Search Results

Search found 49291 results on 1972 pages for 'method call'.

Page 300/1972 | < Previous Page | 296 297 298 299 300 301 302 303 304 305 306 307  | Next Page >

  • Using Complex datatype with python SUDS client

    - by sachin
    hi, I am trying to call webservice from python client using SUDS. When I call a function with a complex data type as input parameter, it is not passed correctly, but complex data type is getting returned correctly froma webservice call. Webservice Type: Soap Binding 1.1 Document/Literal Webserver: Weblogic 10.3 Python Version: 2.6.5, SUDS version: 0.3.9 here is the code I am using: Python Client: from suds.client import Client url = 'http://192.168.1.3:7001/WebServiceSecurityOWSM-simple_ws-context-root/SimpleServicePort?WSDL' client = Client(url) print client #simple function with no operation on input... result = client.service.sopHello() print result result = client.service.add10(10) print result params = client.factory.create('paramBean') print params params.intval = 10 params.longval = 20 params.strval = 'string value' #print "params" print params try: result = client.service.printParamBean(params) print result except WebFault, e: print e try: result = client.service.modifyParamBean(params) print result except WebFault, e: print e print params webservice java class: package simple_ws; import javax.jws.Oneway; import javax.jws.WebMethod; import javax.jws.WebService; import javax.jws.soap.SOAPBinding; public class SimpleService { public SimpleService() { } public void sopHello(int i) { System.out.println("sopHello: hello"); } public int add10(int i) { System.out.println("add10:"); return 10+i; } public void printParamBean(ParamBean pb) { System.out.println(pb); } public ParamBean modifyParamBean(ParamBean pb) { System.out.println(pb); pb.setIntval(pb.getIntval()+10); pb.setStrval(pb.getStrval()+"blah blah"); pb.setLongval(pb.getLongval()+200); return pb; } } and the bean Class: package simple_ws; public class ParamBean { int intval; String strval; long longval; public void setIntval(int intval) { this.intval = intval; } public int getIntval() { return intval; } public void setStrval(String strval) { this.strval = strval; } public String getStrval() { return strval; } public void setLongval(long longval) { this.longval = longval; } public long getLongval() { return longval; } public String toString() { String stri = "\nInt val:" +intval; String strstr = "\nstrval val:" +strval; String strl = "\nlong val:" +longval; return stri+strstr+strl; } } so, as issue is like this: on call: client.service.printParamBean(params) in python client, output on server side is: Int val:0 strval val:null long val:0 but on call: client.service.modifyParamBean(params) Client output is: (reply){ intval = 10 longval = 200 strval = "nullblah blah" } What am i doing wrong here??

    Read the article

  • How do I pass a variable number of parameters along with a callback function?

    - by Bungle
    I'm using a function to lazy-load the Sizzle selector engine (used by jQuery): var sizzle_loaded; // load the Sizzle script function load_sizzle(module_name) { var script; // load Sizzle script and set up 'onload' and 'onreadystatechange' event // handlers to ensure that external script is loaded before dependent // code is executed script = document.createElement('script'); script.src = 'sizzle.min.js'; script.onload = function() { sizzle_loaded = true; gather_content(module_name); }; script.onreadystatechange = function() { if ((script.readyState === 'loaded' || script.readyState === 'complete') && !sizzle_loaded) { sizzle_loaded = true; gather_content(module_name); } }; // append script to the document document.getElementsByTagName('head')[0].appendChild(script); } I set the onload and onreadystatechange event handlers, as well as the sizzle_loaded flag to call another function (gather_content()) as soon as Sizzle has loaded. All of this is needed to do this in a cross-browser way. Until now, my project only had to lazy-load Sizzle at one point in the script, so I was able to just hard-code the gather_content() function call into the load_sizzle() function. However, I now need to lazy-load Sizzle at two different points in the script, and call a different function either time once it's loaded. My first instinct was to modify the function to accept a callback function: var sizzle_loaded; // load the Sizzle script function load_sizzle(module_name, callback) { var script; // load Sizzle script and set up 'onload' and 'onreadystatechange' event // handlers to ensure that external script is loaded before dependent // code is executed script = document.createElement('script'); script.src = 'sizzle.min.js'; script.onload = function() { sizzle_loaded = true; callback(module_name); }; script.onreadystatechange = function() { if ((script.readyState === 'loaded' || script.readyState === 'complete') && !sizzle_loaded) { sizzle_loaded = true; callback(module_name); } }; // append script to the document document.getElementsByTagName('head')[0].appendChild(script); } Then, I could just call it like this: load_sizzle(module_name, gather_content); However, the other callback function that I need to use takes more parameters than gather_content() does. How can I modify my function so that I can specify a variable number of parameters, to be passed with the callback function? Or, am I going about this the wrong way? Ultimately, I just want to load Sizzle, then call any function that I need to (with any arguments that it needs) once it's done loading. Thanks for any help!

    Read the article

  • how to wait multiple function processing to finish

    - by user351412
    I have a problem about multiple function processing , listed as below code, the main function is btnEvalClick, I have try to use alter native 1and 2 to wait the function not move to next record before theprocessed function finish, but it does not work //private function btnEvalClick(event:Event):void { // var i:int; // for(i= 0; i < (dataArr1.length); i++) { // dispatchEvent( new FlexEvent('test') ); // callfunc1('cydatGMX'); //call function 1 // callfun2('cydatGMO'); //call function 1 // editSave(); //save record (HTTP) //## Alternative 1 //if (String(event) == 'SAVEOK') { // RecMov('next'); //move record if save = OK //} //## Alternative 2 //while (waitfc == '') // if waitfc not 'OK' continue looping //{ // z = z + 1; //} // RecMov('next'); //Move to next record to process //} //private function callfunc1(tasal:String):void { // var mySO :SharedObject; // var myDP: Array; // var i:int; // var prm:Array; // try // { // mySO = SharedObject.getLocal(tasal,'/'); // prm = mySO.data.txt.split('?'); // for(i=0; i < (prm.length - 1); i++) { // myDP = prm[i].toString().split('^'); // if ( myDP[0].toString() == String(dataArr1[dg].MatrixCDCol)){ // myDPX = myDP; // break; // } // } // } // catch (err:Error) { // Alert.show('Limit object creation fail (' + tasal + '), please retry ); // } //} //private function editSave():void //{ // var parameters:* = // { // 'CertID': CertIDCol.text, 'AssetID': AssetIDCol.text, 'CertDate': cdt, //'Ccatat': CcatatCol.text, 'CertBy': CertByCol.text, 'StatusID': StatusIDCol.text, //'UpdDate': lele, 'UpdUsr': ApplicationState.instance.luNm }; // doRequest('Update', parameters, saveItemHandler); //} //private function doRequest(method_name:String, parameters:Object, callback:Function):void // { // add the method to the parameters list // parameters['method'] = (method_name + 'ASC'); // gateway.request = parameters; // var call:AsyncToken = gateway.send(); // call.request_params = gateway.request; // call.handler = callback; // } //private function saveItemHandler(e:Object):void // { // if (e.isError) // { // Alert.show('Error: ' + e.data.error); // } // else // { // Alert.show('Record Saved..'); // waitfc = 'OK'; // dispatchEvent( new FlexEvent('SAVEOK') ); // } // }

    Read the article

  • Using hidden values with jQuery (and ASP.NET MVC) -- not working?

    - by SlackerCoder
    Im using a couple of JSON calls to render data, etc etc. In order to keep the proper key value, I am storing it in a tag. I have this in several places in my code, none of which cause an issue like this one is. Here is the jQuery: The call that "sets" the value: $("a[id^='planSetupAddNewPlan']").live('click', function() { var x = $(this).attr('id'); x = x.substring(19); $("#hidPlanSetupCurrentGroupKey").val(x); $.getJSON("/GroupSetup/PlanSetupAddNewList", { GroupKey: x }, function(data) { $("#planSetupAddNew").html('' + data.TableResult + ''); alert('First Inside 2 ' + x); $.blockUI({ message: $("#planSetupAddNew") }); }); }); The call that "gets" the value: $("#ddlPlanSetupAddNewProduct").live('change', function() { var a = $("#hidPlanSetupCurrentGroupKey").val(); var prod = $(this).val(); alert(a); $.getJSON("/GroupSetup/PlanSetupChangePlanList", { GroupKey: a, Product: prod }, function(data) { if (data.Message == "Success") { $("#planSetupAddNewPlan").html('' + data.TableResult + ''); } else if (data.Message == "Error") { //Do something } }); }); Here is the html in question: <div id="planSetupAddNew" style="display:none; cursor: default;"> <input type="hidden" id="hidPlanSetupCurrentGroupKey" /> <div id="planSetupAddNewData"> </div> </div> In the first section, the alert ('First Inside 2 ' + x) returns what I expect (where x = the key value), and if I add a line to display the contents of the hidden field, that works as well: ie. var key = $("#hidPlanSetupCurrentGroupKey").val(); alert(key); In the "alert(a);" call, I am getting "undefined". I have looked at the other code in the same view and it is the same and it works. I must be missing something, or have some sort of mistype that I havent caught. Just an overview of the controller events: The first call (/GroupSetup/PlanSetupAddNewList) will return an html string building a "form" for users to enter information into. The second call (/GroupSetup/PlanSetupChangePlanList) just changes a second dropdown based on the first dropdown selection (overwriting the html in the div). If you need more info, let me know! Any thoughts/tips/pointers/suggestions?!?! Thanks for all your help :)

    Read the article

  • Messing with the stack in assembly and c++

    - by user246100
    I want to do the following: I have a function that is not mine (it really doesn't matter here but just to say that I don't have control over it) and that I want to patch so that it calls a function of mine, preserving the arguments list (jumping is not an option). What I'm trying to do is, to put the stack pointer as it was before that function is called and then call mine (like going back and do again the same thing but with a different function). This doesn't work straight because the stack becomes messed up. I believe that when I do the call it replaces the return address. So, I did a step to preserve the return address saving it in a globally variable and it works but this is not ok because I want it to resist to recursitivy and you know what I mean. Anyway, i'm a newbie in assembly so that's why I'm here. Please, don't tell me about already made software to do this because I want to make things my way. Of course, this code has to be compiler and optimization independent. My code (If it is bigger than what is acceptable please tell me how to post it): // A function that is not mine but to which I have access and want to patch so that it calls a function of mine with its original arguments void real(int a,int b,int c,int d) { } // A function that I want to be called, receiving the original arguments void receiver(int a,int b,int c,int d) { printf("Arguments %d %d %d %d\n",a,b,c,d); } long helper; // A patch to apply in the "real" function and on which I will call "receiver" with the same arguments that "real" received. __declspec( naked ) void patch() { _asm { // This first two instructions save the return address in a global variable // If I don't save and restore, the program won't work correctly. // I want to do this without having to use a global variable mov eax, [ebp+4] mov helper,eax push ebp mov ebp, esp // Make that the stack becomes as it were before the real function was called add esp, 8 // Calls our receiver call receiver mov esp, ebp pop ebp // Restores the return address previously saved mov eax, helper mov [ebp+4],eax ret } } int _tmain(int argc, _TCHAR* argv[]) { FlushInstructionCache(GetCurrentProcess(),&real,5); DWORD oldProtection; VirtualProtect(&real,5,PAGE_EXECUTE_READWRITE,&oldProtection); // Patching the real function to go to my patch ((unsigned char*)real)[0] = 0xE9; *((long*)((long)(real) + sizeof(unsigned char))) = (char*)patch - (char*)real - 5; // calling real function (I'm just calling it with inline assembly because otherwise it seems to works as if it were un patched // that is strange but irrelevant for this _asm { push 666 push 1337 push 69 push 100 call real add esp, 16 } return 0; }

    Read the article

  • Device drivers and Windows

    - by b-gen-jack-o-neill
    Hi, I am trying to complete the picture of how the PC and the OS interacts together. And I am at point, where I am little out of guess when it comes to device drivers. Please, don´t write things like its too complicated, or you don´t need to know when using high programming laguage and winapi functions. I want to know, it´s for study purposes. So, the very basic structure of how OS and PC (by PC I mean of course HW) is how I see it is that all other than direct CPU commands, which can CPU do on itself (arithmetic operation, its registers access and memory access) must pass thru OS. Mainly becouse from ring level 3 you cannot use in and out intructions which are used for acesing other HW. I know that there is MMIO,but it must be set by port comunication first. It was not like this all the time. Even I am bit young to remember MSDOS, I know you could access HW directly, becouse there ws no limitation, no ring mode. So you could to write string to diplay use wheather DOS function, or directly acess video card memory and write it by yourself. But as OS developed, there is no longer this possibility. But it is fine, since OS now handles all the HW comunication, and frankly it more convinient and much more safe (I would say the only option) in multitasking environment. So nowdays you instead of using int instructions to use BIOS mapped function or DOS function you call dll which internally than handles everything you don´t need to know about. I understand this. I also undrstand that device drivers is the piece of code that runs in ring level 0, so it can do all the HW interactions. But what I don´t understand is connection between OS and device driver. Let´s take a example - I want to make a sound card make a sound. So I call windows API to acess sound card, but what happens than? Does windows call device drivers to do so? But if it does call device driver, does it mean, that all device drivers which can be called by winAPI function, must have routines named in some specific way? I mean, when I have new sound card, must its drivers have functions named same as the old one? So Windows can actually call the same function from its perspective? But if Windows have predefined sets of functions requored by device drivers, that it cannot use new drivers that doesent existed before last version of OS came out. Please, help me understand this mess. I am really getting mad. Thanks.

    Read the article

  • Controlling the USB from Windows

    - by b-gen-jack-o-neill
    Hi, I know this probably is not the easiest thing to do, but I am trying to connect Microcontroller and PC using USB. I dont want to use internal USART of Microcontroller or USB to RS232 converted, its project indended to help me understand various principles. So, getting the communication done from the Microcontroller side is piece of cake - I mean, when I know he protocol, its relativelly easy to implement it on Micro, becouse I am in direct control of evrything, even precise timing. But this is not the case of PC. I am not very familiar with concept of Windows handling the devices connected. In one of my previous question I ask about how Windows works with devices thru drivers. I understood that for internal use of Windows, drivers must have some default set of functions available to OS. I mean, when OS wants to access HDD, it calls HDD driver (which is probably internal in OS), with specific "questions" so that means that HDD driver has to be written to cooperate with Windows, to have write function in the proper place to be called by the OS. Something similiar is for GPU, Even DirectX, I mean DirectX must call specific functions from drivers, so drivers must be written to work with DX. I know, many functions from WinAPI works on their own, but even "simple" window must be in the end written into framebuffer, using MMIO to adress specified by drivers. Am I right? So, I expected that Windows have internal functions, parts of WinAPI designed to work with certain comonly used things. To call manufacturer-designed drivers. But this seems to not be entirely true becouse Windows has no way to communicate thru Paralel port. I mean, there is no function in the WinAPI to work with serial port, but there are funcions to work with HDD,GPU and so. But now there comes the part I am getting very lost at. So, I think Windows must have some built-in functions to communicate thru USB, becouse for example it handles USB flash memory. So, is there any WinAPI function designed to let user to operate USB thru that function, or when I want to use USB myself, do I have to call desired USB-driver function myself? Becouse all you need to send to USB controller is device adress and the infromation right? I mean, I don´t have to write any new drivers, am I right? Just to call WinAPI function if there is such, or directly call original USB driver. Does any of this make some sense?

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 3 – Table per Concrete Type (TPC) and Choosing Strategy Guidelines

    - by mortezam
    This is the third (and last) post in a series that explains different approaches to map an inheritance hierarchy with EF Code First. I've described these strategies in previous posts: Part 1 – Table per Hierarchy (TPH) Part 2 – Table per Type (TPT)In today’s blog post I am going to discuss Table per Concrete Type (TPC) which completes the inheritance mapping strategies supported by EF Code First. At the end of this post I will provide some guidelines to choose an inheritance strategy mainly based on what we've learned in this series. TPC and Entity Framework in the Past Table per Concrete type is somehow the simplest approach suggested, yet using TPC with EF is one of those concepts that has not been covered very well so far and I've seen in some resources that it was even discouraged. The reason for that is just because Entity Data Model Designer in VS2010 doesn't support TPC (even though the EF runtime does). That basically means if you are following EF's Database-First or Model-First approaches then configuring TPC requires manually writing XML in the EDMX file which is not considered to be a fun practice. Well, no more. You'll see that with Code First, creating TPC is perfectly possible with fluent API just like other strategies and you don't need to avoid TPC due to the lack of designer support as you would probably do in other EF approaches. Table per Concrete Type (TPC)In Table per Concrete type (aka Table per Concrete class) we use exactly one table for each (nonabstract) class. All properties of a class, including inherited properties, can be mapped to columns of this table, as shown in the following figure: As you can see, the SQL schema is not aware of the inheritance; effectively, we’ve mapped two unrelated tables to a more expressive class structure. If the base class was concrete, then an additional table would be needed to hold instances of that class. I have to emphasize that there is no relationship between the database tables, except for the fact that they share some similar columns. TPC Implementation in Code First Just like the TPT implementation, we need to specify a separate table for each of the subclasses. We also need to tell Code First that we want all of the inherited properties to be mapped as part of this table. In CTP5, there is a new helper method on EntityMappingConfiguration class called MapInheritedProperties that exactly does this for us. Here is the complete object model as well as the fluent API to create a TPC mapping: public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } }          public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } }          public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } }      public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; }              protected override void OnModelCreating(ModelBuilder modelBuilder)     {         modelBuilder.Entity<BankAccount>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("BankAccounts");         });         modelBuilder.Entity<CreditCard>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("CreditCards");         });                 } } The Importance of EntityMappingConfiguration ClassAs a side note, it worth mentioning that EntityMappingConfiguration class turns out to be a key type for inheritance mapping in Code First. Here is an snapshot of this class: namespace System.Data.Entity.ModelConfiguration.Configuration.Mapping {     public class EntityMappingConfiguration<TEntityType> where TEntityType : class     {         public ValueConditionConfiguration Requires(string discriminator);         public void ToTable(string tableName);         public void MapInheritedProperties();     } } As you have seen so far, we used its Requires method to customize TPH. We also used its ToTable method to create a TPT and now we are using its MapInheritedProperties along with ToTable method to create our TPC mapping. TPC Configuration is Not Done Yet!We are not quite done with our TPC configuration and there is more into this story even though the fluent API we saw perfectly created a TPC mapping for us in the database. To see why, let's start working with our object model. For example, the following code creates two new objects of BankAccount and CreditCard types and tries to add them to the database: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount();     CreditCard creditCard = new CreditCard() { CardType = 1 };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Running this code throws an InvalidOperationException with this message: The changes to the database were committed successfully, but an error occurred while updating the object context. The ObjectContext might be in an inconsistent state. Inner exception message: AcceptChanges cannot continue because the object's key values conflict with another object in the ObjectStateManager. Make sure that the key values are unique before calling AcceptChanges. The reason we got this exception is because DbContext.SaveChanges() internally invokes SaveChanges method of its internal ObjectContext. ObjectContext's SaveChanges method on its turn by default calls AcceptAllChanges after it has performed the database modifications. AcceptAllChanges method merely iterates over all entries in ObjectStateManager and invokes AcceptChanges on each of them. Since the entities are in Added state, AcceptChanges method replaces their temporary EntityKey with a regular EntityKey based on the primary key values (i.e. BillingDetailId) that come back from the database and that's where the problem occurs since both the entities have been assigned the same value for their primary key by the database (i.e. on both BillingDetailId = 1) and the problem is that ObjectStateManager cannot track objects of the same type (i.e. BillingDetail) with the same EntityKey value hence it throws. If you take a closer look at the TPC's SQL schema above, you'll see why the database generated the same values for the primary keys: the BillingDetailId column in both BankAccounts and CreditCards table has been marked as identity. How to Solve The Identity Problem in TPC As you saw, using SQL Server’s int identity columns doesn't work very well together with TPC since there will be duplicate entity keys when inserting in subclasses tables with all having the same identity seed. Therefore, to solve this, either a spread seed (where each table has its own initial seed value) will be needed, or a mechanism other than SQL Server’s int identity should be used. Some other RDBMSes have other mechanisms allowing a sequence (identity) to be shared by multiple tables, and something similar can be achieved with GUID keys in SQL Server. While using GUID keys, or int identity keys with different starting seeds will solve the problem but yet another solution would be to completely switch off identity on the primary key property. As a result, we need to take the responsibility of providing unique keys when inserting records to the database. We will go with this solution since it works regardless of which database engine is used. Switching Off Identity in Code First We can switch off identity simply by placing DatabaseGenerated attribute on the primary key property and pass DatabaseGenerationOption.None to its constructor. DatabaseGenerated attribute is a new data annotation which has been added to System.ComponentModel.DataAnnotations namespace in CTP5: public abstract class BillingDetail {     [DatabaseGenerated(DatabaseGenerationOption.None)]     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } As always, we can achieve the same result by using fluent API, if you prefer that: modelBuilder.Entity<BillingDetail>()             .Property(p => p.BillingDetailId)             .HasDatabaseGenerationOption(DatabaseGenerationOption.None); Working With The Object Model Our TPC mapping is ready and we can try adding new records to the database. But, like I said, now we need to take care of providing unique keys when creating new objects: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount()      {          BillingDetailId = 1                          };     CreditCard creditCard = new CreditCard()      {          BillingDetailId = 2,         CardType = 1     };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Polymorphic Associations with TPC is Problematic The main problem with this approach is that it doesn’t support Polymorphic Associations very well. After all, in the database, associations are represented as foreign key relationships and in TPC, the subclasses are all mapped to different tables so a polymorphic association to their base class (abstract BillingDetail in our example) cannot be represented as a simple foreign key relationship. For example, consider the the domain model we introduced here where User has a polymorphic association with BillingDetail. This would be problematic in our TPC Schema, because if User has a many-to-one relationship with BillingDetail, the Users table would need a single foreign key column, which would have to refer both concrete subclass tables. This isn’t possible with regular foreign key constraints. Schema Evolution with TPC is Complex A further conceptual problem with this mapping strategy is that several different columns, of different tables, share exactly the same semantics. This makes schema evolution more complex. For example, a change to a base class property results in changes to multiple columns. It also makes it much more difficult to implement database integrity constraints that apply to all subclasses. Generated SQLLet's examine SQL output for polymorphic queries in TPC mapping. For example, consider this polymorphic query for all BillingDetails and the resulting SQL statements that being executed in the database: var query = from b in context.BillingDetails select b; Just like the SQL query generated by TPT mapping, the CASE statements that you see in the beginning of the query is merely to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type). TPC's SQL Queries are Union Based As you can see in the above screenshot, the first SELECT uses a FROM-clause subquery (which is selected with a red rectangle) to retrieve all instances of BillingDetails from all concrete class tables. The tables are combined with a UNION operator, and a literal (in this case, 0 and 1) is inserted into the intermediate result; (look at the lines highlighted in yellow.) EF reads this to instantiate the correct class given the data from a particular row. A union requires that the queries that are combined, project over the same columns; hence, EF has to pad and fill up nonexistent columns with NULL. This query will really perform well since here we can let the database optimizer find the best execution plan to combine rows from several tables. There is also no Joins involved so it has a better performance than the SQL queries generated by TPT where a Join is required between the base and subclasses tables. Choosing Strategy GuidelinesBefore we get into this discussion, I want to emphasize that there is no one single "best strategy fits all scenarios" exists. As you saw, each of the approaches have their own advantages and drawbacks. Here are some rules of thumb to identify the best strategy in a particular scenario: If you don’t require polymorphic associations or queries, lean toward TPC—in other words, if you never or rarely query for BillingDetails and you have no class that has an association to BillingDetail base class. I recommend TPC (only) for the top level of your class hierarchy, where polymorphism isn’t usually required, and when modification of the base class in the future is unlikely. If you do require polymorphic associations or queries, and subclasses declare relatively few properties (particularly if the main difference between subclasses is in their behavior), lean toward TPH. Your goal is to minimize the number of nullable columns and to convince yourself (and your DBA) that a denormalized schema won’t create problems in the long run. If you do require polymorphic associations or queries, and subclasses declare many properties (subclasses differ mainly by the data they hold), lean toward TPT. Or, depending on the width and depth of your inheritance hierarchy and the possible cost of joins versus unions, use TPC. By default, choose TPH only for simple problems. For more complex cases (or when you’re overruled by a data modeler insisting on the importance of nullability constraints and normalization), you should consider the TPT strategy. But at that point, ask yourself whether it may not be better to remodel inheritance as delegation in the object model (delegation is a way of making composition as powerful for reuse as inheritance). Complex inheritance is often best avoided for all sorts of reasons unrelated to persistence or ORM. EF acts as a buffer between the domain and relational models, but that doesn’t mean you can ignore persistence concerns when designing your classes. SummaryIn this series, we focused on one of the main structural aspect of the object/relational paradigm mismatch which is inheritance and discussed how EF solve this problem as an ORM solution. We learned about the three well-known inheritance mapping strategies and their implementations in EF Code First. Hopefully it gives you a better insight about the mapping of inheritance hierarchies as well as choosing the best strategy for your particular scenario. Happy New Year and Happy Code-Firsting! References ADO.NET team blog Java Persistence with Hibernate book a { color: #5A99FF; } a:visited { color: #5A99FF; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } .exception { background-color: #f0f0f0; font-style: italic; padding-bottom: 5px; padding-left: 5px; padding-top: 5px; padding-right: 5px; }

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • ASP.NET MVC 3 Hosting :: How to Deploy Web Apps Using ASP.NET MVC 3, Razor and EF Code First - Part I

    - by mbridge
    First, you can download the source code from http://efmvc.codeplex.com. The following frameworks will be used for this step by step tutorial. public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } } Expense Class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } }    Define Domain Model Let’s create domain model for our simple web application Category Class We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First. public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     } RepositoryBasse – Generic Repository class protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } } DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work public interface IUnitOfWork {     void Commit(); } UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } } The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>. public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext. public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } } Let’s create controller factory for Unity in the ASP.NET MVC 3 application.                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   } Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies. private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); } In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity. protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); } Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        } Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>         }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div> We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Category.cshtml @model MyFinance.Domain.Category <div class="editor-label"> @Html.LabelFor(model => model.Name) </div> <div class="editor-field"> @Html.EditorFor(model => model.Name) @Html.ValidationMessageFor(model => model.Name) </div> <div class="editor-label"> @Html.LabelFor(model => model.Description) </div> <div class="editor-field"> @Html.EditorFor(model => model.Description) @Html.ValidationMessageFor(model => model.Description) </div> Let’s create view page for insert Category information @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.     @{     Layout = "~/Views/Shared/_Layout.cshtml"; } Tomorrow, we will cotinue the second part of this article. :)

    Read the article

  • An Honest look at SharePoint Web Services

    - by juanlarios
    INTRODUCTION If you are a SharePoint developer you know that there are two basic ways to develop against SharePoint. 1) The object Model 2) Web services. SharePoint object model has the advantage of being quite rich. Anything you can do through the SharePoint UI as an administrator or end user, you can do through the object model. In fact everything that is done through the UI is done through the object model behind the scenes. The major disadvantage to getting at SharePoint this way is that the code needs to run on the server. This means that all web parts, event receivers, features, etc… all of this is code that is deployed to the server. The second way to get to SharePoint is through the built in web services. There are many articles on how to manipulate web services, how to authenticate to them and interact with them. The basic idea is that a remote application or process can contact SharePoint through a web service. Lots has been written about how great these web services are. This article is written to document the limitations, some of the issues and frustrations with working with SharePoint built in web services. Ultimately, for the tasks I was given to , SharePoint built in web services did not suffice. My evaluation of SharePoint built in services was compared against creating my own WCF Services to do what I needed. The current project I'm working on right now involved several "integration points". A remote application, installed on a separate server was to contact SharePoint and perform an task or operation. So I decided to start up Visual Studio and built a DLL and basically have 2 layers of logic. An integration layer and a data layer. A good friend of mine pointed me to SOLID principles and referred me to some videos and tutorials about it. I decided to implement the methodology (although a lot of the principles are common sense and I already incorporated in my coding practices). I was to deliver this dll to the application team and they would simply call the methods exposed by this dll and voila! it would do some task or operation in SharePoint. SOLUTION My integration layer implemented an interface that defined some of the basic integration tasks that I was to put together. My data layer was about the same, it implemented an interface with some of the tasks that I was going to develop. This gave me the opportunity to develop different data layers, ultimately different ways to get at SharePoint if I needed to. This is a classic SOLID principle. In this case it proved to be quite helpful because I wrote one data layer completely implementing SharePoint built in Web Services and another implementing my own WCF Service that I wrote. I should mention there is another layer underneath the data layer. In referencing SharePoint or WCF services in my visual studio project I created a class for every web service call. So for example, if I used List.asx. I created a class called "DocumentRetreival" this class would do the grunt work to connect to the correct URL, It would perform the basic operation of contacting the service and so on. If I used a view.asmx, I implemented a class called "ViewRetrieval" with the same idea as the last class but it would now interact with all he operations in view.asmx. This gave my data layer the ability to perform multiple calls without really worrying about some of the grunt work each class performs. This again, is a classic SOLID principle. So, in order to compare them side by side we can look at both data layers and with is involved in each. Lets take a look at the "Create Project" task or operation. The integration point is described as , "dll is to provide a way to create a project in SharePoint". Projects , in this case are basically document libraries. I am to implement a way in which a remote application can create a document library in SharePoint. Easy enough right? Use the list.asmx Web service in SharePoint. So here we go! Lets take a look at the code. I added the List.asmx web service reference to my project and this is the class that contacts it:  class DocumentRetrieval     {         private ListsSoapClient _service;      d   private bool _impersonation;         public DocumentRetrieval(bool impersonation, string endpt)         {             _service = new ListsSoapClient();             this.SetEndPoint(string.Format("{0}/{1}", endpt, ConfigurationManager.AppSettings["List"]));             _impersonation = impersonation;             if (_impersonation)             {                 _service.ClientCredentials.Windows.ClientCredential.Password = ConfigurationManager.AppSettings["password"];                 _service.ClientCredentials.Windows.ClientCredential.UserName = ConfigurationManager.AppSettings["username"];                 _service.ClientCredentials.Windows.AllowedImpersonationLevel =                     System.Security.Principal.TokenImpersonationLevel.Impersonation;             }     private void SetEndPoint(string p)          {             _service.Endpoint.Address = new EndpointAddress(p);          }          /// <summary>         /// Creates a document library with specific name and templateID         /// </summary>         /// <param name="listName">New list name</param>         /// <param name="templateID">Template ID</param>         /// <returns></returns>         public XmlElement CreateLibrary(string listName, int templateID, ref ExceptionContract exContract)         {             XmlDocument sample = new XmlDocument();             XmlElement viewCol = sample.CreateElement("Empty");             try             {                 _service.Open();                 viewCol = _service.AddList(listName, "", templateID);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/CreateLibrary", ex.GetType(), "Connection Error", ex.StackTrace, ExceptionContract.ExceptionCode.error);                             }finally             {                 _service.Close();             }                                      return viewCol;         } } There was a lot more in this class (that I am not including) because i was reusing the grunt work and making other operations with LIst.asmx, For example, updating content types, changing or configuring lists or document libraries. One of the first things I noticed about working with the built in services is that you are really at the mercy of what is available to you. Before creating a document library (Project) I wanted to expose a IsProjectExisting method. This way the integration or data layer could recognize if a library already exists. Well there is no service call or method available to do that check. So this is what I wrote:   public bool DocLibExists(string listName, ref ExceptionContract exContract)         {             try             {                 var allLists = _service.GetListCollection();                                return allLists.ChildNodes.OfType<XmlElement>().ToList().Exists(x => x.Attributes["Title"].Value ==listName);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/GetList/GetListWSCall", ex.GetType(), "Unable to Retrieve List Collection", ex.StackTrace, ExceptionContract.ExceptionCode.error);             }             return false;         } This really just gets an XMLElement with all the lists. It was then up to me to sift through the clutter and noise and see if Document library already existed. This took a little bit of getting used to. Now instead of working with code, you are working with XMLElement response format from web service. I wrote a LINQ query to go through and find if the attribute "Title" existed and had a value of the listname then it would return True, if not False. I didn't particularly like working this way. Dealing with XMLElement responses and then having to manipulate it to get at the exact data I was looking for. Once the check for the DocLibExists, was done, I would either create the document library or send back an error indicating the document library already existed. Now lets examine the code that actually creates the document library. It does what you are really after, it creates a document library. Notice how the template ID is really an integer. Every document library template in SharePoint has an ID associated with it. Document libraries, Image Library, Custom List, Project Tasks, etc… they all he a unique integer associated with it. Well, that's great but the client came back to me and gave me some specifics that each "project" or document library, should have. They specified they had 3 types of projects. Each project would have unique views, about 10 views for each project. Each Project specified unique configurations (auditing, versioning, content types, etc…) So what turned out to be a simple implementation of creating a document library as a repository for a project, turned out to be quite involved.  The first thing I thought of was to create a template for document library. There are other ways you can do this too. Using the web Service call, you could configure views, versioning, even content types, etc… the only catch is, you have to be working quite extensively with CAML. I am not fond of CAML. I can do it and work with it, I just don't like doing it. It is quite touchy and at times it is quite tough to understand where errors were made with CAML statements. Working with Web Services and CAML proved to be quite annoying. The service call would return a generic error message that did not particularly point me to a CAML statement syntax error, or even a CAML error. I was not sure if it was a security , performance or code based issue. It was quite tough to work with. At times it was difficult to work with because of the way SharePoint handles metadata. There are "Names", "Display Name", and "StaticName" fields. It was quite tough to understand at times, which one to use. So it took a lot of trial and error. There are tools that can help with CAML generation. There is also now intellisense for CAML statements in Visual Studio that might help but ultimately I'm not fond of CAML with Web Services.   So I decided on the template. So my plan was to create create a document library, configure it accordingly and then use The Template Builder that comes with the SharePoint SDK. This tool allows you to create site templates, list template etc… It is quite interesting because it does not generate an STP file, it actually generates an xml definition and a feature you can activate and make that template available on a site or site collection. The first issue I experienced with this is that one of the specifications to this template was that the "All Documents" view was to have 2 web parts on it. Well, it turns out that using the template builder , it did not include the web parts as part of the list template definition it generated. It backed up the settings, the views, the content types but not the custom web parts. I still decided to try this even without the web parts on the page. This new template defined a new Document library definition with a unique ID. The problem was that the service call accepts an int but it only has access to the built in library int definitions. Any new ones added or created will not be available to create. So this made it impossible for me to approach the problem this way.     I should also mention that one of the nice features about SharePoint is the ability to create list templates, back them up and then create lists based on that template. It can all be done by end user administrators. These templates are quite unique because they are saved as an STP file and not an xml definition. I also went this route and tried to see if there was another service call where I could create a document library based no given template name. Nope! none.      After some thinking I decide to implement a WCF service to do this creation for me. I was quite certain that the object model would allow me to create document libraries base on a template in which an ID was required and also templates saved as STP files. Now I don't want to bother with posting the code to contact WCF service because it's self explanatory, but I will post the code that I used to create a list with custom template. public ServiceResult CreateProject(string name, string templateName, string projectId)         {             string siteurl = SPContext.Current.Site.Url;             Guid webguid = SPContext.Current.Web.ID;                        using (SPSite site = new SPSite(siteurl))             {                 using (SPWeb rootweb = site.RootWeb)                 {                     SPListTemplateCollection temps = site.GetCustomListTemplates(rootweb);                     ProcessWeb(siteurl, webguid, web => Act_CreateProject(web, name, templateName, projectId, temps));                 }//SpWeb             }//SPSite              return _globalResult;                   }         private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                             try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                                       }        private void ProcessWeb(string siteurl, Guid webguid, Action<SPWeb> action) {                        using (SPSite sitecollection = new SPSite(siteurl)) {                 using (SPWeb web = sitecollection.AllWebs[webguid]) {                     action(web);                 }                     }                  } This code is actually some of the code I implemented for the service. there was a lot more I did on Project Creation which I will cover in my next blog post. I implemented an ACTION method to process the web. This allowed me to properly dispose the SPWEb and SPSite objects and not rewrite this code over and over again. So I implemented a WCF service to create projects for me, this allowed me to do a lot more than just create a document library with a template, it now gave me the flexibility to do just about anything the client wanted at project creation. Once this was implemented , the client came back to me and said, "we reference all our projects with ID's in our application. we want SharePoint to do the same". This has been something I have been doing for a little while now but I do hope that SharePoint 2010 can have more of an answer to this and address it properly. I have been adding metadata to SPWebs through property bag. I believe I have blogged about it before. This time it required metadata added to a document library. No problem!!! I also mentioned these web parts that were to go on the "All Documents" View. I took the opportunity to configure them to the appropriate settings. There were two settings that needed to be set on these web parts. One of them was a Project ID configured in the webpart properties. The following code enhances and replaces the "Act_CreateProject " method above:  private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                 SPLimitedWebPartManager wpmgr = null;                               try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     SPFolder rootFolder = newList.RootFolder;                     rootFolder.Properties.Add(KEY, projectId);                     rootFolder.Update();                     if (rootFolder.ParentWeb != targetsite)                         rootFolder.ParentWeb.Dispose();                     if (!templateName.Contains("Natural"))                     {                         SPView alldocumentsview = newList.Views.Cast<SPView>().FirstOrDefault(x => x.Title.Equals(ALLDOCUMENTS));                         SPFile alldocfile = targetsite.GetFile(alldocumentsview.ServerRelativeUrl);                         wpmgr = alldocfile.GetLimitedWebPartManager(PersonalizationScope.Shared);                         ConfigureWebPart(wpmgr, projectId, CUSTOMWPNAME);                                              alldocfile.Update();                     }                                        if (newList.ParentWeb != targetsite)                         newList.ParentWeb.Dispose();                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                 finally                 {                     if (wpmgr != null)                     {                         wpmgr.Web.Dispose();                         wpmgr.Dispose();                     }                 }             }                         }       private void ConfigureWebPart(SPLimitedWebPartManager mgr, string prjId, string webpartname)         {             var wp = mgr.WebParts.Cast<System.Web.UI.WebControls.WebParts.WebPart>().FirstOrDefault(x => x.DisplayTitle.Equals(webpartname));             if (wp != null)             {                           (wp as ListRelationshipWebPart.ListRelationshipWebPart).ProjectID = prjId;                 mgr.SaveChanges(wp);             }         }   This Shows you how I was able to set metadata on the document library. It has to be added to the RootFolder of the document library, Unfortunately, the SPList does not have a Property bag that I can add a key\value pair to. It has to be done on the root folder. Now everything in the integration will reference projects by ID's and will not care about names. My, "DocLibExists" will now need to be changed because a web service is not set up to look at property bags.  I had to write another method on the Service to do the equivalent but with ID's instead of names.  The second thing you will notice about the code is the use of the Webpartmanager. I have seen several examples online, and also read a lot about memory leaks, The above code does not produce memory leaks. The web part manager creates an SPWeb, so just dispose it like I did. CONCLUSION This is a long long post so I will stop here for now, I will continue with more comparisons and limitations in my next post. My conclusion for this example is that Web Services will do the trick if you can suffer through CAML and if you are doing some simple operations. For Everything else, there's WCF! **** fireI apologize for the disorganization of this post, I was on a bus on a 12 hour trip to IOWA while I wrote it, I was half asleep and half awake, hopefully it makes enough sense to someone.

    Read the article

  • Metro Walkthrough: Creating a Task List with a ListView and IndexedDB

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can work with data in a Metro style application written with JavaScript. In particular, we create a super simple Task List application which enables you to create and delete tasks. Here’s a video which demonstrates how the Task List application works: In order to build this application, I had to take advantage of several features of the WinJS library and technologies including: IndexedDB – The Task List application stores data in an IndexedDB database. HTML5 Form Validation – The Task List application uses HTML5 validation to ensure that a required field has a value. ListView Control – The Task List application displays the tasks retrieved from the IndexedDB database in a WinJS ListView control. Creating the IndexedDB Database The Task List application stores all of its data in an IndexedDB database named TasksDB. This database is opened/created with the following code: var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; The msIndexedDB.open() method accepts two parameters: the name of the database to open and the version of the database to open. If a database with a matching version already exists, then calling the msIndexedDB.open() method opens a connection to the existing database. If the database does not exist then the upgradeneeded event is raised. You handle the upgradeneeded event to create a new database. In the code above, the upgradeneeded event handler creates an object store named “tasks” (An object store roughly corresponds to a database table). When you add items to the tasks object store then each item gets an id property with an auto-incremented value automatically. The code above also includes an error event handler. If the IndexedDB database cannot be opened or created, for whatever reason, then an error message is written to the Visual Studio JavaScript Console window. Displaying a List of Tasks The TaskList application retrieves its list of tasks from the tasks object store, which we created above, and displays the list of tasks in a ListView control. Here is how the ListView control is declared: <div id="tasksListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: TaskList.tasks.dataSource, itemTemplate: select('#taskTemplate'), tapBehavior: 'toggleSelect', selectionMode: 'multi', layout: { type: WinJS.UI.ListLayout } }"> </div> The ListView control is bound to the TaskList.tasks.dataSource data source. The TaskList.tasks.dataSource is created with the following code: // Create the data source var tasks = new WinJS.Binding.List(); // Open the database var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; // Load the data source with data from the database req.onsuccess = function () { db = req.result; var tran = db.transaction("tasks"); tran.objectStore("tasks").openCursor().onsuccess = function(event) { var cursor = event.target.result; if (cursor) { tasks.dataSource.insertAtEnd(null, cursor.value); cursor.continue(); }; }; }; // Expose the data source and functions WinJS.Namespace.define("TaskList", { tasks: tasks }); Notice the success event handler. This handler is called when a database is successfully opened/created. In the code above, all of the items from the tasks object store are retrieved into a cursor and added to a WinJS.Binding.List object named tasks. Because the ListView control is bound to the WinJS.Binding.List object, copying the tasks from the object store into the WinJS.Binding.List object causes the tasks to appear in the ListView: Adding a New Task You add a new task in the Task List application by entering the title of a new task into an HTML form and clicking the Add button. Here’s the markup for creating the form: <form id="addTaskForm"> <input id="newTaskTitle" title="New Task" required /> <button>Add</button> </form> Notice that the INPUT element includes a required attribute. In a Metro application, you can take advantage of HTML5 Validation to validate form fields. If you don’t enter a value for the newTaskTitle field then the following validation error message is displayed: For a brief introduction to HTML5 validation, see my previous blog entry: http://stephenwalther.com/blog/archive/2012/03/13/html5-form-validation.aspx When you click the Add button, the form is submitted and the form submit event is raised. The following code is executed in the default.js file: // Handle Add Task document.getElementById("addTaskForm").addEventListener("submit", function (evt) { evt.preventDefault(); var newTaskTitle = document.getElementById("newTaskTitle"); TaskList.addTask({ title: newTaskTitle.value }); newTaskTitle.value = ""; }); The code above retrieves the title of the new task and calls the addTask() method in the tasks.js file. Here’s the code for the addTask() method which is responsible for actually adding the new task to the IndexedDB database: // Add a new task function addTask(taskToAdd) { var transaction = db.transaction("tasks", "readwrite"); var addRequest = transaction.objectStore("tasks").add(taskToAdd); addRequest.onsuccess = function (evt) { taskToAdd.id = evt.target.result; tasks.dataSource.insertAtEnd(null, taskToAdd); } } The code above does two things. First, it adds the new task to the tasks object store in the IndexedDB database. Second, it adds the new task to the data source bound to the ListView. The dataSource.insertAtEnd() method is called to add the new task to the data source so the new task will appear in the ListView (with a nice little animation). Deleting Existing Tasks The Task List application enables you to select one or more tasks by clicking or tapping on one or more tasks in the ListView. When you click the Delete button, the selected tasks are removed from both the IndexedDB database and the ListView. For example, in the following screenshot, two tasks are selected. The selected tasks appear with a teal background and a checkmark: When you click the Delete button, the following code in the default.js file is executed: // Handle Delete Tasks document.getElementById("btnDeleteTasks").addEventListener("click", function (evt) { tasksListView.winControl.selection.getItems().then(function(items) { items.forEach(function (item) { TaskList.deleteTask(item); }); }); }); The selected tasks are retrieved with the TaskList selection.getItem() method. In the code above, the deleteTask() method is called for each of the selected tasks. Here’s the code for the deleteTask() method: // Delete an existing task function deleteTask(listViewItem) { // Database key != ListView key var dbKey = listViewItem.data.id; var listViewKey = listViewItem.key; // Remove item from db and, if success, remove item from ListView var transaction = db.transaction("tasks", “readwrite”); var deleteRequest = transaction.objectStore("tasks").delete(dbKey); deleteRequest.onsuccess = function () { tasks.dataSource.remove(listViewKey); } } This code does two things: it deletes the existing task from the database and removes the existing task from the ListView. In both cases, the right task is removed by using the key associated with the task. However, the task key is different in the case of the database and in the case of the ListView. In the case of the database, the task key is the value of the task id property. In the case of the ListView, on the other hand, the task key is auto-generated by the ListView. When the task is removed from the ListView, an animation is used to collapse the tasks which appear above and below the task which was removed. The Complete Code Above, I did a lot of jumping around between different files in the application and I left out sections of code. For the sake of completeness, I want to include the entire code here: the default.html, default.js, and tasks.js files. Here are the contents of the default.html file. This file contains the UI for the Task List application: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Task List</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- TaskList references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/tasks.js"></script> <style type="text/css"> body { font-size: x-large; } form { display: inline; } #appContainer { margin: 20px; width: 600px; } .win-container { padding: 10px; } </style> </head> <body> <div> <!-- Templates --> <div id="taskTemplate" data-win-control="WinJS.Binding.Template"> <div> <span data-win-bind="innerText:title"></span> </div> </div> <h1>Super Task List</h1> <div id="appContainer"> <form id="addTaskForm"> <input id="newTaskTitle" title="New Task" required /> <button>Add</button> </form> <button id="btnDeleteTasks">Delete</button> <div id="tasksListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: TaskList.tasks.dataSource, itemTemplate: select('#taskTemplate'), tapBehavior: 'toggleSelect', selectionMode: 'multi', layout: { type: WinJS.UI.ListLayout } }"> </div> </div> </div> </body> </html> Here is the code for the default.js file. This code wires up the Add Task form and Delete button: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll().then(function () { // Get reference to Tasks ListView var tasksListView = document.getElementById("tasksListView"); // Handle Add Task document.getElementById("addTaskForm").addEventListener("submit", function (evt) { evt.preventDefault(); var newTaskTitle = document.getElementById("newTaskTitle"); TaskList.addTask({ title: newTaskTitle.value }); newTaskTitle.value = ""; }); // Handle Delete Tasks document.getElementById("btnDeleteTasks").addEventListener("click", function (evt) { tasksListView.winControl.selection.getItems().then(function(items) { items.forEach(function (item) { TaskList.deleteTask(item); }); }); }); }); } }; app.start(); })(); Finally, here is the tasks.js file. This file contains all of the code for opening, creating, and interacting with IndexedDB: (function () { "use strict"; // Create the data source var tasks = new WinJS.Binding.List(); // Open the database var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; // Load the data source with data from the database req.onsuccess = function () { db = req.result; var tran = db.transaction("tasks"); tran.objectStore("tasks").openCursor().onsuccess = function(event) { var cursor = event.target.result; if (cursor) { tasks.dataSource.insertAtEnd(null, cursor.value); cursor.continue(); }; }; }; // Add a new task function addTask(taskToAdd) { var transaction = db.transaction("tasks", "readwrite"); var addRequest = transaction.objectStore("tasks").add(taskToAdd); addRequest.onsuccess = function (evt) { taskToAdd.id = evt.target.result; tasks.dataSource.insertAtEnd(null, taskToAdd); } } // Delete an existing task function deleteTask(listViewItem) { // Database key != ListView key var dbKey = listViewItem.data.id; var listViewKey = listViewItem.key; // Remove item from db and, if success, remove item from ListView var transaction = db.transaction("tasks", "readwrite"); var deleteRequest = transaction.objectStore("tasks").delete(dbKey); deleteRequest.onsuccess = function () { tasks.dataSource.remove(listViewKey); } } // Expose the data source and functions WinJS.Namespace.define("TaskList", { tasks: tasks, addTask: addTask, deleteTask: deleteTask }); })(); Summary I wrote this blog entry because I wanted to create a walkthrough of building a simple database-driven application. In particular, I wanted to demonstrate how you can use a ListView control with an IndexedDB database to store and retrieve database data.

    Read the article

  • Metro Walkthrough: Creating a Task List with a ListView and IndexedDB

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can work with data in a Metro style application written with JavaScript. In particular, we create a super simple Task List application which enables you to create and delete tasks. Here’s a video which demonstrates how the Task List application works: In order to build this application, I had to take advantage of several features of the WinJS library and technologies including: IndexedDB – The Task List application stores data in an IndexedDB database. HTML5 Form Validation – The Task List application uses HTML5 validation to ensure that a required field has a value. ListView Control – The Task List application displays the tasks retrieved from the IndexedDB database in a WinJS ListView control. Creating the IndexedDB Database The Task List application stores all of its data in an IndexedDB database named TasksDB. This database is opened/created with the following code: var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; The msIndexedDB.open() method accepts two parameters: the name of the database to open and the version of the database to open. If a database with a matching version already exists, then calling the msIndexedDB.open() method opens a connection to the existing database. If the database does not exist then the upgradeneeded event is raised. You handle the upgradeneeded event to create a new database. In the code above, the upgradeneeded event handler creates an object store named “tasks” (An object store roughly corresponds to a database table). When you add items to the tasks object store then each item gets an id property with an auto-incremented value automatically. The code above also includes an error event handler. If the IndexedDB database cannot be opened or created, for whatever reason, then an error message is written to the Visual Studio JavaScript Console window. Displaying a List of Tasks The TaskList application retrieves its list of tasks from the tasks object store, which we created above, and displays the list of tasks in a ListView control. Here is how the ListView control is declared: <div id="tasksListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: TaskList.tasks.dataSource, itemTemplate: select('#taskTemplate'), tapBehavior: 'toggleSelect', selectionMode: 'multi', layout: { type: WinJS.UI.ListLayout } }"> </div> The ListView control is bound to the TaskList.tasks.dataSource data source. The TaskList.tasks.dataSource is created with the following code: // Create the data source var tasks = new WinJS.Binding.List(); // Open the database var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; // Load the data source with data from the database req.onsuccess = function () { db = req.result; var tran = db.transaction("tasks"); tran.objectStore("tasks").openCursor().onsuccess = function(event) { var cursor = event.target.result; tasks.dataSource.beginEdits(); if (cursor) { tasks.dataSource.insertAtEnd(null, cursor.value); cursor.continue(); } else { tasks.dataSource.endEdits(); }; }; }; // Expose the data source and functions WinJS.Namespace.define("TaskList", { tasks: tasks }); Notice the success event handler. This handler is called when a database is successfully opened/created. In the code above, all of the items from the tasks object store are retrieved into a cursor and added to a WinJS.Binding.List object named tasks. Because the ListView control is bound to the WinJS.Binding.List object, copying the tasks from the object store into the WinJS.Binding.List object causes the tasks to appear in the ListView: Adding a New Task You add a new task in the Task List application by entering the title of a new task into an HTML form and clicking the Add button. Here’s the markup for creating the form: <form id="addTaskForm"> <input id="newTaskTitle" title="New Task" required /> <button>Add</button> </form> Notice that the INPUT element includes a required attribute. In a Metro application, you can take advantage of HTML5 Validation to validate form fields. If you don’t enter a value for the newTaskTitle field then the following validation error message is displayed: For a brief introduction to HTML5 validation, see my previous blog entry: http://stephenwalther.com/blog/archive/2012/03/13/html5-form-validation.aspx When you click the Add button, the form is submitted and the form submit event is raised. The following code is executed in the default.js file: // Handle Add Task document.getElementById("addTaskForm").addEventListener("submit", function (evt) { evt.preventDefault(); var newTaskTitle = document.getElementById("newTaskTitle"); TaskList.addTask({ title: newTaskTitle.value }); newTaskTitle.value = ""; }); The code above retrieves the title of the new task and calls the addTask() method in the tasks.js file. Here’s the code for the addTask() method which is responsible for actually adding the new task to the IndexedDB database: // Add a new task function addTask(taskToAdd) { var transaction = db.transaction("tasks", IDBTransaction.READ_WRITE); var addRequest = transaction.objectStore("tasks").add(taskToAdd); addRequest.onsuccess = function (evt) { taskToAdd.id = evt.target.result; tasks.dataSource.insertAtEnd(null, taskToAdd); } } The code above does two things. First, it adds the new task to the tasks object store in the IndexedDB database. Second, it adds the new task to the data source bound to the ListView. The dataSource.insertAtEnd() method is called to add the new task to the data source so the new task will appear in the ListView (with a nice little animation). Deleting Existing Tasks The Task List application enables you to select one or more tasks by clicking or tapping on one or more tasks in the ListView. When you click the Delete button, the selected tasks are removed from both the IndexedDB database and the ListView. For example, in the following screenshot, two tasks are selected. The selected tasks appear with a teal background and a checkmark: When you click the Delete button, the following code in the default.js file is executed: // Handle Delete Tasks document.getElementById("btnDeleteTasks").addEventListener("click", function (evt) { tasksListView.winControl.selection.getItems().then(function(items) { items.forEach(function (item) { TaskList.deleteTask(item); }); }); }); The selected tasks are retrieved with the TaskList selection.getItem() method. In the code above, the deleteTask() method is called for each of the selected tasks. Here’s the code for the deleteTask() method: // Delete an existing task function deleteTask(listViewItem) { // Database key != ListView key var dbKey = listViewItem.data.id; var listViewKey = listViewItem.key; // Remove item from db and, if success, remove item from ListView var transaction = db.transaction("tasks", IDBTransaction.READ_WRITE); var deleteRequest = transaction.objectStore("tasks").delete(dbKey); deleteRequest.onsuccess = function () { tasks.dataSource.remove(listViewKey); } } This code does two things: it deletes the existing task from the database and removes the existing task from the ListView. In both cases, the right task is removed by using the key associated with the task. However, the task key is different in the case of the database and in the case of the ListView. In the case of the database, the task key is the value of the task id property. In the case of the ListView, on the other hand, the task key is auto-generated by the ListView. When the task is removed from the ListView, an animation is used to collapse the tasks which appear above and below the task which was removed. The Complete Code Above, I did a lot of jumping around between different files in the application and I left out sections of code. For the sake of completeness, I want to include the entire code here: the default.html, default.js, and tasks.js files. Here are the contents of the default.html file. This file contains the UI for the Task List application: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Task List</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- TaskList references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/tasks.js"></script> <style type="text/css"> body { font-size: x-large; } form { display: inline; } #appContainer { margin: 20px; width: 600px; } .win-container { padding: 10px; } </style> </head> <body> <div> <!-- Templates --> <div id="taskTemplate" data-win-control="WinJS.Binding.Template"> <div> <span data-win-bind="innerText:title"></span> </div> </div> <h1>Super Task List</h1> <div id="appContainer"> <form id="addTaskForm"> <input id="newTaskTitle" title="New Task" required /> <button>Add</button> </form> <button id="btnDeleteTasks">Delete</button> <div id="tasksListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: TaskList.tasks.dataSource, itemTemplate: select('#taskTemplate'), tapBehavior: 'toggleSelect', selectionMode: 'multi', layout: { type: WinJS.UI.ListLayout } }"> </div> </div> </div> </body> </html> Here is the code for the default.js file. This code wires up the Add Task form and Delete button: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll().then(function () { // Get reference to Tasks ListView var tasksListView = document.getElementById("tasksListView"); // Handle Add Task document.getElementById("addTaskForm").addEventListener("submit", function (evt) { evt.preventDefault(); var newTaskTitle = document.getElementById("newTaskTitle"); TaskList.addTask({ title: newTaskTitle.value }); newTaskTitle.value = ""; }); // Handle Delete Tasks document.getElementById("btnDeleteTasks").addEventListener("click", function (evt) { tasksListView.winControl.selection.getItems().then(function(items) { items.forEach(function (item) { TaskList.deleteTask(item); }); }); }); }); } }; app.start(); })(); Finally, here is the tasks.js file. This file contains all of the code for opening, creating, and interacting with IndexedDB: (function () { "use strict"; // Create the data source var tasks = new WinJS.Binding.List(); // Open the database var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; // Load the data source with data from the database req.onsuccess = function () { db = req.result; var tran = db.transaction("tasks"); tran.objectStore("tasks").openCursor().onsuccess = function(event) { var cursor = event.target.result; tasks.dataSource.beginEdits(); if (cursor) { tasks.dataSource.insertAtEnd(null, cursor.value); cursor.continue(); } else { tasks.dataSource.endEdits(); }; }; }; // Add a new task function addTask(taskToAdd) { var transaction = db.transaction("tasks", IDBTransaction.READ_WRITE); var addRequest = transaction.objectStore("tasks").add(taskToAdd); addRequest.onsuccess = function (evt) { taskToAdd.id = evt.target.result; tasks.dataSource.insertAtEnd(null, taskToAdd); } } // Delete an existing task function deleteTask(listViewItem) { // Database key != ListView key var dbKey = listViewItem.data.id; var listViewKey = listViewItem.key; // Remove item from db and, if success, remove item from ListView var transaction = db.transaction("tasks", IDBTransaction.READ_WRITE); var deleteRequest = transaction.objectStore("tasks").delete(dbKey); deleteRequest.onsuccess = function () { tasks.dataSource.remove(listViewKey); } } // Expose the data source and functions WinJS.Namespace.define("TaskList", { tasks: tasks, addTask: addTask, deleteTask: deleteTask }); })(); Summary I wrote this blog entry because I wanted to create a walkthrough of building a simple database-driven application. In particular, I wanted to demonstrate how you can use a ListView control with an IndexedDB database to store and retrieve database data.

    Read the article

  • Asterisk SIP digest authentication username mismatch

    - by Matt
    I have an asterisk system that I'm attempting to get to work as a backup for our 3com system. We already use it for a conference bridge. Our phones are the 3com 3C10402B, so I don't have the issue of older 3com phones that come without a SIP image. The 3com phones are communicating SIP with the Asterisk, but are unable to register because they present a digest username value that doesn't match what Asterisk thinks it should. As an example, here are the relevant lines from a successful registration from a soft phone: Server sends: WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="1cac3853" Phone responds: Authorization: Digest username="2321", realm="asterisk", nonce="1cac3853", uri="sip:192.168.254.12", algorithm=md5, response="d32df9ec719817282460e7c2625b6120" For the 3com phone, those same lines look like this (and fails): Server sends: WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="6c915c33" Phone responds: Authorization: Digest username="sip:[email protected]", realm="asterisk", nonce="6c915c33", uri="sip:192.168.254.12", opaque="", algorithm=MD5, response="a89df25f19e4b4598595f919dac9db81" Basically, Asterisk wants to see a username in the Digest username field of 2321, but the 3com phone is sending sip:[email protected]. Anyone know how to tell asterisk to accept this format of username in the digest authentication? Here is the sip.conf info for that extension: [2321] deny=0.0.0.0/0.0.0.0 disallow=all type=friend secret=1234 qualify=yes port=5060 permit=0.0.0.0/0.0.0.0 nat=yes mailbox=2321@device host=dynamic dtmfmode=rfc2833 dial=SIP/2321 context=from-internal canreinvite=no callerid=device <2321 allow=ulaw, alaw call-limit=50 ... and for those interested in the grit, here is the debug output of the registration attempt: REGISTER sip:192.168.254.12 SIP/2.0 v: SIP/2.0/UDP 192.168.254.157:5060 t: f: i: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18580 REGISTER Max-Forwards: 70 m: ;dt=544 Expires: 3600 User-Agent: 3Com-SIP-Phone/V8.0.1.3 X-3Com-PhoneInfo: firstRegistration=no; primaryCallP=192.168.254.12; secondaryCallP=0.0.0.0; --- (11 headers 0 lines) --- Using latest REGISTER request as basis request Sending to 192.168.254.157 : 5060 (no NAT) SIP/2.0 100 Trying Via: SIP/2.0/UDP 192.168.254.157:5060;received=192.168.254.157 From: To: Call-ID: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18580 REGISTER User-Agent: Asterisk PBX Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces Contact: Content-Length: 0 SIP/2.0 401 Unauthorized Via: SIP/2.0/UDP 192.168.254.157:5060;received=192.168.254.157 From: To: ;tag=as3fb867e2 Call-ID: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18580 REGISTER User-Agent: Asterisk PBX Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="6c915c33" Content-Length: 0 Scheduling destruction of SIP dialog 'fa4451d8-01d6-1cc2-13e4-00e0bb33beb9' in 32000 ms (Method: REGISTER) confbridge*CLI REGISTER sip:192.168.254.12 SIP/2.0 v: SIP/2.0/UDP 192.168.254.157:5060 t: f: i: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18581 REGISTER Max-Forwards: 70 m: ;dt=544 Expires: 3600 User-Agent: 3Com-SIP-Phone/V8.0.1.3 Authorization: Digest username="sip:[email protected]", realm="asterisk", nonce="6c915c33", uri="sip:192.168.254.12", opaque="", algorithm=MD5, response="a89df25f19e4b4598595f919dac9db81" X-3Com-PhoneInfo: firstRegistration=no; primaryCallP=192.168.254.12; secondaryCallP=0.0.0.0; --- (12 headers 0 lines) --- Using latest REGISTER request as basis request Sending to 192.168.254.157 : 5060 (NAT) SIP/2.0 100 Trying Via: SIP/2.0/UDP 192.168.254.157:5060;received=192.168.254.157 From: To: Call-ID: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18581 REGISTER User-Agent: Asterisk PBX Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces Contact: Content-Length: 0 SIP/2.0 403 Authentication user name does not match account name Via: SIP/2.0/UDP 192.168.254.157:5060;received=192.168.254.157 From: To: ;tag=as3fb867e2 Call-ID: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18581 REGISTER User-Agent: Asterisk PBX Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces Content-Length: 0 Scheduling destruction of SIP dialog 'fa4451d8-01d6-1cc2-13e4-00e0bb33beb9' in 32000 ms (Method: REGISTER) Thanks for your input!

    Read the article

  • Asterisk SIP digest authentication username mismatch

    - by Matt
    I have an asterisk system that I'm attempting to get to work as a backup for our 3com system. We already use it for a conference bridge. Our phones are the 3com 3C10402B, so I don't have the issue of older 3com phones that come without a SIP image. The 3com phones are communicating SIP with the Asterisk, but are unable to register because they present a digest username value that doesn't match what Asterisk thinks it should. As an example, here are the relevant lines from a successful registration from a soft phone: Server sends: WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="1cac3853" Phone responds: Authorization: Digest username="2321", realm="asterisk", nonce="1cac3853", uri="sip:192.168.254.12", algorithm=md5, response="d32df9ec719817282460e7c2625b6120" For the 3com phone, those same lines look like this (and fails): Server sends: WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="6c915c33" Phone responds: Authorization: Digest username="sip:[email protected]", realm="asterisk", nonce="6c915c33", uri="sip:192.168.254.12", opaque="", algorithm=MD5, response="a89df25f19e4b4598595f919dac9db81" Basically, Asterisk wants to see a username in the Digest username field of 2321, but the 3com phone is sending sip:[email protected]. Anyone know how to tell asterisk to accept this format of username in the digest authentication? Here is the sip.conf info for that extension: [2321] deny=0.0.0.0/0.0.0.0 disallow=all type=friend secret=1234 qualify=yes port=5060 permit=0.0.0.0/0.0.0.0 nat=yes mailbox=2321@device host=dynamic dtmfmode=rfc2833 dial=SIP/2321 context=from-internal canreinvite=no callerid=device <2321 allow=ulaw, alaw call-limit=50 ... and for those interested in the grit, here is the debug output of the registration attempt: REGISTER sip:192.168.254.12 SIP/2.0 v: SIP/2.0/UDP 192.168.254.157:5060 t: f: i: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18580 REGISTER Max-Forwards: 70 m: ;dt=544 Expires: 3600 User-Agent: 3Com-SIP-Phone/V8.0.1.3 X-3Com-PhoneInfo: firstRegistration=no; primaryCallP=192.168.254.12; secondaryCallP=0.0.0.0; --- (11 headers 0 lines) --- Using latest REGISTER request as basis request Sending to 192.168.254.157 : 5060 (no NAT) SIP/2.0 100 Trying Via: SIP/2.0/UDP 192.168.254.157:5060;received=192.168.254.157 From: To: Call-ID: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18580 REGISTER User-Agent: Asterisk PBX Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces Contact: Content-Length: 0 SIP/2.0 401 Unauthorized Via: SIP/2.0/UDP 192.168.254.157:5060;received=192.168.254.157 From: To: ;tag=as3fb867e2 Call-ID: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18580 REGISTER User-Agent: Asterisk PBX Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces WWW-Authenticate: Digest algorithm=MD5, realm="asterisk", nonce="6c915c33" Content-Length: 0 Scheduling destruction of SIP dialog 'fa4451d8-01d6-1cc2-13e4-00e0bb33beb9' in 32000 ms (Method: REGISTER) confbridge*CLI REGISTER sip:192.168.254.12 SIP/2.0 v: SIP/2.0/UDP 192.168.254.157:5060 t: f: i: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18581 REGISTER Max-Forwards: 70 m: ;dt=544 Expires: 3600 User-Agent: 3Com-SIP-Phone/V8.0.1.3 Authorization: Digest username="sip:[email protected]", realm="asterisk", nonce="6c915c33", uri="sip:192.168.254.12", opaque="", algorithm=MD5, response="a89df25f19e4b4598595f919dac9db81" X-3Com-PhoneInfo: firstRegistration=no; primaryCallP=192.168.254.12; secondaryCallP=0.0.0.0; --- (12 headers 0 lines) --- Using latest REGISTER request as basis request Sending to 192.168.254.157 : 5060 (NAT) SIP/2.0 100 Trying Via: SIP/2.0/UDP 192.168.254.157:5060;received=192.168.254.157 From: To: Call-ID: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18581 REGISTER User-Agent: Asterisk PBX Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces Contact: Content-Length: 0 SIP/2.0 403 Authentication user name does not match account name Via: SIP/2.0/UDP 192.168.254.157:5060;received=192.168.254.157 From: To: ;tag=as3fb867e2 Call-ID: fa4451d8-01d6-1cc2-13e4-00e0bb33beb9 CSeq: 18581 REGISTER User-Agent: Asterisk PBX Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY Supported: replaces Content-Length: 0 Scheduling destruction of SIP dialog 'fa4451d8-01d6-1cc2-13e4-00e0bb33beb9' in 32000 ms (Method: REGISTER) Thanks for your input!

    Read the article

  • Executing legacy MSBuild scripts in TFS 2010 Build

    - by Jakob Ehn
    When upgrading from TFS 2008 to TFS 2010, all builds are “upgraded” in the sense that a build definition with the same name is created, and it uses the UpgradeTemplate  build process template to execute the build. This template basically just runs MSBuild on the existing TFSBuild.proj file. The build definition contains a property called ConfigurationFolderPath that points to the TFSBuild.proj file. So, existing builds will run just fine after upgrade. But what if you want to use the new workflow functionality in TFS 2010 Build, but still have a lot of MSBuild scripts that maybe call custom MSBuild tasks that you don’t have the time to rewrite? Then one option is to keep these MSBuild scrips and call them from a TFS 2010 Build workflow. This can be done using the MSBuild workflow activity that is avaiable in the toolbox in the Team Foundation Build Activities section: This activity wraps the call to MSBuild.exe and has the following parameters: Most of these properties are only relevant when actually compiling projects, for example C# project files. When calling custom MSBuild project files, you should focus on these properties: Property Meaning Example CommandLineArguments Use this to send in/override MSBuild properties in your project “/p:MyProperty=SomeValue” or MSBuildArguments (this will let you define the arguments in the build definition or when queuing the build) LogFile Name of the log file where MSbuild will log the output “MyBuild.log” LogFileDropLocation Location of the log file BuildDetail.DropLocation + “\log” Project The project to execute SourcesDirectory + “\BuildExtensions.targets” ResponseFile The name of the MSBuild response file SourcesDirectory + “\BuildExtensions.rsp” Targets The target(s) to execute New String() {“Target1”, “Target2”} Verbosity Logging verbosity Microsoft.TeamFoundation.Build.Workflow.BuildVerbosity.Normal Integrating with Team Build   If your MSBuild scripts tries to use Team Build tasks, they will most likely fail with the above approach. For example, the following MSBuild project file tries to add a build step using the BuildStep task:   <?xml version="1.0" encoding="utf-8"?> <Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <Import Project="$(MSBuildExtensionsPath)\Microsoft\VisualStudio\TeamBuild\Microsoft.TeamFoundation.Build.targets" /> <Target Name="MyTarget"> <BuildStep TeamFoundationServerUrl="$(TeamFoundationServerUrl)" BuildUri="$(BuildUri)" Name="MyBuildStep" Message="My build step executed" Status="Succeeded"></BuildStep> </Target> </Project> When executing this file using the MSBuild activity, calling the MyTarget, it will fail with the following message: The "Microsoft.TeamFoundation.Build.Tasks.BuildStep" task could not be loaded from the assembly \PrivateAssemblies\Microsoft.TeamFoundation.Build.ProcessComponents.dll. Could not load file or assembly 'file:///D:\PrivateAssemblies\Microsoft.TeamFoundation.Build.ProcessComponents.dll' or one of its dependencies. The system cannot find the file specified. Confirm that the <UsingTask> declaration is correct, that the assembly and all its dependencies are available, and that the task contains a public class that implements Microsoft.Build.Framework.ITask. You can see that the path to the ProcessComponents.dll is incomplete. This is because in the Microsoft.TeamFoundation.Build.targets file the task is referenced using the $(TeamBuildRegPath) property. Also note that the task needs the TeamFounationServerUrl and BuildUri properties. One solution here is to pass these properties in using the Command Line Arguments parameter:   Here we pass in the parameters with the corresponding values from the curent build. The build log shows that the build step has in fact been inserted:   The problem as you probably spted is that the build step is insert at the top of the build log, instead of next to the MSBuild activity call. This is because we are using a legacy team build task (BuildStep), and that is how these are handled in TFS 2010. You can see the same behaviour when running builds that are using the UpgradeTemplate, that cutom build steps shows up at the top of the build log.

    Read the article

  • Handling WCF Service Paths in Silverlight 4 – Relative Path Support

    - by dwahlin
    If you’re building Silverlight applications that consume data then you’re probably making calls to Web Services. We’ve been successfully using WCF along with Silverlight for several client Line of Business (LOB) applications and passing a lot of data back and forth. Due to the pain involved with updating the ServiceReferences.ClientConfig file generated by a Silverlight service proxy (see Tim Heuer’s post on that subject to see different ways to deal with it) we’ve been using our own technique to figure out the service URL. Going that route makes it a peace of cake to switch between development, staging and production environments. To start, we have a ServiceProxyBase class that handles identifying the URL to use based on the XAP file’s location (this assumes that the service is in the same Web project that serves up the XAP file). The GetServiceUrlBase() method handles this work: public class ServiceProxyBase { public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrlBase = GetServiceUrlBase(); } } public string ServiceUrlBase { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrlBase() { if (!IsDesignTime) { string url = Application.Current.Host.Source.OriginalString; return url.Substring(0, url.IndexOf("/ClientBin", StringComparison.InvariantCultureIgnoreCase)); } return null; } } Silverlight 4 now supports relative paths to services which greatly simplifies things.  We changed the code above to the following: public class ServiceProxyBase { private const string ServiceUrlPath = "../Services/JobPlanService.svc"; public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrl = ServiceUrlPath; } } public string ServiceUrl { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrl() { if (!IsDesignTime) { return ServiceUrlPath; } return null; } } Our ServiceProxy class derives from ServiceProxyBase and handles creating the ABC’s (Address, Binding, Contract) needed for a WCF service call. Looking through the code (mainly the constructor) you’ll notice that the service URI is created by supplying the base path to the XAP file along with the relative path defined in ServiceProxyBase:   public class ServiceProxy : ServiceProxyBase, IServiceProxy { private const string CompletedEventargs = "CompletedEventArgs"; private const string Completed = "Completed"; private const string Async = "Async"; private readonly CustomBinding _Binding; private readonly EndpointAddress _EndPointAddress; private readonly Uri _ServiceUri; private readonly Type _ProxyType = typeof(JobPlanServiceClient); public ServiceProxy() { _ServiceUri = new Uri(Application.Current.Host.Source, ServiceUrl); var elements = new BindingElementCollection { new BinaryMessageEncodingBindingElement(), new HttpTransportBindingElement { MaxBufferSize = 2147483647, MaxReceivedMessageSize = 2147483647 } }; // order of entries in collection is significant: dumb _Binding = new CustomBinding(elements); _EndPointAddress = new EndpointAddress(_ServiceUri); } #region IServiceProxy Members /// <summary> /// Used to call a WCF service operation. /// </summary> /// <typeparam name="T">The type of EventArgs that will be returned by the service operation.</typeparam> /// <param name="callback">The method to call once the WCF call returns (the callback).</param> /// <param name="parameters">Any parameters that the service operation expects.</param> public void CallService<T>(EventHandler<T> callback, params object[] parameters) where T : EventArgs { try { var proxy = new JobPlanServiceClient(_Binding, _EndPointAddress); string action = typeof (T).Name.Replace(CompletedEventargs, String.Empty); _ProxyType.GetEvent(action + Completed).AddEventHandler(proxy, callback); _ProxyType.InvokeMember(action + Async, BindingFlags.InvokeMethod, null, proxy, parameters); } catch (Exception exp) { MessageBox.Show("Unable to use ServiceProxy.CallService to retrieve data: " + exp.Message); } } #endregion } The relative path support for calling services in Silverlight 4 definitely simplifies code and is yet another good reason to move from Silverlight 3 to Silverlight 4.   For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • Interview questions about ASP.NET Web services.

    - by Jalpesh P. Vadgama
    I have seen there are lots of myth’s about asp.net web services in fresher level asp.net developers. So I decided to write a blog post about asp.net web services interview questions. Because I think this is the best way to reach fresher asp.net developers. Followings are few questions about asp.net web services. 1) What is asp.net web services? Ans: Web services are used to support http requests that formatted using xml,http and SOAP syntax. They interact with through standards xml messages through Soap. They are used to support interoperability. It has .asmx extension and .NET framework contains http handlers for web services to support http requested directly. 2) What kind of data can be returned web services web methods? Ans: It supports all the primitive data types and custom data types that can be encoded and serialized by xml. You can find more information about that from the following link. http://msdn.microsoft.com/en-us/library/bb552900.aspx 3) Is web services are only written in asp.net? Ans: No, It can be written by Java and PHP languages also. 4) Explain web method attributes in web services Ans: Web method attributes are added to a public class method to indicate that this method is exposed as a part of XML web services. You can have multiple web methods in a class. But it should be having public attributes as it will be exposed as xml web service part. You can find more information about web method attributes from following link. http://msdn.microsoft.com/en-us/library/byxd99hx(v=vs.71).aspx 5) What is SOA? Ans: SOA stands for “Services Oriented Architecture”. It is kind of service oriented architecture used to support different kind of computing platforms and applications. Web services in asp.net are one of the technologies that supports that kind of architecture.  You can call asp.net web services from any computing platforms and applications. 6) What is SOAP,WDSL and UDDI? Ans: SOAP stands “Simple Object Access protocol”. Web services will be interact with SOAP messages written in XML. SOAP is sometimes referred as “data wrapper” or “data envelope”.Its contains different xml tag that creates a whole SOAP message.  WSDL stand for “Web services Description Language”.  It is an xml document which is written according to standard specified by W3c. It is a kind of manual or document that describes how we can use and consume web service. Web services development software processes the WSDL document and generates SOAP messages that are needed for specific web service. UDDI stand for “Universal Discovery, Description and Integration”. Its is used for web services registries. You can find addresses of web services from UDDI.

    Read the article

  • MongoDB usage best practices

    - by andresv
    The project I'm working on uses MongoDB for some stuff so I'm creating some documents to help developers speedup the learning curve and also avoid mistakes and help them write clean & reliable code. This is my first version of it, so I'm pretty sure I will be adding more stuff to it, so stay tuned! C# Official driver notes The 10gen official MongoDB driver should always be referenced in projects by using NUGET. Do not manually download and reference assemblies in any project. C# driver quickstart guide: http://www.mongodb.org/display/DOCS/CSharp+Driver+Quickstart Reference links C# Language Center: http://www.mongodb.org/display/DOCS/CSharp+Language+Center MongoDB Server Documentation: http://www.mongodb.org/display/DOCS/Home MongoDB Server Downloads: http://www.mongodb.org/downloads MongoDB client drivers download: http://www.mongodb.org/display/DOCS/Drivers MongoDB Community content: http://www.mongodb.org/display/DOCS/CSharp+Community+Projects Tutorials Tutorial MongoDB con ASP.NET MVC - Ejemplo Práctico (Spanish):http://geeks.ms/blogs/gperez/archive/2011/12/02/tutorial-mongodb-con-asp-net-mvc-ejemplo-pr-225-ctico.aspx MongoDB and C#:http://www.codeproject.com/Articles/87757/MongoDB-and-C C# driver LINQ tutorial:http://www.mongodb.org/display/DOCS/CSharp+Driver+LINQ+Tutorial C# driver reference: http://www.mongodb.org/display/DOCS/CSharp+Driver+Tutorial Safe Mode Connection The C# driver supports two connection modes: safe and unsafe. Safe connection mode (only applies to methods that modify data in a database like Inserts, Deletes and Updates. While the current driver defaults to unsafe mode (safeMode == false) it's recommended to always enable safe mode, and force unsafe mode on specific things we know aren't critical. When safe mode is enabled, the driver internal code calls the MongoDB "getLastError" function to ensure the last operation is completed before returning control the the caller. For more information on using safe mode and their implicancies on performance and data reliability see: http://www.mongodb.org/display/DOCS/getLastError+Command If safe mode is not enabled, all data modification calls to the database are executed asynchronously (fire & forget) without waiting for the result of the operation. This mode could be useful for creating / updating non-critical data like performance counters, usage logging and so on. It's important to know that not using safe mode implies that data loss can occur without any notification to the caller. As with any wait operation, enabling safe mode also implies dealing with timeouts. For more information about C# driver safe mode configuration see: http://www.mongodb.org/display/DOCS/CSharp+getLastError+and+SafeMode The safe mode configuration can be specified at different levels: Connection string: mongodb://hostname/?safe=true Database: when obtaining a database instance using the server.GetDatabase(name, safeMode) method Collection: when obtaining a collection instance using the database.GetCollection(name, safeMode) method Operation: for example, when executing the collection.Insert(document, safeMode) method Some useful SafeMode article: http://stackoverflow.com/questions/4604868/mongodb-c-sharp-safemode-official-driver Exception Handling The driver ensures that an exception will be thrown in case of something going wrong, in case of using safe mode (as said above, when not using safe mode no exception will be thrown no matter what the outcome of the operation is). As explained here https://groups.google.com/forum/?fromgroups#!topic/mongodb-user/mS6jIq5FUiM there is no need to check for any returned value from a driver method inserting data. With updates the situation is similar to any other relational database: if an update command doesn't affect any records, the call will suceed anyway (no exception thrown) and you manually have to check for something like "records affected". For MongoDB, an Update operation will return an instance of the "SafeModeResult" class, and you can verify the "DocumentsAffected" property to ensure the intended document was indeed updated. Note: Please remember that an Update method might return a null instance instead of an "SafeModeResult" instance when safe mode is not enabled. Useful Community Articles Comments about how MongoDB works and how that might affect your application: http://ethangunderson.com/blog/two-reasons-to-not-use-mongodb/ FourSquare using MongoDB had serious scalability problems: http://mashable.com/2010/10/07/mongodb-foursquare/ Is MongoDB a replacement for Memcached? http://www.quora.com/Is-MongoDB-a-good-replacement-for-Memcached/answer/Rick-Branson MongoDB Introduction, shell, when not to use, maintenance, upgrade, backups, memory, sharding, etc: http://www.markus-gattol.name/ws/mongodb.html MongoDB Collection level locking support: https://jira.mongodb.org/browse/SERVER-1240 MongoDB performance tips: http://www.quora.com/MongoDB/What-are-some-best-practices-for-optimal-performance-of-MongoDB-particularly-for-queries-that-involve-multiple-documents Lessons learned migrating from SQL Server to MongoDB: http://www.wireclub.com/development/TqnkQwQ8CxUYTVT90/read MongoDB replication performance: http://benshepheard.blogspot.com.ar/2011/01/mongodb-replication-performance.html

    Read the article

  • Subterranean IL: Pseudo custom attributes

    - by Simon Cooper
    Custom attributes were designed to make the .NET framework extensible; if a .NET language needs to store additional metadata on an item that isn't expressible in IL, then an attribute could be applied to the IL item to represent this metadata. For instance, the C# compiler uses DecimalConstantAttribute and DateTimeConstantAttribute to represent compile-time decimal or datetime constants, which aren't allowed in pure IL, and FixedBufferAttribute to represent fixed struct fields. How attributes are compiled Within a .NET assembly are a series of tables containing all the metadata for items within the assembly; for instance, the TypeDef table stores metadata on all the types in the assembly, and MethodDef does the same for all the methods and constructors. Custom attribute information is stored in the CustomAttribute table, which has references to the IL item the attribute is applied to, the constructor used (which implies the type of attribute applied), and a binary blob representing the arguments and name/value pairs used in the attribute application. For example, the following C# class: [Obsolete("Please use MyClass2", true)] public class MyClass { // ... } corresponds to the following IL class definition: .class public MyClass { .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor(string, bool) = { string('Please use MyClass2' bool(true) } // ... } and results in the following entry in the CustomAttribute table: TypeDef(MyClass) MemberRef(ObsoleteAttribute::.ctor(string, bool)) blob -> {string('Please use MyClass2' bool(true)} However, there are some attributes that don't compile in this way. Pseudo custom attributes Just like there are some concepts in a language that can't be represented in IL, there are some concepts in IL that can't be represented in a language. This is where pseudo custom attributes come into play. The most obvious of these is SerializableAttribute. Although it looks like an attribute, it doesn't compile to a CustomAttribute table entry; it instead sets the serializable bit directly within the TypeDef entry for the type. This flag is fully expressible within IL; this C#: [Serializable] public class MySerializableClass {} compiles to this IL: .class public serializable MySerializableClass {} For those interested, a full list of pseudo custom attributes is available here. For the rest of this post, I'll be concentrating on the ones that deal with P/Invoke. P/Invoke attributes P/Invoke is built right into the CLR at quite a deep level; there are 2 metadata tables within an assembly dedicated solely to p/invoke interop, and many more that affect it. Furthermore, all the attributes used to specify p/invoke methods in C# or VB have their own keywords and syntax within IL. For example, the following C# method declaration: [DllImport("mscorsn.dll", SetLastError = true)] [return: MarshalAs(UnmanagedType.U1)] private static extern bool StrongNameSignatureVerificationEx( [MarshalAs(UnmanagedType.LPWStr)] string wszFilePath, [MarshalAs(UnmanagedType.U1)] bool fForceVerification, [MarshalAs(UnmanagedType.U1)] ref bool pfWasVerified); compiles to the following IL definition: .method private static pinvokeimpl("mscorsn.dll" lasterr winapi) bool marshal(unsigned int8) StrongNameSignatureVerificationEx( string marshal(lpwstr) wszFilePath, bool marshal(unsigned int8) fForceVerification, bool& marshal(unsigned int8) pfWasVerified) cil managed preservesig {} As you can see, all the p/invoke and marshal properties are specified directly in IL, rather than using attributes. And, rather than creating entries in CustomAttribute, a whole bunch of metadata is emitted to represent this information. This single method declaration results in the following metadata being output to the assembly: A MethodDef entry containing basic information on the method Four ParamDef entries for the 3 method parameters and return type An entry in ModuleRef to mscorsn.dll An entry in ImplMap linking ModuleRef and MethodDef, along with the name of the function to import and the pinvoke options (lasterr winapi) Four FieldMarshal entries containing the marshal information for each parameter. Phew! Applying attributes Most of the time, when you apply an attribute to an element, an entry in the CustomAttribute table will be created to represent that application. However, some attributes represent concepts in IL that aren't expressible in the language you're coding in, and can instead result in a single bit change (SerializableAttribute and NonSerializedAttribute), or many extra metadata table entries (the p/invoke attributes) being emitted to the output assembly.

    Read the article

  • Great Customer Service Example

    - by MightyZot
    A few days ago I wrote about what I consider a poor customer service interaction with TiVo, a company that I have been faithful to for the past 12 years or so. In that post I talked about how they helped me, but I felt like I was doing something wrong at the end of the call – when in reality I was just following through with an offer that TiVo made possible through my cable company. Today I had a wonderful customer service interaction with American Express, another company that I have been loyal to for many years.(I am a Gold Card member.) I like my Amex card because I can use it for big purchases and it forces me to pay them off at the end of the month. Well, the reality is that I’m not always so good at doing that, so sometimes my payments are over a couple of months.  :) A few days ago I received an email from “American Express” fraud detection. The email stated that I should call a toll free number and have the last four digits of my card handy. I grew up during the BBS era with some creative and somewhat mischievous friends. I’ve learned to be extremely cautious with regard to my online life! So, I did what you would expect…I sent them a nice reply that said “Go screw yourself.” For the past couple of days someone has been trying to call me and I assumed it was the same prankster trying to get the last four digits of my card. The last caller left a message indicating that they were from American Express and they wanted to talk to me about my card. After looking up their customer service numbers on the www.americanexpress.com web site, I called and was put through to the fraud detection group. The rep explained that there were some charges on my wife’s card that did not fit our purchase profile. She went through each charge and, for the most part, they looked like charges my wife may have made. My wife had asked to use the card for some Christmas shopping during the same timeframe as the charges. The American Express rep very politely explained that these looked out of character to her. She continued through the charges. She listed a charge for $160 – at this point my adrenaline started kicking in. My wife said she was going to charge about $25 or $30 dollars, not $160. Next, the rep listed a charge for over $1200. Uh oh!! Now I know that my account has been compromised. I informed the rep that we definitely did not make those charges. She replied with, “that’s ok Mr Pope, we declined those charges as well as some others.” We went through the pending charges and there were a couple more that were questionable. The rep very patiently waited while I called my wife on my office phone to verify the charges. Sure enough, my wife had not ordered anything from Netflix or purchased anything with Yahoo Wallet! “No problem Mr Pope, we will remove those charges as well.” “We are going to cancel your wife’s card and send her a new one. She will receive it by 7pm tomorrow via Federal Express. Please watch your statements over the next couple of months. If you notice anything fishy, give us a call and we will take care of it for you.” (Wow, I’m thinking to myself!) “Is there anything else I can help you with Mr Pope?” “Nope, thank you very much for catching this so early and declining those charges!”, I said smiling. Apparently she could hear me smiling on the other end of the phone line because she replied with “keep smiling Mr Pope and have a good rest of your week.” Now THAT’s customer service!  Thank you American Express!!! I shall remain an ever faithful customer. Interesting…

    Read the article

  • Generic Sorting using C# and Lambda Expression

    - by Haitham Khedre
    Download : GenericSortTester.zip I worked in this class from long time and I think it is a nice piece of code that I need to share , it might help other people searching for the same concept. this will help you to sort any collection easily without needing to write special code for each data type , however if you need special ordering you still can do it , leave a comment and I will see if I need to write another article to cover the other cases. I attached also a fully working example to make you able to see how do you will use that .     public static class GenericSorter { public static IOrderedEnumerable<T> Sort<T>(IEnumerable<T> toSort, Dictionary<string, SortingOrder> sortOptions) { IOrderedEnumerable<T> orderedList = null; foreach (KeyValuePair<string, SortingOrder> entry in sortOptions) { if (orderedList != null) { if (entry.Value == SortingOrder.Ascending) { orderedList = orderedList.ApplyOrder<T>(entry.Key, "ThenBy"); } else { orderedList = orderedList.ApplyOrder<T>(entry.Key,"ThenByDescending"); } } else { if (entry.Value == SortingOrder.Ascending) { orderedList = toSort.ApplyOrder<T>(entry.Key, "OrderBy"); } else { orderedList = toSort.ApplyOrder<T>(entry.Key, "OrderByDescending"); } } } return orderedList; } private static IOrderedEnumerable<T> ApplyOrder<T> (this IEnumerable<T> source, string property, string methodName) { ParameterExpression param = Expression.Parameter(typeof(T), "x"); Expression expr = param; foreach (string prop in property.Split('.')) { expr = Expression.PropertyOrField(expr, prop); } Type delegateType = typeof(Func<,>).MakeGenericType(typeof(T), expr.Type); LambdaExpression lambda = Expression.Lambda(delegateType, expr, param); MethodInfo mi = typeof(Enumerable).GetMethods().Single( method => method.Name == methodName && method.IsGenericMethodDefinition && method.GetGenericArguments().Length == 2 && method.GetParameters().Length == 2) .MakeGenericMethod(typeof(T), expr.Type); return (IOrderedEnumerable<T>)mi.Invoke (null, new object[] { source, lambda.Compile() }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }

    Read the article

  • initrd.lz is corrupted error occured while installing 11.10

    - by zubendra
    C:\ubuntu\install\boot\initrd.lz is corrupted. Error pop-up comes up every time i am trying to install ubuntu-11.10-desktop-i386 using wubi. error comes when the installation process is almost completed. can anyone suggest a solution for this problem. Its occurring regularly. 03-19 18:01 DEBUG TaskList: ## Running copy_installation_files... 03-19 18:01 DEBUG WindowsBackend: Copying C:\DOCUME~1\HP_OWN~1.YOU\LOCALS~1\Temp\pyl59.tmp\data\custom-installation -> C:\ubuntu\install\custom-installation 03-19 18:01 DEBUG WindowsBackend: Copying C:\DOCUME~1\HP_OWN~1.YOU\LOCALS~1\Temp\pyl59.tmp\winboot -> C:\ubuntu\winboot 03-19 18:01 DEBUG WindowsBackend: Copying C:\DOCUME~1\HP_OWN~1.YOU\LOCALS~1\Temp\pyl59.tmp\data\images\Ubuntu.ico -> C:\ubuntu\Ubuntu.ico 03-19 18:01 DEBUG TaskList: ## Finished copy_installation_files 03-19 18:01 DEBUG TaskList: ## Running get_iso... 03-19 18:01 DEBUG CommonBackend: Trying to use pre-specified ISO X:\ubuntu-11.10-desktop-i386.iso 03-19 18:01 DEBUG TaskList: New task is_valid_iso 03-19 18:01 DEBUG TaskList: ### Running is_valid_iso... 03-19 18:01 DEBUG Distro: checking Ubuntu ISO X:\ubuntu-11.10-desktop-i386.iso 03-19 18:01 INFO Distro: Found a valid iso for Ubuntu: X:\ubuntu-11.10-desktop-i386.iso 03-19 18:01 DEBUG TaskList: ### Finished is_valid_iso 03-19 18:01 DEBUG TaskList: New task check_iso 03-19 18:01 DEBUG TaskList: ### Running check_iso... 03-19 18:01 DEBUG CommonBackend: Checking X:\ubuntu-11.10-desktop-i386.iso 03-19 18:01 DEBUG Distro: checking Ubuntu ISO X:\ubuntu-11.10-desktop-i386.iso 03-19 18:01 INFO Distro: Found a valid iso for Ubuntu: X:\ubuntu-11.10-desktop-i386.iso 03-19 18:01 DEBUG CommonBackend: Using distro Ubuntu i386 instead of Ubuntu amd64 03-19 18:01 DEBUG TaskList: New task get_metalink 03-19 18:01 DEBUG TaskList: #### Running get_metalink... 03-19 18:01 DEBUG downloader: downloading http://releases.ubuntu.com/11.10/ubuntu-11.10-desktop-i386.metalink > C:\ubuntu\install 03-19 18:01 ERROR CommonBackend: Cannot download metalink file http://releases.ubuntu.com/11.10/ubuntu-11.10-desktop-i386.metalink err=[Errno 4] IOError: <urlopen error (7, 'getaddrinfo failed')> 03-19 18:01 DEBUG downloader: downloading http://cdimage.ubuntu.com/daily-live/current/oneiric-desktop-i386.metalink > C:\ubuntu\install 03-19 18:01 ERROR CommonBackend: Cannot download metalink file2 http://cdimage.ubuntu.com/daily-live/current/oneiric-desktop-i386.metalink err=[Errno 4] IOError: <urlopen error (7, 'getaddrinfo failed')> 03-19 18:01 DEBUG TaskList: #### Finished get_metalink 03-19 18:01 ERROR CommonBackend: ERROR: the metalink file is not available, cannot check the md5 for X:\ubuntu-11.10-desktop-i386.iso, ignoring 03-19 18:01 DEBUG TaskList: ### Finished check_iso 03-19 18:01 DEBUG TaskList: New task copy_file 03-19 18:01 DEBUG CommonBackend: Copying X:\ubuntu-11.10-desktop-i386.iso > C:\ubuntu\install\installation.iso 03-19 18:01 DEBUG TaskList: ### Running copy_file... 03-19 18:01 DEBUG TaskList: ### Finished copy_file 03-19 18:01 DEBUG TaskList: ## Finished get_iso 03-19 18:01 DEBUG TaskList: ## Running extract_kernel... 03-19 18:01 DEBUG CommonBackend: Extracting files from ISO C:\ubuntu\install\installation.iso 03-19 18:01 DEBUG WindowsBackend: extracting md5sum.txt from C:\ubuntu\install\installation.iso 03-19 18:01 DEBUG WindowsBackend: extracting casper\vmlinuz from C:\ubuntu\install\installation.iso 03-19 18:01 DEBUG WindowsBackend: extracting casper\initrd.lz from C:\ubuntu\install\installation.iso 03-19 18:01 DEBUG CommonBackend: Checking kernel, initrd and md5sums 03-19 18:01 DEBUG CommonBackend: checking C:\ubuntu\install\boot\vmlinuz 03-19 18:01 DEBUG CommonBackend: C:\ubuntu\install\boot\vmlinuz md5 = fde150f5c6fd2de66ed7876efbfcc4c7 == fde150f5c6fd2de66ed7876efbfcc4c7 03-19 18:01 DEBUG CommonBackend: checking C:\ubuntu\install\boot\initrd.lz 03-19 18:01 DEBUG CommonBackend: C:\ubuntu\install\boot\initrd.lz md5 = 8900200c764438c1b124dff5ae92c763 != d6baee1e11f1d6de6eba6bd43dbde352 03-19 18:01 ERROR TaskList: File C:\ubuntu\install\boot\initrd.lz is corrupted Traceback (most recent call last): File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\backend.py", line 623, in extract_kernel Exception: File C:\ubuntu\install\boot\initrd.lz is corrupted 03-19 18:01 DEBUG TaskList: # Cancelling tasklist 03-19 18:01 ERROR root: File C:\ubuntu\install\boot\initrd.lz is corrupted Traceback (most recent call last): File "\lib\wubi\application.py", line 58, in run File "\lib\wubi\application.py", line 132, in select_task File "\lib\wubi\application.py", line 158, in run_installer File "\lib\wubi\backends\common\tasklist.py", line 197, in __call__ File "\lib\wubi\backends\common\backend.py", line 623, in extract_kernel Exception: File C:\ubuntu\install\boot\initrd.lz is corrupted 03-19 18:01 DEBUG TaskList: # Finished tasklist

    Read the article

  • Rules and advice for logging?

    - by Nick Rosencrantz
    In my organization we've put together some rules / guildelines about logging that I would like to know if you can add to or comment. We use Java but you may comment in general about loggin - rules and advice Use the correct logging level ERROR: Something has gone very wrong and need fixing immediately WARNING: The process can continue without fixing. The application should tolerate this level but the warning should always get investigated. INFO: Information that an important process is finished DEBUG. Is only used during development Make sure that you know what you're logging. Avoid that the logging influences the behavior of the application The function of the logging should be to write messages in the log. Log messages should be descriptive, clear, short and concise. There is not much use of a nonsense message when troubleshooting. Put the right properties in log4j Put in that the right method and class is written automatically. Example: Datedfile -web log4j.rootLogger=ERROR, DATEDFILE log4j.logger.org.springframework=INFO log4j.logger.waffle=ERROR log4j.logger.se.prv=INFO log4j.logger.se.prv.common.mvc=INFO log4j.logger.se.prv.omklassning=DEBUG log4j.appender.DATEDFILE=biz.minaret.log4j.DatedFileAppender log4j.appender.DATEDFILE.layout=org.apache.log4j.PatternLayout log4j.appender.DATEDFILE.layout.ConversionPattern=%d{HH:mm:ss,SSS} %-5p [%C{1}.%M] - %m%n log4j.appender.DATEDFILE.Prefix=omklassning. log4j.appender.DATEDFILE.Suffix=.log log4j.appender.DATEDFILE.Directory=//localhost/WebSphereLog/omklassning/ Log value. Please log values from the application. Log prefix. State which part of the application it is that the logging is written from, preferably with something for the project agreed prefix e.g. PANDORA_DB The amount of text. Be careful so that there is not too much logging text. It can influence the performance of the app. Loggning format: -There are several variants and methods to use with log4j but we would like a uniform use of the following format, when we log at exceptions: logger.error("PANDORA_DB2: Fel vid hämtning av frist i TP210_RAPPORTFRIST", e); In the example above it is assumed that we have set log4j properties so that it automatically write the class and the method. Always use logger and not the following: System.out.println(), System.err.println(), e.printStackTrace() If the web app uses our framework you can get very detailed error information from EJB, if using try-catch in the handler and logging according to the model above: In our project we use this conversion pattern with which method and class names are written out automatically . Here we use two different pattents for console and for datedfileappender: log4j.appender.CONSOLE.layout.ConversionPattern=%d{ABSOLUTE} %5p %c{1}:%L - %m%n log4j.appender.DATEDFILE.layout.ConversionPattern=%d [%t] %-5p %c - %m%n In both the examples above method and class wioll be written out. In the console row number will also be written our. toString() Please have a toString() for every object. EX: @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append(" DwfInformation [ "); sb.append("cc: ").append(cc); sb.append("pn: ").append(pn); sb.append("kc: ").append(kc); sb.append("numberOfPages: ").append(numberOfPages); sb.append("publicationDate: ").append(publicationDate); sb.append("version: ").append(version); sb.append(" ]"); return sb.toString(); } instead of special method which make these outputs public void printAll() { logger.info("inbet: " + getInbetInput()); logger.info("betdat: " + betdat); logger.info("betid: " + betid); logger.info("send: " + send); logger.info("appr: " + appr); logger.info("rereg: " + rereg); logger.info("NY: " + ny); logger.info("CNT: " + cnt); } So is there anything you can add, comment or find questionable with these ways of using the logging? Feel free to answer or comment even if it is not related to Java, Java and log4j is just an implementation of how this is reasoned.

    Read the article

  • Override ToString() in your Classes

    - by psheriff
    One of the reasons I love teaching is because of the questions that I get from attendees. I was giving a presentation at DevConnections and was showing a collection of Product objects. When I hovered over the variable that contained the collection, it looked like Figure 2. As you can see in the collection, I have actual product names of my videos from www.pdsa.com/videos being displayed. To get your data to appear in the data tips you must override the ToString() method in your class. To illustrate this, take the following simple Product class shown below: public class Product{  public string ProductName { get; set; }  public int ProductId { get; set; }} This class does not have an override of the ToString() method so if you create a collection of Product objects you will end up with data tips that look like Figure 1. Below is the code I used to create a collection of Product objects. I have shortened the code in this blog, but you can get the full source code for this sample by following the instructions at the bottom of this blog entry. List<Product> coll = new List<Product>();Product prod; prod = new Product()  { ProductName = "From Zero to HTML 5 in 60 Minutes",     ProductId = 1 };coll.Add(prod);prod = new Product()   { ProductName = "Architecting Applications …",     ProductId = 2 };coll.Add(prod);prod = new Product()  { ProductName = "Introduction to Windows Phone Development",    ProductId = 3 };coll.Add(prod);prod = new Product()   { ProductName = "Architecting a Business  …",     ProductId = 4 };coll.Add(prod);......   Figure 1: Class without overriding ToString() Now, go back to the Product class and add an override of the ToString() method as shown in the code listed below: public class Product{  public string ProductName { get; set; }  public int ProductId { get; set; }   public override string ToString()  {    return ProductName;  }} In this simple sample, I am just returning the ProductName property. However, you can create a whole string of information if you wish to display more data in your data tips. Just concatenate any properties you want from your class and return that string. When you now run the application and hover over the collection object you will now see something that looks like Figure 2. Figure 2: Overriding ToString() in your Class Another place the ToString() override comes in handy is if you forget to use a DisplayMemberPath in your ListBox or ComboBox. The ToString() method is called automatically when a class is bound to a list control. Summary You should always override the ToString() method in your classes as this will help you when debugging your application. Seeing relevant data immediately in the data tip without having to drill down one more layer and maybe scroll through a complete list of properties should help speed up your development process. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “Override ToString” from the drop down list.  

    Read the article

< Previous Page | 296 297 298 299 300 301 302 303 304 305 306 307  | Next Page >