Search Results

Search found 20586 results on 824 pages for 'virtual methods'.

Page 240/824 | < Previous Page | 236 237 238 239 240 241 242 243 244 245 246 247  | Next Page >

  • Non-blocking I/O using Servlet 3.1: Scalable applications using Java EE 7 (TOTD #188)

    - by arungupta
    Servlet 3.0 allowed asynchronous request processing but only traditional I/O was permitted. This can restrict scalability of your applications. In a typical application, ServletInputStream is read in a while loop. public class TestServlet extends HttpServlet {    protected void doGet(HttpServletRequest request, HttpServletResponse response)         throws IOException, ServletException {     ServletInputStream input = request.getInputStream();       byte[] b = new byte[1024];       int len = -1;       while ((len = input.read(b)) != -1) {          . . .        }   }} If the incoming data is blocking or streamed slower than the server can read then the server thread is waiting for that data. The same can happen if the data is written to ServletOutputStream. This is resolved in Servet 3.1 (JSR 340, to be released as part Java EE 7) by adding event listeners - ReadListener and WriteListener interfaces. These are then registered using ServletInputStream.setReadListener and ServletOutputStream.setWriteListener. The listeners have callback methods that are invoked when the content is available to be read or can be written without blocking. The updated doGet in our case will look like: AsyncContext context = request.startAsync();ServletInputStream input = request.getInputStream();input.setReadListener(new MyReadListener(input, context)); Invoking setXXXListener methods indicate that non-blocking I/O is used instead of the traditional I/O. At most one ReadListener can be registered on ServletIntputStream and similarly at most one WriteListener can be registered on ServletOutputStream. ServletInputStream.isReady and ServletInputStream.isFinished are new methods to check the status of non-blocking I/O read. ServletOutputStream.canWrite is a new method to check if data can be written without blocking.  MyReadListener implementation looks like: @Overridepublic void onDataAvailable() { try { StringBuilder sb = new StringBuilder(); int len = -1; byte b[] = new byte[1024]; while (input.isReady() && (len = input.read(b)) != -1) { String data = new String(b, 0, len); System.out.println("--> " + data); } } catch (IOException ex) { Logger.getLogger(MyReadListener.class.getName()).log(Level.SEVERE, null, ex); }}@Overridepublic void onAllDataRead() { System.out.println("onAllDataRead"); context.complete();}@Overridepublic void onError(Throwable t) { t.printStackTrace(); context.complete();} This implementation has three callbacks: onDataAvailable callback method is called whenever data can be read without blocking onAllDataRead callback method is invoked data for the current request is completely read. onError callback is invoked if there is an error processing the request. Notice, context.complete() is called in onAllDataRead and onError to signal the completion of data read. For now, the first chunk of available data need to be read in the doGet or service method of the Servlet. Rest of the data can be read in a non-blocking way using ReadListener after that. This is going to get cleaned up where all data read can happen in ReadListener only. The sample explained above can be downloaded from here and works with GlassFish 4.0 build 64 and onwards. The slides and a complete re-run of What's new in Servlet 3.1: An Overview session at JavaOne is available here. Here are some more references for you: Java EE 7 Specification Status Servlet Specification Project JSR Expert Group Discussion Archive Servlet 3.1 Javadocs

    Read the article

  • If the model is validating the data, shouldn't it throw exceptions on bad input?

    - by Carlos Campderrós
    Reading this SO question it seems that throwing exceptions for validating user input is frowned upon. But who should validate this data? In my applications, all validations are done in the business layer, because only the class itself really knows which values are valid for each one of its properties. If I were to copy the rules for validating a property to the controller, it is possible that the validation rules change and now there are two places where the modification should be made. Is my premise that validation should be done on the business layer wrong? What I do So my code usually ends up like this: <?php class Person { private $name; private $age; public function setName($n) { $n = trim($n); if (mb_strlen($n) == 0) { throw new ValidationException("Name cannot be empty"); } $this->name = $n; } public function setAge($a) { if (!is_int($a)) { if (!ctype_digit(trim($a))) { throw new ValidationException("Age $a is not valid"); } $a = (int)$a; } if ($a < 0 || $a > 150) { throw new ValidationException("Age $a is out of bounds"); } $this->age = $a; } // other getters, setters and methods } In the controller, I just pass the input data to the model, and catch thrown exceptions to show the error(s) to the user: <?php $person = new Person(); $errors = array(); // global try for all exceptions other than ValidationException try { // validation and process (if everything ok) try { $person->setAge($_POST['age']); } catch (ValidationException $e) { $errors['age'] = $e->getMessage(); } try { $person->setName($_POST['name']); } catch (ValidationException $e) { $errors['name'] = $e->getMessage(); } ... } catch (Exception $e) { // log the error, send 500 internal server error to the client // and finish the request } if (count($errors) == 0) { // process } else { showErrorsToUser($errors); } Is this a bad methodology? Alternate method Should maybe I create methods for isValidAge($a) that return true/false and then call them from the controller? <?php class Person { private $name; private $age; public function setName($n) { $n = trim($n); if ($this->isValidName($n)) { $this->name = $n; } else { throw new Exception("Invalid name"); } } public function setAge($a) { if ($this->isValidAge($a)) { $this->age = $a; } else { throw new Exception("Invalid age"); } } public function isValidName($n) { $n = trim($n); if (mb_strlen($n) == 0) { return false; } return true; } public function isValidAge($a) { if (!is_int($a)) { if (!ctype_digit(trim($a))) { return false; } $a = (int)$a; } if ($a < 0 || $a > 150) { return false; } return true; } // other getters, setters and methods } And the controller will be basically the same, just instead of try/catch there are now if/else: <?php $person = new Person(); $errors = array(); if ($person->isValidAge($age)) { $person->setAge($age); } catch (Exception $e) { $errors['age'] = "Invalid age"; } if ($person->isValidName($name)) { $person->setName($name); } catch (Exception $e) { $errors['name'] = "Invalid name"; } ... if (count($errors) == 0) { // process } else { showErrorsToUser($errors); } So, what should I do? I'm pretty happy with my original method, and my colleagues to whom I have showed it in general have liked it. Despite this, should I change to the alternate method? Or am I doing this terribly wrong and I should look for another way?

    Read the article

  • 3 Incredibly Useful Projects to jump-start your Kinect Development.

    - by mbcrump
    I’ve been playing with the Kinect SDK Beta for the past few days and have noticed a few projects on CodePlex worth checking out. I decided to blog about them to help spread awareness. If you want to learn more about Kinect SDK then you check out my”Busy Developer’s Guide to the Kinect SDK Beta”. Let’s get started:   KinectContrib is a set of VS2010 Templates that will help you get started building a Kinect project very quickly. Once you have it installed you will have the option to select the following Templates: KinectDepth KinectSkeleton KinectVideo Please note that KinectContrib requires the Kinect for Windows SDK beta to be installed. Kinect Templates after installing the Template Pack. The reference to Microsoft.Research.Kinect is added automatically.  Here is a sample of the code for the MainWindow.xaml in the “Video” template: <Window x:Class="KinectVideoApplication1.MainWindow" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="480" Width="640"> <Grid> <Image Name="videoImage"/> </Grid> </Window> and MainWindow.xaml.cs using System; using System.Windows; using System.Windows.Media; using System.Windows.Media.Imaging; using Microsoft.Research.Kinect.Nui; namespace KinectVideoApplication1 { public partial class MainWindow : Window { //Instantiate the Kinect runtime. Required to initialize the device. //IMPORTANT NOTE: You can pass the device ID here, in case more than one Kinect device is connected. Runtime runtime = new Runtime(); public MainWindow() { InitializeComponent(); //Runtime initialization is handled when the window is opened. When the window //is closed, the runtime MUST be unitialized. this.Loaded += new RoutedEventHandler(MainWindow_Loaded); this.Unloaded += new RoutedEventHandler(MainWindow_Unloaded); //Handle the content obtained from the video camera, once received. runtime.VideoFrameReady += new EventHandler<Microsoft.Research.Kinect.Nui.ImageFrameReadyEventArgs>(runtime_VideoFrameReady); } void MainWindow_Unloaded(object sender, RoutedEventArgs e) { runtime.Uninitialize(); } void MainWindow_Loaded(object sender, RoutedEventArgs e) { //Since only a color video stream is needed, RuntimeOptions.UseColor is used. runtime.Initialize(Microsoft.Research.Kinect.Nui.RuntimeOptions.UseColor); //You can adjust the resolution here. runtime.VideoStream.Open(ImageStreamType.Video, 2, ImageResolution.Resolution640x480, ImageType.Color); } void runtime_VideoFrameReady(object sender, Microsoft.Research.Kinect.Nui.ImageFrameReadyEventArgs e) { PlanarImage image = e.ImageFrame.Image; BitmapSource source = BitmapSource.Create(image.Width, image.Height, 96, 96, PixelFormats.Bgr32, null, image.Bits, image.Width * image.BytesPerPixel); videoImage.Source = source; } } } You will find this template pack is very handy especially for those new to Kinect Development.   Next up is The Coding4Fun Kinect Toolkit which contains extension methods and a WPF control to help you develop with the Kinect SDK. After downloading the package simply add a reference to the .dll using either the WPF or WinForms version. Now you will have access to several methods that can help you save an image: (for example) For a full list of extension methods and properties, please visit the site at http://c4fkinect.codeplex.com/. Kinductor – This is a great application for just learning how to use the Kinect SDK. The project uses MVVM Light and is a great start for those looking how to structure their first Kinect Application. Conclusion: Things are already getting easier for those working with the Kinect SDK. I imagine that after a few more months we will see the SDK go out of beta and allow commercial applications to run using it. I am very excited and hope that you continue reading my blog for more Kinect, WPF and Silverlight news.  Subscribe to my feed

    Read the article

  • MVC Communication Pattern

    - by Kedu
    This is kind of a follow up question to this http://stackoverflow.com/questions/23743285/model-view-controller-and-callbacks, but I wanted to post it separately, because its kind of a different topic. I'm working on a multiplayer cardgame for the Android platform. I split the project into MVC which fits the needs pretty good, but I'm currently stuck because I can't figure out a good way to communicate between the different parts. I have everything setup and working with the controller being a big state machine, which is called over and over from the gameloop, and calls getter methods from the GUI and the android/network part to get the input. The input itself in the GUI and network is set by inputlisteners that set a local variable which I read in the getter method. So far so good, this is working. But my problem is, the controller has to check every input separately,so if I want to add an input I have to check in which states its valid and call the getter method from all these states. This is not good, and lets the code look pretty ugly, makes additions uncomfortable and adds redundance. So what I've got from the question I mentioned above is that some kind of command or event pattern will fit my needs. What I want to do is to create a shared and threadsafe queue in the controller and instead of calling all these getter methods, I just check the queue for new input and proceed it. On the other side, the GUI and network don't have all these getters, but instead create an event or command and send it to the controller through, for example, observer/observable. Now my problem: I can't figure out a way, for these commands/events to fit a common interface (which the queue can store) and still transport different kind of data (button clicks, cards that are played, the player id the command comes from, synchronization data etc.). If I design the communication as command pattern, I have to stick all the information that is needed to execute the command into it when its created, that's impossible because the GUI or network has no knowledge of all the things the controller needs to execute stuff that needs to be done when for example a card is played. I thought about getting this stuff into the command when executing it. But over all the different commands I have, I would need all the information the controller has, and thus give the command a reference to the controller which would make everything in it public, which is real bad design I guess. So, I could try some kind of event pattern. I have to transport data in the event. So, like the command, I would have an interface, which all events have in common, and can be stored in the shared queue. I could create a big enum with all the different events that a are possible, save one of these enums in the actual event, and build a big switch case for the events, to proceed different stuff for different events. The problem here: I have different data for all the events. But I need a common interface, to store the events in a queue. How do I get the specific data, if I can only access the event through the interface? Even if that wouldn't be a problem, I'm creating another big switch case, which looks ugly, and when i want to add a new event, I have to create the event itself, the case, the enum, and the method that's called with the data. I could of course check the event with the enum and cast it to its type, so I can call event type specific methods that give me the data I need, but that looks like bad design too.

    Read the article

  • Getting Started with Cloud Computing

    - by juanlarios
    You’ve likely heard about how Office 365 and Windows Intune are great applications to get you started with Cloud Computing. Many of you emailed me asking for more info on what Cloud Computing is, including the distinction between "Public Cloud" and "Private Cloud". I want to address these questions and help you get started. Let's begin with a brief set of definitions and some places to find more info; however, an excellent place where you can always learn more about Cloud Computing is the Microsoft Virtual Academy. Public Cloud computing means that the infrastructure to run and manage the applications users are taking advantage of is run by someone else and not you. In other words, you do not buy the hardware or software to run your email or other services being used in your organization – that is done by someone else. Users simply connect to these services from their computers and you pay a monthly subscription fee for each user that is taking advantage of the service. Examples of Public Cloud services include Office 365, Windows Intune, Microsoft Dynamics CRM Online, Hotmail, and others. Private Cloud computing generally means that the hardware and software to run services used by your organization is run on your premises, with the ability for business groups to self-provision the services they need based on rules established by the IT department. Generally, Private Cloud implementations today are found in larger organizations but they are also viable for small and medium-sized businesses since they generally allow an automation of services and reduction in IT workloads when properly implemented. Having the right management tools, like System Center 2012, to implement and operate Private Cloud is important in order to be successful. So – how do you get started? The first step is to determine what makes the most sense to your organization. The nice thing is that you do not need to pick Public or Private Cloud – you can use elements of both where it makes sense for your business – the choice is yours. When you are ready to try and purchase Public Cloud technologies, the Microsoft Volume Licensing web site is a good place to find links to each of the online services. In particular, if you are interested in a trial for each service, you can visit the following pages: Office 365, CRM Online, Windows Intune, and Windows Azure. For Private Cloud technologies, start with some of the courses on Microsoft Virtual Academy and then download and install the Microsoft Private Cloud technologies including Windows Server 2008 R2 Hyper-V and System Center 2012 in your own environment and take it for a spin. Also, keep up to date with the Canadian IT Pro blog to learn about events Microsoft is delivering such as the IT Virtualization Boot Camps and more to get you started with these technologies hands on. Finally, I want to ask for your help to allow the team at Microsoft to continue to provide you what you need. Twice a year through something we call "The Global Relationship Study" – they reach out and contact you to see how they're doing and what Microsoft could do better. If you get an email from "Microsoft Feedback" with the subject line "Help Microsoft Focus on Customers and Partners" between March 5th and April 13th, please take a little time to tell them what you think. Cloud Computing Resources: Microsoft Server and Cloud Computing site – information on Microsoft's overall cloud strategy and products. Microsoft Virtual Academy – for free online training to help improve your IT skillset. Office 365 Trial/Info page – get more information or try it out for yourself. Office 365 Videos – see how businesses like yours have used Office 365 to transition to the cloud. Windows Intune Trial/Info – get more information or try it out for yourself. Microsoft Dynamics CRM Online page – information on trying and licensing Microsoft Dynamics CRM Online. Additional Resources You May Find Useful: Springboard Series Your destination for technical resources, free tools and expert guidance to ease the deployment and management of your Windows-based client infrastructure. TechNet Evaluation Center Try some of our latest Microsoft products for free, Like System Center 2012 Pre-Release Products, and evaluate them before you buy. AlignIT Manager Tech Talk Series A monthly streamed video series with a range of topics for both infrastructure and development managers. Ask questions and participate real-time or watch the on-demand recording. Tech·Days Online Discover what's next in technology and innovation with Tech·Days session recordings, hands-on labs and Tech·Days TV.

    Read the article

  • JEP 124: Enhance the Certificate Revocation-Checking API

    - by smullan
    Revocation checking is the mechanism to determine the revocation status of a certificate. If it is revoked, it is considered invalid and should not be used. Currently as of JDK 7, the PKIX implementation of java.security.cert.CertPathValidator  includes a revocation checking implementation that supports both OCSP and CRLs, the two main methods of checking revocation. However, there are very few options that allow you to configure the behavior. You can always implement your own revocation checker, but that's a lot of work. JEP 124 (Enhance the Certificate Revocation-Checking API) is one of the 11 new security features in JDK 8. This feature enhances the java.security.cert API to support various revocation settings such as best-effort checking, end-entity certificate checking, and mechanism-specific options and parameters. Let's describe each of these in more detail and show some examples. The features are provided through a new class named PKIXRevocationChecker. A PKIXRevocationChecker instance is returned by a PKIX CertPathValidator as follows: CertPathValidator cpv = CertPathValidator.getInstance("PKIX"); PKIXRevocationChecker prc = (PKIXRevocationChecker)cpv.getRevocationChecker(); You can now set various revocation options by calling different methods of the returned PKIXRevocationChecker object. For example, the best-effort option (called soft-fail) allows the revocation check to succeed if the status cannot be obtained due to a network connection failure or an overloaded server. It is enabled as follows: prc.setOptions(Enum.setOf(Option.SOFT_FAIL)); When the SOFT_FAIL option is specified, you can still obtain any exceptions that may have been thrown due to network issues. This can be useful if you want to log this information or treat it as a warning. You can obtain these exceptions by calling the getSoftFailExceptions method: List<CertPathValidatorException> exceptions = prc.getSoftFailExceptions(); Another new option called ONLY_END_ENTITY allows you to only check the revocation status of the end-entity certificate. This can improve performance, but you should be careful using this option, as the revocation status of CA certificates will not be checked. To set more than one option, simply specify them together, for example: prc.setOptions(Enum.setOf(Option.SOFT_FAIL, Option.ONLY_END_ENTITY)); By default, PKIXRevocationChecker will try to check the revocation status of a certificate using OCSP first, and then CRLs as a fallback. However, you can switch the order using the PREFER_CRLS option, or disable the fallback altogether using the NO_FALLBACK option. For example, here is how you would only use CRLs to check the revocation status: prc.setOptions(Enum.setOf(Option.PREFER_CRLS, Option.NO_FALLBACK)); There are also a number of other useful methods which allow you to specify various options such as the OCSP responder URI, the trusted OCSP responder certificate, and OCSP request extensions. However, one of the most useful features is the ability to specify a cached OCSP response with the setOCSPResponse method. This can be quite useful if the OCSPResponse has already been obtained, for example in a protocol that uses OCSP stapling. After you have set all of your preferred options, you must add the PKIXRevocationChecker to your PKIXParameters object as one of your custom CertPathCheckers before you validate the certificate chain, as follows: PKIXParameters params = new PKIXParameters(keystore); params.addCertPathChecker(prc); CertPathValidatorResult result = cpv.validate(path, params); Early access binaries of JDK 8 can be downloaded from http://jdk8.java.net/download.html

    Read the article

  • Network outside internal not reaching TMG Forefront 2010 (Hyper-V environment)

    - by Pascal
    Below is my environment: I have 1 physical machine running Windows 2008 R2, with the Hyper-V role. This machine has 3 physical NICs: One for Internet One for Internal Network One for Wireless Network All 3 have their respective Virtual Networks in Hyper-V, and I have an extra Private virutal machine network for a DMZ Network. In one of the virtual machines, I have TMG Forefront 2010 SP1 installed, with all 4 networks available to it. Below is the IPCONFIG /ALL at the firewall: Windows IP Configuration Host Name . . . . . . . . . . . . : FRW-EXP1-02 Primary Dns Suffix . . . . . . . : exp1.eti.br Node Type . . . . . . . . . . . . : Hybrid IP Routing Enabled. . . . . . . . : Yes WINS Proxy Enabled. . . . . . . . : No DNS Suffix Search List. . . . . . : exp1.eti.br Ethernet adapter Internet: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter #4 Physical Address. . . . . . . . . : 00-15-5D-01-06-0E DHCP Enabled. . . . . . . . . . . : Yes Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::6d05:6033:4cfc:bdf5%15(Preferred) IPv4 Address. . . . . . . . . . . : 189.100.110.xxx(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.240.0 Lease Obtained. . . . . . . . . . : quarta-feira, 5 de janeiro de 2011 11:17:24 Lease Expires . . . . . . . . . . : quarta-feira, 5 de janeiro de 2011 16:07:02 Default Gateway . . . . . . . . . : 189.100.96.xxx DHCP Server . . . . . . . . . . . : 201.6.2.43 DHCPv6 IAID . . . . . . . . . . . : 436213085 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-14-6D-75-6F-00-15-5D-01-06-0B DNS Servers . . . . . . . . . . . : 201.6.2.163 201.6.2.43 NetBIOS over Tcpip. . . . . . . . : Enabled Ethernet adapter Rede Interna: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter #3 Physical Address. . . . . . . . . : 00-15-5D-01-06-0C DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::51ff:4723:ce4c:bbc3%14(Preferred) IPv4 Address. . . . . . . . . . . : 10.50.75.10(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : DHCPv6 IAID . . . . . . . . . . . : 352327005 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-14-6D-75-6F-00-15-5D-01-06-0B DNS Servers . . . . . . . . . . . : 10.50.75.1 10.50.75.2 NetBIOS over Tcpip. . . . . . . . : Enabled Ethernet adapter DMZ: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter #2 Physical Address. . . . . . . . . : 00-15-5D-01-06-0A DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::d4c5:75cf:e9aa:73e1%13(Preferred) IPv4 Address. . . . . . . . . . . : 192.168.10.1(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : DHCPv6 IAID . . . . . . . . . . . : 301995357 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-14-6D-75-6F-00-15-5D-01-06-0B DNS Servers . . . . . . . . . . . : fec0:0:0:ffff::1%1 fec0:0:0:ffff::2%1 fec0:0:0:ffff::3%1 NetBIOS over Tcpip. . . . . . . . : Enabled Ethernet adapter Wireless: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter Physical Address. . . . . . . . . : 00-15-5D-01-06-0B DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::459:8ca6:d02:8da1%11(Preferred) IPv4 Address. . . . . . . . . . . : 192.168.1.10(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : DHCPv6 IAID . . . . . . . . . . . : 234886493 DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-14-6D-75-6F-00-15-5D-01-06-0B DNS Servers . . . . . . . . . . . : fec0:0:0:ffff::1%1 fec0:0:0:ffff::2%1 fec0:0:0:ffff::3%1 NetBIOS over Tcpip. . . . . . . . : Enabled I have the Networks below at Forefront: External: IP addresses external to the Forefront TMG Networks Internal: 10.50.75.0 - 10.50.75.255 Local Host: Perimiter: 192.168.10.0 - 192.168.10.255 Wireless: 192.168.1.0 - 192.168.1.255 In the Networks Rules, I have: 1 => Route => Local Host => All Networks 2 => Route => Quarantined; VPN => Internal 3 => NAT => Internal; VPN => Perimiter 4 => NAT => Internal; Perimiter; Quarantined; VPN; Wireless => External My problem is that I can only communicate with the Internal and External networks. If a ping www.google.com or 10.50.75.21 from the Forefront VM, I get answer backs without a problem. If I try to ping a machine at the Perimiter network or the Wireless network, it doesn't get routed back to Forefront, and it's the default gateway on all Networks. Here as ping samples: PS C:\Users\Administrator.TPB1> ping www.google.com Pinging www.l.google.com [64.233.163.104] with 32 bytes of data: Reply from 64.233.163.104: bytes=32 time=11ms TTL=58 Reply from 64.233.163.104: bytes=32 time=8ms TTL=58 Ping statistics for 64.233.163.104: Packets: Sent = 2, Received = 2, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 8ms, Maximum = 11ms, Average = 9ms Control-C PS C:\Users\Administrator.TPB1> ping 10.50.75.21 Pinging 10.50.75.21 with 32 bytes of data: Reply from 10.50.75.21: bytes=32 time=1ms TTL=128 Reply from 10.50.75.21: bytes=32 time=1ms TTL=128 Reply from 10.50.75.21: bytes=32 time=1ms TTL=128 Reply from 10.50.75.21: bytes=32 time=1ms TTL=128 Ping statistics for 10.50.75.21: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 1ms, Average = 1ms PS C:\Users\Administrator.TPB1> ping 192.168.10.3 Pinging 192.168.10.3 with 32 bytes of data: Reply from 192.168.10.1: Destination host unreachable. Request timed out. Request timed out. Request timed out. Ping statistics for 192.168.10.3: Packets: Sent = 4, Received = 1, Lost = 3 (75% loss), PS C:\Users\Administrator.TPB1> The ping to the 192.168.10.3 gets the Destination host unreachable. Below is the ipconfig for the perimiter VM: PS C:\Users\Administrator.Administrator> ipconfig /all Windows IP Configuration Host Name . . . . . . . . . . . . : app-exp1-02 Primary Dns Suffix . . . . . . . : Node Type . . . . . . . . . . . . : Unkown IP Routing Enabled. . . . . . . . : No WINS Proxy Enabled. . . . . . . . : No Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : Microsoft Virtual Machine Bus Network Adapter Physical Address. . . . . . . . . : 00-15-5D-01-06-08 DHCP Enabled. . . . . . . . . . . : No IPv4 Address. . . . . . . . . . . : 192.168.10.3 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.10.1 DNS Servers . . . . . . . . . . . : 201.6.2.163 201.6.2.43 Trying to ping 192.168.10.1 ( the gateway ) from the DMZ machine also does not work. When I use Log & Reports to monitor packets from Wireless network and Perimiter network, I don't get any packets link PING or HTTP that I try to send. But I do get a lot of spoofing messages for NETBIOS broadcasts... it's like Forefront thinks it's coming from a different network, but I don't know why. Please Help! Tks

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • ASP.Net MVC2 DropDownListFor

    - by hermiod
    Hi all I am trying to learn MVC2, C# and Linq to Entities all in one project (yes, I am mad) and I am experiencing some problems with DropDownListFor and passing the SelectList to it. This is the code in my controller: public ActionResult Create() { var Methods = te.Methods.Select(a => a); List<SelectListItem> MethodList = new List<SelectListItem>(); foreach (Method me in Methods) { SelectListItem sli=new SelectListItem(); sli.Text = me.Description; sli.Value = me.method_id.ToString(); MethodList.Add(sli); } ViewData["MethodList"] = MethodList.AsEnumerable(); Talkback tb = new Talkback(); return View(tb); } and I am having troubles trying to get the DropDownListFor to take the MethodList in ViewData. When I try: <%:Html.DropDownListFor(model => model.method_id,new SelectList("MethodList","method_id","Description",Model.method_id)) %> It errors out with the following message DataBinding: 'System.Char' does not contain a property with the name 'method_id'. I know why this is, as it is taking MethodList as a string, but I can't figure out how to get it to take the SelectList. If I do the following with a normal DropDownList: <%: Html.DropDownList("MethodList") %> It is quite happy with this. Can anyone help?

    Read the article

  • Creating a Sharepoint Development Environment from an Existing Production Environment

    - by Starky
    I have very little experience using Sharepoint but a good amount using Visual Studio 2008, SQL Server 2005, Windows Server 2003 and IIS6. I need to create a development environment for a SharePoint 2007 system that will be used internally. The system is already deployed over two servers - one of the servers simply holds the database and everything else is on the other server. We are also using WSS 3.0. I have created a Virtual Machine with all the required software including a clean installation of SharePoint Server 2007 and I wish to use this single Virtual Machine as the development environment. Right now there are no custom assemblies being used on the production server as far as I am aware. There are 3 websites, one over port 80 for user accesss, one over a custom port for central administration, and one over another custom port. Not sure what the last one is for but my blank instance of Sharepoint on my Virtual Machine also has something similar. I attempted to use the STSADM tool to backup and restore these 3 sites from my production environment to my development environment and while the operations completed succesfully, the central administration site in my development environment acted strangely and I could not access port 80 - I did not seem to have correct credentials for it. I suspected that it would not have been so simple so could I please have advice on how to create my development environment so that I can use it to deploy updates to the production one.

    Read the article

  • code review: Is it subjective or objective(quantifiable) ?

    - by Ram
    I am putting together some guidelines for code reviews. We do not have one formal process yet, and trying to formalize it. And our team is geographically distributed We are using TFS for source control (used it for tasks/bug tracking/project management as well, but migrated that to JIRA) with VS2008 for development. What are the things you look for when doing a code review ? These are the things I came up with Enforce FXCop rules (we are a Microsoft shop) Check for performance (any tools ?) and security (thinking about using OWASP- code crawler) and thread safety Adhere to naming conventions The code should cover edge cases and boundaries conditions Should handle exceptions correctly (do not swallow exceptions) Check if the functionality is duplicated elsewhere method body should be small(20-30 lines) , and methods should do one thing and one thing only (no side effects/ avoid temporal coupling -) Do not pass/return nulls in methods Avoid dead code Document public and protected methods/properties/variables What other things do you generally look for ? I am trying to see if we can quantify the review process (it would produce identical output when reviewed by different persons) Example: Saying "the method body should be no longer than 20-30 lines of code" as opposed to saying "the method body should be small" Or is code review very subjective ( and would differ from one reviewer to another ) ? The objective is to have a marking system (say -1 point for each FXCop rule violation,-2 points for not following naming conventions,2 point for refactoring etc) so that developers would be more careful when they check in their code.This way, we can identify developers who are consistently writing good/bad code.The goal is to have the reviewer spend about 30 minutes max, to do a review (I know this is subjective, considering the fact that the changeset/revision might include multiple files/huge changes to the existing architecture etc , but you get the general idea, the reviewer should not spend days reviewing someone's code) What other objective/quantifiable system do you follow to identify good/bad code written by developers? Book reference: Clean Code: A handbook of agile software craftmanship by Robert Martin

    Read the article

  • Nhibernate Guid with PK MySQL

    - by Andrew Kalashnikov
    Hello colleagues. I've got a question. I use NHibernate with MySql. At my entities I use Id(PK) for my business-logic usage and Guid(for replication). So my BaseDomain: public class BaseDomain { public virtual int Id { get; set; } public virtual Guid Guid { get; set; } public class Properties { public const string Id = "Id"; public const string Guid = "Guid"; } public BaseDomain() { } } My usage domain: public class ActivityCategory : BaseDomain { public ActivityCategory() { } public virtual string Name { get; set; } public new class Properties { public const string Id = "Id"; public const string Guid = "Guid"; public const string Name = "Name"; private Properties() { } } } Mapping: <class name="ActivityCategory, Clients.Core" table='Activity_category'> <id name="Id" unsaved-value="0" type="int"> <column name="Id" not-null="true"/> <generator class="native"/> </id> <property name="Guid"/> <property name="Name"/> </class> But when I insert my entity: [Test] public void Test() { ActivityCategory ac = new ActivityCategory(); ac.Name = "Test"; using (var repo = new Repository<ActivityCategory>()) repo.Save(ac); } I always get '00000000-0000-0000-0000-000000000000' at my Guid field. What should I do for generate right Guid. May be mapping? Thanks a lot!

    Read the article

  • C# Lack of Static Inheritance - What Should I Do?

    - by yellowblood
    Alright, so as you probably know, static inheritance is impossible in C#. I understand that, however I'm stuck with the development of my program. I will try to make it as simple as possible. Lets say our code needs to manage objects that are presenting aircrafts in some airport. The requirements are as follows: There are members and methods that are shared for all aircrafts There are many types of aircrafts, each type may have its own extra methods and members. There can be many instances for each aircraft type. Every aircraft type must have a friendly name for this type, and more details about this type. For example a class named F16 will have a static member FriendlyName with the value of "Lockheed Martin F-16 Fighting Falcon". Other programmers should be able to add more aircrafts, although they must be enforced to create the same static details about the types of the aircrafts. In some GUI, there should be a way to let the user see the list of available types (with the details such as FriendlyName) and add or remove instances of the aircrafts, saved, lets say, to some XML file. So, basically, if I could enforce inherited classes to implement static members and methods, I would enforce the aircraft types to have static members such as FriendlyName. Sadly I cannot do that. So, what would be the best design for this scenario?

    Read the article

  • Fluent interface design and code smell

    - by Jiho Han
    public class StepClause { public NamedStepClause Action1() {} public NamedStepClause Action2() {} } public class NamedStepClause : StepClause { public StepClause Step(string name) {} } Basically, I want to be able to do something like this: var workflow = new Workflow().Configure() .Action1() .Step("abc").Action2() .Action2() .Step("def").Action1(); So, some "steps" are named and some are not. The thing I do not like is that the StepClause has knowledge of its derived class NamedStepClause. I tried a couple of things to make this sit better with me. I tried to move things out to interfaces but then the problem just moved from the concrete to the interfaces - INamedStepClause still need to derive from IStepClause and IStepClause needs to return INamedStepClause to be able to call Step(). I could also make Step() part of a completely separate type. Then we do not have this problem and we'd have: var workflow = new Workflow().Configure() .Step().Action1() .Step("abc").Action2() .Step().Action2() .Step("def").Action1(); Which is ok but I'd like to make the step-naming optional if possible. I found this other post on SO here which looks interesting and promising. What are your opinions? I'd think the original solution is completely unacceptable or is it? By the way, those action methods will take predicates and functors and I don't think I want to take an additional parameter for naming the step there. The point of it all is, for me, is to only define these action methods in one place and one place only. So the solutions from the referenced link using generics and extension methods seem to be the best approaches so far.

    Read the article

  • Mapping interface or abstract class component

    - by Yann Trevin
    Please consider the following simple use case: public class Foo { public virtual int Id { get; protected set; } public virtual IBar Bar { get; set; } } public interface IBar { string Text { get; set; } } public class Bar : IBar { public virtual string Text { get; set; } } And the fluent-nhibernate map class: public class FooMap : ClassMap<Foo> { public FooMap() { Id(x => x.Id); Component(x => x.Bar, m => { m.Map(x => x.Text); }); } } While running any query with configuration, I get the following exception: NHibernate.InstantiationException: "Cannot instantiate abstract class or interface: NHMappingTest.IBar" It seems that NHibernate tries to instantiate an IBar object instead of the Bar concrete class. How to let Fluent-NHibernate know which concrete class to instantiate when the property returns an interface or an abstract base class? EDIT: Explicitly specify the type of component by writing Component<Bar> (as suggested by Sly) has no effect and causes the same exception to occur. EDIT2: Thanks to vedklyv and Paul Batum: such a mapping should be soon is now possible.

    Read the article

  • What components and IDE add-ins do you install with Delphi?

    - by Mick
    After a clean install of Delphi, what components and IDE add-ins do you make certain that you install? What's your Delphi "rig"? Here's what I install after a clean installation: Delphi 2007 JCL / JVCL - JEDI Code Library and JEDI Visual Code Library (600+ components) JWA / JWSCL - JEDI API Library & Security Code Library GExperts - GExperts is a free set of tools built to increase the productivity of Delphi and C++Builder programmers by adding several features to the IDE. TWM's experimental GExperts code formatter - adds code formatting capabilities to Delphi Virtual TreeView - Virtual Treeview is a treeview control built from ground up. More than 5 years of development made it one of the most flexible and advanced tree controls available today. MustangPeak Components (EasyList View, Virtual ShellTools, etc) - EasyListview is a control that has no dependance on the Microsoft Listview control but has all the features of the latest version from Microsoft. Also includes 'Explorer.exe' like shell components. Synapse lightweight networking components - contains simple low level non-visual objects for easy programming without problems. (no required multi-threaded synchronization, no need for windows message processing,…) Great for command line utilities, visual projects, NT services EurekaLog - EurekaLog is a complete bug resolution tool for Delphi and C++Builder developers that gives your application the power to catch every exception and memory leak, directly on the end user PC, generating a detailed log of the call stack (with file, class, method and line number), optionally sending you a copy of each log entry via email or to a web bug-tracker. DelphiSpeedUp - DelphiSpeedUp is an IDE plugin for Delphi and C++Builder. It improves the IDE’s startup speed and increases the general speed of the whole IDE. DDevExtensions - DDevExtensions extends the Delphi/C++Builder IDE by adding some new productivity features. IDE Fix Pack - The IDE Fix Pack installs is a DLL-Expert that fixes the following RAD Studio 2007 bugs at runtime. All changes are done in memory. No file on disk is modified. TPerlRegex - Regular Expression library for Delphi How about other Delphi developers?

    Read the article

  • ILOG CPLEX: how to populate IloLPMatrix while using addGe to set up the model?

    - by downer
    I have a queatoin about IloLPMatrix and addGe. I was trying to follow the example of AdMIPex5.java to generate user defined cutting planes based on the solution to the LP relaxation. The difference is that eh initial MIP model is not read in from a mps file, but set up in the code using methods like addGe, addLe etc. I think this is why I ran into problems while copying the exampe to do the following. IloLPMatrix lp = (IloLPMatrix)cplex.LPMatrixIterator().next(); lp from the above line turns to be NULL. I am wondering 1. What is the relationship between IloLPMatrix and the addLe, addGe commands? I tried to addLPMatrix() to the model, and then used model.addGe methods. but the LPMatrix seems to be empty still. How do I populate the IloLPMatrix of the moel according to the value that I had set up using addGe and addLe. Is the a method to this easily, or do I have to set them up row by row myself? I was doing this to get the number of variables and their values by doing lp.getNumVars(). Is there other methods that I can use to get the number of variables and their values wihout doing these, since my system is set up by addLe, addGe etc? Thanks a lot for your help on this.

    Read the article

  • Change the Default Application Pool in IIS7 using .net?

    - by EdenMachine
    I'm using the following function to create a IIS7 Application and/or Virtual Directory. How would I also set the Application to use a different Application Pool? Private Sub CreateVirtualDir(ByVal WebSite As String, ByVal AppName As String, ByVal Path As String, Optional ByVal IsApplication As Boolean = True, Optional ByVal RunScripts As Boolean = True, Optional ByVal IsWrite As Boolean = True) Dim IISSchema As New System.DirectoryServices.DirectoryEntry("IIS://" & WebSite & "/Schema/AppIsolated") Dim CanCreate As Boolean = Not IISSchema.Properties("Syntax").Value.ToString.ToUpper() = "BOOLEAN" IISSchema.Dispose() If CanCreate Then Dim PathCreated As Boolean Try Dim IISAdmin As New System.DirectoryServices.DirectoryEntry("IIS://" & WebSite & "/W3SVC/1/Root") 'make sure folder exists If Not System.IO.Directory.Exists(Path) Then System.IO.Directory.CreateDirectory(Path) PathCreated = True End If 'If the virtual directory already exists then delete it For Each VD As System.DirectoryServices.DirectoryEntry In IISAdmin.Children If VD.Name = AppName Then IISAdmin.Invoke("Delete", New String() {VD.SchemaClassName, AppName}) IISAdmin.CommitChanges() Exit For End If Next VD 'Create and setup new virtual directory Dim VDir As System.DirectoryServices.DirectoryEntry = IISAdmin.Children.Add(AppName, "IIsWebVirtualDir") VDir.Properties("Path").Item(0) = Path If IsApplication Then VDir.Properties("AppFriendlyName").Item(0) = AppName End If VDir.Properties("EnableDirBrowsing").Item(0) = False VDir.Properties("AccessRead").Item(0) = True VDir.Properties("AccessExecute").Item(0) = False VDir.Properties("AccessWrite").Item(0) = IsWrite VDir.Properties("AccessScript").Item(0) = RunScripts VDir.Properties("AuthNTLM").Item(0) = True VDir.Properties("EnableDefaultDoc").Item(0) = True VDir.Properties("DefaultDoc").Item(0) = "default.htm,default.aspx,default.asp" VDir.Properties("AspEnableParentPaths").Item(0) = True 'VDir.Properties("AppCreate").Item(0) = False VDir.CommitChanges() 'the following are acceptable params 'INPROC = 0 'OUTPROC = 1 'POOLED = 2 If IsApplication Then VDir.Invoke("AppCreate", 1) Else VDir.Invoke("AppCreate", False) End If Catch Ex As Exception If PathCreated Then System.IO.Directory.Delete(Path) End If 'MsgBox(Ex.Message) End Try End If End Sub

    Read the article

  • How to read a Website's Directory Structure using WMI and C# in IIS 6.0?

    - by Steve Johnson
    Hi all, I need to read a website's folders using WMI and C# in IIS 6.0. I am able to read the Virtual directories and applications using the "IISWebVirtualDirSetting" class. However the physical folders located inside a website cannot be read using this class. And for my case i need to read sub folders located within a website and later on set permission on them. For my requirement i dont need to work on Virtual Directories/Web Service Applications (which can be easily obtained using the code below..). I have tried to use IISWebDirectory class but it has been useful. Here is the code that reads IIS Virtual Directories... public static ArrayList RetrieveVirtualDirList(String ServerName, String WebsiteName) { ConnectionOptions options = SetUpAuthorization(); ManagementScope scope = new ManagementScope(string.Format(@"\\{0}\root\MicrosoftIISV2", ServerName), options); scope.Connect(); String SiteId = GetSiteIDFromSiteName(ServerName, WebsiteName); ObjectQuery OQuery = new ObjectQuery(@"SELECT * FROM IISWebVirtualDirSetting"); //ObjectQuery OQuery = new ObjectQuery(@"SELECT * FROM IIsSetting"); ManagementObjectSearcher WebSiteFinder = new ManagementObjectSearcher(scope, OQuery); ArrayList WebSiteListArray = new ArrayList(); ManagementObjectCollection WebSitesCollection = WebSiteFinder.Get(); String WebSiteName = String.Empty; foreach (ManagementObject WebSite in WebSitesCollection) { WebSiteName = WebSite.Properties["Name"].Value.ToString(); WebsiteName = WebSiteName.Replace("W3SVC/", ""); String extrctedSiteId = WebsiteName.Substring(0, WebsiteName.IndexOf('/')); String temp = WebsiteName.Substring(0, WebsiteName.IndexOf('/') + 1); String VirtualDirName = WebsiteName.Substring(temp.Length); WebsiteName = WebsiteName.Replace(SiteId, ""); if (extrctedSiteId.Equals(SiteId)) //if (true) { WebSiteListArray.Add(VirtualDirName ); //WebSiteListArray.Add(WebSiteName); //+ "|" + WebSite.Properties["Path"].Value.ToString() } } return WebSiteListArray; } Kindly help in this regard. Thanks you.

    Read the article

  • Hidden features of Perl?

    - by Adam Bellaire
    What are some really useful but esoteric language features in Perl that you've actually been able to employ to do useful work? Guidelines: Try to limit answers to the Perl core and not CPAN Please give an example and a short description Hidden Features also found in other languages' Hidden Features: (These are all from Corion's answer) C# Duff's Device Portability and Standardness Quotes for whitespace delimited lists and strings Aliasable namespaces Java Static Initalizers JavaScript Functions are First Class citizens Block scope and closure Calling methods and accessors indirectly through a variable Ruby Defining methods through code PHP Pervasive online documentation Magic methods Symbolic references Python One line value swapping Ability to replace even core functions with your own functionality Other Hidden Features: Operators: The bool quasi-operator The flip-flop operator Also used for list construction The ++ and unary - operators work on strings The repetition operator The spaceship operator The || operator (and // operator) to select from a set of choices The diamond operator Special cases of the m// operator The tilde-tilde "operator" Quoting constructs: The qw operator Letters can be used as quote delimiters in q{}-like constructs Quoting mechanisms Syntax and Names: There can be a space after a sigil You can give subs numeric names with symbolic references Legal trailing commas Grouped Integer Literals hash slices Populating keys of a hash from an array Modules, Pragmas, and command-line options: use strict and use warnings Taint checking Esoteric use of -n and -p CPAN overload::constant IO::Handle module Safe compartments Attributes Variables: Autovivification The $[ variable tie Dynamic Scoping Variable swapping with a single statement Loops and flow control: Magic goto for on a single variable continue clause Desperation mode Regular expressions: The \G anchor (?{}) and '(??{})` in regexes Other features: The debugger Special code blocks such as BEGIN, CHECK, and END The DATA block New Block Operations Source Filters Signal Hooks map (twice) Wrapping built-in functions The eof function The dbmopen function Turning warnings into errors Other tricks, and meta-answers: cat files, decompressing gzips if needed Perl Tips See Also: Hidden features of C Hidden features of C# Hidden features of C++ Hidden features of Java Hidden features of JavaScript Hidden features of Ruby Hidden features of PHP Hidden features of Python

    Read the article

  • Custom code access permissions

    - by jaklucky
    Hi all, We have a server written in C# (Framework 3.5 SP1). Customers write client applications using our server API. Recently, we created several levels of license schemes like Basic, Intermediate and All. If you have Basic license then you can call few methods on our API. Similiarly if you have Intermediate you get some extra methods to call and if you have All then you can call all the methods. When server starts it gets the license type. Now in each method I have to check the type of license and decide whether to proceed further with the fucntion or return. For example, a method "InterMediateMethod()" can only be used by Intermediate License and All license. So I have to something like this. public void InterMediateMethod() { if(licenseType == "Basic") { throw new Exception("Access denined"); } } It looks like to me that it is very lame approach. Is there any better way to do this? Is there any declarative way to do this by defining some custom attributes? I looked at creating a custom "CodeAccessSecurityAttribute" but did not get a good success. Thank you, Suresh

    Read the article

  • Help with route rewrite in asp.net mvc

    - by NachoF
    Im having a really hard time understanding routing. Please help me with this problem. Each of my controllers have these three actions right now Users have Index, Create and Edit Locations have Index, Create and Edit Companies have Index, Create and Edit The thing is, it all gets done through ajax. I have jquery ui tabs with two tabs for each, Create and Edit So the Index method is always the one that gets called for action links. and inside this main view is that you can call(by clicking on the tab icon) the other methods that return an ajax view that gets output into the jqeury tab (I hope thats clear) I have a sidebar with links to the controllers. and to specific methods of these controllers. The wanted behavior is that it should actually go into the Index Method and then with some logic autoload the wanted tab. It all works just fine right now. But my urls are horrible. To get to the create method for Users I have to go this url http://localhost/Users/Index/1 http://localhost/Users/Index/2 I want the behavior of these links to be remapped to these links http://localhost/Users/Create http://localhost/Users/Edit So even though it seems as if you are calling the Create method of the controller you are actualling always calling the Index Method.... (I know how to transform Create into "1" and Edit into two, so dont worry about that part Hope thats clear. Thanks in advance Edit: Just realized that this might not be possible cause then when I actually need to call the methods (with ajax) it wont know what to do.... am I correct?

    Read the article

  • Fancybox "close" hangs/delays in IE7/8

    - by Kerri
    I'm having an issue with IE7/8 only on a development site: when closing the Fancybox, there is a major delay, sometimes about ten seconds or so, sometimes much longer (like a minute). Some things that might be relevant: • Using fancybox 1.3.1 • Works perfectly on all other browsers (FF, Safari, Opera, Chrome) • The loaded iframe contains a flash "virtual tour" • There are no errors reported in IE's Dev Toolbar or in DebugBar • The fancybox renders perfectly in IE, and after it has closed, there is not a problem loading it again. The closing seems to be the only issue. (That, and that it crashed the client's browser once, but I'm inclined to believe that had more to do with the content of the iframe than fancybox). I changed the link to the iFrame to something simpler (google), and it closed with no problem. So it does seem to have something to do with a conflict with the content of the iframe. The call: $("a#tourbox").fancybox({ "width": 750, "height" : 575, "autoScale": false, "type": "iframe" }); The HTML: <a id="tourbox" href="http://tour.circlepix.com/tour.htm?id=670335"><img src="sites/all/themes/removed/images/banquets-vtour.jpg" alt="Virtual Tour" /></a> Here's a link to the page with the problem: http://s93571.gridserver.com/banquets Click on the "Go to 360° Virtual Tour" image. Here's the page it loads: http://tour.circlepix.com/tour.htm?id=670335 I'd greatly appreciate any clues or ideas of what might be the issue. I couldn't find any other discussions with a similar problem. Thanks for any insights!

    Read the article

  • Quartz compositions created in Snow Leopard (10.6) doesn't work in Leopard (10.5) despite testing in

    - by adib
    Hi I have a reasonably advanced (many patches and subpatches) quartz composition that was created in Snow Leopard but doesn't run well (many elements are not rendered) in Leopard. The composition tested OK via Quartz Composer's Test in Runtime option and works fine for both Leopard 32-bits and Leopard 64-bits (menu item "File | Test in Runtime | Leopard 32-bits". In an actual Leopard (32-bits) system, a lot of elements are not rendered in the quartz composition. Below are the log file excerpt when the composition is run in QuickTime Player under Leopard: QuickTime Player[134] *** <QCNodeManager | namespace = "com.apple.QuartzComposer" | 335 nodes>: Patch with name "/units to pixels" is missing QuickTime Player[134] *** Message from <QCPatch = 0x06D82880 "(null)">:Cannot create node of class "/units to pixels" and identifier "(null)" QuickTime Player[134] *** Message from <QCPatch = 0x06D7C130 "(null)">:Cannot create node of class "/resize image to target" and identifier "(null)" QuickTime Player[134] *** Message from <QCPatch = 0x06D7C130 "(null)">:Cannot create connection from ["outputValue" @ "Math_1"] to ["Target_Pixels" @ "Patch_2"] The patch "units to pixels" is a system patch in Snow Leopard whereas the patch "resize image to target" is a custom virtual patch located in my home directory. It seems that we can cross out problems in which the composition is referencing a missing virtual patch. I have tested the composition under another user's account and it ran fine which shows that it already embeds the "resize image to target" virtual patch that is located in my home directory. I'm really puzzled why the composition passes the Leopard Runtime test but yet fail to run in an actual Leopard OS? Is there a post-processing step that I need to run to the composition file? Is there any way to make this patch more compatible with Leopard? Thanks in advance.

    Read the article

< Previous Page | 236 237 238 239 240 241 242 243 244 245 246 247  | Next Page >