Search Results

Search found 1638 results on 66 pages for 'multithreading'.

Page 37/66 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • Testing approach for multi-threaded software

    - by Shane MacLaughlin
    I have a piece of mature geospatial software that has recently had areas rewritten to take better advantage of the multiple processors available in modern PCs. Specifically, display, GUI, spatial searching, and main processing have all been hived off to seperate threads. The software has a pretty sizeable GUI automation suite for functional regression, and another smaller one for performance regression. While all automated tests are passing, I'm not convinced that they provide nearly enough coverage in terms of finding bugs relating race conditions, deadlocks, and other nasties associated with multi-threading. What techniques would you use to see if such bugs exist? What techniques would you advocate for rooting them out, assuming there are some in there to root out? What I'm doing so far is running the GUI functional automation on the app running under a debugger, such that I can break out of deadlocks and catch crashes, and plan to make a bounds checker build and repeat the tests against that version. I've also carried out a static analysis of the source via PC-Lint with the hope of locating potential dead locks, but not had any worthwhile results. The application is C++, MFC, mulitple document/view, with a number of threads per doc. The locking mechanism I'm using is based on an object that includes a pointer to a CMutex, which is locked in the ctor and freed in the dtor. I use local variables of this object to lock various bits of code as required, and my mutex has a time out that fires my a warning if the timeout is reached. I avoid locking where possible, using resource copies where possible instead. What other tests would you carry out?

    Read the article

  • Limiting the number of threads executing a method at a single time.

    - by Steve_
    We have a situation where we want to limit the number of paralell requests our application can make to its application server. We have potentially 100+ background threads running that will want to at some point make a call to the application server but only want 5 threads to be able to call SendMessage() (or whatever the method will be) at any one time. What is the best way of achieving this? I have considered using some sort of gatekeeper object that blocks threads coming into the method until the number of threads executing in it has dropped below the threshold. Would this be a reasonable solution or am I overlooking the fact that this might be dirty/dangerous? We are developing in C#.NET 3.5. Thanks, Steve

    Read the article

  • ReaderWriterLockSlim and Pulse/Wait

    - by Jono
    Is there an equivalent of Monitor.Pulse and Monitor.Wait that I can use in conjunction with a ReaderWriterLockSlim? I have a class where I've encapsulated multi-threaded access to an underlying queue. To enqueue something, I acquire a lock that protects the underlying queue (and a couple of other objects) then add the item and Monitor.Pulse the locked object to signal that something was added to the queue. public void Enqueue(ITask task) { lock (mutex) { underlying.Enqueue(task); Monitor.Pulse(mutex); } } On the other end of the queue, I have a single background thread that continuously processes messages as they arrive on the queue. It uses Monitor.Wait when there are no items in the queue, to avoid unnecessary polling. (I consider this to be good design, but any flames (within reason) are welcome if they help me learn otherwise.) private void DequeueForProcessing(object state) { while (true) { ITask task; lock (mutex) { while (underlying.Count == 0) { Monitor.Wait(mutex); } task = underlying.Dequeue(); } Process(task); } } As more operations are added to this class (requiring read-only access to the lock protected underlying), someone suggested using ReaderWriterLockSlim. I've never used the class before, and assuming it can offer some performance benefit, I'm not against it, but only if I can keep the Pulse/Wait design.

    Read the article

  • Lockless queue implementation ends up having a loop under stress

    - by Fozi
    I have lockless queues written in C in form of a linked list that contains requests from several threads posted to and handled in a single thread. After a few hours of stress I end up having the last request's next pointer pointing to itself, which creates an endless loop and locks up the handling thread. The application runs (and fails) on both Linux and Windows. I'm debugging on Windows, where my COMPARE_EXCHANGE_PTR maps to InterlockedCompareExchangePointer. This is the code that pushes a request to the head of the list, and is called from several threads: void push_request(struct request * volatile * root, struct request * request) { assert(request); do { request->next = *root; } while(COMPARE_EXCHANGE_PTR(root, request, request->next) != request->next); } This is the code that gets a request from the end of the list, and is only called by a single thread that is handling them: struct request * pop_request(struct request * volatile * root) { struct request * volatile * p; struct request * request; do { p = root; while(*p && (*p)->next) p = &(*p)->next; // <- loops here request = *p; } while(COMPARE_EXCHANGE_PTR(p, NULL, request) != request); assert(request->next == NULL); return request; } Note that I'm not using a tail pointer because I wanted to avoid the complication of having to deal with the tail pointer in push_request. However I suspect that the problem might be in the way I find the end of the list. There are several places that push a request into the queue, but they all look generaly like this: // device->requests is defined as struct request * volatile requests; struct request * request = malloc(sizeof(struct request)); if(request) { // fill out request fields push_request(&device->requests, request); sem_post(device->request_sem); } The code that handles the request is doing more than that, but in essence does this in a loop: if(sem_wait_timeout(device->request_sem, timeout) == sem_success) { struct request * request = pop_request(&device->requests); // handle request free(request); } I also just added a function that is checking the list for duplicates before and after each operation, but I'm afraid that this check will change the timing so that I will never encounter the point where it fails. (I'm waiting for it to break as I'm writing this.) When I break the hanging program the handler thread loops in pop_request at the marked position. I have a valid list of one or more requests and the last one's next pointer points to itself. The request queues are usually short, I've never seen more then 10, and only 1 and 3 the two times I could take a look at this failure in the debugger. I thought this through as much as I could and I came to the conclusion that I should never be able to end up with a loop in my list unless I push the same request twice. I'm quite sure that this never happens. I'm also fairly sure (although not completely) that it's not the ABA problem. I know that I might pop more than one request at the same time, but I believe this is irrelevant here, and I've never seen it happening. (I'll fix this as well) I thought long and hard about how I can break my function, but I don't see a way to end up with a loop. So the question is: Can someone see a way how this can break? Can someone prove that this can not? Eventually I will solve this (maybe by using a tail pointer or some other solution - locking would be a problem because the threads that post should not be locked, I do have a RW lock at hand though) but I would like to make sure that changing the list actually solves my problem (as opposed to makes it just less likely because of different timing).

    Read the article

  • .NET Windows Service, threads and garbage collection (possible memory leaks)

    - by Evgeny
    I am developing a .NET Windows service that is creating a couple of threads and then uses these threads to send print jobs to printers (there is a thread for each printer). I have some issues which sometimes can be fixed by restarting the service. Some issues also arise when the service has been running for a while. This makes me suspect a possible memory leak. So, a couple of questions: Would a garbage collector collect an object if it was created inside a thread, or will the object exist until the thread is stopped/terminated? What tools can I use to monitor the amount of memory used by a Windows service and by a thread that I am starting programmatically?

    Read the article

  • Thread locking issue with FileHelpers between calling engine.ReadNext() method and readign engine.Li

    - by Rad
    I use producer/consumer pattern with FileHelpers library to import data from one file (which can be huge) using multiple threads. Each thread is supposed to import a chunk of that file and I would like to use LineNumber property of the FileHelperAsyncEngine instance that is reading the file as primary key for imported rows. FileHelperAsyncEngine internally has an IEnumerator IEnumerable.GetEnumerator(); which is iterated over using engine.ReadNext() method. That internally sets LineNumber property (which seems is not thread safe). Consumers will have Producers assiciated with them that will supply DataTables to Consumers which will consume them via SqlBulkLoad class which will use IDataReader implementation which will iterate over a collection of DataTables which are internal to a Consumer instance. Each instance of will have one SqlBulkCopy instance associate with it. I have thread locking issue. Below is how I create multiple Producer threads. I start each thread afterwords. Produce method on a producer instance will be called determining which chunk of input file will be processed. It seems that engine.LineNumber is not thread safe and I doesn't import a proper LineNumber in the database. It seems that by the time engine.LineNumber is read some other thread called engine.ReadNext() and changed engine.LineNumber property. I don't want to lock the loop that is supposed to process a chunk of input file because I loose parallelism. How to reorganize the code to solve this threading issue? Thanks Rad for (int i = 0; i < numberOfProducerThreads; i++) DataConsumer consumer = dataConsumers[i]; //create a new producer DataProducer producer = new DataProducer(); //consumer has already being created consumer.Subscribe(producer); FileHelperAsyncEngine orderDetailEngine = new FileHelperAsyncEngine(recordType); orderDetailEngine.Options.RecordCondition.Condition = RecordCondition.ExcludeIfBegins; orderDetailEngine.Options.RecordCondition.Selector = STR_ORDR; int skipLines = i * numberOfBufferTablesToProcess * DataBuffer.MaxBufferRowCount; Thread newThread = new Thread(() => { producer.Produce(consumer, inputFilePath, lineNumberFieldName, dict, orderDetailEngine, skipLines, numberOfBufferTablesToProcess); consumer.SetEndOfData(producer); }); producerThreads.Add(newThread); thread.Start();} public void Produce(DataConsumer consumer, string inputFilePath, string lineNumberFieldName, Dictionary<string, object> dict, FileHelperAsyncEngine engine, int skipLines, int numberOfBufferTablesToProcess) { lock (this) { engine.Options.IgnoreFirstLines = skipLines; engine.BeginReadFile(inputFilePath); } int rowCount = 1; DataTable buffer = consumer.BufferDataTable; while (engine.ReadNext() != null) { lock (this) { dict[lineNumberFieldName] = engine.LineNumber; buffer.Rows.Add(ObjectFieldsDataRowMapper.MapObjectFieldsToDataRow(engine.LastRecord, dict, buffer)); if (rowCount % DataBuffer.MaxBufferRowCount == 0) { consumer.AddBufferDataTable(buffer); buffer = consumer.BufferDataTable; } if (rowCount % (numberOfBufferTablesToProcess * DataBuffer.MaxBufferRowCount) == 0) { break; } rowCount++; } } if (buffer.Rows.Count > 0) { consumer.AddBufferDataTable(buffer); } engine.Close(); }

    Read the article

  • Running code when all threads are finished processing.

    - by rich97
    Quick note: Java and Android noob here, I'm open to you telling me I'm stupid (as long as you tell me why.) I have an android application which requires me start multiple threads originating from various classes and only advance to the next activity once all threads have done their job. I also want to add a "failsafe" timeout in case one the the threads takes too long (HTTP request taking too long or something.) I searched Stack Overflow and found a post saying that I should create a class to keep a running total of open threads and then use a timer to poll for when all the threads are completed. I think I've created a working class to do this for me, it's untested as of yet but has no errors showing in eclipse. Is this a correct implementation? Are there any APIs that I should be made aware of (such as classes in the Java or Android APIs that could be used in place of the abstract classes at the bottom of the class?) package com.dmp.geofix.libs; import java.util.ArrayList; import java.util.Iterator; import java.util.Timer; import java.util.TimerTask; public class ThreadMonitor { private Timer timer = null; private TimerTask timerTask = null; private OnSuccess onSuccess = null; private OnError onError = null; private static ArrayList<Thread> threads; private final int POLL_OPEN_THREADS = 100; private final int TIMEOUT = 10000; public ThreadMonitor() { timerTask = new PollThreadsTask(); } public ThreadMonitor(OnSuccess s) { timerTask = new PollThreadsTask(); onSuccess = s; } public ThreadMonitor(OnError e) { timerTask = new PollThreadsTask(); onError = e; } public ThreadMonitor(OnSuccess s, OnError e) { timerTask = new PollThreadsTask(); onSuccess = s; onError = e; } public void start() { Iterator<Thread> i = threads.iterator(); while (i.hasNext()) { i.next().start(); } timer = new Timer(); timer.schedule(timerTask, 0, POLL_OPEN_THREADS); } public void finish() { Iterator<Thread> i = threads.iterator(); while (i.hasNext()) { i.next().interrupt(); } threads.clear(); timer.cancel(); } public void addThread(Thread t) { threads.add(t); } public void removeThread(Thread t) { threads.remove(t); t.interrupt(); } class PollThreadsTask extends TimerTask { private int timeElapsed = 0; @Override public void run() { timeElapsed += POLL_OPEN_THREADS; if (timeElapsed <= TIMEOUT) { if (threads.isEmpty() == false) { if (onSuccess != null) { onSuccess.run(); } } } else { if (onError != null) { onError.run(); } finish(); } } } public abstract class OnSuccess { public abstract void run(); } public abstract class OnError { public abstract void run(); } }

    Read the article

  • remote function with pthread

    - by user311130
    Hi all, I wrote some code in c, using pthread (I configured the linker and compiler in eclipse IDE first). #include <pthread.h> #include "starter.h" #include "UI.h" Page* MM; Page* Disk; PCB* all_pcb_array; void* display_prompt(void *id){ printf("Hello111\n"); return NULL; } int main(int argc, char** argv) { printf("Hello\n"); pthread_t *thread = (pthread_t*) malloc (sizeof(pthread_t)); pthread_create(thread, NULL, display_prompt, NULL); printf("Hello\n"); return 1; } that works fine. However, when I move display_prompt to UI.h no "Hello111 " output is printed. anyone know how to solve that? Elad

    Read the article

  • Is ReaderWriterLockSlim.EnterUpgradeableReadLock() essentially the same as Monitor.Enter()?

    - by Neil Barnwell
    So I have a situation where I may have many, many reads and only the occasional write to a resource shared between multiple threads. A long time ago I read about ReaderWriterLock, and have read about ReaderWriterGate which attempts to mitigate the issue where many writes coming in trump reads and hurt performance. However, now I've become aware of ReaderWriterLockSlim... From the docs, I believe that there can only be one thread in "upgradeable mode" at any one time. In a situation where the only access I'm using is EnterUpgradeableReadLock() (which is appropriate for my scenario) then is there much difference to just sticking with lock(){}? Here's the excerpt: A thread that tries to enter upgradeable mode blocks if there is already a thread in upgradeable mode, if there are threads waiting to enter write mode, or if there is a single thread in write mode. Or, does the recursion policy make any difference to this?

    Read the article

  • Java threads, wait time always 00:00:00-Producer/Consumer

    - by user3742254
    I am currently doing a producer consumer problem with a number of threads and have had to set priorities and waits to them to ensure that one thread, the security thread, runs last. I have managed to do this and I have managed to get the buffer working. The last thing that I am required to do is to show the wait time of threads that are too large for the buffer and to calculate the average wait time. I have included code to do so, but everything I run the program, the wait time is always returned as 00:00:00, and by extension, the average is returned as the same. I was speaking to one of my colleagues who said that it is not a matter of the code but rather a matter of the computer needing to work off of one processor, which can be adjusted in the task manager settings. He has an HP like myself but his program prints the wait time 180 times, whereas mine prints usually about 3-7 times and is only 00:00:01 on one instance before finishing when I have made the processor adjustments. My other colleague has an iMac and hers puts out an average of 42:00:34(42 minutes??) I am very confused about this because I can see no difference between our codes and like my colleague said, I was wondering is it a computer issue. I am obviously concerned as I wanted to make sure that my code correctly calculated an average wait time, but that is impossible to tell when the wait times always show as 00:00:00. To calculate the thread duration, including the time it entered and exited the buffer was done by using a timestamp import, and then subtracting start time from end time. Is my code correct for this issue or is there something which is missing? I would be very grateful for any solutions. Below is my code: My buffer class package com.Com813cw; import java.text.DateFormat; import java.text.SimpleDateFormat; /** * Created by Rory on 10/08/2014. */ class Buffer { private int contents, count = 0, process = 200; private int totalRam = 1000; private boolean available = false; private long start, end, wait, request = 0; private DateFormat time = new SimpleDateFormat("ss:SSS"); public int avWaitTime =0; public void average(){ System.out.println("Average Application Request wait time: "+ time.format(request/count)); } public synchronized int get() { while (process <= 500) { try { wait(); } catch (InterruptedException e) { } } process -= 200; System.out.println("CPU After Process " + process); notifyAll(); return contents; } public synchronized void put(int value) { if (process <= 500) { process += value; } else { start = System.currentTimeMillis(); try { wait(); } catch (InterruptedException e) { } end = System.currentTimeMillis(); wait = end - start; count++; request += wait; System.out.println("Application Request Wait Time: " + time.format(wait)); process += value; contents = value; calcWait(wait, count); } notifyAll(); } public void calcWait(long wait, int count){ this.avWaitTime = (int) (wait/count); } public void printWait(){ System.out.println("Wait time is " + time.format(this.avWaitTime)); } } My spotify class package com.Com813cw; import java.sql.Timestamp; /** * Created by Rory on 11/08/2014. */ class Spotify extends Thread { private Buffer buffer; private int number; private int bytes = 250; public Spotify(Buffer c, int number) { buffer = c; this.number = number; } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 20; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes "); try { sleep(1000); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("Spotify has finished executing."); System.out.println("Time taken to execute was " + timeTaken + " milliseconds"); System.out.println("Time that Spotify thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("-----------------------------"); } } My BubbleWitch class package com.Com813cw; import java.lang.*; import java.lang.System; import java.sql.Timestamp; /** * Created by Rory on 10/08/2014. */ class BubbleWitch2 extends Thread { private Buffer buffer; private int number; private int bytes = 100; public BubbleWitch2(Buffer c, int number) { buffer = c; this.number=number ; } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 10; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes "); try { sleep(1000); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("BubbleWitch2 has finished executing."); System.out.println("Time taken to execute was " +timeTaken+ " milliseconds"); System.out.println("Time Bubblewitch2 thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("-----------------------------"); } } My Test class package com.Com813cw; /** * Created by Rory on 10/08/2014. */ public class ProducerConsumerTest { public static void main(String[] args) throws InterruptedException { Buffer c = new Buffer(); BubbleWitch2 p1 = new BubbleWitch2(c,1); Processor c1 = new Processor(c, 1); Spotify p2 = new Spotify(c, 2); SystemManagement p3 = new SystemManagement(c, 3); SecurityUpdate p4 = new SecurityUpdate(c, 4, p1, p2, p3); p1.setName("BubbleWitch2 "); p2.setName("Spotify "); p3.setName("System Management "); p4.setName("Security Update "); p1.setPriority(10); p2.setPriority(10); p3.setPriority(10); p4.setPriority(5); c1.start(); p1.start(); p2.start(); p3.start(); p4.start(); p2.join(); p3.join(); p4.join(); c.average(); System.exit(0); } } My security update package com.Com813cw; import java.lang.*; import java.lang.System; import java.sql.Timestamp; /** * Created by Rory on 11/08/2014. */ class SecurityUpdate extends Thread { private Buffer buffer; private int number; private int bytes = 150; private int process = 0; public SecurityUpdate(Buffer c, int number, BubbleWitch2 bubbleWitch2, Spotify spotify, SystemManagement systemManagement) throws InterruptedException { buffer = c; this.number = number; bubbleWitch2.join(); spotify.join(); systemManagement.join(); } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 15; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes"); try { sleep(1500); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("Security Update has finished executing."); System.out.println("Time taken to execute was " + timeTaken + " milliseconds"); System.out.println("Time that SecurityUpdate thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("------------------------------"); } } I'd be grateful as I said for any help as this is the last and most frustrating obstacle.

    Read the article

  • What limits scaling in this simple OpenMP program?

    - by Douglas B. Staple
    I'm trying to understand limits to parallelization on a 48-core system (4xAMD Opteron 6348, 2.8 Ghz, 12 cores per CPU). I wrote this tiny OpenMP code to test the speedup in what I thought would be the best possible situation (the task is embarrassingly parallel): // Compile with: gcc scaling.c -std=c99 -fopenmp -O3 #include <stdio.h> #include <stdint.h> int main(){ const uint64_t umin=1; const uint64_t umax=10000000000LL; double sum=0.; #pragma omp parallel for reduction(+:sum) for(uint64_t u=umin; u<umax; u++) sum+=1./u/u; printf("%e\n", sum); } I was surprised to find that the scaling is highly nonlinear. It takes about 2.9s for the code to run with 48 threads, 3.1s with 36 threads, 3.7s with 24 threads, 4.9s with 12 threads, and 57s for the code to run with 1 thread. Unfortunately I have to say that there is one process running on the computer using 100% of one core, so that might be affecting it. It's not my process, so I can't end it to test the difference, but somehow I doubt that's making the difference between a 19~20x speedup and the ideal 48x speedup. To make sure it wasn't an OpenMP issue, I ran two copies of the program at the same time with 24 threads each (one with umin=1, umax=5000000000, and the other with umin=5000000000, umax=10000000000). In that case both copies of the program finish after 2.9s, so it's exactly the same as running 48 threads with a single instance of the program. What's preventing linear scaling with this simple program?

    Read the article

  • Log RuntimeException thrown from thread created by Spring via the @Async annotation

    - by Eugen
    I'm having some difficulty logging RuntimeException from a thread. My system is: Java 7 (b118), Spring 3.0.5. The threads are not created by hand, but via Spring's @Async annotation, which creates it's own executor behind the scenes, so I don't really have the option of overriding any methods of the thread, FutureTask or anything low level. So my question is if Spring has any support or if there are any best practices for handling (logging) these type of exceptions? Any suggestions are appreciated. Thanks.

    Read the article

  • Windows Service suddenly doing nothing

    - by TB
    Hi, My windows service is using a Thread (not a timer) which is always looping and sleeps for 1 second every loop using : evet.WaitOne(interval); When I start the service it works fine and I can see in the task manager that it is running, consuming and releasing memory, consuming processor ... etc that is all normal, but after a while (random amount of time) the service simply stops!! it is still there in the task manager but it is not consuming any processor work now and its consumption to the memory is not changing. it simply (died but still there in the task manager like a Zombie). I know that many exceptions might have happened during running the service (it is really doing many things) but all those exceptions are handled in Try catch blocks, so why is my "always looping" thread stops ??? This thread also logs every time he loops, when he is freezig in this way he is not logging anything (of course)

    Read the article

  • pthread_exit and/or pthread_join causing Abort and SegFaults.

    - by MJewkes
    The following code is a simple thread game, that switches between threads causing the timer to decrease. It works fine for 3 threads, causes and Abort(core dumped) for 4 threads, and causes a seg fault for 5 or more threads. Anyone have any idea why this might be happening? #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <errno.h> #include <assert.h> int volatile num_of_threads; int volatile time_per_round; int volatile time_left; int volatile turn_id; int volatile thread_running; int volatile can_check; void * player (void * id_in){ int id= (int)id_in; while(1){ if(can_check){ if (time_left<=0){ break; } can_check=0; if(thread_running){ if(turn_id==id-1){ turn_id=random()%num_of_threads; time_left--; } } can_check=1; } } pthread_exit(NULL); } int main(int argc, char *args[]){ int i; int buffer; pthread_t * threads =(pthread_t *)malloc(num_of_threads*sizeof(pthread_t)); thread_running=0; num_of_threads=atoi(args[1]); can_check=0; time_per_round = atoi(args[2]); time_left=time_per_round; srandom(time(NULL)); //Create Threads for (i=0;i<num_of_threads;i++){ do{ buffer=pthread_create(&threads[i],NULL,player,(void *)(i+1)); }while(buffer == EAGAIN); } can_check=1; time_left=time_per_round; turn_id=random()%num_of_threads; thread_running=1; for (i=0;i<num_of_threads;i++){ assert(!pthread_join(threads[i], NULL)); } return 0; }

    Read the article

  • How to manage db connections on server?

    - by simpatico
    I have a severe problem with my database connection in my web application. Since I use a single database connection for the whole application from singleton Database class, if i try concurrent db operations (two users) the database rollsback the transactions. This is my static method used: All threads/servlets call static Database.doSomething(...) methods, which in turn call the the below method. private static /* synchronized*/ Connection getConnection(final boolean autoCommit) throws SQLException { if (con == null) { con = new MyRegistrationBean().getConnection(); } con.setAutoCommit(true); //TODO return con; } What's the recommended way to manage this db connection/s I have, so that I don't incurr in the same problem.

    Read the article

  • Which is more robust and scalable method?

    - by Dhruv Arya
    I am implementing a distributed chat system, in this system we have the following options : Make the client and server running at each node run as separate threads. The server acting as the receiver will be running as the daemon thread and the client taking the user input as a normal thread. Fork two processes one for the client and one for the server. I am not able to reason out with which one to proceed. Any insight would be great !

    Read the article

  • How to Stop Current Playing Song When using one thread with JLayer?

    - by mcnemesis
    I recently used a solution to the one-thread-at-a-time problem whe using Jlayer to play mp3 songs in Java. But this solution by Kaleb Brasee didn't hint at how you could stop the player, i.e how could one then call player.close()? Kaleb's code was: Executor executor = Executors.newSingleThreadExecutor(); executor.execute(new Runnable() { public void run() { /* do something */ } }); and this is the code I put in run() if(player != null) player.close(); try{ player = new Player(new FileInputStream(musicD.getPath())); player.play(); }catch(Exception e){} The problem is that much as this solves the problem of keeping the gui active while the music plays (in only one other thread -- what i'd wanted), I can't start playing another song :-( What could I do?

    Read the article

  • passing pipe to threads

    - by alaamh
    I see it's easy to open pipe between two process using fork, but how we can passing open pipe to threads. Assume we need to pass out of PROGRAM A to PROGRAM B "may by more than one thread", PROGRAM B send his output to PROGRAM C #include <stdio.h> #include <stdlib.h> #include <pthread.h> struct targ_s { int fd_reader; }; void *thread1(void *arg) { struct targ_s *targ = (struct targ_s*) arg; int status, fd[2]; pid_t pid; pipe(fd); pid = fork(); if (pid == 0) { dup2(STDIN_FILENO, targ->fd_reader); close(fd[0]); dup2(fd[1], STDOUT_FILENO); close(fd[1]); execvp ("PROGRAM B", NULL); exit(1); } else { close(fd[1]); dup2(fd[0], STDIN_FILENO); close(fd[0]); execl("PROGRAM C", NULL); wait(&status); return NULL; } } int main(void) { FILE *fpipe; char *command = "PROGRAM A"; char buffer[1024]; if (!(fpipe = (FILE*) popen(command, "r"))) { perror("Problems with pipe"); exit(1); } char* outfile = "out.dat"; FILE* f = fopen (outfile, "wb"); int fd = fileno( f ); struct targ_s targ; targ.fd_reader = fd; pthread_t thid; if (pthread_create(&thid, NULL, thread1, &targ) != 0) { perror("pthread_create() error"); exit(1); } int len; while (read(fpipe, buffer, sizeof (buffer)) != 0) { len = strlen(buffer); write(fd, buffer, len); } pclose(fpipe); return (0); }

    Read the article

  • How to automatically run in the background?

    - by Hun1Ahpu
    I'm not sure that it's not implemented yet, I hope that it is. But I know that in .Net programmers should manually run time-consuming task in the background thread. So every time we handle some UI event and we understand that this will take some time we also understand that this will hang UI thread and our application. And then we make all this Background work things and handle callbacks or whatever. So my question is: Is there in some language/platform a mechanism that will automatically run time-consuming tasks in the background and will do all related work itself? So we just write the code for handling specific UI event and this code will be somehow detected as time-consuming and will be executed in background. And if there isn't, then why?

    Read the article

  • Returning from method inside a @synchronized block

    - by Michael Waterfall
    I'd just like to know if it's advised to return from a method within a @synchronized block? For example: - (id)test { @synchronized(self) { if (a) return @"A"; else return @"B"; } } As opposed to: - (id)test { NSString *value; @synchronized(self) { if (a) value = @"A"; else value = @"B"; } return value; } This sample is rather simplistic, but sometimes in a complex method it would make things simpler to be able to return from within a @synchronized block.

    Read the article

  • Java: How to test methods that call System.exit()?

    - by Chris Conway
    I've got a few methods that should call System.exit() on certain inputs. Unfortunately, testing these cases causes JUnit to terminate! Putting the method calls in a new Thread doesn't seem to help, since System.exit() terminates the JVM, not just the current thread. Are there any common patterns for dealing with this? For example, can I subsitute a stub for System.exit()? [EDIT] The class in question is actually a command-line tool which I'm attempting to test inside JUnit. Maybe JUnit is simply not the right tool for the job? Suggestions for complementary regression testing tools are welcome (preferably something that integrates well with JUnit and EclEmma).

    Read the article

  • iPhone: One Object, One Thread

    - by GingerBreadMane
    On the iPhone, I would like to do some operations on an image in a separate thread. Rather than dealing with semiphores, locking, etc., I'd like to use the 'One Object, One Thread' method of safely writing this concurrent operation. I'm not sure what is the correct way to copy my object into a new thread so that the object is not accessed in the main thread. Do I use the 'copy' method? If so, do I do this before the thread or inside the thread? ... -(void)someMethod{ UIImage *myImage; [NSThread detachNewThreadSelector:@selector(getRotatedImage:) toTarget:self withObject:myImage]; } -(void)getRotatedImage:(UIImage *)image{ ... ... UIImage *copiedImage = [image copy]; ... ... }

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >