Search Results

Search found 7738 results on 310 pages for 'calling convention'.

Page 291/310 | < Previous Page | 287 288 289 290 291 292 293 294 295 296 297 298  | Next Page >

  • How To - Guide to Importing Data from a MySQL Database to Excel using MySQL for Excel

    - by Javier Treviño
    Fetching data from a database to then get it into an Excel spreadsheet to do analysis, reporting, transforming, sharing, etc. is a very common task among users. There are several ways to extract data from a MySQL database to then import it to Excel; for example you can use the MySQL Connector/ODBC to configure an ODBC connection to a MySQL database, then in Excel use the Data Connection Wizard to select the database and table from which you want to extract data from, then specify what worksheet you want to put the data into.  Another way is to somehow dump a comma delimited text file with the data from a MySQL table (using the MySQL Command Line Client, MySQL Workbench, etc.) to then in Excel open the file using the Text Import Wizard to attempt to correctly split the data in columns. These methods are fine, but involve some degree of technical knowledge to make the magic happen and involve repeating several steps each time data needs to be imported from a MySQL table to an Excel spreadsheet. So, can this be done in an easier and faster way? With MySQL for Excel you can. MySQL for Excel features an Import MySQL Data action where you can import data from a MySQL Table, View or Stored Procedure literally with a few clicks within Excel.  Following is a quick guide describing how to import data using MySQL for Excel. This guide assumes you already have a working MySQL Server instance, Microsoft Office Excel 2007 or 2010 and MySQL for Excel installed. 1. Opening MySQL for Excel Being an Excel Add-In, MySQL for Excel is opened from within Excel, so to use it open Excel, go to the Data tab located in the Ribbon and click MySQL for Excel at the far right of the Ribbon. 2. Creating a MySQL Connection (may be optional) If you have MySQL Workbench installed you will automatically see the same connections that you can see in MySQL Workbench, so you can use any of those and there may be no need to create a new connection. If you want to create a new connection (which normally you will do only once), in the Welcome Panel click New Connection, which opens the Setup New Connection dialog. Here you only need to give your new connection a distinctive Connection Name, specify the Hostname (or IP address) where the MySQL Server instance is running on (if different than localhost), the Port to connect to and the Username for the login. If you wish to test if your setup is good to go, click Test Connection and an information dialog will pop-up stating if the connection is successful or errors were found. 3.Opening a connection to a MySQL Server To open a pre-configured connection to a MySQL Server you just need to double-click it, so the Connection Password dialog is displayed where you enter the password for the login. 4. Selecting a MySQL Schema After opening a connection to a MySQL Server, the Schema Selection Panel is shown, where you can select the Schema that contains the Tables, Views and Stored Procedures you want to work with. To do so, you just need to either double-click the desired Schema or select it and click Next >. 5. Importing data… All previous steps were really the basic minimum needed to drill-down to the DB Object Selection Panel  where you can see the Database Objects (grouped by type: Tables, Views and Procedures in that order) that you want to perform actions against; in the case of this guide, the action of importing data from them. a. From a MySQL Table To import from a Table you just need to select it from the list of Database Objects’ Tables group, after selecting it you will note actions below the list become available; then click Import MySQL Data. The Import Data dialog is displayed; you can see some basic information here like the name of the Excel worksheet the data will be imported to (in the window title), the Table Name, the total Row Count and a 10 row preview of the data meant for the user to see the columns that the table contains and to provide a way to select which columns to import. The Import Data dialog is designed with defaults in place so all data is imported (all rows and all columns) by just clicking Import; this is important to minimize the number of clicks needed to get the job done. After the import is performed you will have the data in the Excel worksheet formatted automatically. If you need to override the defaults in the Import Data dialog to change the columns selected for import or to change the number of imported rows you can easily do so before clicking Import. In the screenshot below the defaults are overridden to import only the first 3 columns and rows 10 – 60 (Limit to 50 Rows and Start with Row 10). If the number of rows to be imported exceeds the maximum number of rows Excel can hold in its worksheet, a warning will be displayed in the dialog, meaning the imported number of rows will be limited by that maximum number (65,535 rows if the worksheet is in Compatibility Mode).  In the screenshot below you can see the Table contains 80,559 rows, but only 65,534 rows will be imported since the first row is used for the column names if the Include Column Names as Headers checkbox is checked. b. From a MySQL View Similar to the way of importing from a Table, to import from a View you just need to select it from the list of Database Objects’ Views group, then click Import MySQL Data. The Import Data dialog is displayed; identically to the way everything looks when importing from a table, the dialog displays the View Name, the total Row Count and the data preview grid. Since Views are really a filtered way to display data from Tables, it is actually as if we are extracting data from a Table; so the Import Data dialog is actually identical for those 2 Database Objects. After the import is performed, the data in the Excel spreadsheet looks like the following screenshot. Note that you can override the defaults in the Import Data dialog in the same way described above for importing data from Tables. Also the Compatibility Mode warning will be displayed if data exceeds the maximum number of rows explained before. c. From a MySQL Procedure Too import from a Procedure you just need to select it from the list of Database Objects’ Procedures group (note you can see Procedures here but not Functions since these return a single value, so by design they are filtered out). After the selection is made, click Import MySQL Data. The Import Data dialog is displayed, but this time you can see it looks different to the one used for Tables and Views.  Given the nature of Store Procedures, they require first that values are supplied for its Parameters and also Procedures can return multiple Result Sets; so the Import Data dialog shows the Procedure Name and the Procedure Parameters in a grid where their values are input. After you supply the Parameter Values click Call. After calling the Procedure, the Result Sets returned by it are displayed at the bottom of the dialog; output parameters and the return value of the Procedure are appended as the last Result Set of the group. You can see each Result Set is displayed as a tab so you can see a preview of the returned data.  You can specify if you want to import the Selected Result Set (default), All Result Sets – Arranged Horizontally or All Result Sets – Arranged Vertically using the Import drop-down list; then click Import. After the import is performed, the data in the Excel spreadsheet looks like the following screenshot.  Note in this example all Result Sets were imported and arranged vertically. As you can see using MySQL for Excel importing data from a MySQL database becomes an easy task that requires very little technical knowledge, so it can be done by any type of user. Hope you enjoyed this guide! Remember that your feedback is very important for us, so drop us a message: MySQL on Windows (this) Blog - https://blogs.oracle.com/MySqlOnWindows/ Forum - http://forums.mysql.com/list.php?172 Facebook - http://www.facebook.com/mysql Cheers!

    Read the article

  • The APEX of Business Value...or...the Business Value of APEX? Oracle Cloud Takes Oracle APEX to New Heights!

    - by Gene Eun
    The attraction of Oracle Application Express (APEX) has increased tremendously with the recent launch of the Oracle Cloud. APEX already supported departmental development and deployment of business applications with minimal involvement from the IT department. Positioned as the ideal replacement for MS Access, APEX probably has managed better to capture the eye of developers and was used for enterprise application development at least as much as for the kind of tactical applications that Oracle strategically positioned it for. With APEX as PaaS from the Oracle Cloud, a leap is made to a much higher level of business value. Now the IT department is not even needed to make infrastructure available with a database running  on it. All the business needs is a credit card. And the business application that is developed, managed and used from the cloud through a standard browser can now just as easily be accessed by users from around the world as by users from the business department itself. As a bonus – the development of the APEX application is also done in the cloud – with no special demands on the location or the enterprise access privileges of the developers. To sum it up: APEX from Oracle Cloud Database Service get the development environment up and running in minutes no involvement from the internal IT department required (not for infrastructure, platform, or development) superior availability and scalability is offered by Oracle users from anywhere in the world can be invited to access the application developers from anywhere in the world can participate in creating and maintaining the application In addition: because the Oracle Cloud platform is the same as the on-premise platform, you can still decide to move the APEX application between the cloud and the local environment – and back again. The REST-ful services that are available through APEX allow programmatic interaction with the database under the APEX application. That means that this database can be synchronized with on premise databases or data stores in (other) clouds. Through the Oracle Cloud Messaging Service, the APEX application can easily enter into asynchronous conversations with other APEX applications, Fusion Middleware applications (ADF, SOA, BPM) and any other type of REST-enabled application. In my opinion, now, for the first time perhaps, APEX offers the attraction to the business that has been suggested before: because of the cloud, all the business needs is  a credit card (a budget of $175 per month), an internet-connection and a browser. Not like before, with a PC hidden under a desk or a database running somewhere in the data center. No matter how unattended: equipment is needed, power is consumed, the database needs to be kept running and if Oracle Database XE does not suffice, software licenses are required as well. And this set up always has a security challenge associated with it. The cloud fee for the Oracle Cloud Database Service includes infrastructure, power, licenses, availability, platform upgrades, a collection of reusable application components and the development and runtime environments containing the APEX platform. Of course this not only means that business departments can move quickly without having to convince their IT colleagues to move along – it also means that small organizations that do not even have IT colleagues can do the same. Getting tailored applications or applications up and running to get in touch with users and customers all over the world is now within easy reach for small outfits – without any investment. My misunderstanding For a long time, I was under the impression that the essence of APEX was that the business could create applications themselves – meaning that business ‘people’ would actually go into APEX to create the application. To me APEX was too much of a developers’ tool to see that happen – apart from the odd business analyst who missed his or her calling as an IT developer. Having looked at various other cloud based development offerings – including Force.com, Mendix, WaveMaker, WorkXpress, OrangeScape, Caspio and Cordys- I have come to realize my mistake. All these platforms are positioned for 'the business' but require a fair amount of coding and technical expertise. However, they make the business happy nevertheless, because they allow the  business to completely circumvent the IT department. That is the essence. Not having to go through the red tape, not having to wait for IT staff who (justifiably) need weeks or months to provide an environment, not having to deal with administrators (again, justifiably) refusing to take on that 'strange environment'. Being able to think of an initiative and turn into action right away. The business does not have to build the application - it can easily hire some external developers or even that nerdy boy next door. They can get started, get an application up and running and invite users in – especially external users such as customers. They will worry later about upgrades and life cycle management and integration. To get applications up and running quickly and start turning ideas into action and results rightaway. That is the key selling point for all these cloud offerings, including APEX from the Cloud. And it is a compelling story. For APEX probably even more so than for the others. While I consider APEX a somewhat proprietary framework compared with ‘regular’ Java/JEE web development (or even .NET and PHP  development), it is still far more open than most cloud environments. APEX is SQL and PL/SQL based – nothing special about those languages – and can run just as easily on site as in the cloud. It has been around since 2004 (that is not including several predecessors that fed straight into APEX) so it can be considered pretty mature. Oracle as a company seems pretty stable – so investments in its technology are bound to last for some time to come. By the way: neither APEX nor the other Cloud DevaaS offerings are targeted at creating applications with enormous life times. They fit into a trend of agile development and rapid life cycle management, with fairly light weight user interfaces that quickly adapt to taste, technology trends and functional requirements and that are easily replaced. APEX and ADF – a match made in heaven?! (or at least in the sky) Note that using APEX only for cloud based database with REST-ful Services is also a perfectly viable scenario: any UI – mobile or browser based – capable of consuming REST-ful services can be created against such a business tier. Creating an ADF Mobile application for example that runs aginst REST-ful services is a best practice for mobile development. Such REST-ful services can be consumed from any service provider – including the Cloud based APEX powered REST-ful services running against the Oracle Cloud Database Service! The ADF Mobile architecture overview can easily be morphed to fit the APEX services in – allowing for a cloud based mobile app: Want to learn more about Oracle Database Cloud Service or Oracle Cloud, just visit cloud.oracle.com  or oracle.com/cloud. Repost of a blog entry by Rick Greenwald, Director of Product Management, Oracle Database Cloud Service.

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • C#/.NET Little Wonders: The Timeout static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. When I started the “Little Wonders” series, I really wanted to pay homage to parts of the .NET Framework that are often small but can help in big ways.  The item I have to discuss today really is a very small item in the .NET BCL, but once again I feel it can help make the intention of code much clearer and thus is worthy of note. The Problem - Magic numbers aren’t very readable or maintainable In my first Little Wonders Post (Five Little Wonders That Make Code Better) I mention the TimeSpan factory methods which, I feel, really help the readability of constructed TimeSpan instances. Just to quickly recap that discussion, ask yourself what the TimeSpan specified in each case below is 1: // Five minutes? Five Seconds? 2: var fiveWhat1 = new TimeSpan(0, 0, 5); 3: var fiveWhat2 = new TimeSpan(0, 0, 5, 0); 4: var fiveWhat3 = new TimeSpan(0, 0, 5, 0, 0); You’d think they’d all be the same unit of time, right?  After all, most overloads tend to tack additional arguments on the end.  But this is not the case with TimeSpan, where the constructor forms are:     TimeSpan(int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds); Notice how in the 4 and 5 parameter version we suddenly have the parameter days slipping in front of hours?  This can make reading constructors like those above much harder.  Fortunately, there are TimeSpan factory methods to help make your intention crystal clear: 1: // Ah! Much clearer! 2: var fiveSeconds = TimeSpan.FromSeconds(5); These are great because they remove all ambiguity from the reader!  So in short, magic numbers in constructors and methods can be ambiguous, and anything we can do to clean up the intention of the developer will make the code much easier to read and maintain. Timeout – Readable identifiers for infinite timeout values In a similar way to TimeSpan, let’s consider specifying timeouts for some of .NET’s (or our own) many methods that allow you to specify timeout periods. For example, in the TPL Task class, there is a family of Wait() methods that can take TimeSpan or int for timeouts.  Typically, if you want to specify an infinite timeout, you’d just call the version that doesn’t take a timeout parameter at all: 1: myTask.Wait(); // infinite wait But there are versions that take the int or TimeSpan for timeout as well: 1: // Wait for 100 ms 2: myTask.Wait(100); 3:  4: // Wait for 5 seconds 5: myTask.Wait(TimeSpan.FromSeconds(5); Now, if we want to specify an infinite timeout to wait on the Task, we could pass –1 (or a TimeSpan set to –1 ms), which what the .NET BCL methods with timeouts use to represent an infinite timeout: 1: // Also infinite timeouts, but harder to read/maintain 2: myTask.Wait(-1); 3: myTask.Wait(TimeSpan.FromMilliseconds(-1)); However, these are not as readable or maintainable.  If you were writing this code, you might make the mistake of thinking 0 or int.MaxValue was an infinite timeout, and you’d be incorrect.  Also, reading the code above it isn’t as clear that –1 is infinite unless you happen to know that is the specified behavior. To make the code like this easier to read and maintain, there is a static class called Timeout in the System.Threading namespace which contains definition for infinite timeouts specified as both int and TimeSpan forms: Timeout.Infinite An integer constant with a value of –1 Timeout.InfiniteTimeSpan A static readonly TimeSpan which represents –1 ms (only available in .NET 4.5+) This makes our calls to Task.Wait() (or any other calls with timeouts) much more clear: 1: // intention to wait indefinitely is quite clear now 2: myTask.Wait(Timeout.Infinite); 3: myTask.Wait(Timeout.InfiniteTimeSpan); But wait, you may say, why would we care at all?  Why not use the version of Wait() that takes no arguments?  Good question!  When you’re directly calling the method with an infinite timeout that’s what you’d most likely do, but what if you are just passing along a timeout specified by a caller from higher up?  Or perhaps storing a timeout value from a configuration file, and want to default it to infinite? For example, perhaps you are designing a communications module and want to be able to shutdown gracefully, but if you can’t gracefully finish in a specified amount of time you want to force the connection closed.  You could create a Shutdown() method in your class, and take a TimeSpan or an int for the amount of time to wait for a clean shutdown – perhaps waiting for client to acknowledge – before terminating the connection.  So, assume we had a pub/sub system with a class to broadcast messages: 1: // Some class to broadcast messages to connected clients 2: public class Broadcaster 3: { 4: // ... 5:  6: // Shutdown connection to clients, wait for ack back from clients 7: // until all acks received or timeout, whichever happens first 8: public void Shutdown(int timeout) 9: { 10: // Kick off a task here to send shutdown request to clients and wait 11: // for the task to finish below for the specified time... 12:  13: if (!shutdownTask.Wait(timeout)) 14: { 15: // If Wait() returns false, we timed out and task 16: // did not join in time. 17: } 18: } 19: } We could even add an overload to allow us to use TimeSpan instead of int, to give our callers the flexibility to specify timeouts either way: 1: // overload to allow them to specify Timeout in TimeSpan, would 2: // just call the int version passing in the TotalMilliseconds... 3: public void Shutdown(TimeSpan timeout) 4: { 5: Shutdown(timeout.TotalMilliseconds); 6: } Notice in case of this class, we don’t assume the caller wants infinite timeouts, we choose to rely on them to tell us how long to wait.  So now, if they choose an infinite timeout, they could use the –1, which is more cryptic, or use Timeout class to make the intention clear: 1: // shutdown the broadcaster, waiting until all clients ack back 2: // without timing out. 3: myBroadcaster.Shutdown(Timeout.Infinite); We could even add a default argument using the int parameter version so that specifying no arguments to Shutdown() assumes an infinite timeout: 1: // Modified original Shutdown() method to add a default of 2: // Timeout.Infinite, works because Timeout.Infinite is a compile 3: // time constant. 4: public void Shutdown(int timeout = Timeout.Infinite) 5: { 6: // same code as before 7: } Note that you can’t default the ShutDown(TimeSpan) overload with Timeout.InfiniteTimeSpan since it is not a compile-time constant.  The only acceptable default for a TimeSpan parameter would be default(TimeSpan) which is zero milliseconds, which specified no wait, not infinite wait. Summary While Timeout.Infinite and Timeout.InfiniteTimeSpan are not earth-shattering classes in terms of functionality, they do give you very handy and readable constant values that you can use in your programs to help increase readability and maintainability when specifying infinite timeouts for various timeouts in the BCL and your own applications. Technorati Tags: C#,CSharp,.NET,Little Wonders,Timeout,Task

    Read the article

  • Converting a generic list into JSON string and then handling it in java script

    - by Jalpesh P. Vadgama
    We all know that JSON (JavaScript Object Notification) is very useful in case of manipulating string on client side with java script and its performance is very good over browsers so let’s create a simple example where convert a Generic List then we will convert this list into JSON string and then we will call this web service from java script and will handle in java script. To do this we need a info class(Type) and for that class we are going to create generic list. Here is code for that I have created simple class with two properties UserId and UserName public class UserInfo { public int UserId { get; set; } public string UserName { get; set; } } Now Let’s create a web service and web method will create a class and then we will convert this with in JSON string with JavaScriptSerializer class. Here is web service class. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Services; namespace Experiment.WebService { /// <summary> /// Summary description for WsApplicationUser /// </summary> [WebService(Namespace = "http://tempuri.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] [System.ComponentModel.ToolboxItem(false)] // To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the following line. [System.Web.Script.Services.ScriptService] public class WsApplicationUser : System.Web.Services.WebService { [WebMethod] public string GetUserList() { List<UserInfo> userList = new List<UserInfo>(); for (int i = 1; i <= 5; i++) { UserInfo userInfo = new UserInfo(); userInfo.UserId = i; userInfo.UserName = string.Format("{0}{1}", "J", i.ToString()); userList.Add(userInfo); } System.Web.Script.Serialization.JavaScriptSerializer jSearializer = new System.Web.Script.Serialization.JavaScriptSerializer(); return jSearializer.Serialize(userList); } } } Note: Here you must have this attribute here in web service class ‘[System.Web.Script.Services.ScriptService]’ as this attribute will enable web service to call from client side. Now we have created a web service class let’s create a java script function ‘GetUserList’ which will call web service from JavaScript like following function GetUserList() { Experiment.WebService.WsApplicationUser.GetUserList(ReuqestCompleteCallback, RequestFailedCallback); } After as you can see we have inserted two call back function ReuqestCompleteCallback and RequestFailedCallback which handle errors and result from web service. ReuqestCompleteCallback will handle result of web service and if and error comes then RequestFailedCallback will print the error. Following is code for both function. function ReuqestCompleteCallback(result) { result = eval(result); var divResult = document.getElementById("divUserList"); CreateUserListTable(result); } function RequestFailedCallback(error) { var stackTrace = error.get_stackTrace(); var message = error.get_message(); var statusCode = error.get_statusCode(); var exceptionType = error.get_exceptionType(); var timedout = error.get_timedOut(); // Display the error. var divResult = document.getElementById("divUserList"); divResult.innerHTML = "Stack Trace: " + stackTrace + "<br/>" + "Service Error: " + message + "<br/>" + "Status Code: " + statusCode + "<br/>" + "Exception Type: " + exceptionType + "<br/>" + "Timedout: " + timedout; } Here in above there is a function called you can see that we have use ‘eval’ function which parse string in enumerable form. Then we are calling a function call ‘CreateUserListTable’ which will create a table string and paste string in the a div. Here is code for that function. function CreateUserListTable(userList) { var tablestring = '<table ><tr><td>UsreID</td><td>UserName</td></tr>'; for (var i = 0, len = userList.length; i < len; ++i) { tablestring=tablestring + "<tr>"; tablestring=tablestring + "<td>" + userList[i].UserId + "</td>"; tablestring=tablestring + "<td>" + userList[i].UserName + "</td>"; tablestring=tablestring + "</tr>"; } tablestring = tablestring + "</table>"; var divResult = document.getElementById("divUserList"); divResult.innerHTML = tablestring; } Now let’s create div which will have all html that is generated from this function. Here is code of my web page. We also need to add a script reference to enable web service from client side. Here is all HTML code we have. <form id="form1" runat="server"> <asp:ScriptManager ID="myScirptManger" runat="Server"> <Services> <asp:ServiceReference Path="~/WebService/WsApplicationUser.asmx" /> </Services> </asp:ScriptManager> <div id="divUserList"> </div> </form> Now as we have not defined where we are going to call ‘GetUserList’ function so let’s call this function on windows onload event of javascript like following. window.onload=GetUserList(); That’s it. Now let’s run it on browser to see whether it’s work or not and here is the output in browser as expected. That’s it. This was very basic example but you can crate your own JavaScript enabled grid from this and you can see possibilities are unlimited here. Stay tuned for more.. Happy programming.. Technorati Tags: JSON,Javascript,ASP.NET,WebService

    Read the article

  • CI Deployment Of Azure Web Roles Using TeamCity

    - by srkirkland
    After recently migrating an important new website to use Windows Azure “Web Roles” I wanted an easier way to deploy new versions to the Azure Staging environment as well as a reliable process to rollback deployments to a certain “known good” source control commit checkpoint.  By configuring our JetBrains’ TeamCity CI server to utilize Windows Azure PowerShell cmdlets to create new automated deployments, I’ll show you how to take control of your Azure publish process. Step 0: Configuring your Azure Project in Visual Studio Before we can start looking at automating the deployment, we should make sure manual deployments from Visual Studio are working properly.  Detailed information for setting up deployments can be found at http://msdn.microsoft.com/en-us/library/windowsazure/ff683672.aspx#PublishAzure or by doing some quick Googling, but the basics are as follows: Install the prerequisite Windows Azure SDK Create an Azure project by right-clicking on your web project and choosing “Add Windows Azure Cloud Service Project” (or by manually adding that project type) Configure your Role and Service Configuration/Definition as desired Right-click on your azure project and choose “Publish,” create a publish profile, and push to your web role You don’t actually have to do step #4 and create a publish profile, but it’s a good exercise to make sure everything is working properly.  Once your Windows Azure project is setup correctly, we are ready to move on to understanding the Azure Publish process. Understanding the Azure Publish Process The actual Windows Azure project is fairly simple at its core—it builds your dependent roles (in our case, a web role) against a specific service and build configuration, and outputs two files: ServiceConfiguration.Cloud.cscfg: This is just the file containing your package configuration info, for example Instance Count, OsFamily, ConnectionString and other Setting information. ProjectName.Azure.cspkg: This is the package file that contains the guts of your deployment, including all deployable files. When you package your Azure project, these two files will be created within the directory ./[ProjectName].Azure/bin/[ConfigName]/app.publish/.  If you want to build your Azure Project from the command line, it’s as simple as calling MSBuild on the “Publish” target: msbuild.exe /target:Publish Windows Azure PowerShell Cmdlets The last pieces of the puzzle that make CI automation possible are the Azure PowerShell Cmdlets (http://msdn.microsoft.com/en-us/library/windowsazure/jj156055.aspx).  These cmdlets are what will let us create deployments without Visual Studio or other user intervention. Preparing TeamCity for Azure Deployments Now we are ready to get our TeamCity server setup so it can build and deploy Windows Azure projects, which we now know requires the Azure SDK and the Windows Azure PowerShell Cmdlets. Installing the Azure SDK is easy enough, just go to https://www.windowsazure.com/en-us/develop/net/ and click “Install” Once this SDK is installed, I recommend running a test build to make sure your project is building correctly.  You’ll want to setup your build step using MSBuild with the “Publish” target against your solution file.  Mine looks like this: Assuming the build was successful, you will now have the two *.cspkg and *cscfg files within your build directory.  If the build was red (failed), take a look at the build logs and keep an eye out for “unsupported project type” or other build errors, which will need to be addressed before the CI deployment can be completed. With a successful build we are now ready to install and configure the Windows Azure PowerShell Cmdlets: Follow the instructions at http://msdn.microsoft.com/en-us/library/windowsazure/jj554332 to install the Cmdlets and configure PowerShell After installing the Cmdlets, you’ll need to get your Azure Subscription Info using the Get-AzurePublishSettingsFile command. Store the resulting *.publishsettings file somewhere you can get to easily, like C:\TeamCity, because you will need to reference it later from your deploy script. Scripting the CI Deploy Process Now that the cmdlets are installed on our TeamCity server, we are ready to script the actual deployment using a TeamCity “PowerShell” build runner.  Before we look at any code, here’s a breakdown of our deployment algorithm: Setup your variables, including the location of the *.cspkg and *cscfg files produced in the earlier MSBuild step (remember, the folder is something like [ProjectName].Azure/bin/[ConfigName]/app.publish/ Import the Windows Azure PowerShell Cmdlets Import and set your Azure Subscription information (this is basically your authentication/authorization step, so protect your settings file Now look for a current deployment, and if you find one Upgrade it, else Create a new deployment Pretty simple and straightforward.  Now let’s look at the code (also available as a gist here: https://gist.github.com/3694398): $subscription = "[Your Subscription Name]" $service = "[Your Azure Service Name]" $slot = "staging" #staging or production $package = "[ProjectName]\bin\[BuildConfigName]\app.publish\[ProjectName].cspkg" $configuration = "[ProjectName]\bin\[BuildConfigName]\app.publish\ServiceConfiguration.Cloud.cscfg" $timeStampFormat = "g" $deploymentLabel = "ContinuousDeploy to $service v%build.number%"   Write-Output "Running Azure Imports" Import-Module "C:\Program Files (x86)\Microsoft SDKs\Windows Azure\PowerShell\Azure\*.psd1" Import-AzurePublishSettingsFile "C:\TeamCity\[PSFileName].publishsettings" Set-AzureSubscription -CurrentStorageAccount $service -SubscriptionName $subscription   function Publish(){ $deployment = Get-AzureDeployment -ServiceName $service -Slot $slot -ErrorVariable a -ErrorAction silentlycontinue   if ($a[0] -ne $null) { Write-Output "$(Get-Date -f $timeStampFormat) - No deployment is detected. Creating a new deployment. " } if ($deployment.Name -ne $null) { #Update deployment inplace (usually faster, cheaper, won't destroy VIP) Write-Output "$(Get-Date -f $timeStampFormat) - Deployment exists in $servicename. Upgrading deployment." UpgradeDeployment } else { CreateNewDeployment } }   function CreateNewDeployment() { write-progress -id 3 -activity "Creating New Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: In progress"   $opstat = New-AzureDeployment -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Creating New Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: Complete, Deployment ID: $completeDeploymentID" }   function UpgradeDeployment() { write-progress -id 3 -activity "Upgrading Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: In progress"   # perform Update-Deployment $setdeployment = Set-AzureDeployment -Upgrade -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service -Force   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Upgrading Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: Complete, Deployment ID: $completeDeploymentID" }   Write-Output "Create Azure Deployment" Publish   Creating the TeamCity Build Step The only thing left is to create a second build step, after your MSBuild “Publish” step, with the build runner type “PowerShell”.  Then set your script to “Source Code,” the script execution mode to “Put script into PowerShell stdin with “-Command” arguments” and then copy/paste in the above script (replacing the placeholder sections with your values).  This should look like the following:   Wrap Up After combining the MSBuild /target:Publish step (which creates the necessary Windows Azure *.cspkg and *.cscfg files) and a PowerShell script step which utilizes the Azure PowerShell Cmdlets, we have a fully deployable build configuration in TeamCity.  You can configure this step to run whenever you’d like using build triggers – for example, you could even deploy whenever a new master branch deploy comes in and passes all required tests. In the script I’ve hardcoded that every deployment goes to the Staging environment on Azure, but you could deploy straight to Production if you want to, or even setup a deployment configuration variable and set it as desired. After your TeamCity Build Configuration is complete, you’ll see something that looks like this: Whenever you click the “Run” button, all of your code will be compiled, published, and deployed to Windows Azure! One additional enormous benefit of automating the process this way is that you can easily deploy any specific source control changeset by clicking the little ellipsis button next to "Run.”  This will bring up a dialog like the one below, where you can select the last change to use for your deployment.  Since Azure Web Role deployments don’t have any rollback functionality, this is a critical feature.   Enjoy!

    Read the article

  • UppercuT &ndash; Custom Extensions Now With PowerShell and Ruby

    - by Robz / Fervent Coder
    Arguably, one of the most powerful features of UppercuT (UC) is the ability to extend any step of the build process with a pre, post, or replace hook. This customization is done in a separate location from the build so you can upgrade without wondering if you broke the build. There is a hook before each step of the build has run. There is a hook after. And back to power again, there is a replacement hook. If you don’t like what the step is doing and/or you want to replace it’s entire functionality, you just drop a custom replacement extension and UppercuT will perform the custom step instead. Up until recently all custom hooks had to be written in NAnt. Now they are a little sweeter because you no longer need to use NAnt to extend UC if you don’t want to. You can use PowerShell. Or Ruby.   Let that sink in for a moment. You don’t have to even need to interact with NAnt at all now. Extension Points On the wiki, all of the extension points are shown. The basic idea is that you would put whatever customization you are doing in a separate folder named build.custom. Each step Let’s take a look at all we can customize: The start point is default.build. It calls build.custom/default.pre.build if it exists, then it runs build/default.build (normal tasks) OR build.custom/default.replace.build if it exists, and finally build.custom/default.post.build if it exists. Every step below runs with the same extension points but changes on the file name it is looking for. NOTE: If you include default.replace.build, nothing else will run because everything is called from default.build.    * policyChecks.step    * versionBuilder.step NOTE: If you include build.custom/versionBuilder.replace.step, the items below will not run.      - svn.step, tfs.step, or git.step (the custom tasks for these need to go in build.custom/versioners)    * generateBuildInfo.step    * compile.step    * environmentBuilder.step    * analyze.step NOTE: If you include build.custom/analyze.replace.step, the items below will not run.      - test.step (the custom tasks for this need to go in build.custom/analyzers) NOTE: If you include build.custom/analyzers/test.replace.step, the items below will not run.        + mbunit2.step, gallio.step, or nunit.step (the custom tasks for these need to go in build.custom/analyzers)      - ncover.step (the custom tasks for this need to go in build.custom/analyzers)      - ndepend.step (the custom tasks for this need to go in build.custom/analyzers)      - moma.step (the custom tasks for this need to go in build.custom/analyzers)    * package.step NOTE: If you include build.custom/package.replace.step, the items below will not run.      - deploymentBuilder.step Customize UppercuT Builds With PowerShell UppercuT can now be extended with PowerShell (PS). To customize any extension point with PS, just add .ps1 to the end of the file name and write your custom tasks in PowerShell. If you are not signing your scripts you will need to change a setting in the UppercuT.config file. This does impose a security risk, because this allows PS to now run any PS script. This setting stays that way on ANY machine that runs the build until manually changed by someone. I’m not responsible if you mess up your machine or anyone else’s by doing this. You’ve been warned. Now that you are fully aware of any security holes you may open and are okay with that, let’s move on. Let’s create a file called default.replace.build.ps1 in the build.custom folder. Open that file in notepad and let’s add this to it: write-host "hello - I'm a custom task written in Powershell!" Now, let’s run build.bat. You could get some PSake action going here. I won’t dive into that in this post though. Customize UppercuT Builds With Ruby If you want to customize any extension point with Ruby, just add .rb to the end of the file name and write your custom tasks in Ruby.  Let’s write a custom ruby task for UC. If you were thinking it would be the same as the one we just wrote for PS, you’d be right! In the build.custom folder, lets create a file called default.replace.build.rb. Open that file in notepad and let’s put this in there: puts "I'm a custom ruby task!" Now, let’s run build.bat again. That’s chunky bacon. UppercuT and Albacore.NET Just for fun, I wanted to see if I could replace the compile.step with a Rake task. Not just any rake task, Albacore’s msbuild task. Albacore is a suite of rake tasks brought about by Derick Bailey to make building .NET with Rake easier. It has quite a bit of support with developers that are using Rake to build code. In my build.custom folder, I drop a compile.replace.step.rb. I also put in a separate file that will contain my Albacore rake task and I call that compile.rb. What are the contents of compile.replace.step.rb? rake = 'rake' arguments= '-f ' + Dir.pwd + '/../build.custom/compile.rb' #puts "Calling #{rake} " + arguments system("#{rake} " + arguments) Since the custom extensions call ruby, we have to shell back out and call rake. That’s what we are doing here. We also realize that ruby is called from the build folder, so we need to back out and dive into the build.custom folder to find the file that is technically next to us. What are the contents of compile.rb? require 'rubygems' require 'fileutils' require 'albacore' task :default => [:compile] puts "Using Ruby to compile UppercuT with Albacore Tasks" desc 'Compile the source' msbuild :compile do |msb| msb.properties = { :configuration => :Release, :outputpath => '../../build_output/UppercuT' } msb.targets [:clean, :build] msb.verbosity = "quiet" msb.path_to_command = 'c:/Windows/Microsoft.NET/Framework/v3.5/MSBuild.exe' msb.solution = '../uppercut.sln' end We are using the msbuild task here. We change the output path to the build_output/UppercuT folder. The output path has “../../” because this is based on every project. We could grab the current directory and then point the task specifically to a folder if we have projects that are at different levels. We want the verbosity to be quiet so we set that as well. So what kind of output do you get for this? Let’s run build.bat custom_tasks_replace:      [echo] Running custom tasks instead of normal tasks if C:\code\uppercut\build\..\build.custom\compile.replace.step exists.      [exec] (in C:/code/uppercut/build)      [exec] Using Ruby to compile UppercuT with Albacore Tasks      [exec] Microsoft (R) Build Engine Version 3.5.30729.4926      [exec] [Microsoft .NET Framework, Version 2.0.50727.4927]      [exec] Copyright (C) Microsoft Corporation 2007. All rights reserved. If you think this is awesome, you’d be right!   With this knowledge you shall build.

    Read the article

  • C#/.NET Little Wonders: Using &lsquo;default&rsquo; to Get Default Values

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today’s little wonder is another of those small items that can help a lot in certain situations, especially when writing generics.  In particular, it is useful in determining what the default value of a given type would be. The Problem: what’s the default value for a generic type? There comes a time when you’re writing generic code where you may want to set an item of a given generic type.  Seems simple enough, right?  We’ll let’s see! Let’s say we want to query a Dictionary<TKey, TValue> for a given key and get back the value, but if the key doesn’t exist, we’d like a default value instead of throwing an exception. So, for example, we might have a the following dictionary defined: 1: var lookup = new Dictionary<int, string> 2: { 3: { 1, "Apple" }, 4: { 2, "Orange" }, 5: { 3, "Banana" }, 6: { 4, "Pear" }, 7: { 9, "Peach" } 8: }; And using those definitions, perhaps we want to do something like this: 1: // assume a default 2: string value = "Unknown"; 3:  4: // if the item exists in dictionary, get its value 5: if (lookup.ContainsKey(5)) 6: { 7: value = lookup[5]; 8: } But that’s inefficient, because then we’re double-hashing (once for ContainsKey() and once for the indexer).  Well, to avoid the double-hashing, we could use TryGetValue() instead: 1: string value; 2:  3: // if key exists, value will be put in value, if not default it 4: if (!lookup.TryGetValue(5, out value)) 5: { 6: value = "Unknown"; 7: } But the “flow” of using of TryGetValue() can get clunky at times when you just want to assign either the value or a default to a variable.  Essentially it’s 3-ish lines (depending on formatting) for 1 assignment.  So perhaps instead we’d like to write an extension method to support a cleaner interface that will return a default if the item isn’t found: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } 17:  So this creates an extension method on Dictionary<TKey, TValue> that will attempt to get a value using the given key, and will return the defaultIfNotFound as a stand-in if the key does not exist. This code compiles, fine, but what if we would like to go one step further and allow them to specify a default if not found, or accept the default for the type?  Obviously, we could overload the method to take the default or not, but that would be duplicated code and a bit heavy for just specifying a default.  It seems reasonable that we could set the not found value to be either the default for the type, or the specified value. So what if we defaulted the type to null? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = null) // ... No, this won’t work, because only reference types (and Nullable<T> wrapped types due to syntactical sugar) can be assigned to null.  So what about a calling parameterless constructor? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = new TValue()) // ... No, this won’t work either for several reasons.  First, we’d expect a reference type to return null, not an “empty” instance.  Secondly, not all reference types have a parameter-less constructor (string for example does not).  And finally, a constructor cannot be determined at compile-time, while default values can. The Solution: default(T) – returns the default value for type T Many of us know the default keyword for its uses in switch statements as the default case.  But it has another use as well: it can return us the default value for a given type.  And since it generates the same defaults that default field initialization uses, it can be determined at compile-time as well. For example: 1: var x = default(int); // x is 0 2:  3: var y = default(bool); // y is false 4:  5: var z = default(string); // z is null 6:  7: var t = default(TimeSpan); // t is a TimeSpan with Ticks == 0 8:  9: var n = default(int?); // n is a Nullable<int> with HasValue == false Notice that for numeric types the default is 0, and for reference types the default is null.  In addition, for struct types, the value is a default-constructed struct – which simply means a struct where every field has their default value (hence 0 Ticks for TimeSpan, etc.). So using this, we could modify our code to this: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound = default(TValue)) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } Now, if defaultIfNotFound is unspecified, it will use default(TValue) which will be the default value for whatever value type the dictionary holds.  So let’s consider how we could use this: 1: lookup.GetValueOrDefault(1); // returns “Apple” 2:  3: lookup.GetValueOrDefault(5); // returns null 4:  5: lookup.GetValueOrDefault(5, “Unknown”); // returns “Unknown” 6:  Again, do not confuse a parameter-less constructor with the default value for a type.  Remember that the default value for any type is the compile-time default for any instance of that type (0 for numeric, false for bool, null for reference types, and struct will all default fields for struct).  Consider the difference: 1: // both zero 2: int i1 = default(int); 3: int i2 = new int(); 4:  5: // both “zeroed” structs 6: var dt1 = default(DateTime); 7: var dt2 = new DateTime(); 8:  9: // sb1 is null, sb2 is an “empty” string builder 10: var sb1 = default(StringBuilder()); 11: var sb2 = new StringBuilder(); So in the above code, notice that the value types all resolve the same whether using default or parameter-less construction.  This is because a value type is never null (even Nullable<T> wrapped types are never “null” in a reference sense), they will just by default contain fields with all default values. However, for reference types, the default is null and not a constructed instance.  Also it should be noted that not all classes have parameter-less constructors (string, for instance, doesn’t have one – and doesn’t need one). Summary Whenever you need to get the default value for a type, especially a generic type, consider using the default keyword.  This handy word will give you the default value for the given type at compile-time, which can then be used for initialization, optional parameters, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,default

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • Parent Objects

    - by Ali Bahrami
    Support for Parent Objects was added in Solaris 11 Update 1. The following material is adapted from the PSARC arc case, and the Solaris Linker and Libraries Manual. A "plugin" is a shared object, usually loaded via dlopen(), that is used by a program in order to allow the end user to add functionality to the program. Examples of plugins include those used by web browsers (flash, acrobat, etc), as well as mdb and elfedit modules. The object that loads the plugin at runtime is called the "parent object". Unlike most object dependencies, the parent is not identified by name, but by its status as the object doing the load. Historically, building a good plugin is has been more complicated than it should be: A parent and its plugin usually share a 2-way dependency: The plugin provides one or more routines for the parent to call, and the parent supplies support routines for use by the plugin for things like memory allocation and error reporting. It is a best practice to build all objects, including plugins, with the -z defs option, in order to ensure that the object specifies all of its dependencies, and is self contained. However: The parent is usually an executable, which cannot be linked to via the usual library mechanisms provided by the link editor. Even if the parent is a shared object, which could be a normal library dependency to the plugin, it may be desirable to build plugins that can be used by more than one parent, in which case embedding a dependency NEEDED entry for one of the parents is undesirable. The usual way to build a high quality plugin with -z defs uses a special mapfile provided by the parent. This mapfile defines the parent routines, specifying the PARENT attribute (see example below). This works, but is inconvenient, and error prone. The symbol table in the parent already describes what it makes available to plugins — ideally the plugin would obtain that information directly rather than from a separate mapfile. The new -z parent option to ld allows a plugin to link to the parent and access the parent symbol table. This differs from a typical dependency: No NEEDED record is created. The relationship is recorded as a logical connection to the parent, rather than as an explicit object name However, it operates in the same manner as any other dependency in terms of making symbols available to the plugin. When the -z parent option is used, the link-editor records the basename of the parent object in the dynamic section, using the new tag DT_SUNW_PARENT. This is an informational tag, which is not used by the runtime linker to locate the parent, but which is available for diagnostic purposes. The ld(1) manpage documentation for the -z parent option is: -z parent=object Specifies a "parent object", which can be an executable or shared object, against which to link the output object. This option is typically used when creating "plugin" shared objects intended to be loaded by an executable at runtime via the dlopen() function. The symbol table from the parent object is used to satisfy references from the plugin object. The use of the -z parent option makes symbols from the object calling dlopen() available to the plugin. Example For this example, we use a main program, and a plugin. The parent provides a function named parent_callback() for the plugin to call. The plugin provides a function named plugin_func() to the parent: % cat main.c #include <stdio.h> #include <dlfcn.h> #include <link.h> void parent_callback(void) { printf("plugin_func() has called parent_callback()\n"); } int main(int argc, char **argv) { typedef void plugin_func_t(void); void *hdl; plugin_func_t *plugin_func; if (argc != 2) { fprintf(stderr, "usage: main plugin\n"); return (1); } if ((hdl = dlopen(argv[1], RTLD_LAZY)) == NULL) { fprintf(stderr, "unable to load plugin: %s\n", dlerror()); return (1); } plugin_func = (plugin_func_t *) dlsym(hdl, "plugin_func"); if (plugin_func == NULL) { fprintf(stderr, "unable to find plugin_func: %s\n", dlerror()); return (1); } (*plugin_func)(); return (0); } % cat plugin.c #include <stdio.h> extern void parent_callback(void); void plugin_func(void) { printf("parent has called plugin_func() from plugin.so\n"); parent_callback(); } Building this in the traditional manner, without -zdefs: % cc -o main main.c % cc -G -o plugin.so plugin.c % ./main ./plugin.so parent has called plugin_func() from plugin.so plugin_func() has called parent_callback() As noted above, when building any shared object, the -z defs option is recommended, in order to ensure that the object is self contained and specifies all of its dependencies. However, the use of -z defs prevents the plugin object from linking due to the unsatisfied symbol from the parent object: % cc -zdefs -G -o plugin.so plugin.c Undefined first referenced symbol in file parent_callback plugin.o ld: fatal: symbol referencing errors. No output written to plugin.so A mapfile can be used to specify to ld that the parent_callback symbol is supplied by the parent object. % cat plugin.mapfile $mapfile_version 2 SYMBOL_SCOPE { global: parent_callback { FLAGS = PARENT }; }; % cc -zdefs -Mplugin.mapfile -G -o plugin.so plugin.c However, the -z parent option to ld is the most direct solution to this problem, allowing the plugin to actually link against the parent object, and obtain the available symbols from it. An added benefit of using -z parent instead of a mapfile, is that the name of the parent object is recorded in the dynamic section of the plugin, and can be displayed by the file utility: % cc -zdefs -zparent=main -G -o plugin.so plugin.c % elfdump -d plugin.so | grep PARENT [0] SUNW_PARENT 0xcc main % file plugin.so plugin.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent main, dynamically linked, not stripped % ./main ./plugin.so parent has called plugin_func() from plugin.so plugin_func() has called parent_callback() We can also observe this in elfedit plugins on Solaris systems running Solaris 11 Update 1 or newer: % file /usr/lib/elfedit/dyn.so /usr/lib/elfedit/dyn.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent elfedit, dynamically linked, not stripped, no debugging information available Related Other Work The GNU ld has an option named --just-symbols that can be used in a similar manner: --just-symbols=filename Read symbol names and their addresses from filename, but do not relocate it or include it in the output. This allows your output file to refer symbolically to absolute locations of memory defined in other programs. You may use this option more than once. -z parent is a higher level operation aimed specifically at simplifying the construction of high quality plugins. Although it employs the same operation, it differs from --just symbols in 2 significant ways: There can only be one parent. The parent is recorded in the created object, and can be displayed by 'file', or other similar tools.

    Read the article

  • Writing Unit Tests for an ASP.NET MVC Action Method that handles Ajax Request and Normal Request

    - by shiju
    In this blog post, I will demonstrate how to write unit tests for an ASP.NET MVC action method, which handles both Ajax request and normal HTTP Request. I will write a unit test for specifying the behavior of an Ajax request and will write another unit test for specifying the behavior of a normal HTTP request. Both Ajax request and normal request will be handled by a single action method. So the ASP.NET MVC action method will be execute HTTP Request object’s IsAjaxRequest method for identifying whether it is an Ajax request or not. So we have to create mock object for Request object and also have to make as a Ajax request from the unit test for verifying the behavior of an Ajax request. I have used NUnit and Moq for writing unit tests. Let me write a unit test for a Ajax request Code Snippet [Test] public void Index_AjaxRequest_Returns_Partial_With_Expense_List() {     // Arrange       Mock<HttpRequestBase> request = new Mock<HttpRequestBase>();     Mock<HttpResponseBase> response = new Mock<HttpResponseBase>();     Mock<HttpContextBase> context = new Mock<HttpContextBase>();       context.Setup(c => c.Request).Returns(request.Object);     context.Setup(c => c.Response).Returns(response.Object);     //Add XMLHttpRequest request header     request.Setup(req => req["X-Requested-With"]).         Returns("XMLHttpRequest");       IEnumerable<Expense> fakeExpenses = GetMockExpenses();     expenseRepository.Setup(x => x.GetMany(It.         IsAny<Expression<Func<Expense, bool>>>())).         Returns(fakeExpenses);     ExpenseController controller = new ExpenseController(         commandBus.Object, categoryRepository.Object,         expenseRepository.Object);     controller.ControllerContext = new ControllerContext(         context.Object, new RouteData(), controller);     // Act     var result = controller.Index(null, null) as PartialViewResult;     // Assert     Assert.AreEqual("_ExpenseList", result.ViewName);     Assert.IsNotNull(result, "View Result is null");     Assert.IsInstanceOf(typeof(IEnumerable<Expense>),             result.ViewData.Model, "Wrong View Model");     var expenses = result.ViewData.Model as IEnumerable<Expense>;     Assert.AreEqual(3, expenses.Count(),         "Got wrong number of Categories");         }   In the above unit test, we are calling Index action method of a controller named ExpenseController, which will returns a PartialView named _ExpenseList, if it is an Ajax request. We have created mock object for HTTPContextBase and setup XMLHttpRequest request header for Request object’s X-Requested-With for making it as a Ajax request. We have specified the ControllerContext property of the controller with mocked object HTTPContextBase. Code Snippet controller.ControllerContext = new ControllerContext(         context.Object, new RouteData(), controller); Let me write a unit test for a normal HTTP method Code Snippet [Test] public void Index_NormalRequest_Returns_Index_With_Expense_List() {     // Arrange               Mock<HttpRequestBase> request = new Mock<HttpRequestBase>();     Mock<HttpResponseBase> response = new Mock<HttpResponseBase>();     Mock<HttpContextBase> context = new Mock<HttpContextBase>();       context.Setup(c => c.Request).Returns(request.Object);     context.Setup(c => c.Response).Returns(response.Object);       IEnumerable<Expense> fakeExpenses = GetMockExpenses();       expenseRepository.Setup(x => x.GetMany(It.         IsAny<Expression<Func<Expense, bool>>>())).         Returns(fakeExpenses);     ExpenseController controller = new ExpenseController(         commandBus.Object, categoryRepository.Object,         expenseRepository.Object);     controller.ControllerContext = new ControllerContext(         context.Object, new RouteData(), controller);     // Act     var result = controller.Index(null, null) as ViewResult;     // Assert     Assert.AreEqual("Index", result.ViewName);     Assert.IsNotNull(result, "View Result is null");     Assert.IsInstanceOf(typeof(IEnumerable<Expense>),             result.ViewData.Model, "Wrong View Model");     var expenses = result.ViewData.Model         as IEnumerable<Expense>;     Assert.AreEqual(3, expenses.Count(),         "Got wrong number of Categories"); }   In the above unit test, we are not specifying the XMLHttpRequest request header for Request object’s X-Requested-With, so that it will be normal HTTP Request. If this is a normal request, the action method will return a ViewResult with a view template named Index. The below is the implementation of Index action method Code Snippet public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last date     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year,             startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseRepository.GetMany(         exp => exp.Date >= startDate && exp.Date <= endDate);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("_ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View("Index",expenses); }   The index action method will returns a PartialView named _ExpenseList, if it is an Ajax request and will returns a View named Index if it is a normal request. Source Code The source code has been taken from my EFMVC app which can download from here

    Read the article

  • Physical Directories vs. MVC View Paths

    - by Rick Strahl
    This post falls into the bucket of operator error on my part, but I want to share this anyway because it describes an issue that has bitten me a few times now and writing it down might keep it a little stronger in my mind. I've been working on an MVC project the last few days, and at the end of a long day I accidentally moved one of my View folders from the MVC Root Folder to the project root. It must have been at the very end of the day before shutting down because tests and manual site navigation worked fine just before I quit for the night. I checked in changes and called it a night. Next day I came back, started running the app and had a lot of breaks with certain views. Oddly custom routes to these controllers/views worked, but stock /{controller}/{action} routes would not. After a bit of spelunking I realized that "Hey one of my View Folders is missing", which made some sense given the error messages I got. I looked in the recycle bin - nothing there, so rather than try to figure out what the hell happened, just restored from my last SVN checkin. At this point the folders are back… but… view access  still ends up breaking for this set of views. Specifically I'm getting the Yellow Screen of Death with: CS0103: The name 'model' does not exist in the current context Here's the full error: Server Error in '/ClassifiedsWeb' Application. Compilation ErrorDescription: An error occurred during the compilation of a resource required to service this request. Please review the following specific error details and modify your source code appropriately.Compiler Error Message: CS0103: The name 'model' does not exist in the current contextSource Error: Line 1: @model ClassifiedsWeb.EntryViewModel Line 2: @{ Line 3: ViewBag.Title = Model.Entry.Title + " - " + ClassifiedsBusiness.App.Configuration.ApplicationName; Source File: c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Classifieds\Show.cshtml    Line: 1 Compiler Warning Messages: Show Detailed Compiler Output: Show Complete Compilation Source: Version Information: Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.272 Here's what's really odd about this error: The views now do exist in the /Views/Classifieds folder of the project, but it appears like MVC is trying to execute the views directly. This is getting pretty weird, man! So I hook up some break points in my controllers to see if my controller actions are getting fired - and sure enough it turns out they are not - but only for those views that were previously 'lost' and then restored from SVN. WTF? At this point I'm thinking that I must have messed up one of the config files, but after some more spelunking and realizing that all the other Controller views work, I give up that idea. Config's gotta be OK if other controllers and views are working. Root Folders and MVC Views don't mix As I mentioned the problem was the fact that I inadvertantly managed to drag my View folder to the root folder of the project. Here's what this looks like in my FUBAR'd project structure after I copied back /Views/Classifieds folder from SVN: There's the actual root folder in the /Views folder and the accidental copy that sits of the root. I of course did not notice the /Classifieds folder at the root because it was excluded and didn't show up in the project. Now, before you call me a complete idiot remember that this happened by accident - an accidental drag probably just before shutting down for the night. :-) So why does this break? MVC should be happy with views in the /Views/Classifieds folder right? While MVC might be happy, IIS is not. The fact that there is a physical folder on disk takes precedence over MVC's routing. In other words if a URL exists that matches a route the pysical path is accessed first. What happens here is that essentially IIS is trying to execute the .cshtml pages directly without ever routing to the Controller methods. In the error page I showed above my clue should have been that the view was served as: c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Classifieds\Show.cshtml rather than c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Views\Classifieds\Show.cshtml But of course I didn't notice that right away, just skimming to the end and looking at the file name. The reason that /classifieds/list actually fires that file is that the ASP.NET Web Pages engine looks for physical files on disk that match a path. IOW, when calling Web Pages you drop the .cshtml off the Razor page and IIS will serve that just fine. So: /classifieds/list looks and tries to find /classifieds/list.cshtml and executes that script. And that is exactly what's happening. Web Pages is trying to execute the .cshtml file and it fails because Web Pages knows nothing about the @model tag which is an MVC specific template extension. This is why my breakpoints in the controller methods didn't fire and it also explains why the error mentions that the @model key word is invalid (@model is an MVC provided template enhancement to the Razor Engine). The solution of course is super simple: Delete the accidentally created root folder and the problem is solved. Routing and Physical Paths I've run into problems with this before actually. In the past I've had a number of applications that had a physical /Admin folder which also would conflict with an MVC Admin controller. More than once I ended up wondering why the index route (/Admin/) was not working properly. If a physical /Admin folder exists /Admin will not route to the Index action (or whatever default action you have set up, but instead try to list the directory or show the default document in the folder. The only way to force the index page through MVC is to explicitly use /Admin/Index. Makes perfect sense once you realize the physical folder is there, but that's easy to forget in an MVC application. As you might imagine after a few times of running into this I gave up on the Admin folder and moved everything into MVC views to handle those operations. Still it's one of those things that can easily bite you, because the behavior and error messages seem to point at completely different  problems. Moral of the story is: If you see routing problems where routes are not reaching obvious controller methods, always check to make sure there's isn't a physical path being mapped by IIS instead. That way you won't feel stupid like I did after trying a million things for about an hour before discovering my sloppy mousing behavior :-)© Rick Strahl, West Wind Technologies, 2005-2012Posted in MVC   IIS7   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Metro: Grouping Items in a ListView Control

    - by Stephen.Walther
    The purpose of this blog entry is to explain how you can group list items when displaying the items in a WinJS ListView control. In particular, you learn how to group a list of products by product category. Displaying a grouped list of items in a ListView control requires completing the following steps: Create a Grouped data source from a List data source Create a Grouped Header Template Declare the ListView control so it groups the list items Creating the Grouped Data Source Normally, you bind a ListView control to a WinJS.Binding.List object. If you want to render list items in groups, then you need to bind the ListView to a grouped data source instead. The following code – contained in a file named products.js — illustrates how you can create a standard WinJS.Binding.List object from a JavaScript array and then return a grouped data source from the WinJS.Binding.List object by calling its createGrouped() method: (function () { "use strict"; // Create List data source var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44, category: "Beverages" }, { name: "Oranges", price: 1.99, category: "Fruit" }, { name: "Wine", price: 8.55, category: "Beverages" }, { name: "Apples", price: 2.44, category: "Fruit" }, { name: "Steak", price: 1.99, category: "Other" }, { name: "Eggs", price: 2.44, category: "Other" }, { name: "Mushrooms", price: 1.99, category: "Other" }, { name: "Yogurt", price: 2.44, category: "Other" }, { name: "Soup", price: 1.99, category: "Other" }, { name: "Cereal", price: 2.44, category: "Other" }, { name: "Pepsi", price: 1.99, category: "Beverages" } ]); // Create grouped data source var groupedProducts = products.createGrouped( function (dataItem) { return dataItem.category; }, function (dataItem) { return { title: dataItem.category }; }, function (group1, group2) { return group1.charCodeAt(0) - group2.charCodeAt(0); } ); // Expose the grouped data source WinJS.Namespace.define("ListViewDemos", { products: groupedProducts }); })(); Notice that the createGrouped() method requires three functions as arguments: groupKey – This function associates each list item with a group. The function accepts a data item and returns a key which represents a group. In the code above, we return the value of the category property for each product. groupData – This function returns the data item displayed by the group header template. For example, in the code above, the function returns a title for the group which is displayed in the group header template. groupSorter – This function determines the order in which the groups are displayed. The code above displays the groups in alphabetical order: Beverages, Fruit, Other. Creating the Group Header Template Whenever you create a ListView control, you need to create an item template which you use to control how each list item is rendered. When grouping items in a ListView control, you also need to create a group header template. The group header template is used to render the header for each group of list items. Here’s the markup for both the item template and the group header template: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> You should declare the two templates in the same file as you declare the ListView control – for example, the default.html file. Declaring the ListView Control The final step is to declare the ListView control. Here’s the required markup: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> In the markup above, six properties of the ListView control are set when the control is declared. First the itemDataSource and itemTemplate are specified. Nothing new here. Next, the group data source and group header template are specified. Notice that the group data source is represented by the ListViewDemos.products.groups.dataSource property of the grouped data source. Finally, notice that the layout of the ListView is changed to Grid Layout. You are required to use Grid Layout (instead of the default List Layout) when displaying grouped items in a ListView. Here’s the entire contents of the default.html page: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; font-size: x-large; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div id="productGroupHeaderTemplate" data-win-control="WinJS.Binding.Template"> <div class="productGroupHeader"> <h1 data-win-bind="innerText: title"></h1> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate'), groupDataSource:ListViewDemos.products.groups.dataSource, groupHeaderTemplate:select('#productGroupHeaderTemplate'), layout: {type: WinJS.UI.GridLayout} }"> </div> </body> </html> Notice that the default.html page includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The default.html page also contains the declarations of the item template, group header template, and ListView control. Summary The goal of this blog entry was to explain how you can group items in a ListView control. You learned how to create a grouped data source, a group header template, and declare a ListView so that it groups its list items.

    Read the article

  • .NET to iOS: From WinForms to the iPad

    - by RobertChipperfield
    One of the great things about working at Red Gate is getting to play with new technology - and right now, that means mobile. A few weeks ago, we decided that a little research into the tablet computing arena was due, and purely from a numbers point of view, that suggested the iPad as a good target device. A quick trip to iPhoneDevCon in San Diego later, and Marine and I came back full of ideas, and with some concept of how iOS development was meant to work. Here's how we went from there to the release of Stacks & Heaps, our geeky take on the classic "Snakes & Ladders" game. Step 1: Buy a Mac I've played with many operating systems in my time: from the original BBC Model B, through DOS, Windows, Linux, and others, but I'd so far managed to avoid buying fruit-flavoured computer hardware! If you want to develop for the iPhone, iPad or iPod Touch, that's the first thing that needs to change. If you've not used OS X before, the first thing you'll realise is that everything is different! In the interests of avoiding a flame war in the comments section, I'll only go so far as to say that a lot of my Windows-flavoured muscle memory no longer worked. If you're in the UK, you'll also realise your keyboard is lacking a # key, and that " and @ are the other way around from normal. The wonderful Ukelele keyboard layout editor restores some sanity here, as long as you don't look at the keyboard when you're typing. I couldn't give up the PC entirely, but a handy application called Synergy comes to the rescue - it lets you share a single keyboard and mouse between multiple machines. There's a few limitations: Alt-Tab always seems to go to the Mac, and Windows 7's UAC dialogs require the local mouse for security reasons, but it gets you a long way at least. Step 2: Register as an Apple Developer You can register as an Apple Developer free of charge, and that lets you download XCode and the iOS SDK. You also get the iPhone / iPad emulator, which is handy, since you'll need to be a paid member before you can deploy your apps to a real device. You can either enroll as an individual, or as a company. They both cost the same ($99/year), but there's a few differences between them. If you register as a company, you can add multiple developers to your team (all for the same $99 - not $99 per developer), and you get to use your company name in the App Store. However, you'll need to send off significantly more documentation to Apple, and I suspect the process takes rather longer than for an individual, where they just need to verify some credit card details. Here's a tip: if you're registering as a company, do so as early as possible. The approval process can take a while to complete, so get the application in in plenty of time. Step 3: Learn to love the square brackets! Objective-C is the language of the iPad. C and C++ are also supported, and if you're doing some serious game development, you'll probably spend most of your time in C++ talking OpenGL, but for forms-based apps, you'll be interacting with a lot of the Objective-C SDK. Like shifting from Ctrl-C to Cmd-C, it feels a little odd at first, with the familiar string.format(.) turning into: NSString *myString = [NSString stringWithFormat:@"Hello world, it's %@", [NSDate date]]; Thankfully XCode's auto-complete is normally passable, if not up to Visual Studio's standards, which coupled with a huge amount of content on Stack Overflow means you'll soon get to grips with the API. You'll need to get used to some terminology changes, though; here's an incomplete approximation: Coming from a .NET background, there's some luxuries you no longer have developing Objective C in XCode: Generics! Remember back in .NET 1.1, when all collections were just objects? Yup, we're back there now. ReSharper. Or, more generally, very much refactoring support. The not-many-keystrokes to rename a class, its file, and al references to it in Visual Studio turns into a much more painful experience in XCode. Garbage collection. This is actually rather less of an issue than you might expect: if you follow the rules, the reference counting provided by Objective C gets you a long way without too much pain. Circular references are their usual problematic self, though. Decent exception handling. You do have exceptions, but they're nowhere near as widely used. Generally, if something goes wrong, you get nil (see translation table above) back. Which brings me on to. Calling a method on a nil object isn't a failure - it just returns nil itself! There's many arguments for and against this, but personally I fall into the "stuff should fail as quickly and explicitly as possible" camp. Less specifically, I found that there's more chance of code failing at runtime rather than getting caught at compile-time: using the @selector(.) syntax to pass a method signature isn't (can't be) checked at compile-time, so the first you know about a typo is a crash when you try and call it. The solution to this is of course lots of great testing, both automated and manual, but I still find comfort in provably correct type safety being enforced in addition to testing. Step 4: Submit to the App Store Assuming you want to distribute to more than a handful of devices, you're going to need to submit your app to the Apple App Store. There's a few gotchas in terms of getting builds signed with the right certificates, and you'll be bouncing around between XCode and iTunes Connect a fair bit, but eventually you get everything checked off the to-do list, and are ready to upload your first binary! With some amount of anticipation, I pressed the Upload button in XCode, ready to release our creation into the world, but was instead greeted by an error informing me my XML file was malformed. Uh. A little Googling later, and it turned out that a simple rename from "Stacks&Heaps.app" to "StacksAndHeaps.app" worked around an XML escaping bug, and we were good to go. The next step is to wait for approval (or otherwise). After a couple of weeks of intensive development, this part is agonising. Did we make it? The Apple jury is still out at the moment, but our fingers are firmly crossed! In the meantime, you can see some screenshots and leave us your email address if you'd like us to get in touch when it does go live at the MobileFoo website. Step 5: Profit! Actually, that wasn't the idea here: Stacks & Heaps is free; there's no adverts, and we're not going to sell all your data either. So why did we do it? We wanted to get an idea of what it's like to move from coding for a desktop environment, to something completely different. We don't know whether in a year's time, the iPad will still be the dominant force, or whether Android will have smoothed out some bugs, tweaked the performance, and polished the UI, but I think it's a fairly sure bet that the tablet form factor is here to stay. We want to meet people who are using it, start chatting to them, and find out about some of the pain they're feeling. What better way to do that than do it ourselves, and get to write a cool game in the process?

    Read the article

  • Service Broker, not ETL

    - by jamiet
    I have been very quiet on this blog of late and one reason for that is I have been very busy on a client project that I would like to talk about a little here. The client that I have been working for has a website that runs on a distributed architecture utilising a messaging infrastructure for communication between different endpoints. My brief was to build a system that could consume these messages and produce analytical information in near-real-time. More specifically I basically had to deliver a data warehouse however it was the real-time aspect of the project that really intrigued me. This real-time requirement meant that using an Extract transformation, Load (ETL) tool was out of the question and so I had no choice but to write T-SQL code (i.e. stored-procedures) to process the incoming messages and load the data into the data warehouse. This concerned me though – I had no way to control the rate at which data would arrive into the system yet we were going to have end-users querying the system at the same time that those messages were arriving; the potential for contention in such a scenario was pretty high and and was something I wanted to minimise as much as possible. Moreover I did not want the processing of data inside the data warehouse to have any impact on the customer-facing website. As you have probably guessed from the title of this blog post this is where Service Broker stepped in! For those that have not heard of it Service Broker is a queuing technology that has been built into SQL Server since SQL Server 2005. It provides a number of features however the one that was of interest to me was the fact that it facilitates asynchronous data processing which, in layman’s terms, means the ability to process some data without requiring the system that supplied the data having to wait for the response. That was a crucial feature because on this project the customer-facing website (in effect an OLTP system) would be calling one of our stored procedures with each message – we did not want to cause the OLTP system to wait on us every time we processed one of those messages. This asynchronous nature also helps to alleviate the contention problem because the asynchronous processing activity is handled just like any other task in the database engine and hence can wait on another task (such as an end-user query). Service Broker it was then! The stored procedure called by the OLTP system would simply put the message onto a queue and we would use a feature called activation to pick each message off the queue in turn and process it into the warehouse. At the time of writing the system is not yet up to full capacity but so far everything seems to be working OK (touch wood) and crucially our users are seeing data in near-real-time. By near-real-time I am talking about latencies of a few minutes at most and to someone like me who is used to building systems that have overnight latencies that is a huge step forward! So then, am I advocating that you all go out and dump your ETL tools? Of course not, no! What this project has taught me though is that in certain scenarios there may be better ways to implement a data warehouse system then the traditional “load data in overnight” approach that we are all used to. Moreover I have really enjoyed getting to grips with a new technology and even if you don’t want to use Service Broker you might want to consider asynchronous messaging architectures for your BI/data warehousing solutions in the future. This has been a very high level overview of my use of Service Broker and I have deliberately left out much of the minutiae of what has been a very challenging implementation. Nonetheless I hope I have caused you to reflect upon your own approaches to BI and question whether other approaches may be more tenable. All comments and questions gratefully received! Lastly, if you have never used Service Broker before and want to kick the tyres I have provided below a very simple “Service Broker Hello World” script that will create all of the objects required to facilitate Service Broker communications and then send the message “Hello World” from one place to anther! This doesn’t represent a “proper” implementation per se because it doesn’t close down down conversation objects (which you should always do in a real-world scenario) but its enough to demonstrate the capabilities! @Jamiet ----------------------------------------------------------------------------------------------- /*This is a basic Service Broker Hello World app. Have fun! -Jamie */ USE MASTER GO CREATE DATABASE SBTest GO --Turn Service Broker on! ALTER DATABASE SBTest SET ENABLE_BROKER GO USE SBTest GO -- 1) we need to create a message type. Note that our message type is -- very simple and allowed any type of content CREATE MESSAGE TYPE HelloMessage VALIDATION = NONE GO -- 2) Once the message type has been created, we need to create a contract -- that specifies who can send what types of messages CREATE CONTRACT HelloContract (HelloMessage SENT BY INITIATOR) GO --We can query the metadata of the objects we just created SELECT * FROM   sys.service_message_types WHERE name = 'HelloMessage'; SELECT * FROM   sys.service_contracts WHERE name = 'HelloContract'; SELECT * FROM   sys.service_contract_message_usages WHERE  service_contract_id IN (SELECT service_contract_id FROM sys.service_contracts WHERE name = 'HelloContract') AND        message_type_id IN (SELECT message_type_id FROM sys.service_message_types WHERE name = 'HelloMessage'); -- 3) The communication is between two endpoints. Thus, we need two queues to -- hold messages CREATE QUEUE SenderQueue CREATE QUEUE ReceiverQueue GO --more querying metatda SELECT * FROM sys.service_queues WHERE name IN ('SenderQueue','ReceiverQueue'); --we can also select from the queues as if they were tables SELECT * FROM SenderQueue   SELECT * FROM ReceiverQueue   -- 4) Create the required services and bind them to be above created queues CREATE SERVICE Sender   ON QUEUE SenderQueue CREATE SERVICE Receiver   ON QUEUE ReceiverQueue (HelloContract) GO --more querying metadata SELECT * FROM sys.services WHERE name IN ('Receiver','Sender'); -- 5) At this point, we can begin the conversation between the two services by -- sending messages DECLARE @conversationHandle UNIQUEIDENTIFIER DECLARE @message NVARCHAR(100) BEGIN   BEGIN TRANSACTION;   BEGIN DIALOG @conversationHandle         FROM SERVICE Sender         TO SERVICE 'Receiver'         ON CONTRACT HelloContract WITH ENCRYPTION=OFF   -- Send a message on the conversation   SET @message = N'Hello, World';   SEND  ON CONVERSATION @conversationHandle         MESSAGE TYPE HelloMessage (@message)   COMMIT TRANSACTION END GO --check contents of queues SELECT * FROM SenderQueue   SELECT * FROM ReceiverQueue   GO -- Receive a message from the queue RECEIVE CONVERT(NVARCHAR(MAX), message_body) AS MESSAGE FROM ReceiverQueue GO --If no messages were received and/or you can't see anything on the queues you may wish to check the following for clues: SELECT * FROM sys.transmission_queue -- Cleanup DROP SERVICE Sender DROP SERVICE Receiver DROP QUEUE SenderQueue DROP QUEUE ReceiverQueue DROP CONTRACT HelloContract DROP MESSAGE TYPE HelloMessage GO USE MASTER GO DROP DATABASE SBTest GO

    Read the article

  • Collide with rotation of the object

    - by Lahiru
    I'm developing a mirror for lazer beam(Ball sprite). There I'm trying to redirect the laze beam according to the ration degree of the mirror(Rectangle). How can I collide the ball to the correct angle if the colliding object is with some angle(45 deg) rather than colliding back. here is an screen shot of my work here is my code using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace collision { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; Texture2D ballTexture; Rectangle ballBounds; Vector2 ballPosition; Vector2 ballVelocity; float ballSpeed = 30f; Texture2D blockTexture; Rectangle blockBounds; Vector2 blockPosition; private Vector2 origin; KeyboardState keyboardState; //Font SpriteFont Font1; Vector2 FontPos; private String displayText; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here ballPosition = new Vector2(this.GraphicsDevice.Viewport.Width / 2, this.GraphicsDevice.Viewport.Height * 0.25f); blockPosition = new Vector2(this.GraphicsDevice.Viewport.Width / 2, this.GraphicsDevice.Viewport.Height /2); ballVelocity = new Vector2(0, 1); base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); ballTexture = Content.Load<Texture2D>("ball"); blockTexture = Content.Load<Texture2D>("mirror"); //create rectangles based off the size of the textures ballBounds = new Rectangle((int)(ballPosition.X - ballTexture.Width / 2), (int)(ballPosition.Y - ballTexture.Height / 2), ballTexture.Width, ballTexture.Height); blockBounds = new Rectangle((int)(blockPosition.X - blockTexture.Width / 2), (int)(blockPosition.Y - blockTexture.Height / 2), blockTexture.Width, blockTexture.Height); origin.X = blockTexture.Width / 2; origin.Y = blockTexture.Height / 2; // TODO: use this.Content to load your game content here Font1 = Content.Load<SpriteFont>("SpriteFont1"); FontPos = new Vector2(graphics.GraphicsDevice.Viewport.Width - 100, 20); } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> /// private float RotationAngle; float circle = MathHelper.Pi * 2; float angle; protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); // TODO: Add your update logic here //check for collision between the ball and the block, or if the ball is outside the bounds of the screen if (ballBounds.Intersects(blockBounds) || !GraphicsDevice.Viewport.Bounds.Contains(ballBounds)) { //we have a simple collision! //if it has hit, swap the direction of the ball, and update it's position ballVelocity = -ballVelocity; ballPosition += ballVelocity * ballSpeed; } else { //move the ball a bit ballPosition += ballVelocity * ballSpeed; } //update bounding boxes ballBounds.X = (int)ballPosition.X; ballBounds.Y = (int)ballPosition.Y; blockBounds.X = (int)blockPosition.X; blockBounds.Y = (int)blockPosition.Y; keyboardState = Keyboard.GetState(); float val = 1.568017f/90; if (keyboardState.IsKeyDown(Keys.Space)) RotationAngle = RotationAngle + (float)Math.PI; if (keyboardState.IsKeyDown(Keys.Left)) RotationAngle = RotationAngle - val; angle = (float)Math.PI / 4.0f; // 90 degrees RotationAngle = angle; // RotationAngle = RotationAngle % circle; displayText = RotationAngle.ToString(); base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // TODO: Add your drawing code here spriteBatch.Begin(); // Find the center of the string Vector2 FontOrigin = Font1.MeasureString(displayText) / 2; spriteBatch.DrawString(Font1, displayText, FontPos, Color.White, 0, FontOrigin, 1.0f, SpriteEffects.None, 0.5f); spriteBatch.Draw(ballTexture, ballPosition, Color.White); spriteBatch.Draw(blockTexture, blockPosition,null, Color.White, RotationAngle,origin, 1.0f, SpriteEffects.None, 0f); spriteBatch.End(); base.Draw(gameTime); } } }

    Read the article

  • XNA: Rotating Bones

    - by MLM
    XNA 4.0 I am trying to learn how to rotate bones on a very simple tank model I made in Cinema 4D. It is rigged by 3 bones, Root - Main - Turret - Barrel I have binded all of the objects to the bones so that all translations/rotations work as planned in C4D. I exported it as .fbx I based my test project after: http://create.msdn.com/en-US/education/catalog/sample/simple_animation I can build successfully with no errors but all the rotations I try to do to my bones have no effect. I can transform my Root successfully using below but the bone transforms have no effect: myModel.Root.Transform = world; Matrix turretRotation = Matrix.CreateRotationY(MathHelper.ToRadians(37)); Matrix barrelRotation = Matrix.CreateRotationX(barrelRotationValue); MainBone.Transform = MainTransform; TurretBone.Transform = turretRotation * TurretTransform; BarrelBone.Transform = barrelRotation * BarrelTransform; I am wondering if my model is just not right or something important I am missing in the code. Here is my Game1.cs using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace ModelTesting { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; float aspectRatio; Tank myModel; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here myModel = new Tank(); base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here myModel.Load(Content); aspectRatio = graphics.GraphicsDevice.Viewport.AspectRatio; } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); // TODO: Add your update logic here float time = (float)gameTime.TotalGameTime.TotalSeconds; // Move the pieces /* myModel.TurretRotation = (float)Math.Sin(time * 0.333f) * 1.25f; myModel.BarrelRotation = (float)Math.Sin(time * 0.25f) * 0.333f - 0.333f; */ base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // Calculate the camera matrices. float time = (float)gameTime.TotalGameTime.TotalSeconds; Matrix rotation = Matrix.CreateRotationY(MathHelper.ToRadians(45)); Matrix view = Matrix.CreateLookAt(new Vector3(2000, 500, 0), new Vector3(0, 150, 0), Vector3.Up); Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, graphics.GraphicsDevice.Viewport.AspectRatio, 10, 10000); // TODO: Add your drawing code here myModel.Draw(rotation, view, projection); base.Draw(gameTime); } } } And here is my tank class: using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace ModelTesting { public class Tank { Model myModel; // Array holding all the bone transform matrices for the entire model. // We could just allocate this locally inside the Draw method, but it // is more efficient to reuse a single array, as this avoids creating // unnecessary garbage. public Matrix[] boneTransforms; // Shortcut references to the bones that we are going to animate. // We could just look these up inside the Draw method, but it is more // efficient to do the lookups while loading and cache the results. ModelBone MainBone; ModelBone TurretBone; ModelBone BarrelBone; // Store the original transform matrix for each animating bone. Matrix MainTransform; Matrix TurretTransform; Matrix BarrelTransform; // current animation positions float turretRotationValue; float barrelRotationValue; /// <summary> /// Gets or sets the turret rotation amount. /// </summary> public float TurretRotation { get { return turretRotationValue; } set { turretRotationValue = value; } } /// <summary> /// Gets or sets the barrel rotation amount. /// </summary> public float BarrelRotation { get { return barrelRotationValue; } set { barrelRotationValue = value; } } /// <summary> /// Load the model /// </summary> public void Load(ContentManager Content) { // TODO: use this.Content to load your game content here myModel = Content.Load<Model>("Models\\simple_tank02"); MainBone = myModel.Bones["Main"]; TurretBone = myModel.Bones["Turret"]; BarrelBone = myModel.Bones["Barrel"]; MainTransform = MainBone.Transform; TurretTransform = TurretBone.Transform; BarrelTransform = BarrelBone.Transform; // Allocate the transform matrix array. boneTransforms = new Matrix[myModel.Bones.Count]; } public void Draw(Matrix world, Matrix view, Matrix projection) { myModel.Root.Transform = world; Matrix turretRotation = Matrix.CreateRotationY(MathHelper.ToRadians(37)); Matrix barrelRotation = Matrix.CreateRotationX(barrelRotationValue); MainBone.Transform = MainTransform; TurretBone.Transform = turretRotation * TurretTransform; BarrelBone.Transform = barrelRotation * BarrelTransform; myModel.CopyAbsoluteBoneTransformsTo(boneTransforms); // Draw the model, a model can have multiple meshes, so loop foreach (ModelMesh mesh in myModel.Meshes) { // This is where the mesh orientation is set foreach (BasicEffect effect in mesh.Effects) { effect.World = boneTransforms[mesh.ParentBone.Index]; effect.View = view; effect.Projection = projection; effect.EnableDefaultLighting(); } // Draw the mesh, will use the effects set above mesh.Draw(); } } } }

    Read the article

  • CodePlex Daily Summary for Saturday, October 29, 2011

    CodePlex Daily Summary for Saturday, October 29, 2011Popular Releasespatterns & practices: Enterprise Library Contrib: Enterprise Library Contrib - 5.0 (Oct 2011): This release of Enterprise Library Contrib is based on the Microsoft patterns & practices Enterprise Library 5.0 core and contains the following: Common extensionsTypeConfigurationElement<T> - A Polymorphic Configuration Element without having to be part of a PolymorphicConfigurationElementCollection. AnonymousConfigurationElement - A Configuration element that can be uniquely identified without having to define its name explicitly. Data Access Application Block extensionsMySql Provider - ...Network Monitor Open Source Parsers: Network Monitor Parsers 3.4.2748: The Network Monitor Parsers packages contain parsers for more than 400 network protocols, including RFC based public protocols and protocols for Microsoft products defined in the Microsoft Open Specifications for Windows and SQL Server. NetworkMonitor_Parsers.msi is the base parser package which defines parsers for commonly used public protocols and protocols for Microsoft Windows. In this release, NetowrkMonitor_Parsers.msi continues to improve quality and fix bugs. It has included the fo...Duckworth Lewis Professional Edition Calculator: DLcalc 3.0: DLcalc 3.0 can perform Duckworth/Lewis Professional Edition calculations 100% accurately. It also produces over-by-over and ball-by-ball PAR score tables.Folder Bookmarks: Folder Bookmarks 2.2.0.1: In this version: Custom Icons - now you can change the icons of the bookmarks. By default, whenever an image is added, the icon is automatically changed to a thumbnail of the picture. This can be turned off in the settings (Options... > Settings) Ability to remove items from the 'Recent' category Bugfixes - 'Choose' button in 'Edit Bookmark' now works Another bug fix: another problem in the 'Edit Bookmark' windowMedia Companion: MC 3.420b Weekly: Ensure .NET 4.0 Full Framework is installed. (Available from http://www.microsoft.com/download/en/details.aspx?id=17718) Ensure the NFO ID fix is applied when transitioning from versions prior to 3.416b. (Details here) Movies Fixed: Fanart and poster scraping issues TV Shows (Re)Added: Rebuild single show Fixed: Issue when shows are moved from original location Ability to handle " for actor nicknames Crash when episode name contains "<" (does not scrape yet) Clears fanart when switch...patterns & practices - Unity: Unity 3.0 for .NET4.5 Preview: The Unity 3.0.1026.0 Preview enables Unity to work on .NET 4.5 with both the WinRT and desktop profiles. The major changes include: Unity projects updated to target .NET 4.5. Dynamic build plans modified to use compiled lambda expressions instead of Reflection.Emit Converting reflection to use the new TypeInfo for reflection. Projects updated to work with the Microsoft Visual Studio 2011 Preview Notes/Known Issues: The Microsoft.Practices.Unity.UnityServiceLocator class cannot be use...Managed Extensibility Framework: MEF 2 Preview 4: Detailed information on this release is available on the BCL team blog.Image Converter: Image Converter 0.3: New Features: - English and German support Technical Improvements: - Microsoft All Rules using Code Analysis Planned Features for future release: 1. Unit testing 2. Command line interface 3. Automatic UpdatesAcDown????? - Anime&Comic Downloader: AcDown????? v3.6: ?? ● AcDown??????????、??????,??????????????????????,???????Acfun、Bilibili、???、???、???、Tucao.cc、SF???、?????80????,???????????、?????????。 ● AcDown???????????????????????????,???,???????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7 ????????????? ??:????????Windows XP???,?????????.NET Framework 2.0???(x86)?.NET Framework 2.0???(x64),?????"?????????"??? ??????????????,??????????: ??"AcDown?????"????????? ?? v3.6?? ??“????”...DotNetNuke® Events: 05.02.01: This release fixes any know bugs from any previous version. Events 05.02.01 will work for any DNN version 5.5.0 and up. Full details on the changes can be found at http://dnnevents.codeplex.com/workitem/list/basic Please review and rate this release... (stars are welcome)BUG FIXESAdded validation around category cookie RSS feed was missing an explicit close of the file when writing. Fixed. Added extra security into detail view .ICS Files did not include correct line folding. Fixed Cha...Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.33: Add JSParser.ParseExpression method to parse JavaScript expressions rather than source-elements. Add -strict switch (CodeSettings.StrictMode) to force input code to ECMA5 Strict-mode (extra error-checking, "use strict" at top). Fixed bug when MinifyCode setting was set to false but RemoveUnneededCode was left it's default value of true.Path Copy Copy: 8.0: New version that mostly adds lots of requested features: 11340 11339 11338 11337 This version also features a more elaborate Settings UI that has several tabs. I tried to add some notes to better explain the use and purpose of the various options. The Path Copy Copy documentation is also on the way, both to explain how to develop custom plugins and to explain how to pre-configure options if you're a network admin. Stay tuned.MVC Controls Toolkit: Mvc Controls Toolkit 1.5.0: Added: The new Client Blocks feaure of Views A new "move" js method for the TreeViews The NewHtmlCreated js event to the DataGrid Improved the ChoiceList structure that now allows also the selection list of a dropdown to be chosen with a lambda expression Improved the AcceptViewHintAttribute controller filter. Now a client can specify not only the name of a View or Partial View it prefers, but also to receive just the rough data in Json format. Fixed: Issue with partial thrust Cl...Free SharePoint Master Pages: Buried Alive (Halloween) Theme: Release Notes *Created for Halloween, you will find theme file, custom css file and images. *Created by Al Roome @AlstarRoome Features: Custom styling for web part Custom background *Screenshot https://s3.amazonaws.com/kkhipple/post/sharepoint-showcase-halloween.pngDevForce Application Framework: DevForce AF 2.0.3 RTW: PrerequisitesWPF 4.0 Silverlight 4.0 DevForce 2010 6.1.3.1 Download ContentsDebug and Release Assemblies API Documentation Source code License.txt Requirements.txt Release HighlightsNew: EventAggregator event forwarding New: EntityManagerInterceptor<T> to intercept EntityManger events New: IHarnessAware to allow for ViewModel setup when executed inside of the Development Harness New: Improved design time stability New: Support for add-in development New: CoroutineFns.To...NicAudio: NicAudio 2.0.5: Minor change to accept special DTS stereo modes (LtRt, AB,...)NDepend TFS 2010 integration: version 0.5.0 beta 1: Only the activity and the VS plugin are avalaible right now. They basically work. Data types that are logged into tfs reports are subject to change. This is no big deal since data is not yet sent into the warehouse.Windows Azure Toolkit for Windows Phone: Windows Azure Toolkit for Windows Phone v1.3.1: Upgraded Windows Azure projects to Windows Azure Tools for Microsoft Visual Studio 2010 1.5 – September 2011 Upgraded the tools tools to support the Windows Phone Developer Tools RTW Update SQL Azure only scenarios to use ASP.NET Universal Providers (through the System.Web.Providers v1.0.1 NuGet package) Changed Shared Access Signature service interface to support more operations Refactored Blobs API to have a similar interface and usage to that provided by the Windows Azure SDK Stor...DotNetNuke® FAQ: 05.00.00: FAQ (Frequently Asked Questions) 05.00.00 will work for any DNN version 5.6.1 and up. It is the first version which is rewritten in C#. The scope of this update is to fix all known issues and improve user interface. Please review and rate this release... (stars are welcome)BUG FIXESManage Categories button text was not localized Edit/Add FAQ Entry: button text was not localized ENHANCEMENTSAdded an option to select the control for category display: Listbox with checkboxes (flat category ...SiteMap Editor for Microsoft Dynamics CRM 2011: SiteMap Editor (1.0.921.340): Added CodePlex and PayPal links New iconNew ProjectsAsynk: Asynk is a framework/application that allows existing applications to easily be extended with an offloaded asynchronous worker layer. Asynk is developed using C#.Blob Tower Defense: 3D tower defense game for Windows Phone 7. School project for Brno University of Technology, computer graphics class.Booz: Booz is... An extended version of the boo shell (booish2 to be precise). Offers additional commands like cd, md, ls etc. I hope this shell can be used to take the position of/surpass the native windows shell in the near future.CIMS: a sanction infomation system for sencience and technology of hustCrystalDot - Icon Collection / Pack (LGPL): .Net / Mono freundliche Varainte der Crystal-Icons von Everaldo Icon collection / pack for .NET and Mono designed by Everaldo - KDE style http://www.everaldo.com/crystal/dotetes: dotetes adalah teka teki silang tool dikembangkan dengan bahasa c#Emoe': This Project is a Windows Phone 7.1 application.Equation Inversion: Visual Studion 2008 Add-in for equation inversions.Exploring VMR Features on WEC7: This is the sample application helps you to do alpha blending the bitmap on camera streaming in Windows Embedded Compact 7 using Directshow video Renderer (VMR). It is a VS2008 based smart device project developed on C++. I have explained the sample application in the following blog link. http://www.e-consystems.com/blog/windowsce/?p=759 EzValidation: Custom validation extensions for ASP.NET MVC 3. Includes server and client side model based validation attributes for: -- Equal To -- Not Equal To -- Greater Than -- Greater Than or Equal To -- Less Than -- Less Than or Equal To Supports validating against: -- Another Model Field -- A Specific Value -- Current Date/Yesterday/Tomorrow (for Dates and Strings) Download & Install via NuGet "package-install ezvalidation"Flu.net: Flu.net is a tool that helps you creating your own fluent syntax for .NET Framework applications in a declarative fashion. It is aimed for infrastructures and other open-source projects use.For Chess Endgames: King vs. King Opposition Calculator: You must input the locations of 2 kings on a chessboard, and whose turn it is to move. The calculator will display which king has the opposition, and how it can be used or maintained.GameTrakXNA: This project aims to create a simple library to use the unique GameTrak controller within XNA and Flash.Google Speech Recognition Example: Google Speech Recognition contains a working example of application that uses google speech recognition API. App contains all necessary dlls to record, decode and send your voice request to google service and recieve a text representation of what you've said. It's developed in C#Interval Mandelbrot Explorer: Explore the Mandelbrot set using interval arithmetic.ISD training tasks: ISD training examples and tasksiTunesControlBar: The iTunesControlBar helps user control their iTunes Application while it is minimized. iTunesControlBar resides at the top of the screen, invisible when not used, and allows playback and volume control, library searches and media information without the need to bring up iTunes.iTurtle: A bunch of Powerscripts to automate server management in AD environment.M26WC - Mono 2.6 Wizard Control: Wizard which runs under Mono2.6 A fork of: http://aerowizard.codeplex.com/Microsoft Help Viewer 2: Help Viewer 2 is the help runtime for both Visual Studio 11 help and Windows 8 help. The code in this project will help you use and understand the HV2 runtime API.MONTRASEC: Monitoring Trafficking in human beings and Sexual Exploitation of Children: benchmarking for member state and EU reporting, turning the SIAMSECT templates into a user-friendly interface and reporting tool. MTF.NET Runtime: Managed Task Framework .NET Runtime The MTF.NET runtime software and resulting assemblies are required to run applications built using the Managed Task Framework.NET Professional (Visual Studio 2010 extension) software design editor. The MTF.NET team are committed to continuously improving the core MTF.NET runtime and ensuring it is always available free and fully transparent. Pandoras Box: A greenfield inversion of control project utilising the power and flexibility of expressions and preferring convention over configuration.Pass the Puzzle: Pass the Puzzle is a frantic word-guessing party game. The game displays a few letters, and the players must come up with words containing those letters. But beware: if the timer goes off, you lose! It is based on the folk party game Pass the Parcel and is written in C#.PerCiGal: Percigal is a project for the development of applications for managing your personal media library. It consists in - a windows application to use at home to catalog movies, TV series, cast and books, with the support of the Internet for information retrieval; - a web interface for viewing and cataloging everywhere your media; - an application for smartphones. Project Flying Carpet: Este jogo é um projeto para a cadeira Projeto de Jogos: Motores Jogos do curso de Jogos Digitais da Unisinos.proxy browser: sed leo Latin's Butterfly....Python Multiple Dispatch: Multiple dispatch (AKA multimethods) for Python 3 via a metaclass and type annotations.reDune: ?????????? ???? ? ????? «????????? ? ???????? ???????». ???????? ?? Dune2000 ?? Westwood ? Electronic Arts.Rereadable: Keep page from internet for read it latter.ServStop: ServStop is a .NET application that makes it easy to stop several system services at once. Now you don't have to change startup types or stop them one at a time. It has a simple list-based interface with the ability to save and load lists of user services to stop. Written in C#.SharePoint 2010 Audience Membership Workflow Activity (Full Trust): A simple SharePoint 2010 workflow activity / workflow condition to check whether the user initiating the workflow is a member of a specified audience. Farm-level .wsp solution, written in C#. Once installed, the workflow activity can be used in SharePoint Designer 2010 declarative workflows.SQL Server® to Firebird DB converter: Converts Microsoft SQL Server® database into Firebird database including entire structure and datastegitest: test projectSystem.Threading.Joins: The Joins project provides asynchronous concurrency semantics based on join calculus and modeled after the Microsoft Research C? (C Omega) project.TestAndroidGame: try dev a TestAndroidGametetribricks: block game Topographic Explorer: A project to import, convert, explore, manipulate, and save topographical maps. Looking to use C# and WPF.Trading: Under construction!!!Trombone: Trombone makes it easier for Windows Mobile Professional users to automate status reply through SMS. It's developed in Visual C# 2008.Tulsa SharePoint Interest Group: Repository for source code for the Tulsa SharePoint Interest Group's web site. The Tulsa SharePoint Interest Group is using the Community Kit for SharePoint. This project will house any modifications that are specific to our user group.World of Tanks RU tiny stats collection utilty.: Tiny utility to load players stats for World of Tanks RU server. Results saved to comma separated file.WS-Discovery Proxy: Attempt at creating general purpose WS-Discovery Proxy.Yamaha Tu?n Tr?c: This application is used to manage information for Yamaha Tu?n Tr?c

    Read the article

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #050

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Executing Remote Stored Procedure – Calling Stored Procedure on Linked Server In this example we see two different methods of how to call Stored Procedures remotely.  Connection Property of SQL Server Management Studio SSMS A very simple example of the how to build connection properties for SQL Server with the help of SSMS. Sample Example of RANKING Functions – ROW_NUMBER, RANK, DENSE_RANK, NTILE SQL Server has a total of 4 ranking functions. Ranking functions return a ranking value for each row in a partition. All the ranking functions are non-deterministic. T-SQL Script to Add Clustered Primary Key Jr. DBA asked me three times in a day, how to create Clustered Primary Key. I gave him following sample example. That was the last time he asked “How to create Clustered Primary Key to table?” 2008 2008 – TRIM() Function – User Defined Function SQL Server does not have functions which can trim leading or trailing spaces of any string at the same time. SQL does have LTRIM() and RTRIM() which can trim leading and trailing spaces respectively. SQL Server 2008 also does not have TRIM() function. User can easily use LTRIM() and RTRIM() together and simulate TRIM() functionality. http://www.youtube.com/watch?v=1-hhApy6MHM 2009 Earlier I have written two different articles on the subject Remove Bookmark Lookup. This article is as part 3 of original article. Please read the first two articles here before continuing reading this article. Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup – Part 2 Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup – Part 3 Interesting Observation – Query Hint – FORCE ORDER SQL Server never stops to amaze me. As regular readers of this blog already know that besides conducting corporate training, I work on large-scale projects on query optimizations and server tuning projects. In one of the recent projects, I have noticed that a Junior Database Developer used the query hint Force Order; when I asked for details, I found out that the basic concept was not properly understood by him. Queries Waiting for Memory Allocation to Execute In one of the recent projects, I was asked to create a report of queries that are waiting for memory allocation. The reason was that we were doubtful regarding whether the memory was sufficient for the application. The following query can be useful in similar cases. Queries that do not have to wait on a memory grant will not appear in the result set of following query. 2010 Quickest Way to Identify Blocking Query and Resolution – Dirty Solution As the title suggests, this is quite a dirty solution; it’s not as elegant as you expect. However, it works totally fine. Simple Explanation of Data Type Precedence While I was working on creating a question for SQL SERVER – SQL Quiz – The View, The Table and The Clustered Index Confusion, I had actually created yet another question along with this question. However, I felt that the one which is posted on the SQL Quiz is much better than this one because what makes that more challenging question is that it has a multiple answer. Encrypted Stored Procedure and Activity Monitor I recently had received questionable if any stored procedure is encrypted can we see its definition in Activity Monitor.Answer is - No. Let us do a quick test. Let us create following Stored Procedure and then launch the Activity Monitor and check the text. Indexed View always Use Index on Table A single table can have maximum 249 non clustered indexes and 1 clustered index. In SQL Server 2008, a single table can have maximum 999 non clustered indexes and 1 clustered index. It is widely believed that a table can have only 1 clustered index, and this belief is true. I have some questions for all of you. Let us assume that I am creating view from the table itself and then create a clustered index on it. In my view, I am selecting the complete table itself. 2011 Detecting Database Case Sensitive Property using fn_helpcollations() I received a question on how to determine the case sensitivity of the database. The quick answer to this is to identify the collation of the database and check the properties of the collation. I have previously written how one can identify database collation. Once you have figured out the collation of the database, you can put that in the WHERE condition of the following T-SQL and then check the case sensitivity from the description. Server Side Paging in SQL Server CE (Compact Edition) SQL Server Denali is coming up with new T-SQL of Paging. I have written about the same earlier.SQL SERVER – Server Side Paging in SQL Server Denali – A Better Alternative,  SQL SERVER – Server Side Paging in SQL Server Denali Performance Comparison, SQL SERVER – Server Side Paging in SQL Server Denali – Part2 What is very interesting is that SQL Server CE 4.0 have the same feature introduced. Here is the quick example of the same. To run the script in the example, you will have to do installWebmatrix 4.0 and download sample database. Once done you can run following script. Why I am Going to Attend PASS Summit Unite 2011 The four-day event will be marked by a lot of learning, sharing, and networking, which will help me increase both my knowledge and contacts. Every year, PASS Summit provides me a golden opportunity to build my network as well as to identify and meet potential customers or employees. 2012 Manage Help Settings – CTRL + ALT + F1 This is very interesting read as my daughter once accidently came across a screen in SQL Server Management Studio. It took me 2-3 minutes to figure out how she has created the same screen. Recover the Accidentally Renamed Table “I accidentally renamed table in my SSMS. I was scrolling very fast and I made mistakes. It was either because I double clicked or clicked on F2 (shortcut key for renaming). However, I have made the mistake and now I have no idea how to fix this. If you have renamed the table, I think you pretty much is out of luck. Here are few things which you can do which can give you an idea about what your table name can be if you are lucky. Identify Numbers of Non Clustered Index on Tables for Entire Database Here is the script which will give you numbers of non clustered indexes on any table in entire database. Identify Most Resource Intensive Queries – SQL in Sixty Seconds #029 – Video Here is the complete complete script which I have used in the SQL in Sixty Seconds Video. Thanks Harsh for important Tip in the comment. http://www.youtube.com/watch?v=3kDHC_Tjrns Advanced Data Quality Services with Melissa Data – Azure Data Market For the purposes of the review, I used a database I had in an Excel spreadsheet with name and address information. Upon a cursory inspection, there are miscellaneous problems with these records; some addresses are missing ZIP codes, others missing a city, and some records are slightly misspelled or have unparsed suites. With DQS, I can easily add a knowledge base to help standardize my values, such as for state abbreviations. But how do I know that my address is correct? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Premature-Optimization and Performance Anxiety

    - by James Michael Hare
    While writing my post analyzing the new .NET 4 ConcurrentDictionary class (here), I fell into one of the classic blunders that I myself always love to warn about.  After analyzing the differences of time between a Dictionary with locking versus the new ConcurrentDictionary class, I noted that the ConcurrentDictionary was faster with read-heavy multi-threaded operations.  Then, I made the classic blunder of thinking that because the original Dictionary with locking was faster for those write-heavy uses, it was the best choice for those types of tasks.  In short, I fell into the premature-optimization anti-pattern. Basically, the premature-optimization anti-pattern is when a developer is coding very early for a perceived (whether rightly-or-wrongly) performance gain and sacrificing good design and maintainability in the process.  At best, the performance gains are usually negligible and at worst, can either negatively impact performance, or can degrade maintainability so much that time to market suffers or the code becomes very fragile due to the complexity. Keep in mind the distinction above.  I'm not talking about valid performance decisions.  There are decisions one should make when designing and writing an application that are valid performance decisions.  Examples of this are knowing the best data structures for a given situation (Dictionary versus List, for example) and choosing performance algorithms (linear search vs. binary search).  But these in my mind are macro optimizations.  The error is not in deciding to use a better data structure or algorithm, the anti-pattern as stated above is when you attempt to over-optimize early on in such a way that it sacrifices maintainability. In my case, I was actually considering trading the safety and maintainability gains of the ConcurrentDictionary (no locking required) for a slight performance gain by using the Dictionary with locking.  This would have been a mistake as I would be trading maintainability (ConcurrentDictionary requires no locking which helps readability) and safety (ConcurrentDictionary is safe for iteration even while being modified and you don't risk the developer locking incorrectly) -- and I fell for it even when I knew to watch out for it.  I think in my case, and it may be true for others as well, a large part of it was due to the time I was trained as a developer.  I began college in in the 90s when C and C++ was king and hardware speed and memory were still relatively priceless commodities and not to be squandered.  In those days, using a long instead of a short could waste precious resources, and as such, we were taught to try to minimize space and favor performance.  This is why in many cases such early code-bases were very hard to maintain.  I don't know how many times I heard back then to avoid too many function calls because of the overhead -- and in fact just last year I heard a new hire in the company where I work declare that she didn't want to refactor a long method because of function call overhead.  Now back then, that may have been a valid concern, but with today's modern hardware even if you're calling a trivial method in an extremely tight loop (which chances are the JIT compiler would optimize anyway) the results of removing method calls to speed up performance are negligible for the great majority of applications.  Now, obviously, there are those coding applications where speed is absolutely king (for example drivers, computer games, operating systems) where such sacrifices may be made.  But I would strongly advice against such optimization because of it's cost.  Many folks that are performing an optimization think it's always a win-win.  That they're simply adding speed to the application, what could possibly be wrong with that?  What they don't realize is the cost of their choice.  For every piece of straight-forward code that you obfuscate with performance enhancements, you risk the introduction of bugs in the long term technical debt of the application.  It will become so fragile over time that maintenance will become a nightmare.  I've seen such applications in places I have worked.  There are times I've seen applications where the designer was so obsessed with performance that they even designed their own memory management system for their application to try to squeeze out every ounce of performance.  Unfortunately, the application stability often suffers as a result and it is very difficult for anyone other than the original designer to maintain. I've even seen this recently where I heard a C++ developer bemoaning that in VS2010 the iterators are about twice as slow as they used to be because Microsoft added range checking (probably as part of the 0x standard implementation).  To me this was almost a joke.  Twice as slow sounds bad, but it almost never as bad as you think -- especially if you're gaining safety.  The only time twice is really that much slower is when once was too slow to begin with.  Think about it.  2 minutes is slow as a response time because 1 minute is slow.  But if an iterator takes 1 microsecond to move one position and a new, safer iterator takes 2 microseconds, this is trivial!  The only way you'd ever really notice this would be in iterating a collection just for the sake of iterating (i.e. no other operations).  To my mind, the added safety makes the extra time worth it. Always favor safety and maintainability when you can.  I know it can be a hard habit to break, especially if you started out your career early or in a language such as C where they are very performance conscious.  But in reality, these type of micro-optimizations only end up hurting you in the long run. Remember the two laws of optimization.  I'm not sure where I first heard these, but they are so true: For beginners: Do not optimize. For experts: Do not optimize yet. This is so true.  If you're a beginner, resist the urge to optimize at all costs.  And if you are an expert, delay that decision.  As long as you have chosen the right data structures and algorithms for your task, your performance will probably be more than sufficient.  Chances are it will be network, database, or disk hits that will be your slow-down, not your code.  As they say, 98% of your code's bottleneck is in 2% of your code so premature-optimization may add maintenance and safety debt that won't have any measurable impact.  Instead, code for maintainability and safety, and then, and only then, when you find a true bottleneck, then you should go back and optimize further.

    Read the article

  • how to use serial port in UDK using windows DLL and DLLBind directive?

    - by Shayan Abbas
    I want to use serial port in UDK, For that purpose i use a windows DLL and DLLBind directive. I have a thread in windows DLL for serial port data recieve event. My problem is: this thread doesn't work properly. Please Help me. below is my code SerialPortDLL Code: // SerialPortDLL.cpp : Defines the exported functions for the DLL application. // #include "stdafx.h" #include "Cport.h" extern "C" { // This is an example of an exported variable //SERIALPORTDLL_API int nSerialPortDLL=0; // This is an example of an exported function. //SERIALPORTDLL_API int fnSerialPortDLL(void) //{ // return 42; //} CPort *sp; __declspec(dllexport) void Open(wchar_t* portName) { sp = new CPort(portName); //MessageBox(0,L"ha ha!!!",L"ha ha",0); //MessageBox(0,portName,L"ha ha",0); } __declspec(dllexport) void Close() { sp->Close(); MessageBox(0,L"ha ha!!!",L"ha ha",0); } __declspec(dllexport) wchar_t *GetData() { return sp->GetData(); } __declspec(dllexport) unsigned int GetDSR() { return sp->getDSR(); } __declspec(dllexport) unsigned int GetCTS() { return sp->getCTS(); } __declspec(dllexport) unsigned int GetRing() { return sp->getRing(); } } CPort class code: #include "stdafx.h" #include "CPort.h" #include "Serial.h" CSerial serial; HANDLE HandleOfThread; LONG lLastError = ERROR_SUCCESS; bool fContinue = true; HANDLE hevtOverlapped; HANDLE hevtStop; OVERLAPPED ov = {0}; //char szBuffer[101] = ""; wchar_t *szBuffer = L""; wchar_t *data = L""; DWORD WINAPI ThreadHandler( LPVOID lpParam ) { // Keep reading data, until an EOF (CTRL-Z) has been received do { MessageBox(0,L"ga ga!!!",L"ga ga",0); //Sleep(10); // Wait for an event lLastError = serial.WaitEvent(&ov); if (lLastError != ERROR_SUCCESS) { //LOG( " Unable to wait for a COM-port event" ); } // Setup array of handles in which we are interested HANDLE ahWait[2]; ahWait[0] = hevtOverlapped; ahWait[1] = hevtStop; // Wait until something happens switch (::WaitForMultipleObjects(sizeof(ahWait)/sizeof(*ahWait),ahWait,FALSE,INFINITE)) { case WAIT_OBJECT_0: { // Save event const CSerial::EEvent eEvent = serial.GetEventType(); // Handle break event if (eEvent & CSerial::EEventBreak) { //LOG( " ### BREAK received ###" ); } // Handle CTS event if (eEvent & CSerial::EEventCTS) { //LOG( " ### Clear to send %s ###", serial.GetCTS() ? "on":"off" ); } // Handle DSR event if (eEvent & CSerial::EEventDSR) { //LOG( " ### Data set ready %s ###", serial.GetDSR() ? "on":"off" ); } // Handle error event if (eEvent & CSerial::EEventError) { switch (serial.GetError()) { case CSerial::EErrorBreak: /*LOG( " Break condition" );*/ break; case CSerial::EErrorFrame: /*LOG( " Framing error" );*/ break; case CSerial::EErrorIOE: /*LOG( " IO device error" );*/ break; case CSerial::EErrorMode: /*LOG( " Unsupported mode" );*/ break; case CSerial::EErrorOverrun: /*LOG( " Buffer overrun" );*/ break; case CSerial::EErrorRxOver: /*LOG( " Input buffer overflow" );*/ break; case CSerial::EErrorParity: /*LOG( " Input parity error" );*/ break; case CSerial::EErrorTxFull: /*LOG( " Output buffer full" );*/ break; default: /*LOG( " Unknown" );*/ break; } } // Handle ring event if (eEvent & CSerial::EEventRing) { //LOG( " ### RING ###" ); } // Handle RLSD/CD event if (eEvent & CSerial::EEventRLSD) { //LOG( " ### RLSD/CD %s ###", serial.GetRLSD() ? "on" : "off" ); } // Handle data receive event if (eEvent & CSerial::EEventRecv) { // Read data, until there is nothing left DWORD dwBytesRead = 0; do { // Read data from the COM-port lLastError = serial.Read(szBuffer,33,&dwBytesRead); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to read from COM-port" ); } if( dwBytesRead == 33 && szBuffer[0]=='$' ) { // Finalize the data, so it is a valid string szBuffer[dwBytesRead] = '\0'; ////LOG( "\n%s\n", szBuffer ); data = szBuffer; } } while (dwBytesRead > 0); } } break; case WAIT_OBJECT_0+1: { // Set the continue bit to false, so we'll exit fContinue = false; } break; default: { // Something went wrong //LOG( "Error while calling WaitForMultipleObjects" ); } break; } } while (fContinue); MessageBox(0,L"kka kk!!!",L"kka ga",0); return 0; } CPort::CPort(wchar_t *portName) { // Attempt to open the serial port (COM2) //lLastError = serial.Open(_T(portName),0,0,true); lLastError = serial.Open(portName,0,0,true); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to open COM-port" ); } // Setup the serial port (115200,8N1, which is the default setting) lLastError = serial.Setup(CSerial::EBaud115200,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port setting" ); } // Register only for the receive event lLastError = serial.SetMask(CSerial::EEventBreak | CSerial::EEventCTS | CSerial::EEventDSR | CSerial::EEventError | CSerial::EEventRing | CSerial::EEventRLSD | CSerial::EEventRecv); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port event mask" ); } // Use 'non-blocking' reads, because we don't know how many bytes // will be received. This is normally the most convenient mode // (and also the default mode for reading data). lLastError = serial.SetupReadTimeouts(CSerial::EReadTimeoutNonblocking); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port read timeout" ); } // Create a handle for the overlapped operations hevtOverlapped = ::CreateEvent(0,TRUE,FALSE,0);; if (hevtOverlapped == 0) { //LOG( "Unable to create manual-reset event for overlapped I/O" ); } // Setup the overlapped structure ov.hEvent = hevtOverlapped; // Open the "STOP" handle hevtStop = ::CreateEvent(0,TRUE,FALSE,_T("Overlapped_Stop_Event")); if (hevtStop == 0) { //LOG( "Unable to create manual-reset event for stop event" ); } HandleOfThread = CreateThread( NULL, 0, ThreadHandler, 0, 0, NULL); } CPort::~CPort() { //fContinue = false; //CloseHandle( HandleOfThread ); //serial.Close(); } void CPort::Close() { fContinue = false; CloseHandle( HandleOfThread ); serial.Close(); } wchar_t *CPort::GetData() { return data; } bool CPort::getCTS() { return serial.GetCTS(); } bool CPort::getDSR() { return serial.GetDSR(); } bool CPort::getRing() { return serial.GetRing(); } Unreal Script Code: class MyPlayerController extends GamePlayerController DLLBind(SerialPortDLL); dllimport final function Open(string portName); dllimport final function Close(); dllimport final function string GetData();

    Read the article

  • Creating New Scripts Dynamically in Lua

    - by bazola
    Right now this is just a crazy idea that I had, but I was able to implement the code and get it working properly. I am not entirely sure of what the use cases would be just yet. What this code does is create a new Lua script file in the project directory. The ScriptWriter takes as arguments the file name, a table containing any arguments that the script should take when created, and a table containing any instance variables to create by default. My plan is to extend this code to create new functions based on inputs sent in during its creation as well. What makes this cool is that the new file is both generated and loaded dynamically on the fly. Theoretically you could get this code to generate and load any script imaginable. One use case I can think of is an AI that creates scripts to map out it's functions, and creates new scripts for new situations or environments. At this point, this is all theoretical, though. Here is the test code that is creating the new script and then immediately loading it and calling functions from it: function Card:doScriptWriterThing() local scriptName = "ScriptIAmMaking" local scripter = scriptWriter:new(scriptName, {"argumentName"}, {name = "'test'", one = 1}) scripter:makeFileForLoadedSettings() local loadedScript = require (scriptName) local scriptInstance = loadedScript:new("sayThis") print(scriptInstance:get_name()) --will print test print(scriptInstance:get_one()) -- will print 1 scriptInstance:set_one(10000) print(scriptInstance:get_one()) -- will print 10000 print(scriptInstance:get_argumentName()) -- will print sayThis scriptInstance:set_argumentName("saySomethingElse") print(scriptInstance:get_argumentName()) --will print saySomethingElse end Here is ScriptWriter.lua local ScriptWriter = {} local twoSpaceIndent = " " local equalsWithSpaces = " = " local newLine = "\n" --scriptNameToCreate must be a string --argumentsForNew and instanceVariablesToCreate must be tables and not nil function ScriptWriter:new(scriptNameToCreate, argumentsForNew, instanceVariablesToCreate) local instance = setmetatable({}, { __index = self }) instance.name = scriptNameToCreate instance.newArguments = argumentsForNew instance.instanceVariables = instanceVariablesToCreate instance.stringList = {} return instance end function ScriptWriter:makeFileForLoadedSettings() self:buildInstanceMetatable() self:buildInstanceCreationMethod() self:buildSettersAndGetters() self:buildReturn() self:writeStringsToFile() end --very first line of any script that will have instances function ScriptWriter:buildInstanceMetatable() table.insert(self.stringList, "local " .. self.name .. " = {}" .. newLine) table.insert(self.stringList, newLine) end --every script made this way needs a new method to create its instances function ScriptWriter:buildInstanceCreationMethod() --new() function declaration table.insert(self.stringList, ("function " .. self.name .. ":new(")) self:buildNewArguments() table.insert(self.stringList, ")" .. newLine) --first line inside :new() function table.insert(self.stringList, twoSpaceIndent .. "local instance = setmetatable({}, { __index = self })" .. newLine) --add designated arguments inside :new() self:buildNewArgumentVariables() --create the instance variables with the loaded values for key,value in pairs(self.instanceVariables) do table.insert(self.stringList, twoSpaceIndent .. "instance." .. key .. equalsWithSpaces .. value .. newLine) end --close the :new() function table.insert(self.stringList, twoSpaceIndent .. "return instance" .. newLine) table.insert(self.stringList, "end" .. newLine) table.insert(self.stringList, newLine) end function ScriptWriter:buildNewArguments() --if there are arguments for :new(), add them for key,value in ipairs(self.newArguments) do table.insert(self.stringList, value) table.insert(self.stringList, ", ") end if next(self.newArguments) ~= nil then --makes sure the table is not empty first table.remove(self.stringList) --remove the very last element, which will be the extra ", " end end function ScriptWriter:buildNewArgumentVariables() --add the designated arguments to :new() for key, value in ipairs(self.newArguments) do table.insert(self.stringList, twoSpaceIndent .. "instance." .. value .. equalsWithSpaces .. value .. newLine) end end --the instance variables need separate code because their names have to be the key and not the argument name function ScriptWriter:buildSettersAndGetters() for key,value in ipairs(self.newArguments) do self:buildArgumentSetter(value) self:buildArgumentGetter(value) table.insert(self.stringList, newLine) end for key,value in pairs(self.instanceVariables) do self:buildInstanceVariableSetter(key, value) self:buildInstanceVariableGetter(key, value) table.insert(self.stringList, newLine) end end --code for arguments passed in function ScriptWriter:buildArgumentSetter(variable) table.insert(self.stringList, "function " .. self.name .. ":set_" .. variable .. "(newValue)" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "self." .. variable .. equalsWithSpaces .. "newValue" .. newLine) table.insert(self.stringList, "end" .. newLine) end function ScriptWriter:buildArgumentGetter(variable) table.insert(self.stringList, "function " .. self.name .. ":get_" .. variable .. "()" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "return " .. "self." .. variable .. newLine) table.insert(self.stringList, "end" .. newLine) end --code for instance variable values passed in function ScriptWriter:buildInstanceVariableSetter(key, variable) table.insert(self.stringList, "function " .. self.name .. ":set_" .. key .. "(newValue)" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "self." .. key .. equalsWithSpaces .. "newValue" .. newLine) table.insert(self.stringList, "end" .. newLine) end function ScriptWriter:buildInstanceVariableGetter(key, variable) table.insert(self.stringList, "function " .. self.name .. ":get_" .. key .. "()" .. newLine) table.insert(self.stringList, twoSpaceIndent .. "return " .. "self." .. key .. newLine) table.insert(self.stringList, "end" .. newLine) end --last line of any script that will have instances function ScriptWriter:buildReturn() table.insert(self.stringList, "return " .. self.name) end function ScriptWriter:writeStringsToFile() local fileName = (self.name .. ".lua") file = io.open(fileName, 'w') for key,value in ipairs(self.stringList) do file:write(value) end file:close() end return ScriptWriter And here is what the code provided will generate: local ScriptIAmMaking = {} function ScriptIAmMaking:new(argumentName) local instance = setmetatable({}, { __index = self }) instance.argumentName = argumentName instance.name = 'test' instance.one = 1 return instance end function ScriptIAmMaking:set_argumentName(newValue) self.argumentName = newValue end function ScriptIAmMaking:get_argumentName() return self.argumentName end function ScriptIAmMaking:set_name(newValue) self.name = newValue end function ScriptIAmMaking:get_name() return self.name end function ScriptIAmMaking:set_one(newValue) self.one = newValue end function ScriptIAmMaking:get_one() return self.one end return ScriptIAmMaking All of this is generated with these calls: local scripter = scriptWriter:new(scriptName, {"argumentName"}, {name = "'test'", one = 1}) scripter:makeFileForLoadedSettings() I am not sure if I am correct that this could be useful in certain situations. What I am looking for is feedback on the readability of the code, and following Lua best practices. I would also love to hear whether this approach is a valid one, and whether the way that I have done things will be extensible.

    Read the article

  • Windows 8 Launch&ndash;Why OEM and Retailers Should STFU

    - by D'Arcy Lussier
    Microsoft has gotten a lot of flack for the Surface from OEM/hardware partners who create Windows-based devices and I’m sure, to an extent, retailers who normally stock and sell Windows-based devices. I mean we all know how this is supposed to work – Microsoft makes the OS, partners make the hardware, retailers sell the hardware. Now Microsoft is breaking the rules by not only offering their own hardware but selling them via online and through their Microsoft branded stores! The thought has been that Microsoft is trying to set a standard for the other hardware companies to reach for. Maybe. I hope, at some level, Microsoft may be covertly responding to frustrations associated with trusting the OEMs and Retailers to deliver on their part of the supply chain. I know as a consumer, I’m very frustrated with the Windows 8 launch. Aside from the Surface sales, there’s nothing happening at the retail level. Let me back up and explain. Over the weekend I visited a number of stores in hopes of trying out various Windows 8 devices. Out of three retailers (Staples, Best Buy, and Future Shop), not *one* met my expectations. Let me be honest with you Staples, I never really have high expectations from your computer department. If I need paper or pens, whatever, but computers – you’re not the top of my list for price or selection. Still, considering you flaunted Win 8 devices in your flyer I expected *something* – some sign of effort that you took the Windows 8 launch seriously. As I entered the 1910 Pembina Highway location in Winnipeg, there was nothing – no signage, no banners – nothing that would suggest Windows 8 had even launched. I made my way to the laptops. I had to play with each machine to determine which ones were running Windows 8. There wasn’t anything on the placards that made it obvious which were Windows 8 machines and which ones were Windows 7. Likewise, there was no easy way to identify the touch screen laptop (the HP model) from the others without physically touching the screen to verify. Horrible experience. In the same mall as the Staples I mentioned above, there’s a Future Shop. Surely they would be more on the ball. I walked in to the 1910 Pembina Highway location and immediately realized I would not get a better experience. Except for the sign by the front door mentioning Windows 8, there was *nothing* in the computer department pointing you to the Windows 8 devices. Like in Staples, the Win 8 laptops were mixed in with the Win 7 ones and there was nothing notable calling out which ones were running Win 8. I happened to hit up the St. James Street location today, thinking since its a busier store they must have more options. To their credit, they did have two staff members decked out in Windows 8 shirts and who were helping a customer understand Windows 8. But otherwise, there was nothing highlighting the Windows 8 devices and they were again mixed in with the rest of the Win 7 machines. Finally, we have the St. James Street Best Buy location here in Winnipeg. I’m sure Best Buy will have their act together. Nope, not even close. Same story as the others: minimal signage (there was a sign as you walked in with a link to this schedule of demo days), Windows 8 hardware mixed with the rest of the PC offerings, and no visible call-outs identifying which were Win 8 based. This meant that, like Future Shop and Staples, if you wanted to know which machine had Windows 8 you had to go and scrutinize each machine. Also, there was nothing identifying which ones were touch based and which were not. Just Another Day… To these retailers, it seemed that the Windows 8 launch was just another day, with another product to add to the showroom floor. Meanwhile, Apple has their dedicated areas *in all three stores*. It was dead simple to find where the Apple products were compared to the Windows 8 products. No wonder Microsoft is starting to push their own retail stores. No wonder Microsoft is trying to funnel orders through them instead of relying on these bloated retail big box stores who obviously can’t manage a product launch. It’s Not Just The Retailers… Remember when the Acer CEO, Founder, and President of Computer Global Operations all weighed in on how Microsoft releasing the Surface would have a “huge negative impact for the ecosystem and other brands may take a negative reaction”? Also remember the CEO stating “[making hardware] is not something you are good at so please think twice”? Well the launch day has come and gone, and so far Microsoft is the only one that delivered on having hardware available on the October 26th date. Oh sure, there are laptops running Windows 8 – but all in one desktop PCs? I’ve only seen one or two! And tablets are *non existent*, with some showing an early to late November availability on Best Buy’s website! So while the retailers could be doing more to make it easier to find Windows 8 devices, the manufacturers could help by *getting devices into stores*! That’s supposedly something that these companies are good at, according to the Acer CEO. So Here’s What the Retailers and Manufacturers Need To Do… Get Product Out The pivotal timeframe will be now to the end of November. We need to start seeing all these fantastic pieces of hardware ship – including the Samsung ATIV Smart PC Pro, the Acer Iconia, the Asus TAICHI 21, and the sexy Samsung Series 7 27” desktop. It’s not enough to see product announcements, we need to see actual devices. Make It Easy For Customers To Find Win8 Devices You want to make it easy to sell these things? Make it easy for people to find them! Have staff on hand that really know how these devices run and what can be done with them. Don’t just have a single demo day, have people who can demo it every day! Make It Easy to See the Features There’s touch screen desktops, touch screen laptops, tablets, non-touch laptops, etc. People need to easily find the features for each machine. If I’m looking for a touch-laptop, I shouldn’t need to sift through all the non-touch laptops to find them – at the least, I need to quickly be able to see which ones are touch. I feel silly even typing this because this should be retail 101 and I have no retail background (but I do have an extensive background as a customer). In Summary… Microsoft launching the Surface and selling them through their own channels isn’t slapping its OEM and retail partners in the face; its slapping them to wake the hell up and stop coasting through Windows launch events like they don’t matter. Unless I see some improvements from vendors and retailers in November, I may just hold onto my money for a Surface Pro even if I have to wait until early 2013. Your move OEM/Retailers. *Update – While my experience has been in Winnipeg, similar experiences have been voiced from colleagues in Calgary and Edmonton.

    Read the article

  • Securing an ADF Application using OES11g: Part 1

    - by user12587121
    Future releases of the Oracle stack should allow ADF applications to be secured natively with Oracle Entitlements Server (OES). In a sequence of postings here I explore one way to achive this with the current technology, namely OES 11.1.1.5 and ADF 11.1.1.6. ADF Security Basics ADF Bascis The Application Development Framework (ADF) is Oracle’s preferred technology for developing GUI based Java applications.  It can be used to develop a UI for Swing applications or, more typically in the Oracle stack, for Web and J2EE applications.  ADF is based on and extends the Java Server Faces (JSF) technology.  To get an idea, Oracle provides an online demo to showcase ADF components. ADF can be used to develop just the UI part of an application, where, for example, the data access layer is implemented using some custom Java beans or EJBs.  However ADF also has it’s own data access layer, ADF Business Components (ADF BC) that will allow rapid integration of data from data bases and Webservice interfaces to the ADF UI component.   In this way ADF helps implement the MVC  approach to building applications with UI and data components. The canonical tutorial for ADF is to open JDeveloper, define a connection to a database, drag and drop a table from the database view to a UI page, build and deploy.  One has an application up and running very quickly with the ability to quickly integrate changes to, for example, the DB schema. ADF allows web pages to be created graphically and components like tables, forms, text fields, graphs and so on to be easily added to a page.  On top of JSF Oracle have added drag and drop tooling with JDeveloper and declarative binding of the UI to the data layer, be it database, WebService or Java beans.  An important addition is the bounded task flow which is a reusable set of pages and transitions.   ADF adds some steps to the page lifecycle defined in JSF and adds extra widgets including powerful visualizations. It is worth pointing out that the Oracle Web Center product (portal, content management and so on) is based on and extends ADF. ADF Security ADF comes with it’s own security mechanism that is exposed by JDeveloper at development time and in the WLS Console and Enterprise Manager (EM) at run time. The security elements that need to be addressed in an ADF application are: authentication, authorization of access to web pages, task-flows, components within the pages and data being returned from the model layer. One  typically relies on WLS to handle authentication and because of this users and groups will also be handled by WLS.  Typically in a Dev environment, users and groups are stored in the WLS embedded LDAP server. One has a choice when enabling ADF security (Application->Secure->Configure ADF Security) about whether to turn on ADF authorization checking or not: In the case where authorization is enabled for ADF one defines a set of roles in which we place users and then we grant access to these roles to the different ADF elements (pages or task flows or elements in a page). An important notion here is the difference between Enterprise Roles and Application Roles. The idea behind an enterprise role is that is defined in terms of users and LDAP groups from the WLS identity store.  “Enterprise” in the sense that these are things available for use to all applications that use that store.  The other kind of role is an Application Role and the idea is that  a given application will make use of Enterprise roles and users to build up a set of roles for it’s own use.  These application roles will be available only to that application.   The general idea here is that the enterprise roles are relatively static (for example an Employees group in the LDAP directory) while application roles are more dynamic, possibly depending on time, location, accessed resource and so on.  One of the things that OES adds that is that we can define these dynamic membership conditions in Role Mapping Policies. To make this concrete, here is how, at design time in Jdeveloper, one assigns these rights in Jdeveloper, which puts them into a file called jazn-data.xml: When the ADF app is deployed to a WLS this JAZN security data is pushed to the system-jazn-data.xml file of the WLS deployment for the policies and application roles and to the WLS backing LDAP for the users and enterprise roles.  Note the difference here: after deploying the application we will see the users and enterprise roles show up in the WLS LDAP server.  But the policies and application roles are defined in the system-jazn-data.xml file.  Consult the embedded WLS LDAP server to manage users and enterprise roles by going to the domain console and then Security Realms->myrealm->Users and Groups: For production environments (or in future to share this data with OES) one would then perform the operation of “reassociating” this security policy and application role data to a DB schema (or an LDAP).  This is done in the EM console by reassociating the Security Provider.  This blog posting has more explanations and references on this reassociation process. If ADF Authentication and Authorization are enabled then the Security Policies for a deployed application can be managed in EM.  Our goal is to be able to manage security policies for the applicaiton rather via OES and it's console. Security Requirements for an ADF Application With this package tour of ADF security we can see that to secure an ADF application with we would expect to be able to take care of at least the following items: Authentication, including a user and user-group store Authorization for page access Authorization for bounded Task Flow access.  A bounded task flow has only one point of entry and so if we protect that entry point by calling to OES then all the pages in the flow are protected.  Authorization for viewing data coming from the data access layer In the next posting we will describe a sample ADF application and required security policies. References ADF Dev Guide: Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework: Enabling ADF Security in a Fusion Web Application Oracle tutorial on securing a sample ADF application, appears to require ADF 11.1.2 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

< Previous Page | 287 288 289 290 291 292 293 294 295 296 297 298  | Next Page >