Search Results

Search found 19281 results on 772 pages for 'blender game engine'.

Page 380/772 | < Previous Page | 376 377 378 379 380 381 382 383 384 385 386 387  | Next Page >

  • How much it will cost to create tile-set similar to HoM&M 2?

    - by Alexey Petrushin
    How much it will cost to create tile-set similar to HoM&M 2? I'm mostly interested in the tile-set graphics only, no animation needed, the big images of town and creatures can be done as quick and dirty pensil sketches. The quality of tiles and its amount should be roughly the same as in HoM&M 2. Can You please give a rough estimate how much it will take man-hours and how much will it cost?

    Read the article

  • Converting from different handedness coordinate systems

    - by SirYakalot
    I am currently porting a demo from XNA to DirectX which, as I understand it, both have coordinate systems with different handednesses. What are the things I need to bare in mind when converting between the two? I understand not everything needs to be changed. Also I notice that many of the 3D maths functions in some of the direct3D libraries have right handed and left handed alternatives. Would it be better to just use these?

    Read the article

  • Decal implementation

    - by dreta
    I had issues finding information about decals, so maybe this question will help others. The implementation is for a forward renderer. Could somebody confirm if i got decal implementation right? You define a cube of any dimension that'll define the projection volume in common space. You check for triangle intersection with the defined cube to recieve triangles that the projection will affect. You clip these triangles and save them. You then use matrix tricks to calculate UV coordinates for the saved triangles that'll reference the texture you're projecting. To do this you take the vectors representing height, width and depth of the cube in common space, so that f.e. the bottom left corner is the origin. You put that in a matrix as the i, j, k unit vectors, set the translation for the cube, then you inverse this matrix. You multiply the vertices of the saved triangles by this matrix, that way you get their coordinates inside of a 0 to 1 size cube that you use as the UV coordinates. This way you have the original triangles you're projecting onto and you have UV coordinates for them (the UV coordinates are referencing the texture you're projecting). Then you rerender the saved triangles onto the scene and they overwrite the area of projection with the projected image. Now the questions that i couldn't find answers for. Is the last point right? I've never done software clipping, but it seems error prone enough, due to limited precision, that the'll be some z fighting occuring for the projected texture. Also is the way of getting UV coordinates correct?

    Read the article

  • Surface of Revolution with 3D surface

    - by user5584
    I have to use this function to get a Surface of Revolution (homework). newVertex = (oldVertex.y, someFunc1(oldVertex.x, oldVertex.y), someFunc2(oldVertex.x, oldVertex.y)); As far as I know (FIXME) Surface of Revolution means rotations of a (2D)curve around an axis in 3D. But this vertex computing gives a 3D plane (FIXME again :D), so rotation of this isn't obvious. Am I misunderstanding something?

    Read the article

  • Drawing a circle in opengl es android, squiggly boundaries

    - by ladiesMan217
    I am new to OpenGL ES and facing a hard time drawing a circle on my GLSurfaceView. Here's what I have so far. the Circle Class public class MyGLBall { private int points=40; private float vertices[]={0.0f,0.0f,0.0f}; private FloatBuffer vertBuff; //centre of circle public MyGLBall(){ vertices=new float[(points+1)*3]; for(int i=3;i<(points+1)*3;i+=3){ double rad=(i*360/points*3)*(3.14/180); vertices[i]=(float)Math.cos(rad); vertices[i+1]=(float) Math.sin(rad); vertices[i+2]=0; } ByteBuffer bBuff=ByteBuffer.allocateDirect(vertices.length*4); bBuff.order(ByteOrder.nativeOrder()); vertBuff=bBuff.asFloatBuffer(); vertBuff.put(vertices); vertBuff.position(0); } public void draw(GL10 gl){ gl.glPushMatrix(); gl.glTranslatef(0, 0, 0); // gl.glScalef(size, size, 1.0f); gl.glColor4f(1.0f,1.0f,1.0f, 1.0f); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertBuff); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glDrawArrays(GL10.GL_TRIANGLE_FAN, 0, points/2); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glPopMatrix(); } } I couldn't retrieve the screenshot of my image but here's what it looks like As you can see the border has crests and troughs thereby renering it squiggly which I do not want. All I want is a simple curve

    Read the article

  • how to create 2D collision detection

    - by Aidan Mueller
    I would like to know the best or most effective way to test for 2D collision. I also can do AABBs but when you have a line, for example, that is rotated 45º, and it is really long. it will be hitting things when it shouldn't. I might be able to go through the pixels to see if they are touching others, but that might be slow if I had a big picture. and it might add some complications if I had a movie clip made of several images. How do I check collision between two Images? How would I do circle to box? Please help : ) PS: I do know java so you can write with java syntax and then use a made up GL

    Read the article

  • Visualization tools for physical simulations

    - by Nick
    I'm interested in starting some physics simulations and I'm getting hung up on the visualization side of things. I have lots of resources for reading how to implement the simulation itself but I'd rather not learn two things at once - the simulation part and a new complex visualization API. Are there any high-level visualization tools that are language independent? I understand that I'll have to learn some new code for visualization but I'd like to start at a high level, OpenGL is my long-term goal and not my prototype goal.

    Read the article

  • Calculating angle a segment forms with a ray

    - by kr1zz
    I am given a point C and a ray r starting there. I know the coordinates (xc, yc) of the point C and the angle theta the ray r forms with the horizontal, theta in (-pi, pi]. I am also given another point P of which I know the coordinates (xp, yp): how do I calculate the angle alpha that the segment CP forms with the ray r, alpha in (-pi, pi]? Some examples follow: I can use the the atan2 function.

    Read the article

  • Normal maps red in OpenGL?

    - by KaiserJohaan
    I am using Assimp to import 3d models, and FreeImage to parse textures. The problem I am having is that the normal maps are actually red rather than blue when I try to render them as normal diffuse textures. http://i42.tinypic.com/289ing3.png When I open the images in a image-viewing program they do indeed show up as blue. Heres when I create the texture; OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } Here is my fragment shader. You can see I just commented out the normal-map parsing and treated the normal map texture as the diffuse texture to display it and illustrate the problem. As for the rest of the code it interacts as expected with the diffuse textures so I dont see a obvious problem there. "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Why is this? does normal-map textures need some sort of special treatment in opengl?

    Read the article

  • Something other than Vertex Welding with Texture Atlas?

    - by Tim Winter
    What options (in C# with XNA) would there be for texture usage in a procedural generated 3D world made of cubes to increase performance? Yes, it's like Minecraft. I've been doing a texture atlas and rendering faces individually (4 vertices per face), but I've also read in a couple places about using texture wrapping with two 1D atlases to merge adjacent faces with the same texture. If two or more adjacent faces share the same image, it'd be quite easy to wrap in this way reducing vertices by a large amount. My problem with this is having too many textures, swapping too often, and many image related things like non-power of 2 images. Is there a middle ground option between the 1D texture atlas trick and rendering 4 vertices per cube face? This is a picture of what I have currently (in wireframe). 4 vertices per face seems extremely inefficient to me.

    Read the article

  • How to set TextureFilter to Point to make example Bloom filter work?

    - by Mr Bell
    I have simple app that renders some particles and now I am trying to apply the bloom shader from the xna samplers ( http://create.msdn.com/en-US/education/catalog/sample/bloom ) to it, but I am running into this exception: "XNA Framework HiDef profile requires TextureFilter to be Point when using texture format Vector4." When the BloomComponent tries to end the sprite batch in the DrawFullscreenQuad method: spriteBatch.Begin(0, BlendState.Opaque, SamplerState.PointWrap, null, null, effect); spriteBatch.Draw(texture, new Rectangle(0, 0, width, height), Color.White); spriteBatch.End(); //<------- Exception thrown here It seems to be related to the pixel shaders that I am using to animate the particle. In a nutshell, I have a texture2d in vector4 format that holds particle positions, and another one for velocities. Here is a snippet from that area: GraphicsDevice.SetRenderTarget(tempRenderTarget); animationEffect.CurrentTechnique = animationEffect.Techniques[technique]; spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.Opaque, SamplerState.PointWrap, DepthStencilState.DepthRead, RasterizerState.CullNone, animationEffect); spriteBatch.Draw(randomValues, new Rectangle(0, 0, width, height), Color.White); spriteBatch.End(); What I comment out the code that calls the particle animation pixel shaders the bloom component runs fine. Is there some state that I need to reset to make the bloom work?

    Read the article

  • How to code a 4x shader/filter which emulates arcade crt display behavior?

    - by Arthur Wulf White
    I want to write a shader/filer probably in adobe Pixel Bender that will do the best job possible in emulating the fill of an oldskul monochromatic arcade CRT screen. Much like this here: http://filthypants.blogspot.com/2012/07/customizing-cgwgs-crt-pixel-shader.html Here are some attributes I know will exist in this filter: It will take in a low res image 160 x 120 and return a medium res image 640 x 480. It will add scanlines It will blur the color channels to create that color bleeding effect It will distort the shape of the image from a perfect rectangle into a rounder shape. The question is, could you please provide any other attributes that are beneficial to emulating an arcade CRT feel and links and resources on coding these effects. Thanks

    Read the article

  • WebGL CORS error loading simple texture in Chrome

    - by mathacka
    Here's my code: function loadTexture() { textureImage = new Image(); textureImage.onload = function() { setupTexture(); } textureImage.src = "jumper2.png"; } function setupTexture() { texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, texture); gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true); // this next line has the error: Uncaught SecurityError: An attempt was made to break through the security policy of the user agent. gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, textureImage); gl.texParameteri(gl.TEXTURE_2D, gl.OES_TEXTURE_FLOAT_LINEAR, gl.NEAREST); if (!gl.isTexture(texture)) { alert("Error: Texture is invalid"); } glProgram.samplerUniform = gl.getUniformLocation(glProgram, "uSampler"); gl.uniform1i(glProgram.samplerUniform, 0); } I've researched it and it is a CORS error a "Cross-origin resource sharing" error, but it's a local file! I can't figure out what's wrong. I did make the picture using gimp, and I'm not sure the coding was right on the export, but I eliminated a previous error using "gl.OES_TEXTURE_FLOAT_LINEAR".

    Read the article

  • MD5 vertex skinning problem extending to multi-jointed skeleton (GPU Skinning)

    - by Soapy
    Currently I'm trying to implement GPU skinning in my project. So far I have achieved single joint translation and rotation, and multi-jointed translation. The problem arises when I try to rotate a multi-jointed skeleton. The image above shows the current progress. The left image shows how the model should deform. The middle image shows how it deforms in my project. The right shows a better deform (still not right) inverting a certain value, which I will explain below. The way I get my animation data is by exporting it to the MD5 format (MD5mesh for mesh data and MD5anim for animation data). When I come to parse the animation data, for each frame, I check if the bone has a parent, if not, the data is passed in as is from the MD5anim file. If it does have a parent, I transform the bones position by the parents orientation, and the add this with the parents translation. Then the parent and child orientations get concatenated. This is covered at this website. if (Parent < 0){ ... // Save this data without editing it } else { Math3::vec3 rpos; Math3::quat pq = Parent.Quaternion; Math3::quat pqi(pq); pqi.InvertUnitQuat(); pqi.Normalise(); Math3::quat::RotateVector3(rpos, pq, jv); Math3::vec3 npos(rpos + Parent.Pos); this->Translation = npos; Math3::quat nq = pq * jq; nq.Normalise(); this->Quaternion = nq; } And to achieve the image to the right, all I need to do is to change Math3::quat::RotateVector3(rpos, pq, jv); to Math3::quat::RotateVector3(rpos, pqi, jv);, why is that? And this is my skinning shader. SkinningShader.vert #version 330 core smooth out vec2 vVaryingTexCoords; smooth out vec3 vVaryingNormals; smooth out vec4 vWeightColor; uniform mat4 MV; uniform mat4 MVP; uniform mat4 Pallete[55]; uniform mat4 invBindPose[55]; layout(location = 0) in vec3 vPos; layout(location = 1) in vec2 vTexCoords; layout(location = 2) in vec3 vNormals; layout(location = 3) in int vSkeleton[4]; layout(location = 4) in vec3 vWeight; void main() { vec4 wpos = vec4(vPos, 1.0); vec4 norm = vec4(vNormals, 0.0); vec4 weight = vec4(vWeight, (1.0f-(vWeight[0] + vWeight[1] + vWeight[2]))); normalize(weight); mat4 BoneTransform; for(int i = 0; i < 4; i++) { if(vSkeleton[i] != -1) { if(i == 0) { // These are interchangable for some reason // BoneTransform = ((invBindPose[vSkeleton[i]] * Pallete[vSkeleton[i]]) * weight[i]); BoneTransform = ((Pallete[vSkeleton[i]] * invBindPose[vSkeleton[i]]) * weight[i]); } else { // These are interchangable for some reason // BoneTransform += ((invBindPose[vSkeleton[i]] * Pallete[vSkeleton[i]]) * weight[i]); BoneTransform += ((Pallete[vSkeleton[i]] * invBindPose[vSkeleton[i]]) * weight[i]); } } } wpos = BoneTransform * wpos; vWeightColor = weight; vVaryingTexCoords = vTexCoords; vVaryingNormals = normalize(vec3(vec4(vNormals, 0.0) * MV)); gl_Position = wpos * MVP; } The Pallete matrices are the matrices calculated using the above code (a rotation and translation matrix get created from the translation and quaternion). The invBindPose matrices are simply the inverted matrices created from the joints in the MD5mesh file. Update 1 I looked at GLM to compare the values I get with my own implementation. They turn out to be exactly the same. So now i'm checking if there's a problem with matrix creation... Update 2 Looked at GLM again to compare matrix creation using quaternions. Turns out that's not the problem either.

    Read the article

  • JOGL hardware based shadow mapping - computing the texture matrix

    - by axel22
    I am implementing hardware shadow mapping as described here. I've rendered the scene successfully from the light POV, and loaded the depth buffer of the scene into a texture. This texture has correctly been loaded - I check this by rendering a small thumbnail, as you can see in the screenshot below, upper left corner. The depth of the scene appears to be correct - objects further away are darker, and that are closer to the light are lighter. However, I run into trouble while rendering the scene from the camera's point of view using the depth texture - the texture on the polygons in the scene is rendered in a weird, nondeterministic fashion, as shown in the screenshot. I believe I am making an error while computing the texture transformation matrix, but I am unsure where exactly. Since I have no matrix utilities in JOGL other then the gl[Load|Mult]Matrix procedures, I multiply the matrices using them, like this: void calcTextureMatrix() { glPushMatrix(); glLoadIdentity(); glLoadMatrixf(biasmatrix, 0); glMultMatrixf(lightprojmatrix, 0); glMultMatrixf(lightviewmatrix, 0); glGetFloatv(GL_MODELVIEW_MATRIX, shadowtexmatrix, 0); glPopMatrix(); } I obtained these matrices by using the glOrtho and gluLookAt procedures: glLoadIdentity() val wdt = width / 45 val hgt = height / 45 glOrtho(wdt, -wdt, -hgt, hgt, -45.0, 45.0) glGetFloatv(GL_MODELVIEW_MATRIX, lightprojmatrix, 0) glLoadIdentity() glu.gluLookAt( xlook + lightpos._1, ylook + lightpos._2, lightpos._3, xlook, ylook, 0.0f, 0.f, 0.f, 1.0f) glGetFloatv(GL_MODELVIEW_MATRIX, lightviewmatrix, 0) My bias matrix is: float[] biasmatrix = new float[16] { 0.5f, 0.f, 0.f, 0.f, 0.f, 0.5f, 0.f, 0.f, 0.f, 0.f, 0.5f, 0.f, 0.5f, 0.5f, 0.5f, 1.f } After applying the camera projection and view matrices, I do: glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR) glTexGenfv(GL_S, GL_EYE_PLANE, shadowtexmatrix, 0) glEnable(GL_TEXTURE_GEN_S) for each component. Does anybody know why the texture is not being rendered correctly? Thank you.

    Read the article

  • as3 3D camera lookat

    - by Johannes Jensen
    I'm making a 3D camera scene in Flash, draw using drawTriangles() and rotated and translated using a Matrix3D. I've got the camera to look after a specific point, but only on the Y-axis, using the x and z coordinates, here is my code so far: var dx:Number = camera.x - lookAt.x; var dy:Number = camera.y - lookAt.y; var dz:Number = camera.z - lookAt.z; camera.rotationY = Math.atan2(dz, dx) * (180 / Math.PI) + 270; so no matter the x or z position, the point is always on the mid of the screen, IF and only if y matches with the camera. So what I need is to calculate the rotationX (which are measured in degrees not radians), and I was wondering how I would do this?

    Read the article

  • Best way to go about sorting 2D sprites in a "RPG Maker" styled RPG

    - by Aaron Stewart
    I am trying to come up with the best way to create overlapping sprites without having any issues. I was thinking of having a SortedDictionary and setting the Entity's key to it's Y position relative to the max bound of the simulation, aka the Z value. I'd update the "Z" value in the update method each frame, if the entity's position has changed at all. For those who don't know what I mean, I want characters who are standing closer in front of another character to be drawn on top, and if they are behind the character, they are drawn behind. I'm leery of using SpriteBatch back to front or front to back, I've been doing some searching and have been under the impression they are a bad idea. and want to know exactly how other people are dealing with their depth sorting. Just ultimately trying to come up with the best method of sorting for good practice before I get too far in to refactor the system effectively.

    Read the article

  • Timestep schemes for physics simulations

    - by ktodisco
    The operations used for stepping a physics simulation are most commonly: Integrate velocity and position Collision detection and resolution Contact resolution (in advanced cases) A while ago I came across this paper from Stanford that proposed an alternative scheme, which is as follows: Collision detection and resolution Integrate velocity Contact resolution Integrate position It's intriguing because it allows for robust solutions to the stacking problem. So it got me wondering... What, if any, alternative schemes are available, either simple or complex? What are their benefits, drawbacks, and performance considerations?

    Read the article

  • Adding Vertices to a dynamic mesh via Method Call

    - by Raven Dreamer
    I have a C# Struct with a static method, "Get Shape" which populates a List with the vertices of a polyhedron. Method Signature: public static void GetShape(Block b, int x, int y, int z, List<Vector3> vertices, List<int> triangles, List<Vector2> uvs, List<Vector2> uv2s) Adding directly to the vertices list (via vertices.Add(vector3) ), the code works as expected, and the new polyhedron appears when I trigger the method. However, I want to do some processing on the vertices I'm adding (a rotation), and the most sensible way I can think to do that is by creating a separate list of Vector3s, and then combining the lists when I'm done. However, vertices.AddRange(newVerts) does not add the shape to the mesh, nor does a foreach loop with verts.Add(vertices[i]). And this is before I've added in any of the processing! I have a feeling this might stem from passing the list of vertices in as a parameter, rather than returning a list and then adding to the vertices in the calling object, but since I'm filling 4 lists, I was trying to avoid having to create a data struct to return all four at once. Any ideas? The working version of the method is reprinted below, in full: public static void GetShape(Block b, int x, int y, int z, List<Vector3> vertices, List<int> triangles, List<Vector2> uvs, List<Vector2> uv2s) { //List<Vector3> vertices = new List<Vector3>(); int l_blockShape = b.blockShape; int l_blockType = b.blockType; //CheckFace checks if the block is empty //if this block is empty, don't draw anything. int vertexIndex; //only y faces need to be hidden. //if((l_blockShape & BlockShape.NegZFace) == BlockShape.NegZFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.2f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //XY Z+1 face //if((l_blockShape & BlockShape.PosZFace) == BlockShape.PosZFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZY face //if((l_blockShape & BlockShape.NegXFace) == BlockShape.NegXFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.2f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.2f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZY X+1 face // if((l_blockShape & BlockShape.PosXFace) == BlockShape.PosXFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y + 1, z+.2f)); vertices.Add(new Vector3(x+.8f, y + 1, z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); // first triangle for the face triangles.Add(vertexIndex); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+3); // second triangle for the face triangles.Add(vertexIndex+1); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+3); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZX face if((l_blockShape & BlockShape.NegYFace) == BlockShape.NegYFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y , z+.8f)); vertices.Add(new Vector3(x+.8f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.2f)); vertices.Add(new Vector3(x+.2f, y , z+.8f)); // first triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex); // second triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+1); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } //ZX + 1 face if((l_blockShape & BlockShape.PosYFace) == BlockShape.PosYFace) { vertexIndex = vertices.Count; //top left, top right, bottom right, bottom left vertices.Add(new Vector3(x+.8f, y+1 , z+.2f)); vertices.Add(new Vector3(x+.8f, y+1 , z+.8f)); vertices.Add(new Vector3(x+.2f, y+1 , z+.8f)); vertices.Add(new Vector3(x+.2f, y+1 , z+.2f)); // first triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+1); triangles.Add(vertexIndex); // second triangle for the face triangles.Add(vertexIndex+3); triangles.Add(vertexIndex+2); triangles.Add(vertexIndex+1); //UVs for the face uvs.Add( new Vector2(0,1)); uvs.Add( new Vector2(1,1)); uvs.Add( new Vector2(1,0)); uvs.Add( new Vector2(0,0)); //UV2s (lightmapping?) uv2s.Add( new Vector2(0,1)); uv2s.Add( new Vector2(1,1)); uv2s.Add( new Vector2(1,0)); uv2s.Add( new Vector2(0,0)); } }

    Read the article

  • 2D OBB collision detection, resolving collisions?

    - by Milo
    I currently use OBBs and I have a vehicle that is a rigid body and some buildings. Here is my update() private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); vehicle.update(16.6666f / 1000.0f); ArrayList<Building> buildings = city.getBuildings(); for(Building b : buildings) { if(vehicle.getRect().overlaps(b.getRect())) { vehicle.update(-17.0f / 1000.0f); break; } } } The collision detection works well. What doesn't is how they are dealt with. My goal is simple. If the vehicle hits a building, it should stop, and never go into the building. When I apply negative torque to reverse the car should not feel buggy and move away from the building. I don't want this to look buggy. This is my rigid body class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private float mass; //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); } public Vector2D getPosition() { return getRect().getCenter(); } @Override public void update(float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setCenter(c.x, c.y); forces = new Vector2D(0,0); //clear forces //angular float angAcc = torque / inertia; angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { Matrix mat = new Matrix(); float[] Vector2Ds = new float[2]; Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { Matrix mat = new Matrix(); float[] Vectors = new float[2]; Vectors[0] = world.x; Vectors[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vectors); return new Vector2D(Vectors[0], Vectors[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { Vector2D tangent = new Vector2D(-worldOffset.y, worldOffset.x); return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces = Vector2D.add(forces ,worldForce); //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } } Essentially, when any rigid body hits a building it should exhibit the same behavior. How is collision solving usually done? Thanks

    Read the article

  • How can I estimate cost of creating tile-set similar to HoM&M 2?

    - by Alexey Petrushin
    How to estimate cost of creating tile-set similar to HoM&M 2? I'm mostly interested in the tile-set graphics only, no animation needed, the big images of town and creatures can be done as quick and dirty pensil sketches. The quality of tiles and its amount should be roughly the same as in HoM&M 2. Can You please give a rough estimate how much it will take man-hours and how much will it cost?

    Read the article

  • Quaternion Camera

    - by Alex_Hyzer_Kenoyer
    Can someone help me figure out how to use a Quaternion with the PerspectiveCamera in libGDX or in general? I am trying to rotate my camera around a sphere that is being drawn at (0,0,0). I am not sure how to go about setting up the quaternion correctly, manipulating it, and then applying it to the camera. Edit: Here is what I have tried to do so far. // This is how I set it up Quaternion orientation = new Quaternion(); orientation.setFromAxis(Vector3.Y, 45); // This is how I am trying to update the rotations public void rotateX(float amount) { Quaternion temp = new Quaternion(); temp.set(Vector3.X, amount); orientation.mul(temp); } public void rotateY(float amount) { Quaternion temp = new Quaternion(); temp.set(Vector3.Y, amount); orientation.mul(temp); } public void updateCamera() { // This is where I am unsure how to apply the rotations to the camera // I think I should update the view and projection matrices? camera.view.mul(orientation); ... }

    Read the article

  • How should I replan A*?

    - by Gregory Weir
    I've got a pathfinding boss enemy that seeks the player using the A* algorithm. It's a pretty complex environment, and I'm doing it in Flash, so the search can get a bit slow when it's searching over long distances. If the player was stationary, I could just search once, but at the moment I'm searching every frame. This takes long enough that my framerate is suffering. What's the usual solution to this? Is there a way to "replan" A* without redoing the entire search? Should I just search a little less often (every half-second or second) and accept that there will be a little inaccuracy in the path?

    Read the article

  • Pygame surfaces and their Rects

    - by Jaka Novak
    I am trying to understand how pygame surfaces work. I am confused about Rect position of Surface object. If I try blit surface on screen at some position then Surface is drawn at right position, but Rect of the surface is still at position (0, 0)... I tried write my own surface class with new rect, but i am not sure if is that right solution. My goal is that i could move surface like image with rect.move() or something like that. If there is any solution to do that i would be happy to read it. Thanks for answer and time for reading this awful English If helps i write some code for better understanding my problem. (run it first, and then uncomment two lines of code and run again to see the diference): import pygame from pygame.locals import * class SurfaceR(pygame.Surface): def __init__(self, size, position): pygame.Surface.__init__(self, size) self.rect = pygame.Rect(position, size) self.position = position self.size = size def get_rect(self): return self.rect def main(): pygame.init() screen = pygame.display.set_mode((640, 480)) pygame.display.set_caption("Screen!?") clock = pygame.time.Clock() fps = 30 white = (255, 255, 255) red = (255, 0, 0) green = (0, 255, 0) blue = (0, 0, 255) surface = pygame.Surface((70,200)) surface.fill(red) surface_re = SurfaceR((300, 50), (100, 300)) surface_re.fill(blue) while True: for event in pygame.event.get(): if event.type == QUIT: return 0 screen.blit(surface, (100,50)) screen.blit(surface_re, surface_re.position) #pygame.draw.rect(screen, white, surface.get_rect()) #pygame.draw.rect(screen, white, surface_re.get_rect()) pygame.display.update() clock.tick(fps) if __name__ == "__main__": main()

    Read the article

  • Making body (box2d) a sprite (andengine) in Android

    - by Kadir
    I can't make body (box2d) a sprite (andengine) and at the same time apply MoveModifier to sprite which is body. If i can make just body, it works namely the sprites can collide. If I apply just MoveModifier to sprites, the sprites can move where i want. But I want to make body (they can collide) and apply MoveModifier (they can move where I want) at the same time. How can i do it? This my code just run MoveModifier not as body at the same time. circles[i] = new Sprite(startX, startY, textRegCircle[i]); body[i] = PhysicsFactory.createCircleBody(physicsWorld, circles[i], BodyType.DynamicBody, FIXTURE_DEF); physicsWorld.registerPhysicsConnector(new PhysicsConnector(circles[i], body[i], true, true)); circles[i].registerEntityModifier( (IEntityModifier) new SequenceEntityModifier ( new MoveModifier(10.0f, circles[i].getX(), circles[i].getX(), circles[i].getY(),CAMERA_HEIGHT+64.0f))); scene.getLastChild().attachChild(circles[i]); scene.registerUpdateHandler(physicsWorld);

    Read the article

< Previous Page | 376 377 378 379 380 381 382 383 384 385 386 387  | Next Page >