Search Results

Search found 19676 results on 788 pages for 'hardware interface'.

Page 357/788 | < Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >

  • Why do [flush-8:16] and [jbd2/sdb2-8] occasionally use 99.99% disk IO?

    - by ændrük
    Approximately twice a week, the entire graphical interface will lock up for about 10-20 seconds without warning while I am doing simple tasks such as browsing the web or writing a paper. When this happens, GUI elements do not respond to mouse or keyboard input, and the System Monitor applet displays 100% IOWait processor usage. Today, I finally happened to have GNOME Terminal already open when the problem started. Despite other applications such as Google Chrome, Firefox, GNOME Do, and GNOME Panel being unresponsive, the terminal was usable. I ran iotop and observed that commands named [flush-8:16] and [jbd2/sdb2-8] were alternately using 99.99% IO. What are these, and how can I prevent them from causing GUI unresponsiveness? Here is dumpe2fs /dev/sdb2, if it's relevant.

    Read the article

  • Total Cloud Control keeps getting better ! Oracle Launch Webcast : Total Cloud Control for Systems

    - by Anand Akela
    Total Cloud Control Keeps Getting Better Join Oracle Vice President of Systems Management Steve Wilson and a panel of Oracle executives to find out how your enterprise cloud can achieve 10x improved performance and 12x operational agility. Only Oracle Enterprise Manager Ops Center 12c allows you to: Accelerate mission-critical cloud deployment Unleash the power of Solaris 11, the first cloud OS Simplify Oracle engineered systems management You’ll also get a chance to have your questions answered by Oracle product experts and dive deeper into the technology by viewing our demos that trace the steps companies like yours take as they transition to a private cloud environment. Featured Speaker With a special announcement by: Steve Wilson Vice President, Systems Management, Oracle John Fowler Executive Vice President, Systems, Oracle Agenda 9:00 a.m. PT Keynote: Total Cloud Control for Systems 9:45 a.m. PT Panel Discussion with Oracle Hardware, Software, and Support Executives 10:15 a.m. PT Demo Series: A Step-by-Step Journey to Enterprise Clouds Stay connected with  Oracle Enterprise Manager   :  Twitter | Facebook | YouTube | Linkedin | Newsletter

    Read the article

  • Mocking successive calls of similar type via sequential mocking

    - by mehfuzh
    In this post , i show how you can benefit from  sequential mocking feature[In JustMock] for setting up expectations with successive calls of same type.  To start let’s first consider the following dummy database and entity class. public class Person {     public virtual string Name { get; set; }     public virtual int Age { get; set; } }   public interface IDataBase {     T Get<T>(); } Now, our test goal is to return different entity for successive calls on IDataBase.Get<T>(). By default, the behavior in JustMock is override , which is similar to other popular mocking tools. By override it means that the tool will consider always the latest user setup. Therefore, the first example will return the latest entity every-time and will fail in line #12: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Queue<Person> queue = new Queue<Person>();   Mock.Arrange(() => database.Get<Person>()).Returns(() => queue.Dequeue()); Mock.Arrange(() => database.Get<Person>()).Returns(person2);   // this will fail Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode());   Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); We can solve it the following way using a Queue and that removes the item from bottom on each call: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Queue<Person> queue = new Queue<Person>();   queue.Enqueue(person1); queue.Enqueue(person2);   Mock.Arrange(() => database.Get<Person>()).Returns(queue.Dequeue());   Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode()); Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); This will ensure that right entity is returned but this is not an elegant solution. So, in JustMock we introduced a  new option that lets you set up your expectations sequentially. Like: Person person1 = new Person { Age = 30, Name = "Kosev" }; Person person2 = new Person { Age = 80, Name = "Mihail" };   var database = Mock.Create<IDataBase>();   Mock.Arrange(() => database.Get<Person>()).Returns(person1).InSequence(); Mock.Arrange(() => database.Get<Person>()).Returns(person2).InSequence();   Assert.Equal(person1.GetHashCode(), database.Get<Person>().GetHashCode()); Assert.Equal(person2.GetHashCode(), database.Get<Person>().GetHashCode()); The  “InSequence” modifier will tell the mocking tool to return the expected result as in the order it is specified by user. The solution though pretty simple and but neat(to me) and way too simpler than using a collection to solve this type of cases. Hope that helps P.S. The example shown in my blog is using interface don’t require a profiler  and you can even use a notepad and build it referencing Telerik.JustMock.dll, run it with GUI tools and it will work. But this feature also applies to concrete methods that includes JM profiler and can be implemented for more complex scenarios.

    Read the article

  • Gilda Garretón, a Java Developer and Parallelism Computing Researcher

    - by Yolande
    In a new interview titled “Gilda Garretón, a Java Developer and Parallelism Computing Research,” Garretón shares her first-hand experience developing with Java and Java 7 for very large-scale integration (VLSI) of computer-aided design (CAD). Garretón gives an insightful overview of how Java is contributing to the parallelism development and to the Electric VLSI Design Systems, an open source VLSI CAD application used as a research platform for new CAD algorithms as well as the research flow for hardware test chips.  Garretón considers that parallelism programming is hard and complex, yet important developments are taking place.  "With the addition of the concurrent package in Java SE 6 and the Fork/Join feature in Java SE 7, developers have a chance to rely more on existing frameworks and dedicate more time to the essence of their parallel algorithms." Read the full article here  

    Read the article

  • Bluetooth fix for Ubuntu 12.04, lenovo G580

    - by Sam Abraham
    Bluetooth not working, it shows turned on but manager indicated Bluetooth disabled. Uninstalled default manager and installed Blueman. The same with Blueman, clicking on connect to devices gets response 'adapters not found'. I've found many more people with the same problem. The fixes found in the archive don't work for me. I've tried a couple of things from the forum. I'm not familiar with computer hardware or software but have been using Ubuntu cause it saves me money, it's fairly easy to use and it does not tax my mid-range lap. Any help will be appreciated.

    Read the article

  • Ubuntu Server 11.04 installs fine then gets stuck on USBHID

    - by SZetta
    ites! I have installed Server 11.04 many many times from this disc and they have always worked perfectly (installed and operated fine). I wanted to reinstall my server again on the same hardware so I threw the disc in and installed but once it finished installing the boot loader and ejected the disc, it decided to go unresponsive. I restarted it and it loaded in through the grub perfectly it seemed, but then it goes and says either that a ipv6 router is unavailable (even though I have it hardwired to my network) or it goes and says usbhid: USB HID core driver and goes unresponsive there. I am very confused as this never happened before from this install. I want to see if this is just me or what before I just go ahead and download the newest version of server. Any advice would be appreciated. Thanks

    Read the article

  • New Release of ROracle posted to CRAN

    - by mhornick
    Oracle recently updated ROracle to version 1.1-2 on CRAN with enhancements and bug fixes. The major enhancements include the introduction of Oracle Wallet Manager and support for datetime and interval types.  Oracle Wallet support in ROracle allows users to manage public key security from the client R session. Oracle Wallet allows passwords to be stored and read by Oracle Database, allowing safe storage of database login credentials. In addition, we added support for datetime and interval types when selecting data, which expands ROracle's support for date data.  See the ROracle NEWS for the complete list of updates. We encourage ROracle users to post questions and provide feedback on the Oracle R Forum. In addition to being a high performance database interface to Oracle Database from R for general use, ROracle supports database access for Oracle R Enterprise.

    Read the article

  • Reverse Search Images Easily with the TinEye Client for Windows

    - by Asian Angel
    Are you a frequent user of TinEye and would like to integrate it into your favorite Windows system? Then get ready to enjoy Context Menu and App Window goodness with the TinEye Client for Windows. After you have downloaded the zip file, unzip it and run the setup file inside. Once the installation process has finished you will be asked if you would like to launch TinEye Client immediately or not. If not then you can access it later using the new shortcut added to the Start Menu. We chose to let the program launch automatically…this is what the main window looks like. For our test we decided to access the client via the Context Menu using a picture of Doc Brown’s DeLorean in hover conversion mode. HTG Explains: Understanding Routers, Switches, and Network Hardware How to Use Offline Files in Windows to Cache Your Networked Files Offline How to See What Web Sites Your Computer is Secretly Connecting To

    Read the article

  • Project Kapros: A Custom-Built Workstation Featuring an In-Desk Computer

    - by Jason Fitzpatrick
    While we’ve seen our fair share of case mods, it’s infrequent we see one as polished and built-in as this custom built work station. What started as an IKEA Galant desk, ended as a stunningly executed desk-as-computer build. High gloss paint, sand-blasted plexiglass windows, custom lighting, and some quality hardware all come together in this build to yield a gorgeous setup with plenty of power and style to go around. Hit up the link below for a massive photo album build guide detailing the process from start to finish. Project Kapros: IKEA Galant PC Desk Mod [via Kotaku] How to Stress Test the Hard Drives in Your PC or Server How To Customize Your Android Lock Screen with WidgetLocker The Best Free Portable Apps for Your Flash Drive Toolkit

    Read the article

  • How can I start Busybox at boot time, from GRUB, or even before GRUB?

    - by Andrei
    Most Busybox questions are related to the fact that users are dropped to a Busybox shell due to some unknown issues at boot time. This must make Busybox one of the most hated pieces of software. My problem is the opposite. I want to deliberately start Busybox at boot time either from GRUB, or even before GRUB. Is this possible? How can I do it? The purpose is to execute some commands before the boot sequence is reinitiated. So basically I want to execute some commands to make some hardware available to the bootloader.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • dual-boot (win-xp/ubu12.04) graphics card for ubu-desktop/win-xp-games

    - by iole1
    for work I need to get a a new and cheap graphics card for a dual boot machine: windows xp/ubuntu 12.04 LTS. The only requirements I have are: it should work 'flawlessly' in ubuntu (proprietary drivers are ok) it should handle Guild Wars 2 & League of Legends in windows xp (this is really the top priority as we need to be able to play at work :) - yes I have a cool job) I know nothing about graphics cards (and it seems to be a jungle out there). From other questions here and some webstigation I think I'd like to go for a Nvidia card, I've been trying to figure out what models fit the system req's but it seems they use different kind of model numbers so I don't get any wiser. tl;dr: will http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gt-620-oem/specifications run Guild Wars 2 http://gamesystemrequirements.com/games.php?id=938 Or what is the worst card from nVidia that will run GW2 smoothly and work well in Ubuntu 12.04 Thanks!

    Read the article

  • Strategies for browser compatibility on web applications in a corporate environment

    - by TiagoBrenck
    With the new CSS 3 and HTML 5 technology, web applications have gained a lot of new tools for a better UI (user interface) interaction, beautiful templates and even responsive layout to fit into tablets and smartphones. Within a corporate environment, those new technologies are required so the company can "follow" the IT evolution and their concurrent, but they also want that those new web applications supports old browsers. How should I deal with this situation? By one side we are asked to follow the the evolution of technology, create responsive layouts and use a lot of cool jQuery plugins. On the other hand, we are asked to support old browsers that do not support those new responsive features, plugins or components. I would like advice and strategies on how to create "modern" web applications that are also supported on old browsers. How does your company deal with this situation? Is it possible to have the same web application run well and beautifully on old browsers, and be responsive and interactive on newer browsers?

    Read the article

  • Oracle Database Appliance Now Certified by SAP

    - by Bandari Huang
    All SAP products based on SAP NetWeaver 7.x that are also certified for Oracle Database 11g Release 2 (single node or RAC) can now be used with the Oracle Database Appliance. RAC One Node is NOT supported. Only Three-Tier SAP Installations. Only the Oracle database can run on the Oracle Database Appliance.  No SAP instance can be deployed on the Oracle Database Appliance. SAP instances have to run on different middle-tier machines of any hardware architecture and operating system. Central Services (ASCS and/or SCS) can be configured to run on the Oracle Database Appliance for Unicode installations of SAP. SAP BR*Tools support is now available for the Oracle Database Appliance. For more information about SAP on ODA, please refer: Using SAP NetWeaver with the Oracle Database Appliance New Nov2012 Note 1760737 - SAP Software and Oracle Database Appliance (ODA) Note 1785353 - ODA 11.2.0: Patches for 11.2.0.3  

    Read the article

  • 6 Ways to Speed Up Your Ubuntu PC

    - by Chris Hoffman
    Ubuntu is pretty snappy out-of-the-box, but there are some ways to take better advantage of your system’s memory and speed up the boot process. Some of these tips can really speed things up, especially on older hardware. In particular, selecting a lightweight desktop environment and lighter applications can give an older system a new lease on life. That old computer that struggles with Ubuntu’s Unity desktop can provide decent performance for years to come. HTG Explains: Why You Only Have to Wipe a Disk Once to Erase It HTG Explains: Learn How Websites Are Tracking You Online Here’s How to Download Windows 8 Release Preview Right Now

    Read the article

  • Amazon SOA: database as a Service

    - by Martin Lee
    There is an interesting interview with Werner Vogels which is partly about how Amazon does Service Oriented Architecture: For us service orientation means encapsulating the data with the business logic that operates on the data, with the only access through a published service interface. No direct database access is allowed from outside the service, and there’s no data sharing among the services. I do not understand that. Why do they need to 'wrap' a database into some layer if it already can be consumed as a service by other service through database adaptors? Does Amazon do that just because they need to expose the database to third parties or because of anything else? Why "no direct database access is allowed"? What are the advantages of such an architectural decision?

    Read the article

  • RIM présente BlackBerry 6.0, le futur OS de ses téléphones

    Mise à jour du 28.04.2010 par Katleen RIM présente BlackBerry 6.0, le futur OS de ses téléphones BlackBerry. Les téléphones des professionnels par excellence. Une recette qui marche, et qui n'avait pas changé depuis un moment. Hier cependant, son fabriquant RIM a présenté la future version du système d'exploitation de ces mobiles. L'interface du BlackBerry OS 6.0 est efficace, même si elle emprunte beaucoup à d'autres produits, comme l'iPhone ou le Zune. Elle est très fonctionnelle et cohérente. Au niveau technique, le navigateur qui recevait des retours mitigés des utilisateurs, sera équipé d'une version récente du moteur de rendu HTML Webkit et affichera donc le...

    Read the article

  • How to use IBM T42 laptop's built-in Bluetooth?

    - by B. Roland
    Hello! I have an IBM ThinkPad T42 laptop, and I have some troubles with built-in bluetooth, because in Hardware Drivers, there are no drivers for it, and in Bluetooth settings, it shows, that it has no BT devices. If I plug in an USB Bluetooth adapter, I can use easily Wammu for my mobile backup. I have no setting in BIOS, to enable, or disable it(if disable wireless refers to Wi-fi, but it is enabled too). Some outputs, what the community asked from me, in the IRC: $ sudo hcitool dev Devices: $ $ cat /proc/acpi/ibm/bluetooth No file or dir $ $ sudo modprobe bluetooth $ $ rfkill list 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no $ But they couldn't solve my problems. What can I do?

    Read the article

  • Ask the Readers: How Do You Remote Desktop Access Distant Computers?

    - by Jason Fitzpatrick
    You’re at a computer at point A, but the computer you want to interact with is at point B, and the only thing connecting you is a series of network switches and cabling. How do you comfortably control the remote computer? While there are a variety of ways to control a computer from afar, sometimes there’s just no good substitute for accessing the user interface as if you were sitting at the computer–a feat made possibly by remote desktop software. This week we want to hear about both your favorite remote desktop tool and your best tips for getting the most out of a remote desktop session–from banishing lag to improving mouse-cursor tracking, any tips are fair game. Sound off in the comments below with your remote desktop tips and then check back in on Friday for the What You Said roundup. Java is Insecure and Awful, It’s Time to Disable It, and Here’s How What Are the Windows A: and B: Drives Used For? HTG Explains: What is DNS?

    Read the article

  • NightHacking demo: Java in the Internet of Things

    - by terrencebarr
    The NightHacking session with Steven Chin was good fun. Check out the video on “Java in the Internet of Things” and a live demo of the Smart Solar Tracking System with Java ME Embedded 3.2. Real hardware and demo flakiness included See here. While you are at, have a look at some of the other NightHacking sessions and a number of other videos on the YouTube Java Channel. Cheers, – Terrence Filed under: Mobile & Embedded Tagged: "Oracle Java ME Embedded", demo, embedded, iot, Java Embedded, nighthacking, video, webcast

    Read the article

  • Big Data – Buzz Words: What is Hadoop – Day 6 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is NoSQL. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – Hadoop. What is Hadoop? Apache Hadoop is an open-source, free and Java based software framework offers a powerful distributed platform to store and manage Big Data. It is licensed under an Apache V2 license. It runs applications on large clusters of commodity hardware and it processes thousands of terabytes of data on thousands of the nodes. Hadoop is inspired from Google’s MapReduce and Google File System (GFS) papers. The major advantage of Hadoop framework is that it provides reliability and high availability. What are the core components of Hadoop? There are two major components of the Hadoop framework and both fo them does two of the important task for it. Hadoop MapReduce is the method to split a larger data problem into smaller chunk and distribute it to many different commodity servers. Each server have their own set of resources and they have processed them locally. Once the commodity server has processed the data they send it back collectively to main server. This is effectively a process where we process large data effectively and efficiently. (We will understand this in tomorrow’s blog post). Hadoop Distributed File System (HDFS) is a virtual file system. There is a big difference between any other file system and Hadoop. When we move a file on HDFS, it is automatically split into many small pieces. These small chunks of the file are replicated and stored on other servers (usually 3) for the fault tolerance or high availability. (We will understand this in the day after tomorrow’s blog post). Besides above two core components Hadoop project also contains following modules as well. Hadoop Common: Common utilities for the other Hadoop modules Hadoop Yarn: A framework for job scheduling and cluster resource management There are a few other projects (like Pig, Hive) related to above Hadoop as well which we will gradually explore in later blog posts. A Multi-node Hadoop Cluster Architecture Now let us quickly see the architecture of the a multi-node Hadoop cluster. A small Hadoop cluster includes a single master node and multiple worker or slave node. As discussed earlier, the entire cluster contains two layers. One of the layer of MapReduce Layer and another is of HDFC Layer. Each of these layer have its own relevant component. The master node consists of a JobTracker, TaskTracker, NameNode and DataNode. A slave or worker node consists of a DataNode and TaskTracker. It is also possible that slave node or worker node is only data or compute node. The matter of the fact that is the key feature of the Hadoop. In this introductory blog post we will stop here while describing the architecture of Hadoop. In a future blog post of this 31 day series we will explore various components of Hadoop Architecture in Detail. Why Use Hadoop? There are many advantages of using Hadoop. Let me quickly list them over here: Robust and Scalable – We can add new nodes as needed as well modify them. Affordable and Cost Effective – We do not need any special hardware for running Hadoop. We can just use commodity server. Adaptive and Flexible – Hadoop is built keeping in mind that it will handle structured and unstructured data. Highly Available and Fault Tolerant – When a node fails, the Hadoop framework automatically fails over to another node. Why Hadoop is named as Hadoop? In year 2005 Hadoop was created by Doug Cutting and Mike Cafarella while working at Yahoo. Doug Cutting named Hadoop after his son’s toy elephant. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – MapReduce. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • PySide 1.0.0 beta 2, le support complet des interfaces déclaratives arrive dans ce bindind LGPL Python de Qt

    Voici donc sortie la deuxième beta de PySide, le binding Python de Qt initié par Nokia, dont la principale différence avec le binding historique, PyQt, réside dans la licence : PySide est disponible sous LGPL, une licence moins restrictive que la GPL employée par PyQt. Ainsi, un binding Python de Qt peut être utilisé pour des développements propriétaires sans obligation de payer une licence commerciale. La première version beta de PySide (la bien dénommée beta 1) apportait un grand changement par rapport aux versions précédents (0.4.2 et avant) : un changement dans l'ABI (Application Binary Interface), ce qui, pour rester en dehors des détails techniques, obligeait à recompiler toute application se basant sur PySide (notamment le module Python). Cependant, ainsi, le projet ...

    Read the article

  • NightHacking demo: Java in the Internet of Things

    - by terrencebarr
    The NightHacking session with Steven Chin was good fun. Check out the video on “Java in the Internet of Things” and a live demo of the Smart Solar Tracking System with Java ME Embedded 3.2. Real hardware and demo flakiness included See here. While you are at, have a look at some of the other NightHacking sessions and a number of other videos on the YouTube Java Channel. Cheers, – Terrence Filed under: Mobile & Embedded Tagged: "Oracle Java ME Embedded", demo, embedded, iot, Java Embedded, nighthacking, video, webcast

    Read the article

  • Embarcadero lance DBArtisan XE, un nouvel outil multiplateforme pour administrer des bases de donnée

    Embarcadero lance DBArtisan XE Un outil multiplateforme pour administrer des bases de données hétérogènes DBArtisan XE est un outil d'administration de bases de données hétérogènes, avec déploiement et mode de licence centralisés (et à la demande). Il est le dernièr produit en date de la famille d'outils DBArtisan édités par Embarcadero Technologies. Avec un support natif pour plusieurs plateformes de bases de données, DBArtisan XE permet par exemple aux administrateurs de bases de données de maximiser ? depuis une interface unique ? les performances, la disponibilité ou la sécurité de leurs bases quel que soit leur type. L'éditeur met en avant des "diagnostiques i...

    Read the article

  • How to go automatically from Suspend into Hibernate?

    - by Sergey Stadnik
    Is it possible to make Ubuntu go into Hibernate state from Suspend, aka "Suspend Sedation"? For example, my laptop is set up to go into a Suspend once I close the lid. If then I don't use it for entire day, the battery goes flat, because even in suspend mode the hardware still consumes a small amount of power, and the battery eventually discharges. What I want is to be able to tell Ubuntu that even if it is suspended, it still needs to go into Hibernate after some hours of inactivity. Windows can do that. Ubuntu can be programmed to go into Standby or Hibernate on timer, but not both. Update: I guess I need to be more specific. What I am looking for is this: When I close the lid, the laptop is put into Suspend. Then, after a pre-determined time (even if the battery is going strong) if I still don't use it, it should put itself into a Hibernate to save battery power.

    Read the article

< Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >