Search Results

Search found 35689 results on 1428 pages for 'development mode'.

Page 388/1428 | < Previous Page | 384 385 386 387 388 389 390 391 392 393 394 395  | Next Page >

  • What is the "un-tab" sequence in (g)Vim?

    - by OwenP
    This is an annoyance I've had for a long time. (Nitpicky section: I prefer 4 space characters to tab characters. It's a lot easier to type "tab" instead of explaining that. When I say "tab", I mean "the action that happens when you press the tab key" which is probably more simply stated as "increase indentation".) I'm using smartindent while editing a document where indentation has some significance. In "dumb" windows text editors I can press Shift+Tab to remove a tab or, more appropriately, decrease the indentation level of the current line. I can't figure out how to do this from edit mode in Vim; Shift+Tab seems to count just the same as Tab. I know in Command mode << will decrease indentation. I want the equivalent in edit mode. These are the solutions I've found so far and why I don't like them, one in particular may be the key to the answer. Use Notepad++ or some other dumb editor. I've done this for a couple of years but I really miss Vim. Exit edit mode, use <<, enter edit mode. This just puts the cursor at column 0; if I wanted this I wouldn't have tried smartindent. Stop using smartindent. I don't decrease indent as often as I need to keep the same indent level; this would be a loss of productivity. The left arrow key seems to decrease the indent by one level. I'd rather something I can do without leaving the home row. This is the most promising choice. Maybe there's an option I can set? Maybe I can rebind left arrow to something? (If it requires rebinding please explain in detail; I've never delved into reconfiguring (g)Vim.

    Read the article

  • seg violation using pycapsule_new

    - by user1733051
    I am trying some simple c API, where I am using PyCapsule_New to encapsulate a pointer. I am running into segment violation, can some body help me. mystruct *func1(int streamno, char mode,unsigned int options) { char * s; s=malloc(100); return s; } PyObject *Wrapper_func1(PyObject *self, PyObject *args) { int streamno; char mode; unsigned int options; mystruct* result; if (!PyArg_ParseTuple(args,"icI",&streamno,&mode,&options)) return NULL; result = func1(streamno,mode,options); return PyCapsule_New( result,NULL,NULL); }

    Read the article

  • Auto not being recognised by the compiler, what would be the best replacement?

    - by user1719605
    So I have wrote a program that uses auto however the compiler doesn't seem to recognize it, probably it is an earlier compiler. I was wondering for my code, with are suitable variables to fix my code so that I do not need to use the auto keyword? I'm thinking a pointer to a string? or a string iterator, though I am not sure. #include <cstdlib> #include <string> #include <iostream> #include <unistd.h> #include <algorithm> using namespace std; int main(int argc, char* argv[]) { enum MODE { WHOLE, PREFIX, SUFFIX, ANYWHERE, EMBEDDED } mode = WHOLE; bool reverse_match = false; int c; while ((c = getopt(argc, argv, ":wpsaev")) != -1) { switch (c) { case 'w': // pattern matches whole word mode = WHOLE; break; case 'p': // pattern matches prefix mode = PREFIX; break; case 'a': // pattern matches anywhere mode = ANYWHERE; break; case 's': // pattern matches suffix mode = SUFFIX; break; case 'e': // pattern matches anywhere mode = EMBEDDED; break; case 'v': // reverse sense of match reverse_match = true; break; } } argc -= optind; argv += optind; string pattern = argv[0]; string word; int matches = 0; while (cin >> word) { switch (mode) { case WHOLE: if (reverse_match) { if (pattern != word) { matches += 1; cout << word << endl; } } else if (pattern == word) { matches += 1; cout << word << endl; } break; case PREFIX: if (pattern.size() <= word.size()) { auto res = mismatch(pattern.begin(), pattern.end(), word.begin()); if (reverse_match) { if (res.first != word.end()) { matches += 1; cout << word << endl; } } else if (res.first == word.end()) { matches += 1; cout << word << endl; } } break; case ANYWHERE: if (reverse_match) { if (!word.find(pattern) != string::npos) { matches += 1; cout << word << endl; } } else if (word.find(pattern) != string::npos) { matches += 1; cout << word << endl; } break; case SUFFIX: if (pattern.size() <= word.size()) { auto res = mismatch(pattern.rbegin(), pattern.rend(), word.rbegin()); if (reverse_match) { if (res.first != word.rend()) { matches = +1; cout << word << endl; } } else if (res.first == word.rend()) { matches = +1; cout << word << endl; } } break; case EMBEDDED: if (reverse_match) { if (!pattern.find(word) != string::npos) { matches += 1; cout << word << endl;} } else if (pattern.find(word) != string::npos) { matches += 1; cout << word << endl; } break; } } return (matches == 0) ? 1 : 0; } Thanks in advance!

    Read the article

  • Endless terrain in jMonkey using TerrainGrid fails to render

    - by nightcrawler23
    I have started to learn game development using jMonkey engine. I am able to create single tile of terrain using TerrainQuad but as the next step I'm stuck at making it infinite. I have gone through the wiki and want to use the TerrainGrid class but my code does not seem to work. I have looked around on the web and searched other forums but cannot find any other code example to help. I believe in the below code, ImageTileLoader returns an image which is the heightmap for that tile. I have modified it to return the same image every time. But all I see is a black window. The Namer method is not even called. terrain = new TerrainGrid("terrain", patchSize, 513, new ImageTileLoader(assetManager, new Namer() { public String getName(int x, int y) { //return "Scenes/TerrainMountains/terrain_" + x + "_" + y + ".png"; System.out.println("X = " + x + ", Y = " + y); return "Textures/heightmap.png"; } })); These are my sources: jMonkeyEngine 3 Tutorial (10) - Hello Terrain TerrainGridTest.java ImageTileLoader This is the result when i use TerrainQuad: , My full code: // Sample 10 - How to create fast-rendering terrains from heightmaps, and how to // use texture splatting to make the terrain look good. public class HelloTerrain extends SimpleApplication { private TerrainQuad terrain; Material mat_terrain; private float grassScale = 64; private float dirtScale = 32; private float rockScale = 64; public static void main(String[] args) { HelloTerrain app = new HelloTerrain(); app.start(); } private FractalSum base; private PerturbFilter perturb; private OptimizedErode therm; private SmoothFilter smooth; private IterativeFilter iterate; @Override public void simpleInitApp() { flyCam.setMoveSpeed(200); initMaterial(); AbstractHeightMap heightmap = null; Texture heightMapImage = assetManager.loadTexture("Textures/heightmap.png"); heightmap = new ImageBasedHeightMap(heightMapImage.getImage()); heightmap.load(); int patchSize = 65; //terrain = new TerrainQuad("my terrain", patchSize, 513, heightmap.getHeightMap()); // * This Works but below doesnt work* terrain = new TerrainGrid("terrain", patchSize, 513, new ImageTileLoader(assetManager, new Namer() { public String getName(int x, int y) { //return "Scenes/TerrainMountains/terrain_" + x + "_" + y + ".png"; System.out.println("X = " + x + ", Y = " + y); return "Textures/heightmap.png"; // set to return the sme hieghtmap image. } })); terrain.setMaterial(mat_terrain); terrain.setLocalTranslation(0,-100, 0); terrain.setLocalScale(2f, 1f, 2f); rootNode.attachChild(terrain); TerrainLodControl control = new TerrainLodControl(terrain, getCamera()); terrain.addControl(control); } public void initMaterial() { // TERRAIN TEXTURE material this.mat_terrain = new Material(this.assetManager, "Common/MatDefs/Terrain/HeightBasedTerrain.j3md"); // GRASS texture Texture grass = this.assetManager.loadTexture("Textures/white.png"); grass.setWrap(WrapMode.Repeat); this.mat_terrain.setTexture("region1ColorMap", grass); this.mat_terrain.setVector3("region1", new Vector3f(-10, 0, this.grassScale)); // DIRT texture Texture dirt = this.assetManager.loadTexture("Textures/white.png"); dirt.setWrap(WrapMode.Repeat); this.mat_terrain.setTexture("region2ColorMap", dirt); this.mat_terrain.setVector3("region2", new Vector3f(0, 900, this.dirtScale)); Texture building = this.assetManager.loadTexture("Textures/building.png"); building.setWrap(WrapMode.Repeat); this.mat_terrain.setTexture("slopeColorMap", building); this.mat_terrain.setFloat("slopeTileFactor", 32); this.mat_terrain.setFloat("terrainSize", 513); } }

    Read the article

  • HPET for x86 BSP (how to build it for WCE8)

    - by Werner Willemsens
    Originally posted on: http://geekswithblogs.net/WernerWillemsens/archive/2014/08/02/157895.aspx"I needed a timer". That is how we started a few blogs ago our series about APIC and ACPI. Well, here it is. HPET (High Precision Event Timer) was introduced by Intel in early 2000 to: Replace old style Intel 8253 (1981!) and 8254 timers Support more accurate timers that could be used for multimedia purposes. Hence Microsoft and Intel sometimes refers to HPET as Multimedia timers. An HPET chip consists of a 64-bit up-counter (main counter) counting at a frequency of at least 10 MHz, and a set of (at least three, up to 256) comparators. These comparators are 32- or 64-bit wide. The HPET is discoverable via ACPI. The HPET circuit in recent Intel platforms is integrated into the SouthBridge chip (e.g. 82801) All HPET timers should support one-shot interrupt programming, while optionally they can support periodic interrupts. In most Intel SouthBridges I worked with, there are three HPET timers. TIMER0 supports both one-shot and periodic mode, while TIMER1 and TIMER2 are one-shot only. Each HPET timer can generate interrupts, both in old-style PIC mode and in APIC mode. However in PIC mode, interrupts cannot freely be chosen. Typically IRQ11 is available and cannot be shared with any other interrupt! Which makes the HPET in PIC mode virtually unusable. In APIC mode however more IRQs are available and can be shared with other interrupt generating devices. (Check the datasheet of your SouthBridge) Because of this higher level of freedom, I created the APIC BSP (see previous posts). The HPET driver code that I present you here uses this APIC mode. Hpet.reg [HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Hpet] "Dll"="Hpet.dll" "Prefix"="HPT" "Order"=dword:10 "IsrDll"="giisr.dll" "IsrHandler"="ISRHandler" "Priority256"=dword:50 Because HPET does not reside on the PCI bus, but can be found through ACPI as a memory mapped device, you don't need to specify the "Class", "SubClass", "ProgIF" and other PCI related registry keys that you typically find for PCI devices. If a driver needs to run its internal thread(s) at a certain priority level, by convention in Windows CE you add the "Priority256" registry key. Through this key you can easily play with the driver's thread priority for better response and timer accuracy. See later. Hpet.cpp (Hpet.dll) This cpp file contains the complete HPET driver code. The file is part of a folder that you typically integrate in your BSP (\src\drivers\Hpet). It is written as sample (example) code, you most likely want to change this code to your specific needs. There are two sets of #define's that I use to control how the driver works. _TRIGGER_EVENT or _TRIGGER_SEMAPHORE: _TRIGGER_EVENT will let your driver trigger a Windows CE Event when the timer expires, _TRIGGER_SEMAPHORE will trigger a Windows CE counting Semaphore. The latter guarantees that no events get lost in case your application cannot always process the triggers fast enough. _TIMER0 or _TIMER2: both timers will trigger an event or semaphore periodically. _TIMER0 will use a periodic HPET timer interrupt, while _TIMER2 will reprogram a one-shot HPET timer after each interrupt. The one-shot approach is interesting if the frequency you wish to generate is not an even multiple of the HPET main counter frequency. The sample code uses an algorithm to generate a more correct frequency over a longer period (by reducing rounding errors). _TIMER1 is not used in the sample source code. HPT_Init() will locate the HPET I/O memory space, setup the HPET counter (_TIMER0 or _TIMER2) and install the Interrupt Service Thread (IST). Upon timer expiration, the IST will run and on its turn will generate a Windows CE Event or Semaphore. In case of _TIMER2 a new one-shot comparator value is calculated and set for the timer. The IRQ of the HPET timers are programmed to IRQ22, but you can choose typically from 20-23. The TIMERn_INT_ROUT_CAP bits in the TIMn_CONF register will tell you what IRQs you can choose from. HPT_IOControl() can be used to set a new HPET counter frequency (actually you configure the counter timeout value in microseconds), start and stop the timer, and request the current HPET counter value. The latter is interesting because the Windows CE QueryPerformanceCounter() and QueryPerformanceFrequency() APIs implement the same functionality, albeit based on other counter implementations. HpetDrvIst() contains the IST code. DWORD WINAPI HpetDrvIst(LPVOID lpArg) { psHpetDeviceContext pHwContext = (psHpetDeviceContext)lpArg; DWORD mainCount = READDWORD(pHwContext->g_hpet_va, GenCapIDReg + 4); // Main Counter Tick period (fempto sec 10E-15) DWORD i = 0; while (1) { WaitForSingleObject(pHwContext->g_isrEvent, INFINITE); #if defined(_TRIGGER_SEMAPHORE) LONG p = 0; BOOL b = ReleaseSemaphore(pHwContext->g_triggerEvent, 1, &p); #elif defined(_TRIGGER_EVENT) BOOL b = SetEvent(pHwContext->g_triggerEvent); #else #pragma error("Unknown TRIGGER") #endif #if defined(_TIMER0) DWORD currentCount = READDWORD(pHwContext->g_hpet_va, MainCounterReg); DWORD comparator = READDWORD(pHwContext->g_hpet_va, Tim0_ComparatorReg + 0); SETBIT(pHwContext->g_hpet_va, GenIntStaReg, 0); // clear interrupt on HPET level InterruptDone(pHwContext->g_sysIntr); // clear interrupt on OS level _LOGMSG(ZONE_INTERRUPT, (L"%s: HpetDrvIst 0 %06d %08X %08X", pHwContext->g_id, i++, currentCount, comparator)); #elif defined(_TIMER2) DWORD currentCount = READDWORD(pHwContext->g_hpet_va, MainCounterReg); DWORD previousComparator = READDWORD(pHwContext->g_hpet_va, Tim2_ComparatorReg + 0); pHwContext->g_counter2.QuadPart += pHwContext->g_comparator.QuadPart; // increment virtual counter (higher accuracy) DWORD comparator = (DWORD)(pHwContext->g_counter2.QuadPart >> 8); // "round" to real value WRITEDWORD(pHwContext->g_hpet_va, Tim2_ComparatorReg + 0, comparator); SETBIT(pHwContext->g_hpet_va, GenIntStaReg, 2); // clear interrupt on HPET level InterruptDone(pHwContext->g_sysIntr); // clear interrupt on OS level _LOGMSG(ZONE_INTERRUPT, (L"%s: HpetDrvIst 2 %06d %08X %08X (%08X)", pHwContext->g_id, i++, currentCount, comparator, comparator - previousComparator)); #else #pragma error("Unknown TIMER") #endif } return 1; } The following figure shows how the HPET hardware interrupt via ISR -> IST is translated in a Windows CE Event or Semaphore by the HPET driver. The Event or Semaphore can be used to trigger a Windows CE application. HpetTest.cpp (HpetTest.exe)This cpp file contains sample source how to use the HPET driver from an application. The file is part of a separate (smart device) VS2013 solution. It contains code to measure the generated Event/Semaphore times by means of GetSystemTime() and QueryPerformanceCounter() and QueryPerformanceFrequency() APIs. HPET evaluation If you scan the internet about HPET, you'll find many remarks about buggy HPET implementations and bad performance. Unfortunately that is true. I tested the HPET driver on an Intel ICH7M SBC (release date 2008). When a HPET timer expires on the ICH7M, an interrupt indeed is generated, but right after you clear the interrupt, a few more unwanted interrupts (too soon!) occur as well. I tested and debugged it for a loooong time, but I couldn't get it to work. I concluded ICH7M's HPET is buggy Intel hardware. I tested the HPET driver successfully on a more recent NM10 SBC (release date 2013). With the NM10 chipset however, I am not fully convinced about the timer's frequency accuracy. In the long run - on average - all is fine, but occasionally I experienced upto 20 microseconds delays (which were immediately compensated on the next interrupt). Of course, this was all measured by software, but I still experienced the occasional delay when both the HPET driver IST thread as the application thread ran at CeSetThreadPriority(1). If it is not the hardware, only the kernel can cause this delay. But Windows CE is an RTOS and I have never experienced such long delays with previous versions of Windows CE. I tested and developed this on WCE8, I am not heavily experienced with it yet. Internet forum threads however mention inaccurate HPET timer implementations as well. At this moment I haven't figured out what is going on here. Useful references: http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf http://en.wikipedia.org/wiki/High_Precision_Event_Timer http://wiki.osdev.org/HPET Windows CE BSP source file package for HPET in MyBsp Note that this source code is "As Is". It is still under development and I cannot (and never will) guarantee the correctness of the code. Use it as a guide for your own HPET integration.

    Read the article

  • How to mix textures in DirectX?

    - by tobsen
    I am new to DirectX development and I am wondering if I am taking the wrong route to achieve the following: I would like to mix three textures which contain transparent areas and some solid areas (Red, Blue, Green). The three textures should blend like shown in this example: How can I achieve that in DirectX (preferably in directx9)? A link or example code would be nice. Update: My rendering method looks like this and I still think I am doing it wrong, because the sprite only shows the last texture (nothing is rendered transparent or blended): void D3DTester::render() { d3ddevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0); d3ddevice->BeginScene(); d3ddevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE); d3ddevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE); d3ddevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); LPD3DXSPRITE sprite=NULL; HRESULT hres = D3DXCreateSprite(d3ddevice, &sprite); if(hres != S_OK) { throw std::exception(); } sprite->Begin(D3DXSPRITE_ALPHABLEND); std::vector<LPDIRECT3DTEXTURE9>::iterator it; for ( it=textures.begin() ; it < textures.end(); it++ ) { sprite->Draw(*it, NULL, NULL, NULL, 0xFFFFFFFF); } sprite->End(); d3ddevice->EndScene(); d3ddevice->Present(NULL, NULL, NULL, NULL); } The resulting image looks like this: But I need it to look like this instead: Update2: I figured out that I have to SetRenderState after I use sprite->Begin(D3DXSPRITE_ALPHABLEND); thanks to the hint by Josh Petrie. However, by using this: sprite->Begin(D3DXSPRITE_ALPHABLEND); d3ddevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE); d3ddevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE); d3ddevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); std::vector<LPDIRECT3DTEXTURE9>::iterator it; for ( it=textures.begin() ; it < textures.end(); it++ ) { sprite->Draw(*it, NULL, NULL, NULL, 0xFFFFFFFF); } sprite->End(); The sprites colors are becoming transparent towards the background scene e.g.: if I use d3ddevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,100,21), 1.0f, 0); the result looks like: Is there any way to avoid that? I would like the sprites be transparent to each other but to be still solid to the background. Update3: After having sombody explained to me, how to do what @LaurentCouvidou and @JoshPetrie suggested, I have a working solution and therfore accept the answer: d3ddevice->BeginScene(); D3DCOLOR white = D3DCOLOR_RGBA((UINT)255, (UINT)255, (UINT)255, 255); D3DCOLOR black = D3DCOLOR_RGBA((UINT)0, (UINT)0, (UINT)0, 255); sprite->Begin(D3DXSPRITE_ALPHABLEND); sprite->Draw(pTextureRed, NULL, NULL, NULL, black); sprite->Draw(pTextureGreen, NULL, NULL, NULL, black); sprite->Draw(pTextureBlue, NULL, NULL, NULL, black); sprite->End(); sprite->Begin(D3DXSPRITE_ALPHABLEND); d3ddevice->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE); d3ddevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_ADD); d3ddevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE); d3ddevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE); sprite->Draw(pTextureRed, NULL, NULL, NULL, white); sprite->Draw(pTextureGreen, NULL, NULL, NULL, white); sprite->Draw(pTextureBlue, NULL, NULL, NULL, white); sprite->End(); d3ddevice->EndScene(); d3ddevice->Present(NULL, NULL, NULL, NULL);

    Read the article

  • Help me get my 3D camera to look like the ones in RTS

    - by rFactor
    I am a newbie in 3D game development and I am trying to make a real-time strategy game. I am struggling with the camera currently as I am unable to make it look like they do in RTS games. Here is my Camera.cs class using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Input; namespace BB { public class Camera : Microsoft.Xna.Framework.GameComponent { public Matrix view; public Matrix projection; protected Game game; KeyboardState currentKeyboardState; Vector3 cameraPosition = new Vector3(600.0f, 0.0f, 600.0f); Vector3 cameraForward = new Vector3(0, -0.4472136f, -0.8944272f); BoundingFrustum cameraFrustum = new BoundingFrustum(Matrix.Identity); // Light direction Vector3 lightDir = new Vector3(-0.3333333f, 0.6666667f, 0.6666667f); public Camera(Game game) : base(game) { this.game = game; } public override void Initialize() { this.view = Matrix.CreateLookAt(this.cameraPosition, this.cameraPosition + this.cameraForward, Vector3.Up); this.projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, this.game.renderer.aspectRatio, 1, 10000); base.Initialize(); } /* Handles the user input * @ param GameTime gameTime */ private void HandleInput(GameTime gameTime) { float time = (float)gameTime.ElapsedGameTime.TotalMilliseconds; currentKeyboardState = Keyboard.GetState(); } void UpdateCamera(GameTime gameTime) { float time = (float)gameTime.ElapsedGameTime.TotalMilliseconds; // Check for input to rotate the camera. float pitch = 0.0f; float turn = 0.0f; if (currentKeyboardState.IsKeyDown(Keys.Up)) pitch += time * 0.001f; if (currentKeyboardState.IsKeyDown(Keys.Down)) pitch -= time * 0.001f; if (currentKeyboardState.IsKeyDown(Keys.Left)) turn += time * 0.001f; if (currentKeyboardState.IsKeyDown(Keys.Right)) turn -= time * 0.001f; Vector3 cameraRight = Vector3.Cross(Vector3.Up, cameraForward); Vector3 flatFront = Vector3.Cross(cameraRight, Vector3.Up); Matrix pitchMatrix = Matrix.CreateFromAxisAngle(cameraRight, pitch); Matrix turnMatrix = Matrix.CreateFromAxisAngle(Vector3.Up, turn); Vector3 tiltedFront = Vector3.TransformNormal(cameraForward, pitchMatrix * turnMatrix); // Check angle so we cant flip over if (Vector3.Dot(tiltedFront, flatFront) > 0.001f) { cameraForward = Vector3.Normalize(tiltedFront); } // Check for input to move the camera around. if (currentKeyboardState.IsKeyDown(Keys.W)) cameraPosition += cameraForward * time * 0.4f; if (currentKeyboardState.IsKeyDown(Keys.S)) cameraPosition -= cameraForward * time * 0.4f; if (currentKeyboardState.IsKeyDown(Keys.A)) cameraPosition += cameraRight * time * 0.4f; if (currentKeyboardState.IsKeyDown(Keys.D)) cameraPosition -= cameraRight * time * 0.4f; if (currentKeyboardState.IsKeyDown(Keys.R)) { cameraPosition = new Vector3(0, 50, 50); cameraForward = new Vector3(0, 0, -1); } cameraForward.Normalize(); // Create the new view matrix view = Matrix.CreateLookAt(cameraPosition, cameraPosition + cameraForward, Vector3.Up); // Set the new frustum value cameraFrustum.Matrix = view * projection; } public override void Update(Microsoft.Xna.Framework.GameTime gameTime) { HandleInput(gameTime); UpdateCamera(gameTime); } } } The problem is that the initial view is looking in a horizontal direction. I would like to have an RTS like top down view (but with a slight pitch). Can you help me out?

    Read the article

  • Abstracting entity caching in XNA

    - by Grofit
    I am in a situation where I am writing a framework in XNA and there will be quite a lot of static (ish) content which wont render that often. Now I am trying to take the same sort of approach I would use when doing non game development, where I don't even think about caching until I have finished my application and realise there is a performance problem and then implement a layer of caching over whatever needs it, but wrap it up so nothing is aware its happening. However in XNA the way we would usually cache would be drawing our objects to a texture and invalidating after a change occurs. So if you assume an interface like so: public interface IGameComponent { void Update(TimeSpan elapsedTime); void Render(GraphicsDevice graphicsDevice); } public class ContainerComponent : IGameComponent { public IList<IGameComponent> ChildComponents { get; private set; } // Assume constructor public void Update(TimeSpan elapsedTime) { // Update anything that needs it } public void Render(GraphicsDevice graphicsDevice) { foreach(var component in ChildComponents) { // draw every component } } } Then I was under the assumption that we just draw everything directly to the screen, then when performance becomes an issue we just add a new implementation of the above like so: public class CacheableContainerComponent : IGameComponent { private Texture2D cachedOutput; private bool hasChanged; public IList<IGameComponent> ChildComponents { get; private set; } // Assume constructor public void Update(TimeSpan elapsedTime) { // Update anything that needs it // set hasChanged to true if required } public void Render(GraphicsDevice graphicsDevice) { if(hasChanged) { CacheComponents(graphicsDevice); } // Draw cached output } private void CacheComponents(GraphicsDevice graphicsDevice) { // Clean up existing cache if needed var cachedOutput = new RenderTarget2D(...); graphicsDevice.SetRenderTarget(renderTarget); foreach(var component in ChildComponents) { // draw every component } graphicsDevice.SetRenderTarget(null); } } Now in this example you could inherit, but your Update may become a bit tricky then without changing your base class to alert you if you had changed, but it is up to each scenario to choose if its inheritance/implementation or composition. Also the above implementation will re-cache within the rendering cycle, which may cause performance stutters but its just an example of the scenario... Ignoring those facts as you can see that in this example you could use a cache-able component or a non cache-able one, the rest of the framework needs not know. The problem here is that if lets say this component is drawn mid way through the game rendering, other items will already be within the default drawing buffer, so me doing this would discard them, unless I set it to be persisted, which I hear is a big no no on the Xbox. So is there a way to have my cake and eat it here? One simple solution to this is make an ICacheable interface which exposes a cache method, but then to make any use of this interface you would need the rest of the framework to be cache aware, and check if it can cache, and to then do so. Which then means you are polluting and changing your main implementations to account for and deal with this cache... I am also employing Dependency Injection for alot of high level components so these new cache-able objects would be spat out from that, meaning no where in the actual game would they know they are caching... if that makes sense. Just incase anyone asked how I expected to keep it cache aware when I would need to new up a cachable entity.

    Read the article

  • How would I handle input with a Game Component?

    - by Aufziehvogel
    I am currently having problems from finding my way into the component-oriented XNA design. I read an overview over the general design pattern and googled a lot of XNA examples. However, they seem to be right on the opposite site. In the general design pattern, an object (my current player) is passed to InputComponent::update(Player). This means the class will know what to do and how this will affect the game (e.g. move person vs. scroll text in a menu). Yet, in XNA GameComponent::update(GameTime) is called automatically without a reference to the current player. The only XNA examples I found built some sort of higher-level Keyboard engine into the game component like this: class InputComponent: GameComponent { public void keyReleased(Keys); public void keyPressed(Keys); public bool keyDown(Keys); public void override update(GameTime gameTime) { // compare previous state with current state and // determine if released, pressed, down or nothing } } Some others went a bit further making it possible to use a Service Locator by a design like this: interface IInputComponent { public void downwardsMovement(Keys); public void upwardsMovement(Keys); public bool pausedGame(Keys); // determine which keys pressed and what that means // can be done for different inputs in different implementations public void override update(GameTime); } Yet, then I am wondering if it is possible to design an input class to resolve all possible situations. Like in a menu a mouse click can mean "click that button", but in game play it can mean "shoot that weapon". So if I am using such a modular design with game components for input, how much logic is to be put into the InputComponent / KeyboardComponent / GamepadComponent and where is the rest handled? What I had in mind, when I heard about Game Components and Service Locator in XNA was something like this: use Game Components to run the InputHandler automatically in the loop use Service Locator to be able to switch input at runtime (i.e. let player choose if he wants to use a gamepad or a keyboard; or which shall be player 1 and which player 2). However, now I cannot see how this can be done. First code example does not seem flexible enough, as on a game pad you could require some combination of buttons for something that is possible on keyboard with only one button or with the mouse) The second code example seems really hard to implement, because the InputComponent has to know in which context we are currently. Moreover, you could imagine your application to be multi-layered and let the key-stroke go through all layers to the bottom-layer which requires a different behaviour than the InputComponent would have guessed from the top-layer. The general design pattern with passing the Player to update() does not have a representation in XNA and I also cannot see how and where to decide which class should be passed to update(). At most time of course the player, but sometimes there could be menu items you have to or can click I see that the question in general is already dealt with here, but probably from a more elobate point-of-view. At least, I am not smart enough in game development to understand it. I am searching for a rather code-based example directly for XNA. And the answer there leaves (a noob like) me still alone in how the object that should receive the detected event is chosen. Like if I have a key-up event, should it go to the text box or to the player?

    Read the article

  • Detect multitouch (two fingers touch) on a sprite to apply pinch zoom behaviour

    - by Tahreem
    I am using andengine, want to move, zoom and rotate multiple sprites individually on a scene. I have achieved "move" but for pinch zoom i am unable to get the event to two fingers' touch. Below is the code: public class Main extends SimpleBaseGameActivity { private Camera camera; private BitmapTextureAtlas mBitmapTextureAtlas; private ITextureRegion mFaceTextureRegion; private ITextureRegion mFaceTextureRegion2; Sprite face2; private static final int CAMERA_WIDTH = 800; private static final int CAMERA_HEIGHT = 480; @Override public EngineOptions onCreateEngineOptions() { camera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT); EngineOptions engineOptions = new EngineOptions(true, ScreenOrientation.LANDSCAPE_FIXED, new RatioResolutionPolicy( CAMERA_WIDTH, CAMERA_HEIGHT), camera); return engineOptions; } @Override protected void onCreateResources() { BitmapTextureAtlasTextureRegionFactory.setAssetBasePath("gfx/"); this.mBitmapTextureAtlas = new BitmapTextureAtlas( this.getTextureManager(), 1024, 1600, TextureOptions.NEAREST); BitmapTextureAtlasTextureRegionFactory.createTiledFromAsset(this.mBitmapTextureAtlas, // this, "ui_ball_1.png", 0, 0, 1, 1), // this.getVertexBufferObjectManager()); this.mFaceTextureRegion = BitmapTextureAtlasTextureRegionFactory .createFromAsset(this.mBitmapTextureAtlas, this, "ui_ball_1.png", 0, 0); this.mFaceTextureRegion2 = BitmapTextureAtlasTextureRegionFactory .createFromAsset(this.mBitmapTextureAtlas, this, "ui_ball_1.png", 0, 0); this.mBitmapTextureAtlas.load(); this.mEngine.getTextureManager().loadTexture(this.mBitmapTextureAtlas); } @Override protected Scene onCreateScene() { this.mEngine.registerUpdateHandler(new FPSLogger()); final Scene scene = new Scene(); scene.setBackground(new Background(0.09804f, 0.6274f, 0.8784f)); final float centerX = (CAMERA_WIDTH - this.mFaceTextureRegion .getWidth()) / 2; final float centerY = (CAMERA_HEIGHT - this.mFaceTextureRegion .getHeight()) / 2; final Sprite face = new Sprite(centerX, centerY, this.mFaceTextureRegion, this.getVertexBufferObjectManager()) { @Override public boolean onAreaTouched(final TouchEvent pSceneTouchEvent, final float pTouchAreaLocalX, final float pTouchAreaLocalY) { this.setPosition(pSceneTouchEvent.getX() - this.getWidth() / 2, pSceneTouchEvent.getY() - this.getHeight() / 2); return true; } }; face.setScale(2); scene.attachChild(face); scene.registerTouchArea(face); face2 = new Sprite(200, 200, this.mFaceTextureRegion2, this.getVertexBufferObjectManager()) { @Override public boolean onAreaTouched(final TouchEvent pSceneTouchEvent, final float pTouchAreaLocalX, final float pTouchAreaLocalY) { switch(pSceneTouchEvent.getAction()){ case TouchEvent.ACTION_DOWN: int count = pSceneTouchEvent.getMotionEvent().getPointerCount() ; for(int i= 0; i <count; i++) { int id = pSceneTouchEvent.getMotionEvent().getPointerId(i); } break; case TouchEvent.ACTION_MOVE: this.setPosition(pSceneTouchEvent.getX() -this.getWidth() / 2, pSceneTouchEvent.getY()-this.getHeight() / 2); break; case TouchEvent.ACTION_UP: break; } return true; } }; face2.setScale(2); scene.attachChild(face2); scene.registerTouchArea(face2); scene.setTouchAreaBindingOnActionDownEnabled(true); return scene; } } This line int count = pSceneTouchEvent.getMotionEvent().getPointerCount() ; should set 2 to the count variable if i touch the sprite with to fingers, then i can apply zooming functionality (setScale method) on the sprite by getting the distance between the coordinates of two fingers. Can anyone help me? why it does not detect two fingers? and without this how can i zoom the sprite on pinch of two fingers? I am very new to game development, any help would be appreciated. Thanks in advance.

    Read the article

  • Inside the DLR – Invoking methods

    - by Simon Cooper
    So, we’ve looked at how a dynamic call is represented in a compiled assembly, and how the dynamic lookup is performed at runtime. The last piece of the puzzle is how the resolved method gets invoked, and that is the subject of this post. Invoking methods As discussed in my previous posts, doing a full lookup and bind at runtime each and every single time the callsite gets invoked would be far too slow to be usable. The results obtained from the callsite binder must to be cached, along with a series of conditions to determine whether the cached result can be reused. So, firstly, how are the conditions represented? These conditions can be anything; they are determined entirely by the semantics of the language the binder is representing. The binder has to be able to return arbitary code that is then executed to determine whether the conditions apply or not. Fortunately, .NET 4 has a neat way of representing arbitary code that can be easily combined with other code – expression trees. All the callsite binder has to return is an expression (called a ‘restriction’) that evaluates to a boolean, returning true when the restriction passes (indicating the corresponding method invocation can be used) and false when it does’t. If the bind result is also represented in an expression tree, these can be combined easily like so: if ([restriction is true]) { [invoke cached method] } Take my example from my previous post: public class ClassA { public static void TestDynamic() { CallDynamic(new ClassA(), 10); CallDynamic(new ClassA(), "foo"); } public static void CallDynamic(dynamic d, object o) { d.Method(o); } public void Method(int i) {} public void Method(string s) {} } When the Method(int) method is first bound, along with an expression representing the result of the bind lookup, the C# binder will return the restrictions under which that bind can be reused. In this case, it can be reused if the types of the parameters are the same: if (thisArg.GetType() == typeof(ClassA) && arg1.GetType() == typeof(int)) { thisClassA.Method(i); } Caching callsite results So, now, it’s up to the callsite to link these expressions returned from the binder together in such a way that it can determine which one from the many it has cached it should use. This caching logic is all located in the System.Dynamic.UpdateDelegates class. It’ll help if you’ve got this type open in a decompiler to have a look yourself. For each callsite, there are 3 layers of caching involved: The last method invoked on the callsite. All methods that have ever been invoked on the callsite. All methods that have ever been invoked on any callsite of the same type. We’ll cover each of these layers in order Level 1 cache: the last method called on the callsite When a CallSite<T> object is first instantiated, the Target delegate field (containing the delegate that is called when the callsite is invoked) is set to one of the UpdateAndExecute generic methods in UpdateDelegates, corresponding to the number of parameters to the callsite, and the existance of any return value. These methods contain most of the caching, invoke, and binding logic for the callsite. The first time this method is invoked, the UpdateAndExecute method finds there aren’t any entries in the caches to reuse, and invokes the binder to resolve a new method. Once the callsite has the result from the binder, along with any restrictions, it stitches some extra expressions in, and replaces the Target field in the callsite with a compiled expression tree similar to this (in this example I’m assuming there’s no return value): if ([restriction is true]) { [invoke cached method] return; } if (callSite._match) { _match = false; return; } else { UpdateAndExecute(callSite, arg0, arg1, ...); } Woah. What’s going on here? Well, this resulting expression tree is actually the first level of caching. The Target field in the callsite, which contains the delegate to call when the callsite is invoked, is set to the above code compiled from the expression tree into IL, and then into native code by the JIT. This code checks whether the restrictions of the last method that was invoked on the callsite (the ‘primary’ method) match, and if so, executes that method straight away. This means that, the next time the callsite is invoked, the first code that executes is the restriction check, executing as native code! This makes this restriction check on the primary cached delegate very fast. But what if the restrictions don’t match? In that case, the second part of the stitched expression tree is executed. What this section should be doing is calling back into the UpdateAndExecute method again to resolve a new method. But it’s slightly more complicated than that. To understand why, we need to understand the second and third level caches. Level 2 cache: all methods that have ever been invoked on the callsite When a binder has returned the result of a lookup, as well as updating the Target field with a compiled expression tree, stitched together as above, the callsite puts the same compiled expression tree in an internal list of delegates, called the rules list. This list acts as the level 2 cache. Why use the same delegate? Stitching together expression trees is an expensive operation. You don’t want to do it every time the callsite is invoked. Ideally, you would create one expression tree from the binder’s result, compile it, and then use the resulting delegate everywhere in the callsite. But, if the same delegate is used to invoke the callsite in the first place, and in the caches, that means each delegate needs two modes of operation. An ‘invoke’ mode, for when the delegate is set as the value of the Target field, and a ‘match’ mode, used when UpdateAndExecute is searching for a method in the callsite’s cache. Only in the invoke mode would the delegate call back into UpdateAndExecute. In match mode, it would simply return without doing anything. This mode is controlled by the _match field in CallSite<T>. The first time the callsite is invoked, _match is false, and so the Target delegate is called in invoke mode. Then, if the initial restriction check fails, the Target delegate calls back into UpdateAndExecute. This method sets _match to true, then calls all the cached delegates in the rules list in match mode to try and find one that passes its restrictions, and invokes it. However, there needs to be some way for each cached delegate to inform UpdateAndExecute whether it passed its restrictions or not. To do this, as you can see above, it simply re-uses _match, and sets it to false if it did not pass the restrictions. This allows the code within each UpdateAndExecute method to check for cache matches like so: foreach (T cachedDelegate in Rules) { callSite._match = true; cachedDelegate(); // sets _match to false if restrictions do not pass if (callSite._match) { // passed restrictions, and the cached method was invoked // set this delegate as the primary target to invoke next time callSite.Target = cachedDelegate; return; } // no luck, try the next one... } Level 3 cache: all methods that have ever been invoked on any callsite with the same signature The reason for this cache should be clear – if a method has been invoked through a callsite in one place, then it is likely to be invoked on other callsites in the codebase with the same signature. Rather than living in the callsite, the ‘global’ cache for callsite delegates lives in the CallSiteBinder class, in the Cache field. This is a dictionary, typed on the callsite delegate signature, providing a RuleCache<T> instance for each delegate signature. This is accessed in the same way as the level 2 callsite cache, by the UpdateAndExecute methods. When a method is matched in the global cache, it is copied into the callsite and Target cache before being executed. Putting it all together So, how does this all fit together? Like so (I’ve omitted some implementation & performance details): That, in essence, is how the DLR performs its dynamic calls nearly as fast as statically compiled IL code. Extensive use of expression trees, compiled to IL and then into native code. Multiple levels of caching, the first of which executes immediately when the dynamic callsite is invoked. And a clever re-use of compiled expression trees that can be used in completely different contexts without being recompiled. All in all, a very fast and very clever reflection caching mechanism.

    Read the article

  • My 2D collision code does not work as expected. How do I fix it?

    - by farmdve
    I have a simple 2D game with a tile-based map. I am new to game development, I followed the LazyFoo tutorials on SDL. The tiles are in a bmp file, but each tile inside it corresponds to an internal number of the type of tile(color, or wall). The game is simple, but the code is a lot so I can only post snippets. // Player moved out of the map if((player.box.x < 0)) player.box.x += GetVelocity(player, 0); if((player.box.y < 0)) player.box.y += GetVelocity(player, 1); if((player.box.x > (LEVEL_WIDTH - DOT_WIDTH))) player.box.x -= GetVelocity(player, 0); if((player.box.y > (LEVEL_HEIGHT - DOT_HEIGHT))) player.box.y -= GetVelocity(player, 1); // Now that we are here, we check for collisions if(touches_wall(player.box)) { if(player.box.x < player.prev_x) { player.box.x += GetVelocity(player, 0); } if(player.box.x > player.prev_x) { player.box.x -= GetVelocity(player, 0); } if(player.box.y < player.prev_y) { player.box.y += GetVelocity(player, 1); } if(player.box.y > player.prev_y) { player.box.y -= GetVelocity(player, 1); } } player.prev_x = player.box.x; player.prev_y = player.box.y; Let me explain, player is a structure with the following contents typedef struct { Rectangle box; //Player position on a map(tile or whatever). int prev_x, prev_y; // Previous positions int key_press[3]; // Stores which key was pressed/released. Limited to three keys. E.g Left,right and perhaps jump if possible in 2D int velX, velY; // Velocity for X and Y coordinate. //Health int health; bool main_character; uint32_t jump_ticks; } Player; And Rectangle is just a typedef of SDL_Rect. GetVelocity is a function that according to the second argument, returns the velocity for the X or Y axis. This code I have basically works, however inside the if(touches_wall(player.box)) if statement, I have 4 more. These 4 if statements are responsible for detecting collision on all 4 sides(up,down,left,right). However, they also act as a block for any other movement. Example: I move down the object and collide with the wall, as I continue to move down and still collide with the wall, I wish to move left or right, which is indeed possible(not to mention in 3D games), but remember the 4 if statements? They are preventing me from moving anywhere. The original code on the LazyFoo Productions website has no problems, but it was written in C++, so I had to rewrite most of it to work, which is probably where the problem comes from. I also use a different method of moving, than the one in the examples. Of course, that was just an example. I wish to be able to move no matter at which wall I collide. Before this bit of code, I had another one that had more logic in there, but it was flawed.

    Read the article

  • Best approach to depth streaming via existing codec

    - by Kevin
    I'm working on a development system (and game) intended for games set mostly in static third-person views. We produce our scenery by CG and photographic techniques. Our background art is rendered off-line by a production-grade renderer. To allow the runtime imagery to properly interact with the background art, I wrote a program to convert from depth output by Mental Ray into a texture, and a pixel shader to draw a quad such that the Z data comes from the texture. This technique is working out very well, but now we've decided that some of the camera angle changes between scenes should be animated. The animation itself is straightforward to produce from our CG models. We intend to encode it to some HD video codec such as H.264. The problem is that in order to maintain our runtime imagery on the screen, the depth buffer will need to be loaded for each video frame. Due to the bandwidth, the video's depth data will need to be compressed efficiently. I've looked into methods for performing temporal compression of depth info and found an interesting research paper here: http://web4.cs.ucl.ac.uk/staff/j.kautz/publications/depth-streaming.pdf The method establishes a mapping between 16-bit depth values and YCbCr values. The mapping is tuned to the properties of existing video codecs in order to maximize precision of the decoded depths after the YCbCr has undergone video compression. It allows an existing, unmodified video codec to be used on the backend. I'm looking at how to pull this off with the least possible work. (This design change was unplanned.) Our game engine itself is native C++, presently for Win32 and DirectX, although we've worked hard to keep platform dependence segregated because we intend other ports. We don't have motion video facilities in the engine yet but will ultimately need that anyway for cinematics. I was planning on using some off-the-shelf motion video solution we can plug into our engine, and haven't chosen one yet. This new added requirement makes selecting one harder since, among other things, we'll now need to bypass colourspace conversion on one of the streams, and also will need to be playing two streams simultaneously in lockstep, on top of in some cases audio on one of them (for the cinematics). I'm also wondering if it's possible (or even useful) to do the conversion from YCbCr to depth in a pixel shader, or if it's better to just do it in CPU and separately load the resulting depth values into a locked tex. The conversion unfortunately does involve branching logic per-pixel. (There are more naive mappings that don't need branching, but they produce inferior results.) It could be reduced to a table lookup but the table would be 32MB. Programming is second-nature to me but I'm not that experienced with pix shaders and have zero knowledge of off-the-shelf video solutions. I'd therefore be interested in advice from others who may have dealt more with depth streaming, pixel shaders, and/or off-the-shelf codecs, regarding how feasible the proposed application is and what off-the-shelf video systems out there would best get along with this usage case.

    Read the article

  • Seeking advice on tools and technology for my new game [closed]

    - by k.k. slider
    I'm a C# developer who has been programming a game in my spare time using XNA and Visual Studio. The game's logic is mostly done and I've completed a prototype that has most of the functionality of (what I envision to be) the final game. However, having heard about the uncertain future and (possibly) limited audience for XNA games, I'm looking to switch platforms... but I don't know what technology would best suit my needs. Below are some specifics about my game and what exactly I'm looking for, if you're interested: The game is a 2D turn-based tactical RPG (strategy game) for two players. It is a basic sprite and tile based game with animations and sound. 3D capabilities are not necessary. I'd like to allow players to compete with others online, and have a basic ranking/matchmaking system. I will probably need something that can interact with a server and a database (the game is turn-based and has no RNG, so cheating would be easy to detect even if most computation is done client-side and minimal data is sent to the server). Ideally, I would be able to release an early version of the game and have people give feedback as I develop additional features (similar to Minecraft). I'd prefer to have a way to release periodic updates to the game instead of releasing an absolute final product. To reach the widest possible audience, I'd prefer technology that allows me to release on PC, Android, iOS, and (maybe) Mac. This is a game with simple mouse inputs which can fit on a mobile touch screen. The game should be monetizable. If I find success with this game, then I may consider becoming a full-time indie game developer. I have several other game ideas and have learned quite a bit from my first attempt at game development. My first thought was an F2P/microtransaction model, but I'm open to other suggestions. Language isn't a primary concern of mine, since I have a decent amount of experience using several languages to program large projects. I'm willing to spend money (e.g. on a developer's license), but the more expensive it gets, the more hesitant I am to use it. I've looked into the following solutions... there are a LOT of tools out there... if anyone has experience with any of these and would like to recommend/reject any of them, it would be helpful. C#/.NET (XNA/MonoGame/SDL/SlimDX/Xamarin/ExEn/ANX?) HTML5/JS (AppMobi/PhoneGap/Marmalade/FlashCanvas/Cordova/libRocket?) Python (Pyglet/Pygame/Kivy?) Java (JavaFX/libGDX?) Unity/Construct 2/Cocos2D/NME/Corona/other game creation software? I'd like something that can do 2D and isn't limited by being too high-level. Other languages (Lua/LOVE? Moai?) Thanks for answering this rather long and tedious question...

    Read the article

  • Are you cashing in on the MVP complimentary subscriptions ?

    - by Tarun Arora
    The two most asked questions in the Microsoft technology communities around the Microsoft MVP program are, 1. How do I become a Microsoft MVP? 2. What benefits do I get as an MVP? The answer to the first question has been well answered here. In this blog post, I’ll try and answer the second question.           Please find a comprehensive list of Not for Resale personal subscriptions of various products that Microsoft MVP’s are eligible for Product Description Details JetBrains Resharper, dotTrace, dotCover & WebStorm  https://www.jetbrains.com/resharper/buy/mvp.html RedGate Sql server development, database administration, .net development, azure development (merged with Cerebrata), mySQL development, Oracle development http://www.red-gate.com/community/mvp-program Pluralsight Pluralsight on demand training http://blog.pluralsight.com/2011/02/28/pluralsight-for-mvp/ Cerebrata Cloud storage studio and Azure Diagnostic Manager (part of redgate now) https://www.cerebrata.com/Offers/mvp.aspx Telerik Telerik Ultimate collection & Telerik TeamPulse http://blogs.telerik.com/blogs/posts/11-03-01/telerik-gift-for-microsoft-mvps.aspx Developer Express DevEx controls http://www.devexpress.com/Home/Community/mvp.xml InnerWorking 600 hours of .net training catalogue http://www.innerworkings.com/mvp Typemock Typemock Isolator, Typemock Isolator for Sharepoint developers, Typemock Isolator for web developers, TestDriven.NET http://www.typemock.com/mvp SpeakFlow A suite of tools for creating, managing, and delivering non-linear presentations http://www.speakflow.com/ TechSmith Camtasia Studio, SnagIt, screen cast http://www.techsmith.com/camtasia.html Altova Altova XML spy http://www.altova.com/xml-editor/ Visual SVN VisualSVN Subversion integration plug-in for Visual Studio http://www.visualsvn.com/visualsvn/purchase/mvp/ PreEmptive Solution Professional PreEmptive Analytics, Dotfuscator http://www.preemptive.com/landing/mvp Armadillo Armadillo Adaptive Bug Prevention http://www.armadilloverdrive.com/ IS Decisions NFR license to Userlock, RemoteExec, FileAudit & WinReporter http://www.isdecisions.com/download/mvp-mct-program.htm Idera SQL tools http://www.idera.com/Content/Home.aspx West Wind Help Builder Help builder solution http://www.west-wind.com/weblog/posts/2005/Mar/09/Are-you-a-Microsoft-MVP-Get-a-FREE-copy-of-West-Wind-Html-Help-Builder Bamboo Sharepoint tools http://community.bamboosolutions.com/blogs/partner-advantage-program/archive/2008/08/01/partner-advantage-program-mvp.aspx Nitriq Nitriq code analysis http://blog.nitriq.com/FreeLicensesForMicrosoftMVPs.aspx ByteScout Components, Libraries and Developer Tools http://bytescout.com/buy/purchase_nfr_for_mvp.html YourKit Java and .net Profiler http://yourkit.com/.net/profiler/index.jsp Aspose .NET components http://www.aspose.com/corporate/community/2012_05_08_nfr-licenses-for-community-leaders.aspx Apart from google bing fu; stackoverflow and breathtech were a great help in compiling the above list. If you know of any other benefits, offers or complimentary subscriptions on offer for MVPs not cover in the list above, please add to the comment thread and I’ll have it updated in the list. Enjoy

    Read the article

  • Scrum for Team Foundation Server 2010

    - by Martin Hinshelwood
    I will be presenting a session on “Scrum for TFS2010” not once, but twice! If you are going to be at the Aberdeen Partner Group meeting on 27th April, or DDD Scotland on 8th May then you may be able to catch my session. Credit: I want to give special thanks to Aaron Bjork from Microsoft who provided me with most of my material He is a Scrum and Power Point genius. Scrum for Team Foundation Server 2010 Synopsis Visual Studio ALM (formerly Visual Studio Team System (VSTS)) and Team Foundation Server (TFS) are the cornerstones of development on the Microsoft .NET platform. These are the best tools for a team to have successful projects and for the developers to have a focused and smooth software development process. For TFS 2010 Microsoft is heavily investing in Scrum and has already started moving some teams across to using it. Martin will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even asses your Scrum knowledge by having a go at the Scrum Open Assessment. Come and see Martin Hinshelwood, Visual Studio ALM MVP and Solution Architect from SSW show you: How to successfully gather requirements with User stories How to plan a project using TFS 2010 and Scrum How to work with a product backlog in TFS 2010 The right way to plan a sprint with TFS 2010 Tracking your progress The right way to use work items What you can use from the built in reporting as well as the Project portals available on from the SharePoint dashboard The important reports to give your Product Owner / Project Manager Walk away knowing how to see the project health and progress. Visual Studio ALM is designed to help address many of these traditional problems faced by teams. It does so by providing a set of integrated tools to help teams improve their software development activities and to help managers better support the software development processes. During this session we will cover the lifecycle of creating work items and how this fits into Scrum using Visual Studio ALM and Team Foundation Server. If you want to know more about how to do Scrum with TFS then there is a new course that has been created in collaboration with Microsoft and Scrum.org that is going to be the official course for working with TFS 2010. SSW has Professional Scrum Developer Trainers who specialise in training your developers in implementing Scrum with Microsoft's Visual Studio ALM tools. Ken Schwaber and and Sam Guckenheimer: Professional Scrum Development Technorati Tags: Scrum,VS ALM,VS 2010,TFS 2010

    Read the article

  • The Incremental Architect&acute;s Napkin &ndash; #3 &ndash; Make Evolvability inevitable

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/04/the-incremental-architectacutes-napkin-ndash-3-ndash-make-evolvability-inevitable.aspxThe easier something to measure the more likely it will be produced. Deviations between what is and what should be can be readily detected. That´s what automated acceptance tests are for. That´s what sprint reviews in Scrum are for. It´s no small wonder our software looks like it looks. It has all the traits whose conformance with requirements can easily be measured. And it´s lacking traits which cannot easily be measured. Evolvability (or Changeability) is such a trait. If an operation is correct, if an operation if fast enough, that can be checked very easily. But whether Evolvability is high or low, that cannot be checked by taking a measure or two. Evolvability might correlate with certain traits, e.g. number of lines of code (LOC) per function or Cyclomatic Complexity or test coverage. But there is no threshold value signalling “evolvability too low”; also Evolvability is hardly tangible for the customer. Nevertheless Evolvability is of great importance - at least in the long run. You can get away without much of it for a short time. Eventually, though, it´s needed like any other requirement. Or even more. Because without Evolvability no other requirement can be implemented. Evolvability is the foundation on which all else is build. Such fundamental importance is in stark contrast with its immeasurability. To compensate this, Evolvability must be put at the very center of software development. It must become the hub around everything else revolves. Since we cannot measure Evolvability, though, we cannot start watching it more. Instead we need to establish practices to keep it high (enough) at all times. Chefs have known that for long. That´s why everybody in a restaurant kitchen is constantly seeing after cleanliness. Hygiene is important as is to have clean tools at standardized locations. Only then the health of the patrons can be guaranteed and production efficiency is constantly high. Still a kitchen´s level of cleanliness is easier to measure than software Evolvability. That´s why important practices like reviews, pair programming, or TDD are not enough, I guess. What we need to keep Evolvability in focus and high is… to continually evolve. Change must not be something to avoid but too embrace. To me that means the whole change cycle from requirement analysis to delivery needs to be gone through more often. Scrum´s sprints of 4, 2 even 1 week are too long. Kanban´s flow of user stories across is too unreliable; it takes as long as it takes. Instead we should fix the cycle time at 2 days max. I call that Spinning. No increment must take longer than from this morning until tomorrow evening to finish. Then it should be acceptance checked by the customer (or his/her representative, e.g. a Product Owner). For me there are several resasons for such a fixed and short cycle time for each increment: Clear expectations Absolute estimates (“This will take X days to complete.”) are near impossible in software development as explained previously. Too much unplanned research and engineering work lurk in every feature. And then pervasive interruptions of work by peers and management. However, the smaller the scope the better our absolute estimates become. That´s because we understand better what really are the requirements and what the solution should look like. But maybe more importantly the shorter the timespan the more we can control how we use our time. So much can happen over the course of a week and longer timespans. But if push comes to shove I can block out all distractions and interruptions for a day or possibly two. That´s why I believe we can give rough absolute estimates on 3 levels: Noon Tonight Tomorrow Think of a meeting with a Product Owner at 8:30 in the morning. If she asks you, how long it will take you to implement a user story or bug fix, you can say, “It´ll be fixed by noon.”, or you can say, “I can manage to implement it until tonight before I leave.”, or you can say, “You´ll get it by tomorrow night at latest.” Yes, I believe all else would be naive. If you´re not confident to get something done by tomorrow night (some 34h from now) you just cannot reliably commit to any timeframe. That means you should not promise anything, you should not even start working on the issue. So when estimating use these four categories: Noon, Tonight, Tomorrow, NoClue - with NoClue meaning the requirement needs to be broken down further so each aspect can be assigned to one of the first three categories. If you like absolute estimates, here you go. But don´t do deep estimates. Don´t estimate dozens of issues; don´t think ahead (“Issue A is a Tonight, then B will be a Tomorrow, after that it´s C as a Noon, finally D is a Tonight - that´s what I´ll do this week.”). Just estimate so Work-in-Progress (WIP) is 1 for everybody - plus a small number of buffer issues. To be blunt: Yes, this makes promises impossible as to what a team will deliver in terms of scope at a certain date in the future. But it will give a Product Owner a clear picture of what to pull for acceptance feedback tonight and tomorrow. Trust through reliability Our trade is lacking trust. Customers don´t trust software companies/departments much. Managers don´t trust developers much. I find that perfectly understandable in the light of what we´re trying to accomplish: delivering software in the face of uncertainty by means of material good production. Customers as well as managers still expect software development to be close to production of houses or cars. But that´s a fundamental misunderstanding. Software development ist development. It´s basically research. As software developers we´re constantly executing experiments to find out what really provides value to users. We don´t know what they need, we just have mediated hypothesises. That´s why we cannot reliably deliver on preposterous demands. So trust is out of the window in no time. If we switch to delivering in short cycles, though, we can regain trust. Because estimates - explicit or implicit - up to 32 hours at most can be satisfied. I´d say: reliability over scope. It´s more important to reliably deliver what was promised then to cover a lot of requirement area. So when in doubt promise less - but deliver without delay. Deliver on scope (Functionality and Quality); but also deliver on Evolvability, i.e. on inner quality according to accepted principles. Always. Trust will be the reward. Less complexity of communication will follow. More goodwill buffer will follow. So don´t wait for some Kanban board to show you, that flow can be improved by scheduling smaller stories. You don´t need to learn that the hard way. Just start with small batch sizes of three different sizes. Fast feedback What has been finished can be checked for acceptance. Why wait for a sprint of several weeks to end? Why let the mental model of the issue and its solution dissipate? If you get final feedback after one or two weeks, you hardly remember what you did and why you did it. Resoning becomes hard. But more importantly youo probably are not in the mood anymore to go back to something you deemed done a long time ago. It´s boring, it´s frustrating to open up that mental box again. Learning is harder the longer it takes from event to feedback. Effort can be wasted between event (finishing an issue) and feedback, because other work might go in the wrong direction based on false premises. Checking finished issues for acceptance is the most important task of a Product Owner. It´s even more important than planning new issues. Because as long as work started is not released (accepted) it´s potential waste. So before starting new work better make sure work already done has value. By putting the emphasis on acceptance rather than planning true pull is established. As long as planning and starting work is more important, it´s a push process. Accept a Noon issue on the same day before leaving. Accept a Tonight issue before leaving today or first thing tomorrow morning. Accept a Tomorrow issue tomorrow night before leaving or early the day after tomorrow. After acceptance the developer(s) can start working on the next issue. Flexibility As if reliability/trust and fast feedback for less waste weren´t enough economic incentive, there is flexibility. After each issue the Product Owner can change course. If on Monday morning feature slices A, B, C, D, E were important and A, B, C were scheduled for acceptance by Monday evening and Tuesday evening, the Product Owner can change her mind at any time. Maybe after A got accepted she asks for continuation with D. But maybe, just maybe, she has gotten a completely different idea by then. Maybe she wants work to continue on F. And after B it´s neither D nor E, but G. And after G it´s D. With Spinning every 32 hours at latest priorities can be changed. And nothing is lost. Because what got accepted is of value. It provides an incremental value to the customer/user. Or it provides internal value to the Product Owner as increased knowledge/decreased uncertainty. I find such reactivity over commitment economically very benefical. Why commit a team to some workload for several weeks? It´s unnecessary at beast, and inflexible and wasteful at worst. If we cannot promise delivery of a certain scope on a certain date - which is what customers/management usually want -, we can at least provide them with unpredecented flexibility in the face of high uncertainty. Where the path is not clear, cannot be clear, make small steps so you´re able to change your course at any time. Premature completion Customers/management are used to premeditating budgets. They want to know exactly how much to pay for a certain amount of requirements. That´s understandable. But it does not match with the nature of software development. We should know that by now. Maybe there´s somewhere in the world some team who can consistently deliver on scope, quality, and time, and budget. Great! Congratulations! I, however, haven´t seen such a team yet. Which does not mean it´s impossible, but I think it´s nothing I can recommend to strive for. Rather I´d say: Don´t try this at home. It might hurt you one way or the other. However, what we can do, is allow customers/management stop work on features at any moment. With spinning every 32 hours a feature can be declared as finished - even though it might not be completed according to initial definition. I think, progress over completion is an important offer software development can make. Why think in terms of completion beyond a promise for the next 32 hours? Isn´t it more important to constantly move forward? Step by step. We´re not running sprints, we´re not running marathons, not even ultra-marathons. We´re in the sport of running forever. That makes it futile to stare at the finishing line. The very concept of a burn-down chart is misleading (in most cases). Whoever can only think in terms of completed requirements shuts out the chance for saving money. The requirements for a features mostly are uncertain. So how does a Product Owner know in the first place, how much is needed. Maybe more than specified is needed - which gets uncovered step by step with each finished increment. Maybe less than specified is needed. After each 4–32 hour increment the Product Owner can do an experient (or invite users to an experiment) if a particular trait of the software system is already good enough. And if so, she can switch the attention to a different aspect. In the end, requirements A, B, C then could be finished just 70%, 80%, and 50%. What the heck? It´s good enough - for now. 33% money saved. Wouldn´t that be splendid? Isn´t that a stunning argument for any budget-sensitive customer? You can save money and still get what you need? Pull on practices So far, in addition to more trust, more flexibility, less money spent, Spinning led to “doing less” which also means less code which of course means higher Evolvability per se. Last but not least, though, I think Spinning´s short acceptance cycles have one more effect. They excert pull-power on all sorts of practices known for increasing Evolvability. If, for example, you believe high automated test coverage helps Evolvability by lowering the fear of inadverted damage to a code base, why isn´t 90% of the developer community practicing automated tests consistently? I think, the answer is simple: Because they can do without. Somehow they manage to do enough manual checks before their rare releases/acceptance checks to ensure good enough correctness - at least in the short term. The same goes for other practices like component orientation, continuous build/integration, code reviews etc. None of that is compelling, urgent, imperative. Something else always seems more important. So Evolvability principles and practices fall through the cracks most of the time - until a project hits a wall. Then everybody becomes desperate; but by then (re)gaining Evolvability has become as very, very difficult and tedious undertaking. Sometimes up to the point where the existence of a project/company is in danger. With Spinning that´s different. If you´re practicing Spinning you cannot avoid all those practices. With Spinning you very quickly realize you cannot deliver reliably even on your 32 hour promises. Spinning thus is pulling on developers to adopt principles and practices for Evolvability. They will start actively looking for ways to keep their delivery rate high. And if not, management will soon tell them to do that. Because first the Product Owner then management will notice an increasing difficulty to deliver value within 32 hours. There, finally there emerges a way to measure Evolvability: The more frequent developers tell the Product Owner there is no way to deliver anything worth of feedback until tomorrow night, the poorer Evolvability is. Don´t count the “WTF!”, count the “No way!” utterances. In closing For sustainable software development we need to put Evolvability first. Functionality and Quality must not rule software development but be implemented within a framework ensuring (enough) Evolvability. Since Evolvability cannot be measured easily, I think we need to put software development “under pressure”. Software needs to be changed more often, in smaller increments. Each increment being relevant to the customer/user in some way. That does not mean each increment is worthy of shipment. It´s sufficient to gain further insight from it. Increments primarily serve the reduction of uncertainty, not sales. Sales even needs to be decoupled from this incremental progress. No more promises to sales. No more delivery au point. Rather sales should look at a stream of accepted increments (or incremental releases) and scoup from that whatever they find valuable. Sales and marketing need to realize they should work on what´s there, not what might be possible in the future. But I digress… In my view a Spinning cycle - which is not easy to reach, which requires practice - is the core practice to compensate the immeasurability of Evolvability. From start to finish of each issue in 32 hours max - that´s the challenge we need to accept if we´re serious increasing Evolvability. Fortunately higher Evolvability is not the only outcome of Spinning. Customer/management will like the increased flexibility and “getting more bang for the buck”.

    Read the article

  • Scrum for Team Foundation Server 2010

    - by Martin Hinshelwood
    I will be presenting a session on “Scrum for TFS2010” not once, but twice! If you are going to be at the Aberdeen Partner Group meeting on 27th April, or DDD Scotland on 8th May then you may be able to catch my session. Credit: I want to give special thanks to Aaron Bjork from Microsoft who provided me with most of my material He is a Scrum and Power Point genius. Updated 9th May 2010 – I have now presented at both of these sessions  and posted about it. Scrum for Team Foundation Server 2010 Synopsis Visual Studio ALM (formerly Visual Studio Team System (VSTS)) and Team Foundation Server (TFS) are the cornerstones of development on the Microsoft .NET platform. These are the best tools for a team to have successful projects and for the developers to have a focused and smooth software development process. For TFS 2010 Microsoft is heavily investing in Scrum and has already started moving some teams across to using it. Martin will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even asses your Scrum knowledge by having a go at the Scrum Open Assessment. You can also read SSW’s Rules to Better Scrum using TFS which have been developed during our own Scrum implementations. Come and see Martin Hinshelwood, Visual Studio ALM MVP and Solution Architect from SSW show you: How to successfully gather requirements with User stories How to plan a project using TFS 2010 and Scrum How to work with a product backlog in TFS 2010 The right way to plan a sprint with TFS 2010 Tracking your progress The right way to use work items What you can use from the built in reporting as well as the Project portals available on from the SharePoint dashboard The important reports to give your Product Owner / Project Manager Walk away knowing how to see the project health and progress. Visual Studio ALM is designed to help address many of these traditional problems faced by teams. It does so by providing a set of integrated tools to help teams improve their software development activities and to help managers better support the software development processes. During this session we will cover the lifecycle of creating work items and how this fits into Scrum using Visual Studio ALM and Team Foundation Server. If you want to know more about how to do Scrum with TFS then there is a new course that has been created in collaboration with Microsoft and Scrum.org that is going to be the official course for working with TFS 2010. SSW has Professional Scrum Developer Trainers who specialise in training your developers in implementing Scrum with Microsoft's Visual Studio ALM tools. Ken Schwaber and and Sam Guckenheimer: Professional Scrum Development Technorati Tags: Scrum,VS ALM,VS 2010,TFS 2010

    Read the article

  • Inside Red Gate - Divisions

    - by Simon Cooper
    When I joined Red Gate back in 2007, there were around 80 people in the company. Now, around 3 years later, it's grown to more than 200. It's a constant battle against Dunbar's number; the maximum number of people you can keep track of in a social group, to try and maintain that 'small company' feel that attracted myself and so many others to apply in the first place. There are several strategies the company's developed over the years to try and mitigate the effects of Dunbar's number. One of the main ones has been divisionalisation. Divisions The first division, .NET, appeared around the same time that I started in 2007. This combined the development, sales, marketing and management of the .NET tools (then, ANTS Profiler v3) into a separate section of the office. The idea was to increase the cohesion and communication between the different people involved in the entire lifecycle of the tools; from initial product development, through to marketing, then to customer support, who would feed back to the development team. This was such a success that the other development teams were re-worked around this model in 2009. Nowadays there are 4 divisions - SQL Tools, DBA, .NET, and New Business. Along the way there have been various tweaks to the details - the sales teams have been merged into the divisions, marketing and product support have been (mostly) centralised - but the same basic model remains. So, how has this helped? As Red Gate has continued to grow over the years, divisionalisation has turned Red Gate from a monolithic software company into what one person described as a 'federation of small businesses'. Each division is free to structure itself as it sees fit, it's free to decide what to concentrate development work on, organise its own newsletters and webinars, decide its own release schedule. Each division is its own small business. In terms of numbers, the size of each division varies from 20 people (.NET) to 52 (SQL Tools); well below Dunbar's number. From a developer's perspective, this means organisational structure is very flat & wide - there's only 2 layers between myself and the CEOs (not that it matters much; everyone can go and have a chat to Neil or Simon, or anyone else inbetween, whenever they want. Provided you can catch them at their desk!). As Red Gate grows, and expands into new areas, new divisions will be created as needed, old ones merged or disbanded, but the division structure will help to maintain that small-company feel that keeps Red Gate working as it does.

    Read the article

  • JavaFX 2.0 at Devoxx 2011

    - by Janice J. Heiss
    JavaFX Sessions Abound JavaFX had a big presence at Devoxx 2011 as witnessed by the number of sessions this year given by leading JavaFX movers and shakers.     “JavaFX 2.0 -- A Java Developer's Guide” by Java Champions Stephen Chin and Peter Pilgrim     “JavaFX 2.0 Hands On” by Jasper Potts and Richard Bair     “Animation Bringing your User Interfaces to Life” by Michael Heinrichs and John Yoong (JavaFX development team)     “Complete Guide to Writing Custom Bindings in JavaFX 2.0” by Michael Heinrichs (JavaFX development team)     “Java Rich Clients with JavaFX 2.0” by Jasper Potts and Richard Bair     “JavaFX Properties & Bindings for Experts” (and those who want to become experts) by Michael Heinrichs (JavaFX development team)     “JavaFX Under the Hood” by Richard Bair     “JavaFX Open Mic” with Jasper Potts and Richard Bair With the release of JavaFX 2.0 and Oracle’s move towards an open development model with an open bug database already created, it’s a great time for developers to take the JavaFX plunge. One Devoxx attendee, Mark Stephens, a developer at IDRsolutions blogged about a problem he was having setting up JavaFX on NetBeans to work on his Mac. He wrote: “I’ve tried desperate measures (I even read and reread the instructions) but it did not help. Luckily, I am at Devoxx at the moment and there seem to be a lot of JavaFX gurus here (and it is running on all their Macs). So I asked them… It turns out that sometimes the software does not automatically pickup the settings like it should do if you give it the JavaFX SDK path. The solution is actually really simple (isn’t it always once you know). Enter these values manually and it will work.” He simply entered certain values and his problem was solved. He thanked Java Champion Stephen Chin, “for a great talk at Devoxx and putting me out of my misery.” JavaFX in Java Magazine Over in the November/December 2011 issue of Java Magazine, Oracle’s Simon Ritter, well known for his creative Java inventions at JavaOne, has an article up titled “JavaFX and Swing Integration” in which he shows developers how to use the power of JavaFX to migrate Swing interfaces to JavaFX. The consensus among JavaFX experts is that JavaFX is the next step in the evolution of Java as a rich client platform. In the same issue Java Champion and JavaFX maven James Weaver has an article, “Using Transitions for Animation in JavaFX 2.0”. In addition, Oracle’s Vice President of Java Client Development, Nandini Ramani, provides the keys to unlock the mysteries of JavaFX 2.0 in her Java Magazine interview. Look for the JavaFX community to grow and flourish in coming years.

    Read the article

  • Build Mobile App for E-Business Suite Using SOA Suite and ADF Mobile

    - by Michelle Kimihira
    With the upcoming release of Oracle ADF Mobile, I caught up with Srikant Subramaniam, Senior Principal Product Manager, Oracle Fusion Middleware post OpenWorld to learn about the cool hands-on lab at OpenWorld.  For those of you who missed it, you will want to keep reading... Author: Srikant Subramaniam, Senior Principal Product Manager,Oracle Fusion Middleware Oracle ADF Mobile enables rapid and declarative development of native on-device mobile applications. These native applications provide a richer experience for smart devices users running Apple iOS or other mobile platforms. Oracle ADF Mobile protects Oracle customers from technology shifts by adopting a metadata-based development framework that enables developer to develop one app (using Oracle JDeveloper), and deploy to multiple device platforms (starting with iOS and Android).  Oracle ADF Mobile also enables IT organizations to leverage existing expertise in web-based and Java development by adopting a hybrid application architecture that brings together HTML5, Java, and device native container: HTML5 allows developer to deliver device-native user experiences while maintaining portability across different platforms Java allows developers to create modules to support business logic and data services Native container provides integration into device services such as camera, contacts, etc All these technologies are packaged into a development framework that supports declarative application development through Oracle JDeveloper. ADF Mobile also provides out of box integratoin with key Fusion Middleware components, such as SOA Suite and Business Process Management (BPM). Oracle Fusion Middleware provides the necessary infrastructure to extend business processes and services to the mobile device -- enabling the mobile user to participate in human tasks – without the additional “mobile middleware” layer. When coupled with Oracle SOA Suite, this combination can execute business transactions on Oracle E-Business Suite (or any Oracle Application). Demo Use Case: Mobile E-Business Suite (iExpense) Approvals Using an employee expense approval scenario, we illustrate how to use Oracle Fusion Middleware and Oracle ADF Mobile to build application extensions that integrate intelligently with Oracle Applications (For example, E-Business Suite). Building these extensions using Oracle Fusion middleware and ADF makes modifications simple, quick to implement, and easy to maintain/upgrade. As described earlier, this approach also extends Fusion Middleware to mobile users without the additional "Mobile Middleware" layer. The approver is presented with a list of expense reports that have been submitted for approval. These expense reports are retrieved from the backend E-Business Suite and displayed on the mobile device. Approval (or rejection) of the expense report kicks off the workflow in E-Business Suite and takes it to completion. The demo also shows how to integrate with native device services such as email, contacts, BI dashboards as well as a prebuilt PDF viewer (this is especially useful in the expense approval scenario, as there is often a need for the approver to access the submitted receipts). Summary Oracle recommends Fusion Middleware as the application integration platform to deliver critical enterprise data and processes to mobile applications.  Pre-built connectors between Fusion Middleware and Applications greatly accelerates the integration process.  Instead of building individual integration points between mobile applications and individual enterprise applications, Oracle Fusion Middleware enables IT organizations to leverage a common platform to support both desktop and mobile application.  Additional Information Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Code Structure / Level Design: Plants vs Zombies game level dissection

    - by lalan
    Hi Friends, I am interested in learning the class structure of Plants vs Zombies, particularly level design; for those who haven't played it - this video contains nice play-through: http://www.youtube.com/watch?v=89DfdOIJ4xw. How would I go ahead and design the code, mostly structure & classes, which allows for maximum flexibility & clean development? I am familiar with data driven design concepts, and would use events to handle most of dynamic behavior. Dissection at macro level: (Once every Level) Load tilemap, props, etc -- basically build the map (Once every Level) Camera Movement - might consider it as short cut-scene (Once every Level) Show Enemies you'll face during present level (Once every Level) Unit Selection Window/Panel - selection of defensive plants (Once every Level) Camera Movement - might consider it as short cut-scene (Once every Level) HUD Creation - based on unit selection (Level Loop) Enemy creation - based on types of zombies allowed (Level Loop) Sun/Resource generation (Level Loop) Show messages like 'huge wave of zombies coming', 'final wave' (Level Loop) Other unique events - Spawn gifts, money, tombstones, etc (Once every Level) Unlock new plant Potential game scripts: a) Level definitions: Level_1_1.xml, Level_1_2.xml, etc. Level_1_1.xml :: Sample script <map> <tilemap>tilemapFrontLawn</tilemap> <SpawnPoints> tiles where particular type of zombies (land vs water) may spawn</spawnPoints> <props> position, entity array -- lawnmower, </props> </map> <zombies> <... list of zombies who gonna attack by ids...> </zombies> <plants> <... list by plants which are available for defense by ids...> </plants> <progression> <ZombieWave name='first wave' spawnScript='zombieLightWave.lua' unlock='null'> <startMessages time=1.5>Ready</startMessages> <endMessages time=1.5>Huge wave of zombies incoming</endMessages> </ZombieWave> </progression> b) Entities definitions: .xmls containing zombies, plants, sun, lawnmower, coins, etc description. Potential classes: //LevelManager - Based on the level under play, it will load level script. Few of the // functions it may have: class LevelManager { public: bool load(string levelFileName); bool enter(); bool update(float deltatime); bool exit(); private: LevelData* mLevelData; } // LevelData - Contains the details of level loaded by LevelManager. class LevelData { private: string file; // array of camera,dialog,attackwaves, etc in active level LevelCutSceneCamera** mArrayCutSceneCamera; LevelCutSceneDialog** mArrayCutSceneDialog; LevelAttackWave** mArrayAttackWave; .... // which camera,dialog,attackwave is active in level uint mCursorCutSceneCamera; uint mCursorCutSceneDialog; uint mCursorAttackWave; public: // based on cursor, get the next camera,dialog,attackwave,etc in active level // return false/true based on failure/success bool nextCutSceneCamera(LevelCutSceneCamera**); bool nextCutSceneDialog(LevelCutSceneDialog**); } // LevelUnderPlay- LevelManager class LevelUnderPlay { private: LevelCutSceneCamera* mCutSceneCamera; LevelCutSceneDialog* mCutSceneDialog; LevelAttackWave* mAttackWave; Entities** mSelectedPlants; Entities** mAllowedZombies; bool isCutSceneCameraActive; public: bool enter(); bool update(float deltatime); bool exit(); } I am totally confused.. :( Does it make sense of using class composition (have flat class hierarchy) for managing levels. Is it a good idea to just add/remove/update sprites (or any drawable stuff) to current scene from LevelManager or LevelUnderPlay? If I want to make non-linear level design, how should I go ahead? Perhaps I would need a LevelProgression class, which would decide what to do based on decision tree. Any suggestions would be appreciated very much. Thank for your time, lalan

    Read the article

  • How to solve exception_priv _instruction exception while running destop project? [on hold]

    - by Haritha
    While running desktop project im getting exception_priv _instruction how to solve this??? while running this page is coming # # A fatal error has been detected by the Java Runtime Environment: # # EXCEPTION_PRIV_INSTRUCTION (0xc0000096) at pc=0x02f5a92b, pid=3012, tid=3104 # # JRE version: 7.0-b147 # Java VM: Java HotSpot(TM) Client VM (21.0-b17 mixed mode, sharing windows-x86 ) # Problematic frame: # C 0x02f5a92b # # Failed to write core dump. Minidumps are not enabled by default on client versions of Windows # # If you would like to submit a bug report, please visit: # http://bugreport.sun.com/bugreport/crash.jsp # The crash happened outside the Java Virtual Machine in native code. # See problematic frame for where to report the bug. # --------------- T H R E A D --------------- Current thread (0x02f5a800): JavaThread "LWJGL Application" [_thread_in_native, id=3104, stack(0x076f0000,0x07740000)] siginfo: ExceptionCode=0xc0000096 Registers: EAX=0x000df4f0, EBX=0x32afc180, ECX=0x000df4f0, EDX=0x00000020 ESP=0x0773f768, EBP=0x0773f790, ESI=0x32afc180, EDI=0x02f5a800 EIP=0x02f5a92b, EFLAGS=0x00010206 Top of Stack: (sp=0x0773f768) 0x0773f768: 02bd429c 02bd429c 0773f770 32afc180 0x0773f778: 0773f7b8 32b022c8 00000000 32afc180 0x0773f788: 00000000 0773f7a0 0773f7dc 00943187 0x0773f798: 229ec1c0 00948839 69081736 00000000 0x0773f7a8: 089b0048 00000000 00000014 00001406 0x0773f7b8: 00000002 0773f7bc 32afbeb0 0773f7f8 0x0773f7c8: 32b022c8 00000000 32afbf00 0773f7a0 0x0773f7d8: 0773f7f0 0773f81c 00943187 69081736 Instructions: (pc=0x02f5a92b) 0x02f5a90b: 00 43 00 00 00 00 f0 bc 02 e8 00 e9 22 40 f7 73 0x02f5a91b: 07 85 a5 94 00 90 f7 73 07 50 cc a0 6d d8 49 c0 0x02f5a92b: 6d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x02f5a93b: 00 00 00 00 00 00 00 00 00 08 80 3d 37 00 00 00 Register to memory mapping: EAX=0x000df4f0 is an unknown value EBX=0x32afc180 is an oop {method} - klass: {other class} ECX=0x000df4f0 is an unknown value EDX=0x00000020 is an unknown value ESP=0x0773f768 is pointing into the stack for thread: 0x02f5a800 EBP=0x0773f790 is pointing into the stack for thread: 0x02f5a800 ESI=0x32afc180 is an oop {method} - klass: {other class} EDI=0x02f5a800 is a thread Stack: [0x076f0000,0x07740000], sp=0x0773f768, free space=317k Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code) C 0x02f5a92b j org.lwjgl.opengl.GL11.glVertexPointer(IILjava/nio/FloatBuffer;)V+48 j com.badlogic.gdx.backends.lwjgl.LwjglGL10.glVertexPointer(IIILjava/nio/Buffer;)V+53 j com.badlogic.gdx.graphics.glutils.VertexArray.bind()V+149 j com.badlogic.gdx.graphics.Mesh.bind()V+25 j com.badlogic.gdx.graphics.Mesh.render(IIIZ)V+32 j com.badlogic.gdx.graphics.Mesh.render(III)V+8 j com.badlogic.gdx.graphics.g2d.SpriteBatch.flush()V+197 j com.badlogic.gdx.graphics.g2d.SpriteBatch.switchTexture(Lcom/badlogic/gdx/graphics/Texture;)V+1 j com.badlogic.gdx.graphics.g2d.SpriteBatch.draw(Lcom/badlogic/gdx/graphics/Texture;FFFF)V+33 j sevenseas.game.WorldRenderer.drawBob()V+54 j sevenseas.game.WorldRenderer.render()V+12 j sevenseas.game.GameClass.render(F)V+38 j com.badlogic.gdx.Game.render()V+19 j com.badlogic.gdx.backends.lwjgl.LwjglApplication.mainLoop()V+642 j com.badlogic.gdx.backends.lwjgl.LwjglApplication$1.run()V+27 v ~StubRoutines::call_stub V [jvm.dll+0x122c7e] V [jvm.dll+0x1c9c0e] V [jvm.dll+0x122e73] V [jvm.dll+0x122ed7] V [jvm.dll+0xccd1f] V [jvm.dll+0x14433f] V [jvm.dll+0x171549] C [msvcr100.dll+0x5c6de] endthreadex+0x3a C [msvcr100.dll+0x5c788] endthreadex+0xe4 C [kernel32.dll+0xb713] GetModuleFileNameA+0x1b4 Java frames: (J=compiled Java code, j=interpreted, Vv=VM code) j org.lwjgl.opengl.GL11.nglVertexPointer(IIIJJ)V+0 j org.lwjgl.opengl.GL11.glVertexPointer(IILjava/nio/FloatBuffer;)V+48 j com.badlogic.gdx.backends.lwjgl.LwjglGL10.glVertexPointer(IIILjava/nio/Buffer;)V+53 j com.badlogic.gdx.graphics.glutils.VertexArray.bind()V+149 j com.badlogic.gdx.graphics.Mesh.bind()V+25 j com.badlogic.gdx.graphics.Mesh.render(IIIZ)V+32 j com.badlogic.gdx.graphics.Mesh.render(III)V+8 j com.badlogic.gdx.graphics.g2d.SpriteBatch.flush()V+197 j com.badlogic.gdx.graphics.g2d.SpriteBatch.switchTexture(Lcom/badlogic/gdx/graphics/Texture;)V+1 j com.badlogic.gdx.graphics.g2d.SpriteBatch.draw(Lcom/badlogic/gdx/graphics/Texture;FFFF)V+33 j sevenseas.game.WorldRenderer.drawBob()V+54 j sevenseas.game.WorldRenderer.render()V+12 j sevenseas.game.GameClass.render(F)V+38 j com.badlogic.gdx.Game.render()V+19 j com.badlogic.gdx.backends.lwjgl.LwjglApplication.mainLoop()V+642 j com.badlogic.gdx.backends.lwjgl.LwjglApplication$1.run()V+27 v ~StubRoutines::call_stub --------------- P R O C E S S --------------- Java Threads: ( => current thread ) 0x003d6c00 JavaThread "DestroyJavaVM" [_thread_blocked, id=3240, stack(0x008c0000,0x00910000)] =>0x02f5a800 JavaThread "LWJGL Application" [_thread_in_native, id=3104, stack(0x076f0000,0x07740000)] 0x02bcf000 JavaThread "Service Thread" daemon [_thread_blocked, id=2612, stack(0x02e00000,0x02e50000)] 0x02bc1000 JavaThread "C1 CompilerThread0" daemon [_thread_blocked, id=2776, stack(0x02db0000,0x02e00000)] 0x02bbf400 JavaThread "Attach Listener" daemon [_thread_blocked, id=2448, stack(0x02d60000,0x02db0000)] 0x02bbe000 JavaThread "Signal Dispatcher" daemon [_thread_blocked, id=1764, stack(0x02d10000,0x02d60000)] 0x02bb8000 JavaThread "Finalizer" daemon [_thread_blocked, id=3864, stack(0x02cc0000,0x02d10000)] 0x02bb3400 JavaThread "Reference Handler" daemon [_thread_blocked, id=2424, stack(0x02c70000,0x02cc0000)] Other Threads: 0x02bb1800 VMThread [stack: 0x02c20000,0x02c70000] [id=3076] 0x02bd1000 WatcherThread [stack: 0x02e50000,0x02ea0000] [id=3276] VM state:not at safepoint (normal execution) VM Mutex/Monitor currently owned by a thread: None Heap def new generation total 4928K, used 2571K [0x229c0000, 0x22f10000, 0x27f10000) eden space 4416K, 46% used [0x229c0000, 0x22bc2e38, 0x22e10000) from space 512K, 100% used [0x22e90000, 0x22f10000, 0x22f10000) to space 512K, 0% used [0x22e10000, 0x22e10000, 0x22e90000) tenured generation total 10944K, used 634K [0x27f10000, 0x289c0000, 0x329c0000) the space 10944K, 5% used [0x27f10000, 0x27faea60, 0x27faec00, 0x289c0000) compacting perm gen total 12288K, used 1655K [0x329c0000, 0x335c0000, 0x369c0000) the space 12288K, 13% used [0x329c0000, 0x32b5dc58, 0x32b5de00, 0x335c0000) ro space 10240K, 42% used [0x369c0000, 0x36dfc660, 0x36dfc800, 0x373c0000) rw space 12288K, 53% used [0x373c0000, 0x37a38180, 0x37a38200, 0x37fc0000) Code Cache [0x00940000, 0x009d8000, 0x02940000) total_blobs=305 nmethods=80 adapters=158 free_code_cache=32183Kb largest_free_block=32955904 Dynamic libraries: 0x00400000 - 0x0042f000 C:\Program Files\Java\jre7\bin\javaw.exe 0x7c900000 - 0x7c9af000 C:\WINDOWS\system32\ntdll.dll 0x7c800000 - 0x7c8f6000 C:\WINDOWS\system32\kernel32.dll 0x77dd0000 - 0x77e6b000 C:\WINDOWS\system32\ADVAPI32.dll 0x77e70000 - 0x77f02000 C:\WINDOWS\system32\RPCRT4.dll 0x77fe0000 - 0x77ff1000 C:\WINDOWS\system32\Secur32.dll 0x7e410000 - 0x7e4a1000 C:\WINDOWS\system32\USER32.dll 0x77f10000 - 0x77f59000 C:\WINDOWS\system32\GDI32.dll 0x773d0000 - 0x774d3000 C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\COMCTL32.dll 0x77c10000 - 0x77c68000 C:\WINDOWS\system32\msvcrt.dll 0x77f60000 - 0x77fd6000 C:\WINDOWS\system32\SHLWAPI.dll 0x76390000 - 0x763ad000 C:\WINDOWS\system32\IMM32.DLL 0x629c0000 - 0x629c9000 C:\WINDOWS\system32\LPK.DLL 0x74d90000 - 0x74dfb000 C:\WINDOWS\system32\USP10.dll 0x78aa0000 - 0x78b5e000 C:\Program Files\Java\jre7\bin\msvcr100.dll 0x6d940000 - 0x6dc61000 C:\Program Files\Java\jre7\bin\client\jvm.dll 0x71ad0000 - 0x71ad9000 C:\WINDOWS\system32\WSOCK32.dll 0x71ab0000 - 0x71ac7000 C:\WINDOWS\system32\WS2_32.dll 0x71aa0000 - 0x71aa8000 C:\WINDOWS\system32\WS2HELP.dll 0x76b40000 - 0x76b6d000 C:\WINDOWS\system32\WINMM.dll 0x76bf0000 - 0x76bfb000 C:\WINDOWS\system32\PSAPI.DLL 0x6d8d0000 - 0x6d8dc000 C:\Program Files\Java\jre7\bin\verify.dll 0x6d370000 - 0x6d390000 C:\Program Files\Java\jre7\bin\java.dll 0x6d920000 - 0x6d933000 C:\Program Files\Java\jre7\bin\zip.dll 0x6cec0000 - 0x6cf42000 C:\Documents and Settings\7stl0225\Local Settings\Temp\libgdx7stl0225\37fe1abc\gdx.dll 0x10000000 - 0x1004c000 C:\Documents and Settings\7stl0225\Local Settings\Temp\libgdx7stl0225\52d76f2b\lwjgl.dll 0x5ed00000 - 0x5edcc000 C:\WINDOWS\system32\OPENGL32.dll 0x68b20000 - 0x68b40000 C:\WINDOWS\system32\GLU32.dll 0x73760000 - 0x737ab000 C:\WINDOWS\system32\DDRAW.dll 0x73bc0000 - 0x73bc6000 C:\WINDOWS\system32\DCIMAN32.dll 0x77c00000 - 0x77c08000 C:\WINDOWS\system32\VERSION.dll 0x070b0000 - 0x07115000 C:\DOCUME~1\7stl0225\LOCALS~1\Temp\libgdx7stl0225\52d76f2b\OpenAL32.dll 0x7c9c0000 - 0x7d1d7000 C:\WINDOWS\system32\SHELL32.dll 0x774e0000 - 0x7761d000 C:\WINDOWS\system32\ole32.dll 0x5ad70000 - 0x5ada8000 C:\WINDOWS\system32\uxtheme.dll 0x76fd0000 - 0x7704f000 C:\WINDOWS\system32\CLBCATQ.DLL 0x77050000 - 0x77115000 C:\WINDOWS\system32\COMRes.dll 0x77120000 - 0x771ab000 C:\WINDOWS\system32\OLEAUT32.dll 0x73f10000 - 0x73f6c000 C:\WINDOWS\system32\dsound.dll 0x76c30000 - 0x76c5e000 C:\WINDOWS\system32\WINTRUST.dll 0x77a80000 - 0x77b15000 C:\WINDOWS\system32\CRYPT32.dll 0x77b20000 - 0x77b32000 C:\WINDOWS\system32\MSASN1.dll 0x76c90000 - 0x76cb8000 C:\WINDOWS\system32\IMAGEHLP.dll 0x72d20000 - 0x72d29000 C:\WINDOWS\system32\wdmaud.drv 0x72d10000 - 0x72d18000 C:\WINDOWS\system32\msacm32.drv 0x77be0000 - 0x77bf5000 C:\WINDOWS\system32\MSACM32.dll 0x77bd0000 - 0x77bd7000 C:\WINDOWS\system32\midimap.dll 0x73ee0000 - 0x73ee4000 C:\WINDOWS\system32\KsUser.dll 0x755c0000 - 0x755ee000 C:\WINDOWS\system32\msctfime.ime 0x69000000 - 0x691a9000 C:\WINDOWS\system32\sisgl.dll 0x73b30000 - 0x73b45000 C:\WINDOWS\system32\mscms.dll 0x73000000 - 0x73026000 C:\WINDOWS\system32\WINSPOOL.DRV 0x66e90000 - 0x66ed1000 C:\WINDOWS\system32\icm32.dll 0x07760000 - 0x0778d000 C:\Program Files\WordWeb\WHook.dll 0x74c80000 - 0x74cac000 C:\WINDOWS\system32\OLEACC.dll 0x76080000 - 0x760e5000 C:\WINDOWS\system32\MSVCP60.dll VM Arguments: jvm_args: -Dfile.encoding=Cp1252 java_command: sevenseas.game.MainDesktop Launcher Type: SUN_STANDARD Environment Variables: PATH=C:/Program Files/Java/jre7/bin/client;C:/Program Files/Java/jre7/bin;C:/Program Files/Java/jre7/lib/i386;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program Files\Java\jdk1.7.0\bin;C:\eclipse; USERNAME=7stl0225 OS=Windows_NT PROCESSOR_IDENTIFIER=x86 Family 15 Model 4 Stepping 1, GenuineIntel --------------- S Y S T E M --------------- OS: Windows XP Build 2600 Service Pack 3 CPU:total 1 (1 cores per cpu, 1 threads per core) family 15 model 4 stepping 1, cmov, cx8, fxsr, mmx, sse, sse2, sse3 Memory: 4k page, physical 2031088k(939252k free), swap 3969920k(3011396k free) vm_info: Java HotSpot(TM) Client VM (21.0-b17) for windows-x86 JRE (1.7.0-b147), built on Jun 27 2011 02:25:52 by "java_re" with unknown MS VC++:1600 time: Sat Oct 26 12:35:14 2013 elapsed time: 0 seconds

    Read the article

  • Basic shadow mapping fails on NVIDIA card?

    - by James
    Recently I switched from an AMD Radeon HD 6870 card to an (MSI) NVIDIA GTX 670 for performance reasons. I found however that my implementation of shadow mapping in all my applications failed. In a very simple shadow POC project the problem appears to be that the scene being drawn never results in a draw to the depth map and as a result the entire depth map is just infinity, 1.0 (Reading directly from the depth component after draw (glReadPixels) shows every pixel is infinity (1.0), replacing the depth comparison in the shader with a comparison of the depth from the shadow map with 1.0 shadows the entire scene, and writing random values to the depth map and then not calling glClear(GL_DEPTH_BUFFER_BIT) results in a random noisy pattern on the scene elements - from which we can infer that the uploading of the depth texture and comparison within the shader are functioning perfectly.) Since the problem appears almost certainly to be in the depth render, this is the code for that: const int s_res = 1024; GLuint shadowMap_tex; GLuint shadowMap_prog; GLint sm_attr_coord3d; GLint sm_uniform_mvp; GLuint fbo_handle; GLuint renderBuffer; bool isMappingShad = false; //The scene consists of a plane with box above it GLfloat scene[] = { -10.0, 0.0, -10.0, 0.5, 0.0, 10.0, 0.0, -10.0, 1.0, 0.0, 10.0, 0.0, 10.0, 1.0, 0.5, -10.0, 0.0, -10.0, 0.5, 0.0, -10.0, 0.0, 10.0, 0.5, 0.5, 10.0, 0.0, 10.0, 1.0, 0.5, ... }; //Initialize the stuff used by the shadow map generator int initShadowMap() { //Initialize the shadowMap shader program if (create_program("shadow.v.glsl", "shadow.f.glsl", shadowMap_prog) != 1) return -1; const char* attribute_name = "coord3d"; sm_attr_coord3d = glGetAttribLocation(shadowMap_prog, attribute_name); if (sm_attr_coord3d == -1) { fprintf(stderr, "Could not bind attribute %s\n", attribute_name); return 0; } const char* uniform_name = "mvp"; sm_uniform_mvp = glGetUniformLocation(shadowMap_prog, uniform_name); if (sm_uniform_mvp == -1) { fprintf(stderr, "Could not bind uniform %s\n", uniform_name); return 0; } //Create a framebuffer glGenFramebuffers(1, &fbo_handle); glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); //Create render buffer glGenRenderbuffers(1, &renderBuffer); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); //Setup the shadow texture glGenTextures(1, &shadowMap_tex); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, s_res, s_res, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); return 0; } //Delete stuff void dnitShadowMap() { //Delete everything glDeleteFramebuffers(1, &fbo_handle); glDeleteRenderbuffers(1, &renderBuffer); glDeleteTextures(1, &shadowMap_tex); glDeleteProgram(shadowMap_prog); } int loadSMap() { //Bind MVP stuff glm::mat4 view = glm::lookAt(glm::vec3(10.0, 10.0, 5.0), glm::vec3(0.0, 0.0, 0.0), glm::vec3(0.0, 1.0, 0.0)); glm::mat4 projection = glm::ortho<float>(-10,10,-8,8,-10,40); glm::mat4 mvp = projection * view; glm::mat4 biasMatrix( 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); glm::mat4 lsMVP = biasMatrix * mvp; //Upload light source matrix to the main shader programs glUniformMatrix4fv(uniform_ls_mvp, 1, GL_FALSE, glm::value_ptr(lsMVP)); glUseProgram(shadowMap_prog); glUniformMatrix4fv(sm_uniform_mvp, 1, GL_FALSE, glm::value_ptr(mvp)); //Draw to the framebuffer (with depth buffer only draw) glBindFramebuffer(GL_FRAMEBUFFER, fbo_handle); glBindRenderbuffer(GL_RENDERBUFFER, renderBuffer); glBindTexture(GL_TEXTURE_2D, shadowMap_tex); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadowMap_tex, 0); glDrawBuffer(GL_NONE); glReadBuffer(GL_NONE); GLenum result = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (GL_FRAMEBUFFER_COMPLETE != result) { printf("ERROR: Framebuffer is not complete.\n"); return -1; } //Draw shadow scene printf("Creating shadow buffers..\n"); int ticks = SDL_GetTicks(); glClear(GL_DEPTH_BUFFER_BIT); //Wipe the depth buffer glViewport(0, 0, s_res, s_res); isMappingShad = true; //DRAW glEnableVertexAttribArray(sm_attr_coord3d); glVertexAttribPointer(sm_attr_coord3d, 3, GL_FLOAT, GL_FALSE, 5*4, scene); glDrawArrays(GL_TRIANGLES, 0, 14*3); glDisableVertexAttribArray(sm_attr_coord3d); isMappingShad = false; glBindFramebuffer(GL_FRAMEBUFFER, 0); printf("Render Sbuf in %dms (GLerr: %d)\n", SDL_GetTicks() - ticks, glGetError()); return 0; } This is the full code for the POC shadow mapping project (C++) (Requires SDL 1.2, SDL-image 1.2, GLEW (1.5) and GLM development headers.) initShadowMap is called, followed by loadSMap, the scene is drawn from the camera POV and then dnitShadowMap is called. I followed this tutorial originally (Along with another more comprehensive tutorial which has disappeared as this guy re-configured his site but used to be here (404).) I've ensured that the scene is visible (as can be seen within the full project) to the light source (which uses an orthogonal projection matrix.) Shader utilities function fine in non-shadow-mapped projects. I should also note that at no point is the GL error state set. What am I doing wrong here and why did this not cause problems on my AMD card? (System: Ubuntu 12.04, Linux 3.2.0-49-generic, 64 bit, with the nvidia-experimental-310 driver package. All other games are functioning fine so it's most likely not a card/driver issue.)

    Read the article

  • What is Database Continuous Integration?

    - by David Atkinson
    Although not everyone is practicing continuous integration, many have at least heard of the concept. A recent poll on www.simple-talk.com indicates that 40% of respondents are employing the technique. It is widely accepted that the earlier issues are identified in the development process, the lower the cost to the development process. The worst case scenario, of course, is for the bug to be found by the customer following the product release. A number of Agile development best practices have evolved to combat this problem early in the development process, including pair programming, code inspections and unit testing. Continuous integration is one such Agile concept that tackles the problem at the point of committing a change to source control. This can alternatively be run on a regular schedule. This triggers a sequence of events that compiles the code and performs a variety of tests. Often the continuous integration process is regarded as a build validation test, and if issues were to be identified at this stage, the testers would simply not 'waste their time ' and touch the build at all. Such a ‘broken build’ will trigger an alert and the development team’s number one priority should be to resolve the issue. How application code is compiled and tested as part of continuous integration is well understood. However, this isn’t so clear for databases. Indeed, before I cover the mechanics of implementation, we need to decide what we mean by database continuous integration. For me, database continuous integration can be implemented as one or more of the following: 1)      Your application code is being compiled and tested. You therefore need a database to be maintained at the corresponding version. 2)      Just as a valid application should compile, so should the database. It should therefore be possible to build a new database from scratch. 3)     Likewise, it should be possible to generate an upgrade script to take your already deployed databases to the latest version. I will be covering these in further detail in future blogs. In the meantime, more information can be found in the whitepaper linked off www.red-gate.com/ci If you have any questions, feel free to contact me directly or post a comment to this blog post.

    Read the article

< Previous Page | 384 385 386 387 388 389 390 391 392 393 394 395  | Next Page >