Search Results

Search found 21054 results on 843 pages for 'void'.

Page 359/843 | < Previous Page | 355 356 357 358 359 360 361 362 363 364 365 366  | Next Page >

  • Switching the layout in Orchard CMS

    - by Bertrand Le Roy
    The UI composition in Orchard is extremely flexible, thanks in no small part to the usage of dynamic Clay shapes. Every notable UI construct in Orchard is built as a shape that other parts of the system can then party on and modify any way they want. Case in point today: modifying the layout (which is a shape) on the fly to provide custom page structures for different parts of the site. This might actually end up being built-in Orchard 1.0 but for the moment it’s not in there. Plus, it’s quite interesting to see how it’s done. We are going to build a little extension that allows for specialized layouts in addition to the default layout.cshtml that Orchard understands out of the box. The extension will add the possibility to add the module name (or, in MVC terms, area name) to the template name, or module and controller names, or module, controller and action names. For example, the home page is served by the HomePage module, so with this extension you’ll be able to add an optional layout-homepage.cshtml file to your theme to specialize the look of the home page while leaving all other pages using the regular layout.cshtml. I decided to implement this sample as a theme with code. This way, the new overrides are only enabled as the theme is activated, which makes a lot of sense as this is going to be where you’ll be creating those additional layouts. The first thing I did was to create my own theme, derived from the default TheThemeMachine with this command: codegen theme CustomLayoutMachine /CreateProject:true /IncludeInSolution:true /BasedOn:TheThemeMachine .csharpcode, .csharpcode pre { font-size: 12px; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Once that was done, I worked around a known bug and moved the new project from the Modules solution folder into Themes (the code was already physically in the right place, this is just about Visual Studio editing). The CreateProject flag in the command-line created a project file for us in the theme’s folder. This is only necessary if you want to run code outside of views from that theme. The code that we want to add is the following LayoutFilter.cs: using System.Linq; using System.Web.Mvc; using System.Web.Routing; using Orchard; using Orchard.Mvc.Filters; namespace CustomLayoutMachine.Filters { public class LayoutFilter : FilterProvider, IResultFilter { private readonly IWorkContextAccessor _wca; public LayoutFilter(IWorkContextAccessor wca) { _wca = wca; } public void OnResultExecuting(ResultExecutingContext filterContext) { var workContext = _wca.GetContext(); var routeValues = filterContext.RouteData.Values; workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area")); workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area", "controller")); workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area", "controller", "action")); } public void OnResultExecuted(ResultExecutedContext filterContext) { } private static string BuildShapeName( RouteValueDictionary values, params string[] names) { return "Layout__" + string.Join("__", names.Select(s => ((string)values[s] ?? "").Replace(".", "_"))); } } } This filter is intercepting ResultExecuting, which is going to provide a context object out of which we can extract the route data. We are also injecting an IWorkContextAccessor dependency that will give us access to the current Layout object, so that we can add alternate shape names to its metadata. We are adding three possible shape names to the default, with different combinations of area, controller and action names. For example, a request to a blog post is going to be routed to the “Orchard.Blogs” module’s “BlogPost” controller’s “Item” action. Our filters will then add the following shape names to the default “Layout”: Layout__Orchard_Blogs Layout__Orchard_Blogs__BlogPost Layout__Orchard_Blogs__BlogPost__Item Those template names get mapped into the following file names by the system (assuming the Razor view engine): Layout-Orchard_Blogs.cshtml Layout-Orchard_Blogs-BlogPost.cshtml Layout-Orchard_Blogs-BlogPost-Item.cshtml This works for any module/controller/action of course, but in the sample I created Layout-HomePage.cshtml (a specific layout for the home page), Layout-Orchard_Blogs.cshtml (a layout for all the blog views) and Layout-Orchard_Blogs-BlogPost-Item.cshtml (a layout that is specific to blog posts). Of course, this is just an example, and this kind of dynamic extension of shapes that you didn’t even create in the first place is highly encouraged in Orchard. You don’t have to do it from a filter, we only did it this way because that was a good place where we could get the context that we needed. And of course, you can base your alternate shape names on something completely different from route values if you want. For example, you might want to create your own part that modifies the layout for a specific content item, or you might want to do it based on the raw URL (like it’s done in widget rules) or who knows what crazy custom rule. The point of all this is to show that extending or modifying shapes is easy, and the layout just happens to be a shape. In other words, you can do whatever you want. Ain’t that nice? The custom theme can be found here: Orchard.Theme.CustomLayoutMachine.1.0.nupkg Many thanks to Louis, who showed me how to do this.

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Calculated Columns in Entity Framework Code First Migrations

    - by David Paquette
    I had a couple people ask me about calculated properties / columns in Entity Framework this week.  The question was, is there a way to specify a property in my C# class that is the result of some calculation involving 2 properties of the same class.  For example, in my database, I store a FirstName and a LastName column and I would like a FullName property that is computed from the FirstName and LastName columns.  My initial answer was: 1: public string FullName 2: { 3: get { return string.Format("{0} {1}", FirstName, LastName); } 4: } Of course, this works fine, but this does not give us the ability to write queries using the FullName property.  For example, this query: 1: var users = context.Users.Where(u => u.FullName.Contains("anan")); Would result in the following NotSupportedException: The specified type member 'FullName' is not supported in LINQ to Entities. Only initializers, entity members, and entity navigation properties are supported. It turns out there is a way to support this type of behavior with Entity Framework Code First Migrations by making use of Computed Columns in SQL Server.  While there is no native support for computed columns in Code First Migrations, we can manually configure our migration to use computed columns. Let’s start by defining our C# classes and DbContext: 1: public class UserProfile 2: { 3: public int Id { get; set; } 4: 5: public string FirstName { get; set; } 6: public string LastName { get; set; } 7: 8: [DatabaseGenerated(DatabaseGeneratedOption.Computed)] 9: public string FullName { get; private set; } 10: } 11: 12: public class UserContext : DbContext 13: { 14: public DbSet<UserProfile> Users { get; set; } 15: } The DatabaseGenerated attribute is needed on our FullName property.  This is a hint to let Entity Framework Code First know that the database will be computing this property for us. Next, we need to run 2 commands in the Package Manager Console.  First, run Enable-Migrations to enable Code First Migrations for the UserContext.  Next, run Add-Migration Initial to create an initial migration.  This will create a migration that creates the UserProfile table with 3 columns: FirstName, LastName, and FullName.  This is where we need to make a small change.  Instead of allowing Code First Migrations to create the FullName property, we will manually add that column as a computed column. 1: public partial class Initial : DbMigration 2: { 3: public override void Up() 4: { 5: CreateTable( 6: "dbo.UserProfiles", 7: c => new 8: { 9: Id = c.Int(nullable: false, identity: true), 10: FirstName = c.String(), 11: LastName = c.String(), 12: //FullName = c.String(), 13: }) 14: .PrimaryKey(t => t.Id); 15: Sql("ALTER TABLE dbo.UserProfiles ADD FullName AS FirstName + ' ' + LastName"); 16: } 17: 18: 19: public override void Down() 20: { 21: DropTable("dbo.UserProfiles"); 22: } 23: } Finally, run the Update-Database command.  Now we can query for Users using the FullName property and that query will be executed on the database server.  However, we encounter another potential problem. Since the FullName property is calculated by the database, it will get out of sync on the object side as soon as we make a change to the FirstName or LastName property.  Luckily, we can have the best of both worlds here by also adding the calculation back to the getter on the FullName property: 1: [DatabaseGenerated(DatabaseGeneratedOption.Computed)] 2: public string FullName 3: { 4: get { return FirstName + " " + LastName; } 5: private set 6: { 7: //Just need this here to trick EF 8: } 9: } Now we can both query for Users using the FullName property and we also won’t need to worry about the FullName property being out of sync with the FirstName and LastName properties.  When we run this code: 1: using(UserContext context = new UserContext()) 2: { 3: UserProfile userProfile = new UserProfile {FirstName = "Chanandler", LastName = "Bong"}; 4: 5: Console.WriteLine("Before saving: " + userProfile.FullName); 6: 7: context.Users.Add(userProfile); 8: context.SaveChanges(); 9:  10: Console.WriteLine("After saving: " + userProfile.FullName); 11:  12: UserProfile chanandler = context.Users.First(u => u.FullName == "Chanandler Bong"); 13: Console.WriteLine("After reading: " + chanandler.FullName); 14:  15: chanandler.FirstName = "Chandler"; 16: chanandler.LastName = "Bing"; 17:  18: Console.WriteLine("After changing: " + chanandler.FullName); 19:  20: } We get this output: It took a bit of work, but finally Chandler’s TV Guide can be delivered to the right person. The obvious downside to this implementation is that the FullName calculation is duplicated in the database and in the UserProfile class. This sample was written using Visual Studio 2012 and Entity Framework 5. Download the source code here.

    Read the article

  • Global keyboard states

    - by Petr Abdulin
    I have following idea about processing keyboard input. We capture input in "main" Game class like this: protected override void Update(GameTime gameTime) { this.CurrentKeyboardState = Keyboard.GetState(); // main :Game class logic here base.Update(gameTime); this.PreviousKeyboardState = this.CurrentKeyboardState; } then, reuse keyboard states (which have internal scope) in all other game components. The reasons behind this are 1) minimize keyboard processing load, and 2) reduce "pollution" of all other classes with similar keyboard state variables. Since I'm quite a noob in both game and XNA development, I would like to know if all of this sounds reasonable.

    Read the article

  • Best practices for logging user actions in production

    - by anthonypliu
    I was planning on logging a lot of different stuff in my production environment, things like when a user: Logs In, Logs Off Change Profile Edit Account settings Change password ... etc Is this a good practice to do on a production enviornment? Also what is a good way to log all this. I am currently using the following code block to log to: public void LogMessageToFile(string msg) { System.IO.StreamWriter sw = System.IO.File.AppendText( GetTempPath() + @"MyLogFile.txt"); try { string logLine = System.String.Format( "{0:G}: {1}.", System.DateTime.Now, msg); sw.WriteLine(logLine); } finally { sw.Close(); } } Will this be ok for production? My application is very new so im not expecting millions of users right away or anything, looking for the best practices to keeping track of actions on a website or if its even best practice to.

    Read the article

  • ASP.NET Web Forms Extensibility: Handler Factories

    - by Ricardo Peres
    An handler factory is the class that implements IHttpHandlerFactory and is responsible for instantiating an handler (IHttpHandler) that will process the current request. This is true for all kinds of web requests, whether they are for ASPX pages, ASMX/SVC web services, ASHX/AXD handlers, or any other kind of file. Also used for restricting access for certain file types, such as Config, Csproj, etc. Handler factories are registered on the global Web.config file, normally located at %WINDIR%\Microsoft.NET\Framework<x64>\vXXXX\Config for a given path and request type (GET, POST, HEAD, etc). This goes on section <httpHandlers>. You would create a custom handler factory for a number of reasons, let me list just two: A centralized place for using dependency injection; Also a centralized place for invoking custom methods or performing some kind of validation on all pages. Let’s see an example using Unity for injecting dependencies into a page, suppose we have this on Global.asax.cs: 1: public class Global : HttpApplication 2: { 3: internal static readonly IUnityContainer Unity = new UnityContainer(); 4: 5: void Application_Start(Object sender, EventArgs e) 6: { 7: Unity.RegisterType<IFunctionality, ConcreteFunctionality>(); 8: } 9: } We instantiate Unity and register a concrete implementation for an interface, this could/should probably go in the Web.config file. Forget about its actual definition, it’s not important. Then, we create a custom handler factory: 1: public class UnityPageHandlerFactory : PageHandlerFactory 2: { 3: public override IHttpHandler GetHandler(HttpContext context, String requestType, String virtualPath, String path) 4: { 5: IHttpHandler handler = base.GetHandler(context, requestType, virtualPath, path); 6: 7: //one scenario: inject dependencies 8: Global.Unity.BuildUp(handler.GetType(), handler, String.Empty); 9:  10: return (handler); 11: } 12: } It inherits from PageHandlerFactory, which is .NET’s included factory for building regular ASPX pages. We override the GetHandler method and issue a call to the BuildUp method, which will inject required dependencies, if any exist. An example page with dependencies might be: 1: public class SomePage : Page 2: { 3: [Dependency] 4: public IFunctionality Functionality 5: { 6: get; 7: set; 8: } 9: } Notice the DependencyAttribute, it is used by Unity to identify properties that require dependency injection. When BuildUp is called, the Functionality property (or any other properties with the DependencyAttribute attribute) will receive the concrete implementation associated with it’s type, as registered on Unity. Another example, checking a page for authorization. Let’s define an interface first: 1: public interface IRestricted 2: { 3: Boolean Check(HttpContext ctx); 4: } An a page implementing that interface: 1: public class RestrictedPage : Page, IRestricted 2: { 3: public Boolean Check(HttpContext ctx) 4: { 5: //check the context and return a value 6: return ...; 7: } 8: } For this, we would use an handler factory such as this: 1: public class RestrictedPageHandlerFactory : PageHandlerFactory 2: { 3: private static readonly IHttpHandler forbidden = new UnauthorizedHandler(); 4:  5: public override IHttpHandler GetHandler(HttpContext context, String requestType, String virtualPath, String path) 6: { 7: IHttpHandler handler = base.GetHandler(context, requestType, virtualPath, path); 8: 9: if (handler is IRestricted) 10: { 11: if ((handler as IRestricted).Check(context) == false) 12: { 13: return (forbidden); 14: } 15: } 16:  17: return (handler); 18: } 19: } 20:  21: public class UnauthorizedHandler : IHttpHandler 22: { 23: #region IHttpHandler Members 24:  25: public Boolean IsReusable 26: { 27: get { return (true); } 28: } 29:  30: public void ProcessRequest(HttpContext context) 31: { 32: context.Response.StatusCode = (Int32) HttpStatusCode.Unauthorized; 33: context.Response.ContentType = "text/plain"; 34: context.Response.Write(context.Response.Status); 35: context.Response.Flush(); 36: context.Response.Close(); 37: context.ApplicationInstance.CompleteRequest(); 38: } 39:  40: #endregion 41: } The UnauthorizedHandler is an example of an IHttpHandler that merely returns an error code to the client, but does not cause redirection to the login page, it is included merely as an example. One thing we must keep in mind is, there can be only one handler factory registered for a given path/request type (verb) tuple. A typical registration would be: 1: <httpHandlers> 2: <remove path="*.aspx" verb="*"/> 3: <add path="*.aspx" verb="*" type="MyNamespace.MyHandlerFactory, MyAssembly"/> 4: </httpHandlers> First we remove the previous registration for ASPX files, and then we register our own. And that’s it. A very useful mechanism which I use lots of times.

    Read the article

  • Simple Preferred time control using silverlight 3.

    - by mohanbrij
    Here I am going to show you a simple preferred time control, where you can select the day of the week and the time of the day. This can be used in lots of place where you may need to display the users preferred times. Sample screenshot is attached below. This control is developed using Silverlight 3 and VS2008, I am also attaching the source code with this post. This is a very basic example. You can download and customize if further for your requirement if you want. I am trying to explain in few words how this control works and what are the different ways in which you can customize it further. File: PreferredTimeControl.xaml, in this file I have just hardcoded the controls and their positions which you can see in the screenshot above. In this example, to change the start day of the week and time, you will have to go and change the design in XAML file, its not controlled by your properties or implementation classes. You can also customize it to change the start day of the week, Language, Display format, styles, etc, etc. File: PreferredTimeControl.xaml.cs, In this control using the code below, first I am taking all the checkbox from my form and store it in the Global Variable, which I can use across my page. List<CheckBox> checkBoxList; #region Constructor public PreferredTimeControl() { InitializeComponent(); GetCheckboxes();//Keep all the checkbox in List in the Load itself } #endregion #region Helper Methods private List<CheckBox> GetCheckboxes() { //Get all the CheckBoxes in the Form checkBoxList = new List<CheckBox>(); foreach (UIElement element in LayoutRoot.Children) { if (element.GetType().ToString() == "System.Windows.Controls.CheckBox") { checkBoxList.Add(element as CheckBox); } } return checkBoxList; } Then I am exposing the two methods which you can use in the container form to get and set the values in this controls. /// <summary> /// Set the Availability on the Form, with the Provided Timings /// </summary> /// <param name="selectedTimings">Provided timings comes from the DB in the form 11,12,13....37 /// Where 11 refers to Monday Morning, 12 Tuesday Morning, etc /// Here 1, 2, 3 is for Morning, Afternoon and Evening respectively, and for weekdays /// 1,2,3,4,5,6,7 where 1 is for Monday, Tuesday, Wednesday, Thrusday, Friday, Saturday and Sunday respectively /// So if we want Monday Morning, we can can denote it as 11, similarly for Saturday Evening we can write 36, etc /// </param> public void SetAvailibility(string selectedTimings) { foreach (CheckBox chk in checkBoxList) { chk.IsChecked = false; } if (!String.IsNullOrEmpty(selectedTimings)) { string[] selectedString = selectedTimings.Split(','); foreach (string selected in selectedString) { foreach (CheckBox chk in checkBoxList) { if (chk.Tag.ToString() == selected) { chk.IsChecked = true; } } } } } /// <summary> /// Gets the Availibility from the selected checkboxes /// </summary> /// <returns>String in the format of 11,12,13...41,42...31,32...37</returns> public string GetAvailibility() { string selectedText = string.Empty; foreach (CheckBox chk in GetCheckboxes()) { if (chk.IsChecked == true) { selectedText = chk.Tag.ToString() + "," + selectedText; } } return selectedText; }   In my example I am using the matrix format for Day and Time, for example Monday=1, Tuesday=2, Wednesday=3, Thursday = 4, Friday = 5, Saturday = 6, Sunday=7. And Morning = 1, Afternoon =2, Evening = 3. So if I want to represent Morning-Monday I will have to represent it as 11, Afternoon-Tuesday as 22, Morning-Wednesday as 13, etc. And in the other way to set the values in the control I am passing the values in the control in the same format as preferredTimeControl.SetAvailibility("11,12,13,16,23,22"); So this will set the checkbox value for Morning-Monday, Morning-Tuesday, Morning-Wednesday, Morning-Saturday, Afternoon of Tuesday and Afternoon of Wednesday. To implement this control, first I have to import this control in xmlns namespace as xmlns:controls="clr-namespace:PreferredTimeControlApp" and finally put in your page wherever you want, <Grid x:Name="LayoutRoot" Style="{StaticResource LayoutRootGridStyle}"> <Border x:Name="ContentBorder" Style="{StaticResource ContentBorderStyle}"> <controls:PreferredTimeControl x:Name="preferredTimeControl"></controls:PreferredTimeControl> </Border> </Grid> And in the code behind you can just include this code: private void InitializeControl() { preferredTimeControl.SetAvailibility("11,12,13,16,23,22"); } And you are ready to go. For more details you can refer to my code attached. I know there can be even simpler and better way to do this. Let me know if any other ideas. Sorry, Guys Still I have used Silverlight 3 and VS2008, as from the system I am uploading this is still not upgraded, but still you can use the same code with Silverlight 4 and VS2010 without any changes. May be just it will ask you to upgrade your project which will take care of rest. Download Source Code.   Thanks ~Brij

    Read the article

  • Assign multiple test categories using TestCategoryAttribute

    - by Michael Freidgeim
    I am using TestCategoryAttribute to filter which tests to run during builds and wandered, how to -how to assign multiple test categories.According to constructor documentation only single category can be specified.  However TestCategories Property (plural!)can return multiple categories.Grouping Tests into Test Categories: You can add an automated test to one or multiple test categories using a test attribute. Each test can belong to multiple test categories.The recommended approach from MSDN How to: Group and Run Automated Tests Using Test Categories is to specify multiple TestCategory attributes like the following[TestCategory("Nightly"), TestCategory("Weekly"), TestCategory("ShoppingCart"), TestMethod()]public Void DebitTest() { }Article http://toddmeinershagen.blogspot.com.au/2010/09/create-custom-test-category-attributes.htmlshows how enums can be used instead of strings.It also explains, that TestCategories Property can be used in derived custom attributes.v

    Read the article

  • Can You Have "Empty" Abstract/Classes?

    - by ShrimpCrackers
    Of course you can, I'm just wondering if it's rational to design in such a way. I'm making a breakout clone and was doing some class design. I wanted to use inheritance, even though I don't have to, to apply what I've learned in C++. I was thinking about class design and came up with something like this: GameObject - base class (consists of data members like x and y offsets, and a vector of SDL_Surface* MovableObject : GameObject - abstract class + derived class of GameObject (one method void move() = 0; ) NonMovableObject : GameObject - empty class...no methods or data members other than constructor and destructor(at least for now?). Later I was planning to derive a class from NonMovableObject, like Tileset : NonMovableObject. I was just wondering if "empty" abstract classes or just empty classes are often used...I notice that the way I'm doing this, I'm just creating the class NonMovableObject just for sake of categorization. I know I'm overthinking things just to make a breakout clone, but my focus is less on the game and more on using inheritance and designing some sort of game framework.

    Read the article

  • E_INVALIDARG: An invalid parameter was passed to the returning function (-2147024809) when loading a cube texture

    - by Boreal
    I'm trying to implement a skybox into my engine, and I'm having some trouble loading the image as a cube map. Everything works (but it doesn't look right) if I don't load using an ImageLoadInformation struct in the ShaderResourceView.FromFile() method, but it breaks if I do. I need to, of course, because I need to tell SlimDX to load it as a cubemap. How can I fix this? Here is my new loading code after the "fix": public static void LoadCubeTexture(string filename) { ImageLoadInformation loadInfo = ImageLoadInformation.FromDefaults(); loadInfo.OptionFlags = ResourceOptionFlags.TextureCube; textures.Add(filename, ShaderResourceView.FromFile(Graphics.device, "Resources/" + filename, loadInfo)); }

    Read the article

  • Android - Switching Activities with a Tab Layout

    - by Bill Osuch
    This post is based on the Tab Layout  tutorial on the Android developers site, with some modifications. I wanted to get rid of the icons (they take up too much screen real estate), and modify the fonts on the tabs. First, create a new Android project, with an Activity called TabWidget. Then, create two additional Activities called TabOne and TabTwo. Throw a simple TextView on each one with a message identifying the tab, like this: public class TabTwo extends Activity {  @Override  public void onCreate(Bundle savedInstanceState) {   super.onCreate(savedInstanceState);   TextView tv = new TextView(this);   tv.setText("This is tab 2");   setContentView(tv);  } } And don't forget to add them to your AndroidManifest.xml file: <activity android:name=".TabOne"></activity> <activity android:name=".TabTwo"></activity> Now we'll create the tab layout - open the res/layout/main.xml file and insert the following: <?xml version="1.0" encoding="utf-8"?> <TabHost xmlns:android="http://schemas.android.com/apk/res/android"  android:id="@android:id/tabhost"  android:layout_width="fill_parent"  android:layout_height="fill_parent">  <LinearLayout   android:orientation="vertical"   android:layout_width="fill_parent"   android:layout_height="fill_parent">   <TabWidget    android:id="@android:id/tabs"    android:layout_width="fill_parent"    android:layout_height="wrap_content" />   <FrameLayout    android:id="@android:id/tabcontent"             android:layout_width="fill_parent"    android:layout_height="fill_parent" />  </LinearLayout> </TabHost> Finally, we'll create the code needed to populate the TabHost. Make sure your TabWidget class extends TabActivity rather than Activity, and add code to grab the TabHost and create an Intent to launch a new Activity:    TabHost tabHost = getTabHost();  // The activity TabHost    TabHost.TabSpec spec;  // Reusable TabSpec for each tab    Intent intent;  // Reusable Intent for each tab       // Create an Intent to launch an Activity for the tab (to be reused)    intent = new Intent().setClass(this, TabOne.class); Add the first tab to the layout:    // Initialize a TabSpec for each tab and add it to the TabHost    spec = tabHost.newTabSpec("tabOne");      spec.setContent(intent);     spec.setIndicator("Tab One");     tabHost.addTab(spec); It's pretty tall as-is, so we'll shorten it:   // Squish the tab a little bit horizontally   tabHost.getTabWidget().getChildAt(0).getLayoutParams().height = 40; But the text is a little small, so let's increase the font size:   // Bump the text size up   LinearLayout ll = (LinearLayout) tabHost.getChildAt(0);   android.widget.TabWidget tw = (android.widget.TabWidget) ll.getChildAt(0);   RelativeLayout rllf = (RelativeLayout) tw.getChildAt(0);   TextView lf = (TextView) rllf.getChildAt(1);   lf.setTextSize(20); Do the same for the second tab, and you wind up with this: @Override     public void onCreate(Bundle savedInstanceState) {         super.onCreate(savedInstanceState);         setContentView(R.layout.main);                 TabHost tabHost = getTabHost();  // The activity TabHost         TabHost.TabSpec spec;  // Reusable TabSpec for each tab         Intent intent;  // Reusable Intent for each tab            // Create an Intent to launch an Activity for the tab (to be reused)         intent = new Intent().setClass(this, TabOne.class);         // Initialize a TabSpec for each tab and add it to the TabHost         spec = tabHost.newTabSpec("tabOne");           spec.setContent(intent);          spec.setIndicator("Tab One");          tabHost.addTab(spec);         // Squish the tab a little bit horizontally         tabHost.getTabWidget().getChildAt(0).getLayoutParams().height = 40;         // Bump the text size up         LinearLayout ll = (LinearLayout) tabHost.getChildAt(0);         android.widget.TabWidget tw = (android.widget.TabWidget) ll.getChildAt(0);         RelativeLayout rllf = (RelativeLayout) tw.getChildAt(0);         TextView lf = (TextView) rllf.getChildAt(1);         lf.setTextSize(20);            // Do the same for the other tabs         intent = new Intent().setClass(this, TabTwo.class);         spec = tabHost.newTabSpec("tabTwo");          spec.setContent(intent);          spec.setIndicator("Tab Two");         tabHost.addTab(spec);         tabHost.getTabWidget().getChildAt(1).getLayoutParams().height = 40;         RelativeLayout rlrf = (RelativeLayout) tw.getChildAt(1);         TextView rf = (TextView) rlrf.getChildAt(1);         rf.setTextSize(20);            tabHost.setCurrentTab(0);     } Save and fire up the emulator, and you should be able to switch back and forth between your tabs!

    Read the article

  • Normal maps red in OpenGL?

    - by KaiserJohaan
    I am using Assimp to import 3d models, and FreeImage to parse textures. The problem I am having is that the normal maps are actually red rather than blue when I try to render them as normal diffuse textures. http://i42.tinypic.com/289ing3.png When I open the images in a image-viewing program they do indeed show up as blue. Heres when I create the texture; OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } Here is my fragment shader. You can see I just commented out the normal-map parsing and treated the normal map texture as the diffuse texture to display it and illustrate the problem. As for the rest of the code it interacts as expected with the diffuse textures so I dont see a obvious problem there. "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Why is this? does normal-map textures need some sort of special treatment in opengl?

    Read the article

  • How to get GameElements (RigidBody) size in Unity

    - by Shivan Dragon
    I've made a prefab consisting of a Cube which I've first scaled to more resemble a brick. There's also a Rigidbody added to the cube (in the prefab). Now I want to use that prefab in a c# script to make a wall out of multiple bricks. My question is, how can I access the dimensions of my brick (width, height, the z dimension size) so that in my script I can make bricks which are placed one next to the other (and then one on top of the other)? I've looked at the documentation for GameObject and Rigidbody but I can't find anything helpful. Just for refference, my script so far is: public GameObject brick; void Start () { Instantiate(this.brick, new Vector3(0.01326297f, -30.07855f, 100f), Quaternion.identity); // int brickWidth = this.brick.????; }

    Read the article

  • Detecting End of Animation

    - by Will
    So I am making a death animation for a game. enemy1 is a UIImageView, and what I'm doing is when an integer is less than or equal to zero, it calls this deathAnimation which only happens once. What I want to do is use a CGPointMake right when the animation is finished being called. Note that before the deathAnimation is called, there is another animation that is constantly being called 30 times a second. I'm not using anything like cocos2d. if (enemy1health <= 0) { [self slime1DeathAnimation]; //How can i detect the end of this animation } This is how the animation is done -(void)slime1DeathAnimation{ enemy1.animationImages = [[NSArray alloc] initWithObjects: [UIImage imageNamed:@"Slime Death 1.png"], [UIImage imageNamed:@"Slime Death 2.png"], [UIImage imageNamed:@"Slime Death 3.png"], [UIImage imageNamed:@"Slime Death 4.png"], [UIImage imageNamed:@"Slime Death 5.png"], nil]; enemy1.animationDuration = 0.5; enemy1.animationRepeatCount = 1; [enemy1 startAnimating]; } If you need more code just ask

    Read the article

  • Accessing the same service more than twice in the nick of time

    - by PointedC
    I have an application that will access interface service A which is to run from windows startup. This service is used by program B and my application functions on B's presence after getting a pointer to A. The scenario is translated as follows, public interface A{} ///my program public class MyProgram { public MyProgram() { ProgramB.DoA(); } public A GetA(){} } public class ProgramB { void DoA(){} } The translated source is not true, but that seems to be what I am looking for. In order to eliminate the overhead of allocating and realocating dynamic accesses to the same service used by other processes, would you please provide an actual solution to the problem ?(I am all out of any idea now)

    Read the article

  • What is the exception in java code? [closed]

    - by Karandeep Singh
    This java code is for reverse the string but it returning concat null with returned string. import java.util.*; import java.util.logging.Level; import java.util.logging.Logger; public class Practice { public static void main(String[] args) { String str = ""; try { str = reverse("Singh"); } catch (Exception ex) { Logger.getLogger(Practice.class.getName()).log(Level.SEVERE, null, ex); System.out.print(ex.getMessage()); }finally{ System.out.println(str); } } public static String reverse(String str) throws Exception{ String temp = null; if(str.length()<=0){ throw new Exception("empty"); }else{ for(int i=str.length()-1;i>=0;i--){ temp+=str.charAt(i); } } return temp.trim(); } } Output: nullhgniS

    Read the article

  • Data binding directly to a store query (DbSet, DbQuery, DbSqlQuery) is not supported.

    - by Chandradev
    HiI was doing some test with code first approach in EF. Then while populating the Gridview i was getting error like thisData binding directly to a store query (DbSet, DbQuery, DbSqlQuery) is not supported. Instead populate a DbSet with data, for example by calling Load on the DbSet, and then bind to local data. For WPF bind to DbSet.Local. For WinForms bind to DbSet.Local.ToBindingList().For solving this error we have to write the code like this private void FillGrid()        {            using (var Context = new EmpDatabaseContext())            {                var query = Context.Emps.Select(m => m);                //var query = from m in Context.Emps                //            select m;               // Gridview1.DataSource = query;                Gridview1.DataSource = query.ToList();                Gridview1.DataBind();            }        }  We canot bind Iqueryable directly. We have to change into ToList()

    Read the article

  • C# async and actors

    - by Alex.Davies
    If you read my last post about async, you might be wondering what drove me to write such odd code in the first place. The short answer is that .NET Demon is written using NAct Actors. Actors are an old idea, which I believe deserve a renaissance under C# 5. The idea is to isolate each stateful object so that only one thread has access to its state at any point in time. That much should be familiar, it's equivalent to traditional lock-based synchronization. The different part is that actors pass "messages" to each other rather than calling a method and waiting for it to return. By doing that, each thread can only ever be holding one lock. This completely eliminates deadlocks, my least favourite concurrency problem. Most people who use actors take this quite literally, and there are plenty of frameworks which help you to create message classes and loops which can receive the messages, inspect what type of message they are, and process them accordingly. But I write C# for a reason. Do I really have to choose between using actors and everything I love about object orientation in C#? Type safety Interfaces Inheritance Generics As it turns out, no. You don't need to choose between messages and method calls. A method call makes a perfectly good message, as long as you don't wait for it to return. This is where asynchonous methods come in. I have used NAct for a while to wrap my objects in a proxy layer. As long as I followed the rule that methods must always return void, NAct queued up the call for later, and immediately released my thread. When I needed to get information out of other actors, I could use EventHandlers and callbacks (continuation passing style, for any CS geeks reading), and NAct would call me back in my isolated thread without blocking the actor that raised the event. Using callbacks looks horrible though. To remind you: m_BuildControl.FilterEnabledForBuilding(    projects,    enabledProjects = m_OutOfDateProjectFinder.FilterNeedsBuilding(        enabledProjects,             newDirtyProjects =             {                 ....... Which is why I'm really happy that NAct now supports async methods. Now, methods are allowed to return Task rather than just void. I can await those methods, and C# 5 will turn the rest of my method into a continuation for me. NAct will run the other method in the other actor's context, but will make sure that when my method resumes, we're back in my context. Neither actor was ever blocked waiting for the other one. Apart from when they were actually busy doing something, they were responsive to concurrent messages from other sources. To be fair, you could use async methods with lock statements to achieve exactly the same thing, but it's ugly. Here's a realistic example of an object that has a queue of data that gets passed to another object to be processed: class QueueProcessor {    private readonly ItemProcessor m_ItemProcessor = ...     private readonly object m_Sync = new object();    private Queue<object> m_DataQueue = ...    private List<object> m_Results = ...     public async Task ProcessOne() {         object data = null;         lock (m_Sync)         {             data = m_DataQueue.Dequeue();         }         var processedData = await m_ItemProcessor.ProcessData(data); lock (m_Sync)         {             m_Results.Add(processedData);         }     } } We needed to write two lock blocks, one to get the data to process, one to store the result. The worrying part is how easily we could have forgotten one of the locks. Compare that to the version using NAct: class QueueProcessorActor : IActor { private readonly ItemProcessor m_ItemProcessor = ... private Queue<object> m_DataQueue = ... private List<object> m_Results = ... public async Task ProcessOne()     {         // We are an actor, it's always thread-safe to access our private fields         var data = m_DataQueue.Dequeue();         var processedData = await m_ItemProcessor.ProcessData(data);         m_Results.Add(processedData);     } } You don't have to explicitly lock anywhere, NAct ensures that your code will only ever run on one thread, because it's an actor. Either way, async is definitely better than traditional synchronous code. Here's a diagram of what a typical synchronous implementation might do: The left side shows what is running on the thread that has the lock required to access the QueueProcessor's data. The red section is where that lock is held, but doesn't need to be. Contrast that with the async version we wrote above: Here, the lock is released in the middle. The QueueProcessor is free to do something else. Most importantly, even if the ItemProcessor sometimes calls the QueueProcessor, they can never deadlock waiting for each other. So I thoroughly recommend you use async for all code that has to wait a while for things. And if you find yourself writing lots of lock statements, think about using actors as well. Using actors and async together really takes the misery out of concurrent programming.

    Read the article

  • Cocos2dx- Draw primitives(polygons) on Update

    - by Haider
    In my game I'm trying to draw polygons on on each step i.e. update method. I call draw() method to draw new polygon with dynamic vertices. Following is my code: void HelloWorld::draw(){glLineWidth(1);CCPoint filledVertices[] = {ccp(drawX1,drawY1),ccp(drawX2,drawY2), ccp(drawX3,drawY3), ccp(drawX4,drawY4)};ccDrawSolidPoly( filledVertices, 4, ccc4f(0.5f, 0.5f, 1, 1 ));} I call the draw() method from the update(float dt) method. The engine is behaving inconsistently i.e. sometimes it displays the polygons and on other occasions it does not. Is it the right approach to do such a task? If not what is the best way to display large number of primitives?

    Read the article

  • Dynamic Tab Implementation in ADF

    - by Vijay Mohan
    Well, this can be a common usecase across apps to open tabs dynamically at runtime based on the request.Well, in order to achieve this you can have a parent container, lets say a panelTab component.Inside panelTab , u can have a showDetailItem inside an af:foreach or an af:iterator binded to a bean static list which will have as many show detail items as you wish to be shown.something like this.private static List = { new showDetailItem("1"),new ShowDetailItem("2") ...};now in the backing bean you can have a method that takes care of rendering and disclosing an specific tab based on the index.public void openMyTab(){List<MyItems> list = refToParentContainer.getChildren();int indexOfTabToBeOpened = //Write a method that will compute the tab index of the next //tab.list.get(index).setRendered(true);list.get(index).setDisclosed(true);similarly you can set other properties too.}Else, instead of having af:foreach/iterator iterating through the SD items , you can go for static SDs in the page with render property set to false and then you can follow the same approach to render/disclose it at runtime.

    Read the article

  • Ubuntu Touch Official Hardware? [duplicate]

    - by user1628
    This question already has an answer here: Where can I get a device with 'Ubuntu for phones' pre-installed? 1 answer I really like the look of Ubuntu touch and I want it ASAP, however, I am NOT willing to buy a device simply to port ubuntu touch on it. I don't want to void all warranties and take any risks. Therefore, I am really just waiting for official ubuntu touch hardware (devices made for ubuntu touch). I can't find any rumours or estimated release dates online, in fact, I can't find out anything at all. Can anyone? If so, what and where? When do you think they'll be official hardware? What price do you think it'll be? Do you think canonical/ubuntu will manufacture it themselves? Thanks, Zach

    Read the article

  • Unit-Testing functions which have parameters of classes where source code is not accessible

    - by McMannus
    Relating to this question, I have another question regarding unit testing functions in the utility classes: Assume you have function signatures like this: public function void doSomething(InternalClass obj, InternalElement element) where InternalClass and InternalElement are both Classes which source code are not available, because they are hidden in the API. Additionally, doSomething only operates on obj and element. I thought about mocking those classes away but this option is not possible due to the fact that they do not implement an interface at all which I could use for my Mocking classes. However, I need to fill obj with defined data to test doSomething. How can this problem be solved?

    Read the article

  • When should a method of a class return the same instance after modifying itself?

    - by modiX
    I have a class that has three methods A(), B() and C(). Those methods modify the own instance. While the methods have to return an instance when the instance is a separate copy (just as Clone()), I got a free choice to return void or the same instance (return this;) when modifying the same instance in the method and not returning any other value. When deciding for returning the same modified instance, I can do neat method chains like obj.A().B().C();. Would this be the only reason for doing so? Is it even okay to modify the own instance and return it, too? Or should it only return a copy and leave the original object as before? Because when returning the same modified instance the user would maybe admit the returned value is a copy, otherwise it would not be returned? If it's okay, what's the best way to clarify such things on the method?

    Read the article

  • Circular Bullet Spread not Even

    - by SoulBeaver
    I'm creating a bullet shooter much in the style of Touhou. Right now I want to have a very simple circular shot being fired from the enemy. See this picture: As you can see, the spacing is very uneven, which isn't very good if you want to survive. The code I'm using is this: private function shoot() : void { const BULLETS_PER_WAVE : int = 72; var interval : Number = BULLETS_PER_WAVE / 360; for (var i : int = 0; i < BULLETS_PER_WAVE; ++i { var xSpeed : Number = GameConstants.BULLET_NORMAL_SPEED_X * Math.sin(i * interval); var ySpeed : Number = GameConstants.BULLET_NORMAL_SPEED_Y * Math.cos(i * interval); BulletFactory.createNormalBullet(bulletColor_, alice_.center, xSpeed, ySpeed); } canShoot_ = false; cooldownTimer_.start(); } I imagine my mistake is in the sin, cos functions, but I'm not entirely sure what's wrong.

    Read the article

  • Using Event Driven Programming in games, when is it beneficial?

    - by Arthur Wulf White
    I am learning ActionScript 3 and I see the Event flow adheres to the W3C recommendations. From what I learned events can only be captured by the dispatcher unless, the listener capturing the event is a DisplayObject on stage and a parent of the object firing the event. You can capture the events in the capture(before) or bubbling(after) phase depending on Listner and Event setup you use. Does this system lend itself well for game programming? When is this system useful? Could you give an example of a case where using events is a lot better than going without them? Are they somehow better for performance in games? Please do not mention events you must use to get a game running, like Event.ENTER_FRAME Or events that are required to get input from the user like, KeyboardEvent.KEY_DOWN and MouseEvent.CLICK. I am asking if there is any use in firing events that have nothing to do with user input, frame rendering and the likes(that are necessary). I am referring to cases where objects are communicating. Is this used to avoid storing a collection of objects that are on the stage? Thanks Here is some code I wrote as an example of event behavior in ActionScript 3, enjoy. package regression { import flash.display.Shape; import flash.display.Sprite; import flash.events.Event; import flash.events.EventDispatcher; import flash.events.KeyboardEvent; import flash.events.MouseEvent; import flash.events.EventPhase; /** * ... * @author ... */ public class Check_event_listening_1 extends Sprite { public const EVENT_DANCE : String = "dance"; public const EVENT_PLAY : String = "play"; public const EVENT_YELL : String = "yell"; private var baby : Shape = new Shape(); private var mom : Sprite = new Sprite(); private var stranger : EventDispatcher = new EventDispatcher(); public function Check_event_listening_1() { if (stage) init(); else addEventListener(Event.ADDED_TO_STAGE, init); } private function init(e:Event = null):void { trace("test begun"); addChild(mom); mom.addChild(baby); stage.addEventListener(EVENT_YELL, onEvent); this.addEventListener(EVENT_YELL, onEvent); mom.addEventListener(EVENT_YELL, onEvent); baby.addEventListener(EVENT_YELL, onEvent); stranger.addEventListener(EVENT_YELL, onEvent); trace("\nTest1 - Stranger yells with no bubbling"); stranger.dispatchEvent(new Event(EVENT_YELL, false)); trace("\nTest2 - Stranger yells with bubbling"); stranger.dispatchEvent(new Event(EVENT_YELL, true)); stage.addEventListener(EVENT_PLAY, onEvent); this.addEventListener(EVENT_PLAY, onEvent); mom.addEventListener(EVENT_PLAY, onEvent); baby.addEventListener(EVENT_PLAY, onEvent); stranger.addEventListener(EVENT_PLAY, onEvent); trace("\nTest3 - baby plays with no bubbling"); baby.dispatchEvent(new Event(EVENT_PLAY, false)); trace("\nTest4 - baby plays with bubbling"); baby.dispatchEvent(new Event(EVENT_PLAY, true)); trace("\nTest5 - baby plays with bubbling but is not a child of mom"); mom.removeChild(baby); baby.dispatchEvent(new Event(EVENT_PLAY, true)); mom.addChild(baby); stage.addEventListener(EVENT_DANCE, onEvent, true); this.addEventListener(EVENT_DANCE, onEvent, true); mom.addEventListener(EVENT_DANCE, onEvent, true); baby.addEventListener(EVENT_DANCE, onEvent); trace("\nTest6 - Mom dances without bubbling - everyone is listening during capture phase(not target and bubble phase)"); mom.dispatchEvent(new Event(EVENT_DANCE, false)); trace("\nTest7 - Mom dances with bubbling - everyone is listening during capture phase(not target and bubble phase)"); mom.dispatchEvent(new Event(EVENT_DANCE, true)); } private function onEvent(e : Event):void { trace("Event was captured"); trace("\nTYPE : ", e.type, "\nTARGET : ", objToName(e.target), "\nCURRENT TARGET : ", objToName(e.currentTarget), "\nPHASE : ", phaseToString(e.eventPhase)); } private function phaseToString(phase : int):String { switch(phase) { case EventPhase.AT_TARGET : return "TARGET"; case EventPhase.BUBBLING_PHASE : return "BUBBLING"; case EventPhase.CAPTURING_PHASE : return "CAPTURE"; default: return "UNKNOWN"; } } private function objToName(obj : Object):String { if (obj == stage) return "STAGE"; else if (obj == this) return "MAIN"; else if (obj == mom) return "Mom"; else if (obj == baby) return "Baby"; else if (obj == stranger) return "Stranger"; else return "Unknown" } } } /*result : test begun Test1 - Stranger yells with no bubbling Event was captured TYPE : yell TARGET : Stranger CURRENT TARGET : Stranger PHASE : TARGET Test2 - Stranger yells with bubbling Event was captured TYPE : yell TARGET : Stranger CURRENT TARGET : Stranger PHASE : TARGET Test3 - baby plays with no bubbling Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Test4 - baby plays with bubbling Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Mom PHASE : BUBBLING Event was captured TYPE : play TARGET : Baby CURRENT TARGET : MAIN PHASE : BUBBLING Event was captured TYPE : play TARGET : Baby CURRENT TARGET : STAGE PHASE : BUBBLING Test5 - baby plays with bubbling but is not a child of mom Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Test6 - Mom dances without bubbling - everyone is listening during capture phase(not target and bubble phase) Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : STAGE PHASE : CAPTURE Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : MAIN PHASE : CAPTURE Test7 - Mom dances with bubbling - everyone is listening during capture phase(not target and bubble phase) Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : STAGE PHASE : CAPTURE Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : MAIN PHASE : CAPTURE */

    Read the article

< Previous Page | 355 356 357 358 359 360 361 362 363 364 365 366  | Next Page >