS What is the difference between DBMS and RDBMS? DBMS – Data Base Management System RDBMS – Relational Data Base Management System or Relational DBMS High Availability – Hot Add Memory Hot Add CPU and Hot Add Memory are extremely interesting features of the SQL Server, however, personally I have not witness them heavily used. These features also have few restriction as well. I blogged about them in detail. 2009 Delete Duplicate Rows I have demonstrated in this blog post how one can identify and delete duplicate rows. Interesting Observation of Logon Trigger On All Servers – Solution The question I put forth in my previous article was – In single login why the trigger fires multiple times; it should be fired only once. I received numerous answers in thread as well as in my MVP private news group. Now, let us discuss the answer for the same. The answer is – It happens because multiple SQL Server services are running as well as intellisense is turned on. Blog post demonstrates how we can do the same with the help of SQL scripts. Management Studio New Features I have selected my favorite 5 features and blogged about it. IntelliSense for Query Editing Multi Server Query Query Editor Regions Object Explorer Enhancements Activity Monitors Maximum Number of Index per Table One of the questions I asked in my user group was – What is the maximum number of Index per table? I received lots of answers to this question but only two answers are correct. Let us now take a look at them in this blog post. 2010 Default Statistics on Column – Automatic Statistics on Column The truth is, Statistics can be in a table even though there is no Index in it. If you have the auto- create and/or auto-update Statistics feature turned on for SQL Server database, Statistics will be automatically created on the Column based on a few conditions. Please read my previously posted article, SQL SERVER – When are Statistics Updated – What triggers Statistics to Update, for the specific conditions when Statistics is updated. 2011 T-SQL Scripts to Find Maximum between Two Numbers In this blog post there are two different scripts listed which demonstrates way to find the maximum number between two numbers. I need your help, which one of the script do you think is the most accurate way to find maximum number? Find Details for Statistics of Whole Database – DMV – T-SQL Script I was recently asked is there a single script which can provide all the necessary details about statistics for any database. This question made me write following script. I was initially planning to use sp_helpstats command but I remembered that this is marked to be deprecated in future. 2012 Introduction to Function SIGN SIGN Function is very fundamental function. It will return the value 1, -1 or 0. If your value is negative it will return you negative -1 and if it is positive it will return you positive +1. Let us start with a simple small example. Template Browser – A Very Important and Useful Feature of SSMS Templates are like a quick cheat sheet or quick reference. Templates are available to create objects like databases, tables, views, indexes, stored procedures, triggers, statistics, and functions. Templates are also available for Analysis Services as well. The template scripts contain parameters to help you customize the code. You can Replace Template Parameters dialog box to insert values into the script. An invalid floating point operation occurred If you run any of the above functions they will give you an error related to invalid floating point. Honestly there is no workaround except passing the function appropriate values. SQRT of a negative number will give you result in real numbers which is not supported at this point of time as well LOG of a negative number is not possible (because logarithm is the inverse function of an exponential function and the exponential function is NEVER negative). Validating Spatial Object with IsValidDetailed Function SQL Server 2012 has introduced the new function IsValidDetailed(). This function has made my life very easy. In simple words, this function will check if the spatial object passed is valid or not. If it is valid it will give information that it is valid. If the spatial object is not valid it will return the answer that it is not valid and the reason for the same. This makes it very easy to debug the issue and make the necessary correction. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • Oracle Expands Sun Blade Portfolio for Cloud and Highly Virtualized Environments

    - by Ferhat Hatay
    Oracle announced the expansion of Sun Blade Portfolio for cloud and highly virtualized environments that deliver powerful performance and simplified management as tightly integrated systems.  Along with the SPARC T3-1B blade server, Oracle VM blade cluster reference configuration and Oracle's optimized solution for Oracle WebLogic Suite, Oracle introduced the dual-node Sun Blade X6275 M2 server module with some impressive benchmark results.   Benchmarks on the Sun Blade X6275 M2 server module demonstrate the outstanding performance characteristics critical for running varied commercial applications used in cloud and highly virtualized environments.  These include best-in-class SPEC CPU2006 results with the Intel Xeon processor 5600 series, six Fluent world records and 1.8 times the price-performance of the IBM Power 755 running NAMD, a prominent bio-informatics workload.   Benchmarks for Sun Blade X6275 M2 server module  SPEC CPU2006  The Sun Blade X6275 M2 server module demonstrated best in class SPECint_rate2006 results for all published results using the Intel Xeon processor 5600 series, with a result of 679.  This result is 97% better than the HP BL460c G7 blade, 80% better than the IBM HS22V blade, and 79% better than the Dell M710 blade.  This result demonstrates the density advantage of the new Oracle's server module for space-constrained data centers.     Sun Blade X6275M2 (2 Nodes, Intel Xeon X5670 2.93GHz) - 679 SPECint_rate2006; HP ProLiant BL460c G7 (2.93 GHz, Intel Xeon X5670) - 347 SPECint_rate2006; IBM BladeCenter HS22V (Intel Xeon X5680)  - 377 SPECint_rate2006; Dell PowerEdge M710 (Intel Xeon X5680, 3.33 GHz) - 380 SPECint_rate2006.  SPEC, SPECint, SPECfp reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of 11/24/2010 and this report.    For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   Fluent The Sun Fire X6275 M2 server module produced world-record results on each of the six standard cases in the current "FLUENT 12" benchmark test suite at 8-, 12-, 24-, 32-, 64- and 96-core configurations. These results beat the most recent QLogic score with IBM DX 360 M series platforms and QLogic "Truescale" interconnects.  Results on sedan_4m test case on the Sun Blade X6275 M2 server module are 23% better than the HP C7000 system, and 20% better than the IBM DX 360 M2; Dell has not posted a result for this test case.  Results can be found at the FLUENT website.   ANSYS's FLUENT software solves fluid flow problems, and is based on a numerical technique called computational fluid dynamics (CFD), which is used in the automotive, aerospace, and consumer products industries. The FLUENT 12 benchmark test suite consists of seven models that are well suited for multi-node clustered environments and representative of modern engineering CFD clusters. Vendors benchmark their systems with the principal objective of providing comparative performance information for FLUENT software that, among other things, depends on compilers, optimization, interconnect, and the performance characteristics of the hardware.   FLUENT application performance is representative of other commercial applications that require memory and CPU resources to be available in a scalable cluster-ready format.  FLUENT benchmark has six conventional test cases (eddy_417k, turbo_500k, aircraft_2m, sedan_4m, truck_14m, truck_poly_14m) at various core counts.   All information on the FLUENT website (http://www.fluent.com) is Copyrighted1995-2010 by ANSYS Inc. Results as of November 24, 2010. For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   NAMD Results on the Sun Blade X6275 M2 server module running NAMD (a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems) show up to a 1.8X better price/performance than IBM's Power 7-based system.  For space-constrained environments, the ultra-dense Sun Blade X6275 M2 server module provides a 1.7X better price/performance per rack unit than IBM's system.     IBM Power 755 4-way Cluster (16U). Total price for cluster: $324,212. See IBM United States Hardware Announcement 110-008, dated February 9, 2010, pp. 4, 21 and 39-46.  Sun Blade X6275 M2 8-Blade Cluster (10U). Total price for cluster:  $193,939. Price/performance and performance/RU comparisons based on f1ATPase molecule test results. Sun Blade X6275 M2 cluster: $3,568/step/sec, 5.435 step/sec/RU. IBM Power 755 cluster: $6,355/step/sec, 3.189 step/sec/U. See http://www-03.ibm.com/systems/power/hardware/reports/system_perf.html. See http://www.ks.uiuc.edu/Research/namd/performance.html for more information, results as of 11/24/10.   For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   Reverse Time Migration The Reverse Time Migration is heavily used in geophysical imaging and modeling for Oil & Gas Exploration.  The Sun Blade X6275 M2 server module showed up to a 40% performance improvement over the previous generation server module with super-linear scalability to 16 nodes for the 9-Point Stencil used in this Reverse Time Migration computational kernel.  The balanced combination of Oracle's Sun Storage 7410 system with the Sun Blade X6275 M2 server module cluster showed linear scalability for the total application throughput, including the I/O and MPI communication, to produce a final 3-D seismic depth imaged cube for interpretation. The final image write time from the Sun Blade X6275 M2 server module nodes to Oracle's Sun Storage 7410 system achieved 10GbE line speed of 1.25 GBytes/second or better performance. Between subsequent runs, the effects of I/O buffer caching on the Sun Blade X6275 M2 server module nodes and write optimized caching on the Sun Storage 7410 system gave up to 1.8 GBytes/second effective write performance. The performance results and characterization of this Reverse Time Migration benchmark could serve as a useful measure for many other I/O intensive commercial applications. 3D VTI Reverse Time Migration Seismic Depth Imaging, see http://blogs.sun.com/BestPerf/entry/3d_vti_reverse_time_migration for more information, results as of 11/14/2010.                            

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #032

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Complete Series of Database Coding Standards and Guidelines SQL SERVER Database Coding Standards and Guidelines – Introduction SQL SERVER – Database Coding Standards and Guidelines – Part 1 SQL SERVER – Database Coding Standards and Guidelines – Part 2 SQL SERVER Database Coding Standards and Guidelines Complete List Download Explanation and Example – SELF JOIN When all of the data you require is contained within a single table, but data needed to extract is related to each other in the table itself. Examples of this type of data relate to Employee information, where the table may have both an Employee’s ID number for each record and also a field that displays the ID number of an Employee’s supervisor or manager. To retrieve the data tables are required to relate/join to itself. Insert Multiple Records Using One Insert Statement – Use of UNION ALL This is very interesting question I have received from new developer. How can I insert multiple values in table using only one insert? Now this is interesting question. When there are multiple records are to be inserted in the table following is the common way using T-SQL. Function to Display Current Week Date and Day – Weekly Calendar Straight blog post with script to find current week date and day based on the parameters passed in the function.  2008 In my beginning years, I have almost same confusion as many of the developer had in their earlier years. Here are two of the interesting question which I have attempted to answer in my early year. Even if you are experienced developer may be you will still like to read following two questions: Order Of Column In Index Order of Conditions in WHERE Clauses Example of DISTINCT in Aggregate Functions Have you ever used DISTINCT with the Aggregation Function? Here is a simple example about how users can do it. Create a Comma Delimited List Using SELECT Clause From Table Column Straight to script example where I explained how to do something easy and quickly. Compound Assignment Operators SQL SERVER 2008 has introduced new concept of Compound Assignment Operators. Compound Assignment Operators are available in many other programming languages for quite some time. Compound Assignment Operators is operator where variables are operated upon and assigned on the same line. PIVOT and UNPIVOT Table Examples Here is a very interesting question – the answer to the question can be YES or NO both. “If we PIVOT any table and UNPIVOT that table do we get our original table?” Read the blog post to get the explanation of the question above. 2009 What is Interim Table – Simple Definition of Interim Table The interim table is a table that is generated by joining two tables and not the final result table. In other words, when two tables are joined they create an interim table as resultset but the resultset is not final yet. It may be possible that more tables are about to join on the interim table, and more operations are still to be applied on that table (e.g. Order By, Having etc). Besides, it may be possible that there is no interim table; sometimes final table is what is generated when the query is run. 2010 Stored Procedure and Transactions If Stored Procedure is transactional then, it should roll back complete transactions when it encounters any errors. Well, that does not happen in this case, which proves that Stored Procedure does not only provide just the transactional feature to a batch of T-SQL. Generate Database Script for SQL Azure When talking about SQL Azure the most common complaint I hear is that the script generated from stand-along SQL Server database is not compatible with SQL Azure. This was true for some time for sure but not any more. If you have SQL Server 2008 R2 installed you can follow the guideline below to generate a script which is compatible with SQL Azure. Convert IN to EXISTS – Performance Talk It is NOT necessary that every time when IN is replaced by EXISTS it gives better performance. However, in our case listed above it does for sure give better performance. You can read about this subject in the associated blog post. Subquery or Join – Various Options – SQL Server Engine Knows the Best Every single time whenever there is a performance tuning exercise, I hear the conversation from developer where some prefer subquery and some prefer join. In this two part blog post, I explain the same in the detail with examples. Part 1 | Part 2 Merge Operations – Insert, Update, Delete in Single Execution MERGE is a new feature that provides an efficient way to do multiple DML operations. In earlier versions of SQL Server, we had to write separate statements to INSERT, UPDATE, or DELETE data based on certain conditions; however, at present, by using the MERGE statement, we can include the logic of such data changes in one statement that even checks when the data is matched and then just update it, and similarly, when the data is unmatched, it is inserted. 2011 Puzzle – Statistics are not updated but are Created Once Here is the quick scenario about my setup. Create Table Insert 1000 Records Check the Statistics Now insert 10 times more 10,000 indexes Check the Statistics – it will be NOT updated – WHY? Question to You – When to use Function and When to use Stored Procedure Personally, I believe that they are both different things - they cannot be compared. I can say, it will be like comparing apples and oranges. Each has its own unique use. However, they can be used interchangeably at many times and in real life (i.e., production environment). I have personally seen both of these being used interchangeably many times. This is the precise reason for asking this question. 2012 In year 2012 I had two interesting series ran on the blog. If there is no fun in learning, the learning becomes a burden. For the same reason, I had decided to build a three part quiz around SEQUENCE. The quiz was to identify the next value of the sequence. I encourage all of you to take part in this fun quiz. Guess the Next Value – Puzzle 1 Guess the Next Value – Puzzle 2 Guess the Next Value – Puzzle 3 Guess the Next Value – Puzzle 4 Simple Example to Configure Resource Governor – Introduction to Resource Governor Resource Governor is a feature which can manage SQL Server Workload and System Resource Consumption. We can limit the amount of CPU and memory consumption by limiting /governing /throttling on the SQL Server. If there are different workloads running on SQL Server and each of the workload needs different resources or when workloads are competing for resources with each other and affecting the performance of the whole server resource governor is a very important task. Tricks to Replace SELECT * with Column Names – SQL in Sixty Seconds #017 – Video  Retrieves unnecessary columns and increases network traffic When a new columns are added views needs to be refreshed manually Leads to usage of sub-optimal execution plan Uses clustered index in most of the cases instead of using optimal index It is difficult to debug SQL SERVER – Load Generator – Free Tool From CodePlex The best part of this SQL Server Load Generator is that users can run multiple simultaneous queries again SQL Server using different login account and different application name. The interface of the tool is extremely easy to use and very intuitive as well. A Puzzle – Swap Value of Column Without Case Statement Let us assume there is a single column in the table called Gender. The challenge is to write a single update statement which will flip or swap the value in the column. For example if the value in the gender column is ‘male’ swap it with ‘female’ and if the value is ‘female’ swap it with ‘male’. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • NVIDIA x server - "sudo nvidia config" does not generate a working 'xorg.config'

    - by Mike
    I am over 18 hours deep on this challenge. I got to this point and am stuck. very stuck. Maybe you can figure it out? Ubuntu Version 12.04 LTS with all the updates installed. Problem: The default settings in "etc/X11/xorg.conf" that are generated by the "nvidia-xconfig" tool, do not allow the NVIDIA x server to connect to the driver in my "System Settings Additional Driver window". (that's how I understand it. Lots of information below). Symptoms of Problem "System Settings Additional Driver" window has drivers, but the nvidia x server cannot connect/utilize any of the 4 drivers. the drivers are activated, but not in use. When I go to "System Tools Administration NVIDIA x server settings" I get an error that basically tells me to create a default file to initialize the NVIDIA X server (screen shot below). This is the messages the terminal gives after running a "sudo nvidia-xconfig" command for the first time. It seems that the generated file by the tool i just ran is generating a bad/unusable file: If I run the "sudo nvidia-xconfig" command again, I wont get an error the second time. However when I reboot, the default file that is generated (etc/X11/xorg.conf) simply puts the screen resolution at 800 x 600 (or something big like that). When I try to go to NVIDIA x server settings I am greeted with the same screen as the screen shot as in symptom 2 (no option to change the resolution). If I try to go to "system settings display" there are no other resolutions to choose from. At this point I must delete the newly minted "xorg.conf" and reinstate the original in its place. Here are the contents of the "xorg.conf" that is generated first (the one missing required information): # nvidia-xconfig: X configuration file generated by nvidia-xconfig # nvidia-xconfig: version 304.88 (buildmeister@swio-display-x86-rhel47-06) Wed Mar 27 15:32:58 PDT 2013 Section "ServerLayout" Identifier "Layout0" Screen 0 "Screen0" InputDevice "Keyboard0" "CoreKeyboard" InputDevice "Mouse0" "CorePointer" EndSection Section "Files" EndSection Section "InputDevice" # generated from default Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/psaux" Option "Emulate3Buttons" "no" Option "ZAxisMapping" "4 5" EndSection Section "InputDevice" # generated from default Identifier "Keyboard0" Driver "kbd" EndSection Section "Monitor" Identifier "Monitor0" VendorName "Unknown" ModelName "Unknown" HorizSync 28.0 - 33.0 VertRefresh 43.0 - 72.0 Option "DPMS" EndSection Section "Device" Identifier "Device0" Driver "nvidia" VendorName "NVIDIA Corporation" EndSection Section "Screen" Identifier "Screen0" Device "Device0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Depth 24 EndSubSection EndSection Hardware: I ran the "lspci|grep VGA". There results are: 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 01:00.0 VGA compatible controller: NVIDIA Corporation GF108 [Quadro 1000M] (rev a1) More Hardware info: Ram: 16GB CPU: Intel Core i7-2720QM @2.2GHz * 8 Other: 64 bit. This is a triple boot computer and not a VM. Attempts With Not Success on My End: 1) Tried to append the "xorg.conf" with what I perceive is missing information and obviously it didn't fly. 2) All the other stuff I tried got me to this point. 3) See if this link is helpful to you (I barely get it, but i get enough knowing that a smarter person might find this useful): http://manpages.ubuntu.com/manpages/lucid/man1/nvidia-xconfig.1.html 4) I am completely new to Linux (40 hours over past week), but not to programming. However I am very serious about changing over to Linux. When you respond (I hope someone responds...) please respond in a way that a person new to Linux can understand. 5) By the way, the reason I am in this mess is because I MUST have a second monitor running from my laptop, and "System Settings Display" doesn't recognize my second display. I know it is possible to make the second display work in my system, because when I boot from the install CD, I perform work on the native laptop monitor, but the second monitor shows a purple screen with Ubuntu in the middle, so I know the VGA port is sending a signal out. If this is too much for you to tackle please suggest an alternative method to get a second display. I don't want to go to windows but I cannot have a single display. I am really fudged here. I hope some smart person can help. Thanks in advance. Mike. **********************EDIT #1********************** More Details About Graphics Card I was asked "which brand of nvidia-card do you have exactly?" Here is what I did to provide more info (maybe relevant, maybe not, but here is everything): 1) Took my Lenovo W520 right apart to see if there is an identifier on the actual card. However I realized that if I get deep enough to take a look, the laptop "won't like it". so I put it back together. Figuring out the card this way is not an option for me right now. 2) (My computer is triple boot) I logged into Win7 and ran 'dxdiag' command. here is the screen shot: 3) I tried to look on the lenovo website for more details... but no luck. I took a look at my receipts and here is info form receipt: System Unit: W520 NVIDIA Quadro 1000M 2GB 4) In win7 I went to the NVIDIA website and used the option to have my card 'scanned' by a Java applet to determine the latest update for my card. I tried the same with Ubuntu but I can't get the applet to run. Here is the recommended driver from from the NVIDIA Applet for my card for Win7 (I hope this shines some light on the specifics of the card): Quadro/NVS/Tesla/GRID Desktop Driver Release R319 Version: 320.00 WHQL Release Date: 3.5.2013 5) Also I went on the NVIDIA driver search and looked through every possible combination of product type + product series + product to find all the combinations that yield a 1000M card. My card is: Product Type: Quadro Product Series: Quadro Series (Notebooks) Product: 1000M ***********************EDIT #2******************* Additional Symptoms Another question that generated more symptoms I previously didn't mention was: "After generating xorg.conf by nvidia-xconfig, go to additional drivers, do you see nvidia-304?" 1) I took a screen shot of the "additional drivers" right after generating xorg.conf by nvidia-xconfig. Here it is: 2) Then I did a reboot. Now Ubuntu is 600 x 800 resolution. When I logged in after the computer came up I got an error (which I always get after generating xorg.conf by nvidia-xconfig and rebooting) 3) To finally answer the question - No. There is no "NVIDIA-304" driver. Screen shot of additional drivers after generating xorg.conf by nvidia-xconfig and rebooting : At this point I revert to the original xorg.conf and delete the xorg.conf generated by Nvidia.

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Azure Diagnostics: The Bad, The Ugly, and a Better Way

    - by jasont
    If you’re a .Net web developer today, no doubt you’ve enjoyed watching Windows Azure grow up over the past couple of years. The platform has scaled, stabilized (mostly), and added on a slew of great (and sometimes overdue) features. What was once just an endpoint to host a solution, developers today have tremendous flexibility and options in the platform. Organizations are building new solutions and offerings on the platform, and others have, or are in the process of, migrating existing applications out of their own data centers into the Azure cloud. Whether new application development or migrating legacy, every development shop and IT organization needs to monitor their applications in the cloud, the same as they do on premises. Azure Diagnostics has some capabilities, but what I constantly hear from users is that it’s either (a) not enough, or (b) too cumbersome to set up. Today, Stackify is happy to announce that we fully support Azure deployments, just the same as your on-premises deployments. Let’s take a look below and compare and contrast the options. Azure Diagnostics Let’s crack open the Windows Azure documentation on Azure Diagnostics and see just how easy it is to use. The high level steps are:   Step 1: Import the Diagnostics Oh, I’ve already deployed my app without the diagnostics module. Guess I can’t do anything until I do this and re-deploy. Step 2: Configure the Diagnostics (and multiple sub-steps) Do I want it all? Or just pieces of it? Whoops, forgot to include a specific performance counter, I guess I’ll have to deploy again. Wait a minute… I have to specifically code these performance counters into my role’s OnStart() method, compile and deploy again? And query and consume it myself? Step 3: (Optional) Permanently store diagnostic data Lucky for me, Azure storage has gotten pretty cheap. But how often should I move the data into storage? I want to see real-time data, so I guess that’s out now as well. Step 4: (Optional) View stored diagnostic data Optional? Of course I want to see it. Conveniently, Microsoft recommends 3 tools to do this with. Un-conveniently, none of these are web based and they all just give you access to raw data, and very little charting or real-time intelligence. Just….. data. Nevermind that one product seems to have gotten stale since a recent acquisition, and doesn’t even have screenshots!   So, let’s summarize: lots of diagnostics data is available, but think realistically. Think Dev Ops. What happens when you are in the middle of a major production performance issue and you don’t have the diagnostics you need? You are redeploying an application (and thankfully you have a great branching strategy, so you feel perfectly safe just willy-nilly launching code into prod, don’t you?) to get data, then shipping it to storage, and then digging through that data to find a needle in a haystack. Would you like to be able to troubleshoot a performance issue in the middle of the night, or on a weekend, from your iPad or home computer’s web browser? Forget it: the best you get is this spark line in the Azure portal. If it’s real pointy, you probably have an issue; but since there is no alert based on a threshold your customers have likely already let you know. And high CPU, Memory, I/O, or Network doesn’t tell you anything about where the problem is. The Better Way – Stackify Stackify supports application and server monitoring in real time, all through a great web interface. All of the things that Azure Diagnostics provides, Stackify provides for your on-premises deployments, and you don’t need to know ahead of time that you’ll need it. It’s always there, it’s always on. Azure deployments are essentially no different than on-premises. It’s a Windows Server (or Linux) in the cloud. It’s behind a different firewall than your corporate servers. That’s it. Stackify can provide the same powerful tools to your Azure deployments in two simple steps. Step 1 Add a startup task to your web or worker role and deploy. If you can’t deploy and need it right now, no worries! Remote Desktop to the Azure instance and you can execute a Powershell script to download / install Stackify.   Step 2 Log in to your account at www.stackify.com and begin monitoring as much as you want, as often as you want and see the results instantly. WMI? It’s there Event Viewer? You’ve got it. File System Access? Yes, please! Would love to make sure my web.config is correct.   IIS / App Pool Info? Yep. You can even restart it. Running Services? All of them. Start and Stop them to your heart’s content. SQL Database access? You bet’cha. Alerts and Notification? Of course! You should know before your customers let you know. … and so much more.   Conclusion Microsoft has shown, consistently, that they love developers, developers, developers. What every developer needs to realize from this is that they’ve given you a canvas, which is exactly what Azure is. It’s great infrastructure that is readily available, easy to manage, and fairly cost effective. However, the tooling is your responsibility. What you get, at best, is bare bones. App and server diagnostics should be available when you need them. While we, as developers, try to plan for and think of everything ahead of time, there will come times where we need to get data that just isn’t available. And having to go through a lot of cumbersome steps to get that data, and then have to find a friendlier way to consume it…. well, that just doesn’t make a lot of sense to me. I’d rather spend my time writing and developing features and completing bug fixes for my applications, than to be writing code to monitor and diagnose.

    Read the article

  • HTG Explains: Why Does Rebooting a Computer Fix So Many Problems?

    - by Chris Hoffman
    Ask a geek how to fix a problem you’ve having with your Windows computer and they’ll likely ask “Have you tried rebooting it?” This seems like a flippant response, but rebooting a computer can actually solve many problems. So what’s going on here? Why does resetting a device or restarting a program fix so many problems? And why don’t geeks try to identify and fix problems rather than use the blunt hammer of “reset it”? This Isn’t Just About Windows Bear in mind that this soltion isn’t just limited to Windows computers, but applies to all types of computing devices. You’ll find the advice “try resetting it” applied to wireless routers, iPads, Android phones, and more. This same advice even applies to software — is Firefox acting slow and consuming a lot of memory? Try closing it and reopening it! Some Problems Require a Restart To illustrate why rebooting can fix so many problems, let’s take a look at the ultimate software problem a Windows computer can face: Windows halts, showing a blue screen of death. The blue screen was caused by a low-level error, likely a problem with a hardware driver or a hardware malfunction. Windows reaches a state where it doesn’t know how to recover, so it halts, shows a blue-screen of death, gathers information about the problem, and automatically restarts the computer for you . This restart fixes the blue screen of death. Windows has gotten better at dealing with errors — for example, if your graphics driver crashes, Windows XP would have frozen. In Windows Vista and newer versions of Windows, the Windows desktop will lose its fancy graphical effects for a few moments before regaining them. Behind the scenes, Windows is restarting the malfunctioning graphics driver. But why doesn’t Windows simply fix the problem rather than restarting the driver or the computer itself?  Well, because it can’t — the code has encountered a problem and stopped working completely, so there’s no way for it to continue. By restarting, the code can start from square one and hopefully it won’t encounter the same problem again. Examples of Restarting Fixing Problems While certain problems require a complete restart because the operating system or a hardware driver has stopped working, not every problem does. Some problems may be fixable without a restart, though a restart may be the easiest option. Windows is Slow: Let’s say Windows is running very slowly. It’s possible that a misbehaving program is using 99% CPU and draining the computer’s resources. A geek could head to the task manager and look around, hoping to locate the misbehaving process an end it. If an average user encountered this same problem, they could simply reboot their computer to fix it rather than dig through their running processes. Firefox or Another Program is Using Too Much Memory: In the past, Firefox has been the poster child for memory leaks on average PCs. Over time, Firefox would often consume more and more memory, getting larger and larger and slowing down. Closing Firefox will cause it to relinquish all of its memory. When it starts again, it will start from a clean state without any leaked memory. This doesn’t just apply to Firefox, but applies to any software with memory leaks. Internet or Wi-Fi Network Problems: If you have a problem with your Wi-Fi or Internet connection, the software on your router or modem may have encountered a problem. Resetting the router — just by unplugging it from its power socket and then plugging it back in — is a common solution for connection problems. In all cases, a restart wipes away the current state of the software . Any code that’s stuck in a misbehaving state will be swept away, too. When you restart, the computer or device will bring the system up from scratch, restarting all the software from square one so it will work just as well as it was working before. “Soft Resets” vs. “Hard Resets” In the mobile device world, there are two types of “resets” you can perform. A “soft reset” is simply restarting a device normally — turning it off and then on again. A “hard reset” is resetting its software state back to its factory default state. When you think about it, both types of resets fix problems for a similar reason. For example, let’s say your Windows computer refuses to boot or becomes completely infected with malware. Simply restarting the computer won’t fix the problem, as the problem is with the files on the computer’s hard drive — it has corrupted files or malware that loads at startup on its hard drive. However, reinstalling Windows (performing a “Refresh or Reset your PC” operation in Windows 8 terms) will wipe away everything on the computer’s hard drive, restoring it to its formerly clean state. This is simpler than looking through the computer’s hard drive, trying to identify the exact reason for the problems or trying to ensure you’ve obliterated every last trace of malware. It’s much faster to simply start over from a known-good, clean state instead of trying to locate every possible problem and fix it. Ultimately, the answer is that “resetting a computer wipes away the current state of the software, including any problems that have developed, and allows it to start over from square one.” It’s easier and faster to start from a clean state than identify and fix any problems that may be occurring — in fact, in some cases, it may be impossible to fix problems without beginning from that clean state. Image Credit: Arria Belli on Flickr, DeclanTM on Flickr     

    Read the article

  • When is a Seek not a Seek?

    - by Paul White
    The following script creates a single-column clustered table containing the integers from 1 to 1,000 inclusive. IF OBJECT_ID(N'tempdb..#Test', N'U') IS NOT NULL DROP TABLE #Test ; GO CREATE TABLE #Test ( id INTEGER PRIMARY KEY CLUSTERED ); ; INSERT #Test (id) SELECT V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 1000 ; Let’s say we need to find the rows with values from 100 to 170, excluding any values that divide exactly by 10.  One way to write that query would be: SELECT T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; That query produces a pretty efficient-looking query plan: Knowing that the source column is defined as an INTEGER, we could also express the query this way: SELECT T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; We get a similar-looking plan: If you look closely, you might notice that the line connecting the two icons is a little thinner than before.  The first query is estimated to produce 61.9167 rows – very close to the 63 rows we know the query will return.  The second query presents a tougher challenge for SQL Server because it doesn’t know how to predict the selectivity of the modulo expression (T.id % 10 > 0).  Without that last line, the second query is estimated to produce 68.1667 rows – a slight overestimate.  Adding the opaque modulo expression results in SQL Server guessing at the selectivity.  As you may know, the selectivity guess for a greater-than operation is 30%, so the final estimate is 30% of 68.1667, which comes to 20.45 rows. The second difference is that the Clustered Index Seek is costed at 99% of the estimated total for the statement.  For some reason, the final SELECT operator is assigned a small cost of 0.0000484 units; I have absolutely no idea why this is so, or what it models.  Nevertheless, we can compare the total cost for both queries: the first one comes in at 0.0033501 units, and the second at 0.0034054.  The important point is that the second query is costed very slightly higher than the first, even though it is expected to produce many fewer rows (20.45 versus 61.9167). If you run the two queries, they produce exactly the same results, and both complete so quickly that it is impossible to measure CPU usage for a single execution.  We can, however, compare the I/O statistics for a single run by running the queries with STATISTICS IO ON: Table '#Test'. Scan count 63, logical reads 126, physical reads 0. Table '#Test'. Scan count 01, logical reads 002, physical reads 0. The query with the IN list uses 126 logical reads (and has a ‘scan count’ of 63), while the second query form completes with just 2 logical reads (and a ‘scan count’ of 1).  It is no coincidence that 126 = 63 * 2, by the way.  It is almost as if the first query is doing 63 seeks, compared to one for the second query. In fact, that is exactly what it is doing.  There is no indication of this in the graphical plan, or the tool-tip that appears when you hover your mouse over the Clustered Index Seek icon.  To see the 63 seek operations, you have click on the Seek icon and look in the Properties window (press F4, or right-click and choose from the menu): The Seek Predicates list shows a total of 63 seek operations – one for each of the values from the IN list contained in the first query.  I have expanded the first seek node to show the details; it is seeking down the clustered index to find the entry with the value 101.  Each of the other 62 nodes expands similarly, and the same information is contained (even more verbosely) in the XML form of the plan. Each of the 63 seek operations starts at the root of the clustered index B-tree and navigates down to the leaf page that contains the sought key value.  Our table is just large enough to need a separate root page, so each seek incurs 2 logical reads (one for the root, and one for the leaf).  We can see the index depth using the INDEXPROPERTY function, or by using the a DMV: SELECT S.index_type_desc, S.index_depth FROM sys.dm_db_index_physical_stats ( DB_ID(N'tempdb'), OBJECT_ID(N'tempdb..#Test', N'U'), 1, 1, DEFAULT ) AS S ; Let’s look now at the Properties window when the Clustered Index Seek from the second query is selected: There is just one seek operation, which starts at the root of the index and navigates the B-tree looking for the first key that matches the Start range condition (id >= 101).  It then continues to read records at the leaf level of the index (following links between leaf-level pages if necessary) until it finds a row that does not meet the End range condition (id <= 169).  Every row that meets the seek range condition is also tested against the Residual Predicate highlighted above (id % 10 > 0), and is only returned if it matches that as well. You will not be surprised that the single seek (with a range scan and residual predicate) is much more efficient than 63 singleton seeks.  It is not 63 times more efficient (as the logical reads comparison would suggest), but it is around three times faster.  Let’s run both query forms 10,000 times and measure the elapsed time: DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON; SET STATISTICS XML OFF; ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; GO DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; On my laptop, running SQL Server 2008 build 4272 (SP2 CU2), the IN form of the query takes around 830ms and the range query about 300ms.  The main point of this post is not performance, however – it is meant as an introduction to the next few parts in this mini-series that will continue to explore scans and seeks in detail. When is a seek not a seek?  When it is 63 seeks © Paul White 2011 email: [email protected] twitter: @SQL_kiwi

    Read the article

  • Why people don't patch and upgrade?!?

    - by Mike Dietrich
    Discussing the topic "Why Upgrade" or "Why not Upgrade" is not always fun. Actually the arguments repeat from customer to customer. Typically we hear things such as: A PSU or Patch Set introduces new bugs A new PSU or Patch Set introduces new features which lead to risk and require application verification  Patching means risk Patching changes the execution plans Patching requires too much testing Patching is too much work for our DBAs Patching costs a lot of money and doesn't pay out And to be very honest sometimes it's hard for me to stay calm in such discussions. Let's discuss some of these points a bit more in detail. A PSU or Patch Set introduces new bugsWell, yes, that is true as no software containing more than some lines of code is bug free. This applies to Oracle's code as well as too any application or operating system code. But first of all, does that mean you never patch your OS because the patch may introduce new flaws? And second, what is the point of saying "it introduces new bugs"? Does that mean you will never get rid of the mean issues we know about and we fixed already? Scroll down from MOS Note:161818.1 to the patch release you are on, no matter if it's 10.2.0.4 or 11.2.0.3 and check for the Known Issues And Alerts.Will you take responsibility to know about all these issues and refuse to upgrade to 11.2.0.4? I won't. A new PSU or Patch Set introduces new featuresOk, we can discuss that. Offering new functionality within a database patch set is a dubious thing. It has advantages such as in 11.2.0.4 where we backported Database Redaction to. But this is something you will only use once you have an Advanced Security license. I interpret that statement I've heard quite often from customers in a different way: People don't want to get surprises such as new behaviour. This certainly gives everybody a hard time. And we've had many examples in the past (SESSION_CACHED_CURSROS in 10.2.0.4,  _DATAFILE_WRITE_ERRORS_CRASH_INSTANCE in 11.2.0.2 and others) where those things weren't documented, not even in the README. Thanks to many friends out there I learned about those as well. So new behaviour is the topic people consider as risky - not really new features. And just to point this out: A PSU never brings in new features or new behaviour by definition! Patching means riskDoes it really mean risk? Yes, there were issues in the past (and sometimes in the present as well) where a patch didn't get installed correctly. But personally I consider it way more risky to not patch. Keep that in mind: The day Oracle publishes an PSU (or CPU) containing security fixes all the great security experts out there go public with their findings as well. So from that day on even my grandma can find out about those issues and try to attack somebody. Now a lot of people say: "My database does not face the internet." And I will answer: "The enemy is sitting already behind your firewalls. And knows potentially about these things." My statement: Not patching introduces way more risk to your environment than patching. Seriously! Patching changes the execution plansDo they really? I agree - there's a very small risk for this happening with Patch Sets. But not with PSUs or CPUs as they contain no optimizer fixes changing behaviour (but they may contain fixes curing wrong-query-result-bugs). But what's the point of a changing execution plan? In Oracle Database 11g it is so simple to be prepared. SQL Plan Management is a free EE feature - so once that occurs you'll put the plan into the Plan Baseline. Basta! Yes, you wouldn't like to get such surprises? Than please use the SQL Performance Analyzer (SPA) from Real Application Testing and you'll detect that easily upfront in minutes. And not to forget this, a plan change can also be very positive!Yes, there's a little risk with a database patchset - and we have many possibilites to detect this before patching. Patching requires too much testingWell, does it really? I have seen in the past 12 years how people test. There are very different efforts and approaches on this. I have seen people spending a hell of money on licenses or on project team staffing. And I have seen people sailing blindly without any tests just going the John-Wayne-approach.Proper tools will allow you to test easily without too much efforts. See the paragraph above. We have used Real Application Testing in so many customer projects reducing the amount of work spend on testing by over 50%. But apart from that at some point you will have to stop testing. If you don't you'll get lost and you'll burn money. There's no 100% guaranty. You will have to deal with a little risk as reaching the final 5% of certainty will cost you the same as it did cost to reach 95%. And doing this will lead to abnormal long product cycles that you'll run behind forever. And this will cost even more money. Patching is too much work for our DBAsPatching is a lot of work. I agree. And it's no fun work. It's boring, annoying. You don't learn much from that. That's why you should try to automate this task. Use the Database's Lifecycle Management Pack. And don't cry about the fact that it costs money. Yes it does. But it will ease the process and you'll save a lot of costs as you don't waste your valuable time with patching. Or use Oracle Database 12c Oracle Multitenant and patch either by unplug/plug or patch an entire container database with all PDBs with one patch in one task. We have customer reference cases proofing it saved them 75% of time, effort and cost since they've used Lifecycle Management Pack. So why don't you use it? Patching costs a lot of money and doesn't pay outWell, see my statements in the paragraph above. And it pays out as flying with a database with 100 known critical flaws in it which are already fixed by Oracle (such as in the Oct 2013 PSU for Oracle Database 12c) will cost ways more in case of failure or even data loss. Bet with me? Let me finally ask you some questions. What cell phone are you using and which OS does it run? Do you have an iPhone 5 and did you upgrade already to iOS 7.0.3? I've just encountered on mine that the alarm (which I rely on when traveling) has gotten now a dependency on the physical switch "sound on/off". If it is switched to "off" physically the alarm rings "silently". What a wonderful example of a behaviour change coming in with a patch set. Will this push you to stay with iOS5 or iOS6? No, because those have security flaws which won't be fixed anymore. What browser are you surfing with? Do you use Mozilla 3.6? Well, congratulations to all the hackers. It will be easy for them to attack you and harm your system. I'd guess you have the auto updater on.  Same for Google Chrome, Safari, IE. Right? -Mike The T.htmtableborders, .htmtableborders td, .htmtableborders th {border : 1px dashed lightgrey ! important;} html, body { border: 0px; } body { background-color: #ffffff; } img, hr { cursor: default }

    Read the article

  • laptop crashed: why?

    - by sds
    my linux (ubuntu 12.04) laptop crashed, and I am trying to figure out why. # last sds pts/4 :0 Tue Sep 4 10:01 still logged in sds pts/3 :0 Tue Sep 4 10:00 still logged in reboot system boot 3.2.0-29-generic Tue Sep 4 09:43 - 11:23 (01:40) sds pts/8 :0 Mon Sep 3 14:23 - crash (19:19) this seems to indicate a crash at 09:42 (= 14:23+19:19). as per another question, I looked at /var/log: auth.log: Sep 4 09:17:02 t520sds CRON[32744]: pam_unix(cron:session): session closed for user root Sep 4 09:43:17 t520sds lightdm: pam_unix(lightdm:session): session opened for user lightdm by (uid=0) no messages file syslog: Sep 4 09:24:19 t520sds kernel: [219104.819975] CPU0: Package power limit normal Sep 4 09:43:16 t520sds kernel: imklog 5.8.6, log source = /proc/kmsg started. kern.log: Sep 4 09:24:19 t520sds kernel: [219104.819969] CPU1: Package power limit normal Sep 4 09:24:19 t520sds kernel: [219104.819971] CPU2: Package power limit normal Sep 4 09:24:19 t520sds kernel: [219104.819974] CPU3: Package power limit normal Sep 4 09:24:19 t520sds kernel: [219104.819975] CPU0: Package power limit normal Sep 4 09:43:16 t520sds kernel: imklog 5.8.6, log source = /proc/kmsg started. Sep 4 09:43:16 t520sds kernel: [ 0.000000] Initializing cgroup subsys cpuset Sep 4 09:43:16 t520sds kernel: [ 0.000000] Initializing cgroup subsys cpu I had a computation running until 9:24, but the system crashed 18 minutes later! kern.log has many pages of these: Sep 4 09:43:16 t520sds kernel: [ 0.000000] total RAM covered: 8086M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 64K num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 128K num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 256K num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 512K num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 1M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 2M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 4M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 8M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 16M num_reg: 10 lose cover RAM: 38M Sep 4 09:43:16 t520sds kernel: [ 0.000000] *BAD*gran_size: 64K chunk_size: 32M num_reg: 10 lose cover RAM: -16M Sep 4 09:43:16 t520sds kernel: [ 0.000000] *BAD*gran_size: 64K chunk_size: 64M num_reg: 10 lose cover RAM: -16M Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 128M num_reg: 10 lose cover RAM: 0G Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 256M num_reg: 10 lose cover RAM: 0G Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 512M num_reg: 10 lose cover RAM: 0G Sep 4 09:43:16 t520sds kernel: [ 0.000000] gran_size: 64K chunk_size: 1G num_reg: 10 lose cover RAM: 0G Sep 4 09:43:16 t520sds kernel: [ 0.000000] *BAD*gran_size: 64K chunk_size: 2G num_reg: 10 lose cover RAM: -1G does this mean that my RAM is bad?! it also says Sep 4 09:43:16 t520sds kernel: [ 2.944123] EXT4-fs (sda1): INFO: recovery required on readonly filesystem Sep 4 09:43:16 t520sds kernel: [ 2.944126] EXT4-fs (sda1): write access will be enabled during recovery Sep 4 09:43:16 t520sds kernel: [ 3.088001] firewire_core: created device fw0: GUID f0def1ff8fbd7dff, S400 Sep 4 09:43:16 t520sds kernel: [ 8.929243] EXT4-fs (sda1): orphan cleanup on readonly fs Sep 4 09:43:16 t520sds kernel: [ 8.929249] EXT4-fs (sda1): ext4_orphan_cleanup: deleting unreferenced inode 658984 ... Sep 4 09:43:16 t520sds kernel: [ 9.343266] EXT4-fs (sda1): ext4_orphan_cleanup: deleting unreferenced inode 525343 Sep 4 09:43:16 t520sds kernel: [ 9.343270] EXT4-fs (sda1): 56 orphan inodes deleted Sep 4 09:43:16 t520sds kernel: [ 9.343271] EXT4-fs (sda1): recovery complete Sep 4 09:43:16 t520sds kernel: [ 9.645799] EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null) does this mean my HD is bad? As per FaultyHardware, I tried smartctl -l selftest, which uncovered no errors: smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.2.0-30-generic] (local build) Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net === START OF INFORMATION SECTION === Model Family: Seagate Momentus 7200.4 Device Model: ST9500420AS Serial Number: 5VJE81YK LU WWN Device Id: 5 000c50 0440defe3 Firmware Version: 0003LVM1 User Capacity: 500,107,862,016 bytes [500 GB] Sector Size: 512 bytes logical/physical Device is: In smartctl database [for details use: -P show] ATA Version is: 8 ATA Standard is: ATA-8-ACS revision 4 Local Time is: Mon Sep 10 16:40:04 2012 EDT SMART support is: Available - device has SMART capability. SMART support is: Enabled === START OF READ SMART DATA SECTION === SMART overall-health self-assessment test result: PASSED See vendor-specific Attribute list for marginal Attributes. General SMART Values: Offline data collection status: (0x82) Offline data collection activity was completed without error. Auto Offline Data Collection: Enabled. Self-test execution status: ( 0) The previous self-test routine completed without error or no self-test has ever been run. Total time to complete Offline data collection: ( 0) seconds. Offline data collection capabilities: (0x7b) SMART execute Offline immediate. Auto Offline data collection on/off support. Suspend Offline collection upon new command. Offline surface scan supported. Self-test supported. Conveyance Self-test supported. Selective Self-test supported. SMART capabilities: (0x0003) Saves SMART data before entering power-saving mode. Supports SMART auto save timer. Error logging capability: (0x01) Error logging supported. General Purpose Logging supported. Short self-test routine recommended polling time: ( 1) minutes. Extended self-test routine recommended polling time: ( 109) minutes. Conveyance self-test routine recommended polling time: ( 2) minutes. SCT capabilities: (0x103b) SCT Status supported. SCT Error Recovery Control supported. SCT Feature Control supported. SCT Data Table supported. SMART Attributes Data Structure revision number: 10 Vendor Specific SMART Attributes with Thresholds: ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE 1 Raw_Read_Error_Rate 0x000f 117 099 034 Pre-fail Always - 162843537 3 Spin_Up_Time 0x0003 100 100 000 Pre-fail Always - 0 4 Start_Stop_Count 0x0032 100 100 020 Old_age Always - 571 5 Reallocated_Sector_Ct 0x0033 100 100 036 Pre-fail Always - 0 7 Seek_Error_Rate 0x000f 069 060 030 Pre-fail Always - 17210154023 9 Power_On_Hours 0x0032 095 095 000 Old_age Always - 174362787320258 10 Spin_Retry_Count 0x0013 100 100 097 Pre-fail Always - 0 12 Power_Cycle_Count 0x0032 100 100 020 Old_age Always - 571 184 End-to-End_Error 0x0032 100 100 099 Old_age Always - 0 187 Reported_Uncorrect 0x0032 100 100 000 Old_age Always - 0 188 Command_Timeout 0x0032 100 100 000 Old_age Always - 1 189 High_Fly_Writes 0x003a 100 100 000 Old_age Always - 0 190 Airflow_Temperature_Cel 0x0022 061 043 045 Old_age Always In_the_past 39 (0 11 44 26) 191 G-Sense_Error_Rate 0x0032 100 100 000 Old_age Always - 84 192 Power-Off_Retract_Count 0x0032 100 100 000 Old_age Always - 20 193 Load_Cycle_Count 0x0032 099 099 000 Old_age Always - 2434 194 Temperature_Celsius 0x0022 039 057 000 Old_age Always - 39 (0 15 0 0) 195 Hardware_ECC_Recovered 0x001a 041 041 000 Old_age Always - 162843537 196 Reallocated_Event_Count 0x000f 095 095 030 Pre-fail Always - 4540 (61955, 0) 197 Current_Pending_Sector 0x0012 100 100 000 Old_age Always - 0 198 Offline_Uncorrectable 0x0010 100 100 000 Old_age Offline - 0 199 UDMA_CRC_Error_Count 0x003e 200 200 000 Old_age Always - 0 254 Free_Fall_Sensor 0x0032 100 100 000 Old_age Always - 0 SMART Error Log Version: 1 No Errors Logged SMART Self-test log structure revision number 1 Num Test_Description Status Remaining LifeTime(hours) LBA_of_first_error # 1 Extended offline Completed without error 00% 4545 - SMART Selective self-test log data structure revision number 1 SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS 1 0 0 Not_testing 2 0 0 Not_testing 3 0 0 Not_testing 4 0 0 Not_testing 5 0 0 Not_testing Selective self-test flags (0x0): After scanning selected spans, do NOT read-scan remainder of disk. If Selective self-test is pending on power-up, resume after 0 minute delay. Googling for the messages proved inconclusive, I can't even figure out whether the messages are routine or catastrophic. So, what do I do now?

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

< Previous Page | 227 228 229 230 231 232 233 234 235 236 237 238  | Next Page >