Search Results

Search found 32290 results on 1292 pages for 'array key'.

Page 390/1292 | < Previous Page | 386 387 388 389 390 391 392 393 394 395 396 397  | Next Page >

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Mulitple full joins in Postgres is slow

    - by blast83
    I have a program to use the IMDB database and am having very slow performance on my query. It appears that it doesn't use my where condition until after it materializes everything. I looked around for hints to use but nothing seems to work. Here is my query: SELECT * FROM name as n1 FULL JOIN aka_name ON n1.id = aka_name.person_id FULL JOIN cast_info as t2 ON n1.id = t2.person_id FULL JOIN person_info as t3 ON n1.id = t3.person_id FULL JOIN char_name as t4 ON t2.person_role_id = t4.id FULL JOIN role_type as t5 ON t2.role_id = t5.id FULL JOIN title as t6 ON t2.movie_id = t6.id FULL JOIN aka_title as t7 ON t6.id = t7.movie_id FULL JOIN complete_cast as t8 ON t6.id = t8.movie_id FULL JOIN kind_type as t9 ON t6.kind_id = t9.id FULL JOIN movie_companies as t10 ON t6.id = t10.movie_id FULL JOIN movie_info as t11 ON t6.id = t11.movie_id FULL JOIN movie_info_idx as t19 ON t6.id = t19.movie_id FULL JOIN movie_keyword as t12 ON t6.id = t12.movie_id FULL JOIN movie_link as t13 ON t6.id = t13.linked_movie_id FULL JOIN link_type as t14 ON t13.link_type_id = t14.id FULL JOIN keyword as t15 ON t12.keyword_id = t15.id FULL JOIN company_name as t16 ON t10.company_id = t16.id FULL JOIN company_type as t17 ON t10.company_type_id = t17.id FULL JOIN comp_cast_type as t18 ON t8.status_id = t18.id WHERE n1.id = 2003 Very table is related to each other on the join via foreign-key constraints and have indexes for all the mentioned columns. The query plan details: "Hash Left Join (cost=5838187.01..13756845.07 rows=15579622 width=835) (actual time=146879.213..146891.861 rows=20 loops=1)" " Hash Cond: (t8.status_id = t18.id)" " -> Hash Left Join (cost=5838185.92..13542624.18 rows=15579622 width=822) (actual time=146879.199..146891.833 rows=20 loops=1)" " Hash Cond: (t10.company_type_id = t17.id)" " -> Hash Left Join (cost=5838184.83..13328403.29 rows=15579622 width=797) (actual time=146879.165..146891.781 rows=20 loops=1)" " Hash Cond: (t10.company_id = t16.id)" " -> Hash Left Join (cost=5828372.95..10061752.03 rows=15579622 width=755) (actual time=146426.483..146429.756 rows=20 loops=1)" " Hash Cond: (t12.keyword_id = t15.id)" " -> Hash Left Join (cost=5825164.23..6914088.45 rows=15579622 width=731) (actual time=146372.411..146372.529 rows=20 loops=1)" " Hash Cond: (t13.link_type_id = t14.id)" " -> Merge Left Join (cost=5825162.82..6699867.24 rows=15579622 width=715) (actual time=146372.366..146372.472 rows=20 loops=1)" " Merge Cond: (t6.id = t13.linked_movie_id)" " -> Merge Left Join (cost=5684009.29..6378956.77 rows=15579622 width=699) (actual time=144019.620..144019.711 rows=20 loops=1)" " Merge Cond: (t6.id = t12.movie_id)" " -> Merge Left Join (cost=5182403.90..5622400.75 rows=8502523 width=687) (actual time=136849.731..136849.809 rows=20 loops=1)" " Merge Cond: (t6.id = t19.movie_id)" " -> Merge Left Join (cost=4974472.00..5315778.48 rows=8502523 width=637) (actual time=134972.032..134972.099 rows=20 loops=1)" " Merge Cond: (t6.id = t11.movie_id)" " -> Merge Left Join (cost=1830064.81..2033131.89 rows=1341632 width=561) (actual time=63784.035..63784.062 rows=2 loops=1)" " Merge Cond: (t6.id = t10.movie_id)" " -> Nested Loop Left Join (cost=1417360.29..1594294.02 rows=1044480 width=521) (actual time=59279.246..59279.264 rows=1 loops=1)" " Join Filter: (t6.kind_id = t9.id)" " -> Merge Left Join (cost=1417359.22..1429787.34 rows=1044480 width=507) (actual time=59279.222..59279.224 rows=1 loops=1)" " Merge Cond: (t6.id = t8.movie_id)" " -> Merge Left Join (cost=1405731.84..1414378.65 rows=1044480 width=491) (actual time=59121.773..59121.775 rows=1 loops=1)" " Merge Cond: (t6.id = t7.movie_id)" " -> Sort (cost=1346206.04..1348817.24 rows=1044480 width=416) (actual time=58095.230..58095.231 rows=1 loops=1)" " Sort Key: t6.id" " Sort Method: quicksort Memory: 17kB" " -> Hash Left Join (cost=172406.29..456387.53 rows=1044480 width=416) (actual time=57969.371..58095.208 rows=1 loops=1)" " Hash Cond: (t2.movie_id = t6.id)" " -> Hash Left Join (cost=104700.38..256885.82 rows=1044480 width=358) (actual time=49981.493..50006.303 rows=1 loops=1)" " Hash Cond: (t2.role_id = t5.id)" " -> Hash Left Join (cost=104699.11..242522.95 rows=1044480 width=343) (actual time=49981.441..50006.250 rows=1 loops=1)" " Hash Cond: (t2.person_role_id = t4.id)" " -> Hash Left Join (cost=464.96..12283.95 rows=1044480 width=269) (actual time=0.071..0.087 rows=1 loops=1)" " Hash Cond: (n1.id = t3.person_id)" " -> Nested Loop Left Join (cost=0.00..49.39 rows=7680 width=160) (actual time=0.051..0.066 rows=1 loops=1)" " -> Nested Loop Left Join (cost=0.00..17.04 rows=3 width=119) (actual time=0.038..0.041 rows=1 loops=1)" " -> Index Scan using name_pkey on name n1 (cost=0.00..8.68 rows=1 width=39) (actual time=0.022..0.024 rows=1 loops=1)" " Index Cond: (id = 2003)" " -> Index Scan using aka_name_idx_person on aka_name (cost=0.00..8.34 rows=1 width=80) (actual time=0.010..0.010 rows=0 loops=1)" " Index Cond: ((aka_name.person_id = 2003) AND (n1.id = aka_name.person_id))" " -> Index Scan using cast_info_idx_pid on cast_info t2 (cost=0.00..10.77 rows=1 width=41) (actual time=0.011..0.020 rows=1 loops=1)" " Index Cond: ((t2.person_id = 2003) AND (n1.id = t2.person_id))" " -> Hash (cost=463.26..463.26 rows=136 width=109) (actual time=0.010..0.010 rows=0 loops=1)" " -> Index Scan using person_info_idx_pid on person_info t3 (cost=0.00..463.26 rows=136 width=109) (actual time=0.009..0.009 rows=0 loops=1)" " Index Cond: (person_id = 2003)" " -> Hash (cost=42697.62..42697.62 rows=2442362 width=74) (actual time=49305.872..49305.872 rows=2442362 loops=1)" " -> Seq Scan on char_name t4 (cost=0.00..42697.62 rows=2442362 width=74) (actual time=14.066..22775.087 rows=2442362 loops=1)" " -> Hash (cost=1.12..1.12 rows=12 width=15) (actual time=0.024..0.024 rows=12 loops=1)" " -> Seq Scan on role_type t5 (cost=0.00..1.12 rows=12 width=15) (actual time=0.012..0.014 rows=12 loops=1)" " -> Hash (cost=31134.07..31134.07 rows=1573507 width=58) (actual time=7841.225..7841.225 rows=1573507 loops=1)" " -> Seq Scan on title t6 (cost=0.00..31134.07 rows=1573507 width=58) (actual time=21.507..2799.443 rows=1573507 loops=1)" " -> Materialize (cost=59525.80..63203.88 rows=294246 width=75) (actual time=812.376..984.958 rows=192075 loops=1)" " -> Sort (cost=59525.80..60261.42 rows=294246 width=75) (actual time=812.363..922.452 rows=192075 loops=1)" " Sort Key: t7.movie_id" " Sort Method: external merge Disk: 24880kB" " -> Seq Scan on aka_title t7 (cost=0.00..6646.46 rows=294246 width=75) (actual time=24.652..164.822 rows=294246 loops=1)" " -> Materialize (cost=11627.38..12884.43 rows=100564 width=16) (actual time=123.819..149.086 rows=41907 loops=1)" " -> Sort (cost=11627.38..11878.79 rows=100564 width=16) (actual time=123.807..138.530 rows=41907 loops=1)" " Sort Key: t8.movie_id" " Sort Method: external merge Disk: 3136kB" " -> Seq Scan on complete_cast t8 (cost=0.00..1549.64 rows=100564 width=16) (actual time=0.013..10.744 rows=100564 loops=1)" " -> Materialize (cost=1.08..1.15 rows=7 width=14) (actual time=0.016..0.029 rows=7 loops=1)" " -> Seq Scan on kind_type t9 (cost=0.00..1.07 rows=7 width=14) (actual time=0.011..0.013 rows=7 loops=1)" " -> Materialize (cost=412704.52..437969.09 rows=2021166 width=40) (actual time=3420.356..4278.545 rows=1028995 loops=1)" " -> Sort (cost=412704.52..417757.43 rows=2021166 width=40) (actual time=3420.349..3953.483 rows=1028995 loops=1)" " Sort Key: t10.movie_id" " Sort Method: external merge Disk: 90960kB" " -> Seq Scan on movie_companies t10 (cost=0.00..35214.66 rows=2021166 width=40) (actual time=13.271..566.893 rows=2021166 loops=1)" " -> Materialize (cost=3144407.19..3269057.42 rows=9972019 width=76) (actual time=65485.672..70083.219 rows=5039009 loops=1)" " -> Sort (cost=3144407.19..3169337.23 rows=9972019 width=76) (actual time=65485.667..68385.550 rows=5038999 loops=1)" " Sort Key: t11.movie_id" " Sort Method: external merge Disk: 735512kB" " -> Seq Scan on movie_info t11 (cost=0.00..212815.19 rows=9972019 width=76) (actual time=15.750..15715.608 rows=9972019 loops=1)" " -> Materialize (cost=207925.01..219867.92 rows=955433 width=50) (actual time=1483.989..1785.636 rows=429401 loops=1)" " -> Sort (cost=207925.01..210313.59 rows=955433 width=50) (actual time=1483.983..1654.165 rows=429401 loops=1)" " Sort Key: t19.movie_id" " Sort Method: external merge Disk: 31720kB" " -> Seq Scan on movie_info_idx t19 (cost=0.00..15047.33 rows=955433 width=50) (actual time=7.284..221.597 rows=955433 loops=1)" " -> Materialize (cost=501605.39..537645.64 rows=2883220 width=12) (actual time=5823.040..6868.242 rows=1597396 loops=1)" " -> Sort (cost=501605.39..508813.44 rows=2883220 width=12) (actual time=5823.026..6477.517 rows=1597396 loops=1)" " Sort Key: t12.movie_id" " Sort Method: external merge Disk: 78888kB" " -> Seq Scan on movie_keyword t12 (cost=0.00..44417.20 rows=2883220 width=12) (actual time=11.672..839.498 rows=2883220 loops=1)" " -> Materialize (cost=141143.93..152995.81 rows=948150 width=16) (actual time=1916.356..2253.004 rows=478358 loops=1)" " -> Sort (cost=141143.93..143514.31 rows=948150 width=16) (actual time=1916.344..2125.698 rows=478358 loops=1)" " Sort Key: t13.linked_movie_id" " Sort Method: external merge Disk: 29632kB" " -> Seq Scan on movie_link t13 (cost=0.00..14607.50 rows=948150 width=16) (actual time=27.610..297.962 rows=948150 loops=1)" " -> Hash (cost=1.18..1.18 rows=18 width=16) (actual time=0.020..0.020 rows=18 loops=1)" " -> Seq Scan on link_type t14 (cost=0.00..1.18 rows=18 width=16) (actual time=0.010..0.012 rows=18 loops=1)" " -> Hash (cost=1537.10..1537.10 rows=91010 width=24) (actual time=54.055..54.055 rows=91010 loops=1)" " -> Seq Scan on keyword t15 (cost=0.00..1537.10 rows=91010 width=24) (actual time=0.006..14.703 rows=91010 loops=1)" " -> Hash (cost=4585.61..4585.61 rows=245461 width=42) (actual time=445.269..445.269 rows=245461 loops=1)" " -> Seq Scan on company_name t16 (cost=0.00..4585.61 rows=245461 width=42) (actual time=12.037..309.961 rows=245461 loops=1)" " -> Hash (cost=1.04..1.04 rows=4 width=25) (actual time=0.013..0.013 rows=4 loops=1)" " -> Seq Scan on company_type t17 (cost=0.00..1.04 rows=4 width=25) (actual time=0.009..0.010 rows=4 loops=1)" " -> Hash (cost=1.04..1.04 rows=4 width=13) (actual time=0.006..0.006 rows=4 loops=1)" " -> Seq Scan on comp_cast_type t18 (cost=0.00..1.04 rows=4 width=13) (actual time=0.002..0.003 rows=4 loops=1)" "Total runtime: 147055.016 ms" Is there anyway to force the name.id = 2003 before it tries to join all the tables together? As you can see, the end result is 4 tuples but it seems like it should be a fast join by using the available index after it limited it down with the name clause, although very complex.

    Read the article

  • Error "Input length must be multiple of 8 when decrypting with padded cipher"

    - by Ross Peoples
    I am trying to move a project from C# to Java for a learning exercise. I am still very new to Java, but I have a TripleDES class in C# that encrypts strings and returns a string value of the encrypted byte array. Here is my C# code: using System; using System.IO; using System.Collections.Generic; using System.Security.Cryptography; using System.Text; namespace tDocc.Classes { /// <summary> /// Triple DES encryption class /// </summary> public static class TripleDES { private static byte[] key = { 110, 32, 73, 24, 125, 66, 75, 18, 79, 150, 211, 122, 213, 14, 156, 136, 171, 218, 119, 240, 81, 142, 23, 4 }; private static byte[] iv = { 25, 117, 68, 23, 99, 78, 231, 219 }; /// <summary> /// Encrypt a string to an encrypted byte array /// </summary> /// <param name="plainText">Text to encrypt</param> /// <returns>Encrypted byte array</returns> public static byte[] Encrypt(string plainText) { UTF8Encoding utf8encoder = new UTF8Encoding(); byte[] inputInBytes = utf8encoder.GetBytes(plainText); TripleDESCryptoServiceProvider tdesProvider = new TripleDESCryptoServiceProvider(); ICryptoTransform cryptoTransform = tdesProvider.CreateEncryptor(key, iv); MemoryStream encryptedStream = new MemoryStream(); CryptoStream cryptStream = new CryptoStream(encryptedStream, cryptoTransform, CryptoStreamMode.Write); cryptStream.Write(inputInBytes, 0, inputInBytes.Length); cryptStream.FlushFinalBlock(); encryptedStream.Position = 0; byte[] result = new byte[encryptedStream.Length]; encryptedStream.Read(result, 0, (int)encryptedStream.Length); cryptStream.Close(); return result; } /// <summary> /// Decrypt a byte array to a string /// </summary> /// <param name="inputInBytes">Encrypted byte array</param> /// <returns>Decrypted string</returns> public static string Decrypt(byte[] inputInBytes) { UTF8Encoding utf8encoder = new UTF8Encoding(); TripleDESCryptoServiceProvider tdesProvider = new TripleDESCryptoServiceProvider(); ICryptoTransform cryptoTransform = tdesProvider.CreateDecryptor(key, iv); MemoryStream decryptedStream = new MemoryStream(); CryptoStream cryptStream = new CryptoStream(decryptedStream, cryptoTransform, CryptoStreamMode.Write); cryptStream.Write(inputInBytes, 0, inputInBytes.Length); cryptStream.FlushFinalBlock(); decryptedStream.Position = 0; byte[] result = new byte[decryptedStream.Length]; decryptedStream.Read(result, 0, (int)decryptedStream.Length); cryptStream.Close(); UTF8Encoding myutf = new UTF8Encoding(); return myutf.GetString(result); } /// <summary> /// Decrypt an encrypted string /// </summary> /// <param name="text">Encrypted text</param> /// <returns>Decrypted string</returns> public static string DecryptText(string text) { if (text == "") { return text; } return Decrypt(Convert.FromBase64String(text)); } /// <summary> /// Encrypt a string /// </summary> /// <param name="text">Unencrypted text</param> /// <returns>Encrypted string</returns> public static string EncryptText(string text) { if (text == "") { return text; } return Convert.ToBase64String(Encrypt(text)); } } /// <summary> /// Random number generator /// </summary> public static class RandomGenerator { /// <summary> /// Generate random number /// </summary> /// <param name="length">Number of randomizations</param> /// <returns>Random number</returns> public static int GenerateNumber(int length) { byte[] randomSeq = new byte[length]; new RNGCryptoServiceProvider().GetBytes(randomSeq); int code = Environment.TickCount; foreach (byte b in randomSeq) { code += (int)b; } return code; } } /// <summary> /// Hash generator class /// </summary> public static class Hasher { /// <summary> /// Hash type /// </summary> public enum eHashType { /// <summary> /// MD5 hash. Quick but collisions are more likely. This should not be used for anything important /// </summary> MD5 = 0, /// <summary> /// SHA1 hash. Quick and secure. This is a popular method for hashing passwords /// </summary> SHA1 = 1, /// <summary> /// SHA256 hash. Slower than SHA1, but more secure. Used for encryption keys /// </summary> SHA256 = 2, /// <summary> /// SHA348 hash. Even slower than SHA256, but offers more security /// </summary> SHA348 = 3, /// <summary> /// SHA512 hash. Slowest but most secure. Probably overkill for most applications /// </summary> SHA512 = 4, /// <summary> /// Derrived from MD5, but only returns 12 digits /// </summary> Digit12 = 5 } /// <summary> /// Hashes text using a specific hashing method /// </summary> /// <param name="text">Input text</param> /// <param name="hash">Hash method</param> /// <returns>Hashed text</returns> public static string GetHash(string text, eHashType hash) { if (text == "") { return text; } if (hash == eHashType.MD5) { MD5CryptoServiceProvider hasher = new MD5CryptoServiceProvider(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.SHA1) { SHA1Managed hasher = new SHA1Managed(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.SHA256) { SHA256Managed hasher = new SHA256Managed(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.SHA348) { SHA384Managed hasher = new SHA384Managed(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.SHA512) { SHA512Managed hasher = new SHA512Managed(); return ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); } else if (hash == eHashType.Digit12) { MD5CryptoServiceProvider hasher = new MD5CryptoServiceProvider(); string newHash = ByteToHex(hasher.ComputeHash(Encoding.ASCII.GetBytes(text))); return newHash.Substring(0, 12); } return ""; } /// <summary> /// Generates a hash based on a file's contents. Used for detecting changes to a file and testing for duplicate files /// </summary> /// <param name="info">FileInfo object for the file to be hashed</param> /// <param name="hash">Hash method</param> /// <returns>Hash string representing the contents of the file</returns> public static string GetHash(FileInfo info, eHashType hash) { FileStream hashStream = new FileStream(info.FullName, FileMode.Open, FileAccess.Read); string hashString = ""; if (hash == eHashType.MD5) { MD5CryptoServiceProvider hasher = new MD5CryptoServiceProvider(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } else if (hash == eHashType.SHA1) { SHA1Managed hasher = new SHA1Managed(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } else if (hash == eHashType.SHA256) { SHA256Managed hasher = new SHA256Managed(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } else if (hash == eHashType.SHA348) { SHA384Managed hasher = new SHA384Managed(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } else if (hash == eHashType.SHA512) { SHA512Managed hasher = new SHA512Managed(); hashString = ByteToHex(hasher.ComputeHash(hashStream)); } hashStream.Close(); hashStream.Dispose(); hashStream = null; return hashString; } /// <summary> /// Converts a byte array to a hex string /// </summary> /// <param name="data">Byte array</param> /// <returns>Hex string</returns> public static string ByteToHex(byte[] data) { StringBuilder builder = new StringBuilder(); foreach (byte hashByte in data) { builder.Append(string.Format("{0:X1}", hashByte)); } return builder.ToString(); } /// <summary> /// Converts a hex string to a byte array /// </summary> /// <param name="hexString">Hex string</param> /// <returns>Byte array</returns> public static byte[] HexToByte(string hexString) { byte[] returnBytes = new byte[hexString.Length / 2]; for (int i = 0; i <= returnBytes.Length - 1; i++) { returnBytes[i] = byte.Parse(hexString.Substring(i * 2, 2), System.Globalization.NumberStyles.HexNumber); } return returnBytes; } } } And her is what I've got for Java code so far, but I'm getting the error "Input length must be multiple of 8 when decrypting with padded cipher" when I run the test on this: import java.security.InvalidAlgorithmParameterException; import java.security.InvalidKeyException; import javax.crypto.Cipher; import javax.crypto.NoSuchPaddingException; import javax.crypto.SecretKey; import javax.crypto.spec.IvParameterSpec; import javax.crypto.spec.SecretKeySpec; import com.tdocc.utils.Base64; public class TripleDES { private static byte[] keyBytes = { 110, 32, 73, 24, 125, 66, 75, 18, 79, (byte)150, (byte)211, 122, (byte)213, 14, (byte)156, (byte)136, (byte)171, (byte)218, 119, (byte)240, 81, (byte)142, 23, 4 }; private static byte[] ivBytes = { 25, 117, 68, 23, 99, 78, (byte)231, (byte)219 }; public static String encryptText(String plainText) { try { if (plainText.isEmpty()) return plainText; return Base64.decode(TripleDES.encrypt(plainText)).toString(); } catch (Exception e) { e.printStackTrace(); } return null; } public static byte[] encrypt(String plainText) throws InvalidKeyException, InvalidAlgorithmParameterException, NoSuchPaddingException { try { final SecretKey key = new SecretKeySpec(keyBytes, "DESede"); final IvParameterSpec iv = new IvParameterSpec(ivBytes); final Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding"); cipher.init(Cipher.ENCRYPT_MODE, key, iv); final byte[] plainTextBytes = plainText.getBytes("utf-8"); final byte[] cipherText = cipher.doFinal(plainTextBytes); return cipherText; } catch (Exception e) { e.printStackTrace(); } return null; } public static String decryptText(String message) { try { if (message.isEmpty()) return message; else return TripleDES.decrypt(message.getBytes()); } catch (Exception e) { e.printStackTrace(); } return null; } public static String decrypt(byte[] message) { try { final SecretKey key = new SecretKeySpec(keyBytes, "DESede"); final IvParameterSpec iv = new IvParameterSpec(ivBytes); final Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding"); cipher.init(Cipher.DECRYPT_MODE, key, iv); final byte[] plainText = cipher.doFinal(message); return plainText.toString(); } catch (Exception e) { e.printStackTrace(); } return null; } }

    Read the article

  • Asp.net Custom user control button. How to stop multiple clicks by user.

    - by Laurence Burke
    I am trying to modify an open source Forum called YetAnotherForum.net in the project they have a custom user control called Yaf:ThemeButton. Now its rendered as an anchor with an onclick method in this code ThemeButton.cs using System; using System.Web.UI; using System.Web.UI.WebControls; namespace YAF.Controls { /// <summary> /// The theme button. /// </summary> public class ThemeButton : BaseControl, IPostBackEventHandler { /// <summary> /// The _click event. /// </summary> protected static object _clickEvent = new object(); /// <summary> /// The _command event. /// </summary> protected static object _commandEvent = new object(); /// <summary> /// The _attribute collection. /// </summary> protected AttributeCollection _attributeCollection; /// <summary> /// The _localized label. /// </summary> protected LocalizedLabel _localizedLabel = new LocalizedLabel(); /// <summary> /// The _theme image. /// </summary> protected ThemeImage _themeImage = new ThemeImage(); /// <summary> /// Initializes a new instance of the <see cref="ThemeButton"/> class. /// </summary> public ThemeButton() : base() { Load += new EventHandler(ThemeButton_Load); this._attributeCollection = new AttributeCollection(ViewState); } /// <summary> /// ThemePage for the optional button image /// </summary> public string ImageThemePage { get { return this._themeImage.ThemePage; } set { this._themeImage.ThemePage = value; } } /// <summary> /// ThemeTag for the optional button image /// </summary> public string ImageThemeTag { get { return this._themeImage.ThemeTag; } set { this._themeImage.ThemeTag = value; } } /// <summary> /// Localized Page for the optional button text /// </summary> public string TextLocalizedPage { get { return this._localizedLabel.LocalizedPage; } set { this._localizedLabel.LocalizedPage = value; } } /// <summary> /// Localized Tag for the optional button text /// </summary> public string TextLocalizedTag { get { return this._localizedLabel.LocalizedTag; } set { this._localizedLabel.LocalizedTag = value; } } /// <summary> /// Defaults to "yafcssbutton" /// </summary> public string CssClass { get { return (ViewState["CssClass"] != null) ? ViewState["CssClass"] as string : "yafcssbutton"; } set { ViewState["CssClass"] = value; } } /// <summary> /// Setting the link property will make this control non-postback. /// </summary> public string NavigateUrl { get { return (ViewState["NavigateUrl"] != null) ? ViewState["NavigateUrl"] as string : string.Empty; } set { ViewState["NavigateUrl"] = value; } } /// <summary> /// Localized Page for the optional link description (title) /// </summary> public string TitleLocalizedPage { get { return (ViewState["TitleLocalizedPage"] != null) ? ViewState["TitleLocalizedPage"] as string : "BUTTON"; } set { ViewState["TitleLocalizedPage"] = value; } } /// <summary> /// Localized Tag for the optional link description (title) /// </summary> public string TitleLocalizedTag { get { return (ViewState["TitleLocalizedTag"] != null) ? ViewState["TitleLocalizedTag"] as string : string.Empty; } set { ViewState["TitleLocalizedTag"] = value; } } /// <summary> /// Non-localized Title for optional link description /// </summary> public string TitleNonLocalized { get { return (ViewState["TitleNonLocalized"] != null) ? ViewState["TitleNonLocalized"] as string : string.Empty; } set { ViewState["TitleNonLocalized"] = value; } } /// <summary> /// Gets Attributes. /// </summary> public AttributeCollection Attributes { get { return this._attributeCollection; } } /// <summary> /// Gets or sets CommandName. /// </summary> public string CommandName { get { if (ViewState["commandName"] != null) { return ViewState["commandName"].ToString(); } return null; } set { ViewState["commandName"] = value; } } /// <summary> /// Gets or sets CommandArgument. /// </summary> public string CommandArgument { get { if (ViewState["commandArgument"] != null) { return ViewState["commandArgument"].ToString(); } return null; } set { ViewState["commandArgument"] = value; } } #region IPostBackEventHandler Members /// <summary> /// The i post back event handler. raise post back event. /// </summary> /// <param name="eventArgument"> /// The event argument. /// </param> void IPostBackEventHandler.RaisePostBackEvent(string eventArgument) { OnCommand(new CommandEventArgs(CommandName, CommandArgument)); OnClick(EventArgs.Empty); } #endregion /// <summary> /// Setup the controls before render /// </summary> /// <param name="sender"> /// </param> /// <param name="e"> /// </param> private void ThemeButton_Load(object sender, EventArgs e) { if (!String.IsNullOrEmpty(this._themeImage.ThemeTag)) { // add the theme image... Controls.Add(this._themeImage); } // render the text if available if (!String.IsNullOrEmpty(this._localizedLabel.LocalizedTag)) { Controls.Add(this._localizedLabel); } } /// <summary> /// The render. /// </summary> /// <param name="output"> /// The output. /// </param> protected override void Render(HtmlTextWriter output) { // get the title... string title = GetLocalizedTitle(); output.BeginRender(); output.WriteBeginTag("a"); output.WriteAttribute("id", ClientID); if (!String.IsNullOrEmpty(CssClass)) { output.WriteAttribute("class", CssClass); } if (!String.IsNullOrEmpty(title)) { output.WriteAttribute("title", title); } else if (!String.IsNullOrEmpty(TitleNonLocalized)) { output.WriteAttribute("title", TitleNonLocalized); } if (!String.IsNullOrEmpty(NavigateUrl)) { output.WriteAttribute("href", NavigateUrl.Replace("&", "&amp;")); } else { // string.Format("javascript:__doPostBack('{0}','{1}')",this.ClientID,"")); output.WriteAttribute("href", Page.ClientScript.GetPostBackClientHyperlink(this, string.Empty)); } bool wroteOnClick = false; // handle additional attributes (if any) if (this._attributeCollection.Count > 0) { // add attributes... foreach (string key in this._attributeCollection.Keys) { // get the attribute and write it... if (key.ToLower() == "onclick") { // special handling... add to it... output.WriteAttribute(key, string.Format("{0};{1}", this._attributeCollection[key], "this.blur();this.display='none';")); wroteOnClick = true; } else if (key.ToLower().StartsWith("on") || key.ToLower() == "rel" || key.ToLower() == "target") { // only write javascript attributes -- and a few other attributes... output.WriteAttribute(key, this._attributeCollection[key]); } } } // IE fix if (!wroteOnClick) { output.WriteAttribute("onclick", "this.blur();this.style.display='none';"); } output.Write(HtmlTextWriter.TagRightChar); output.WriteBeginTag("span"); output.Write(HtmlTextWriter.TagRightChar); // render the optional controls (if any) base.Render(output); output.WriteEndTag("span"); output.WriteEndTag("a"); output.EndRender(); } /// <summary> /// The get localized title. /// </summary> /// <returns> /// The get localized title. /// </returns> protected string GetLocalizedTitle() { if (Site != null && Site.DesignMode == true && !String.IsNullOrEmpty(TitleLocalizedTag)) { return String.Format("[TITLE:{0}]", TitleLocalizedTag); } else if (!String.IsNullOrEmpty(TitleLocalizedPage) && !String.IsNullOrEmpty(TitleLocalizedTag)) { return PageContext.Localization.GetText(TitleLocalizedPage, TitleLocalizedTag); } else if (!String.IsNullOrEmpty(TitleLocalizedTag)) { return PageContext.Localization.GetText(TitleLocalizedTag); } return null; } /// <summary> /// The on click. /// </summary> /// <param name="e"> /// The e. /// </param> protected virtual void OnClick(EventArgs e) { var handler = (EventHandler) Events[_clickEvent]; if (handler != null) { handler(this, e); } } /// <summary> /// The on command. /// </summary> /// <param name="e"> /// The e. /// </param> protected virtual void OnCommand(CommandEventArgs e) { var handler = (CommandEventHandler) Events[_commandEvent]; if (handler != null) { handler(this, e); } RaiseBubbleEvent(this, e); } /// <summary> /// The click. /// </summary> public event EventHandler Click { add { Events.AddHandler(_clickEvent, value); } remove { Events.RemoveHandler(_clickEvent, value); } } /// <summary> /// The command. /// </summary> public event CommandEventHandler Command { add { Events.AddHandler(_commandEvent, value); } remove { Events.RemoveHandler(_commandEvent, value); } } } } now that is just cs file its handled like this in the .ascx page of the actual website <YAF:ThemeButton ID="Save" runat="server" CssClass="yafcssbigbutton leftItem" TextLocalizedTag="SAVE" OnClick="Save_Click" /> now it is given an OnClick codebehind function that does some serverside function like this protected void Save_Click(object sender, EventArgs e) { //some serverside code here } now I have a problem with the user being able to click multiple times and firing that serverside function multiple times. I have added in the code as of right now an extra onclick="this.style.display='none'" in the .cs code but that is a ugly fix I was wondering if anyone would have a better idea of disabling the ThemeButton clientside?? pls any feedback if I need to give more examples or further explain the question thanks.

    Read the article

  • WPF Custom ListBox as Buttons Click not firing

    - by Ryan
    I am attempting to have a ListBox of TextBoxes with click events. I have read that one way to achieve this was to have a list of Buttons and call ButtonBase.Click="" on the ListBox. This was not working. Any advice as to how I would hook up a click event to the listbox items? Thanks <Window.Resources> <ControlTemplate x:Key="MouseOverFocusTemplate" > <Grid> <Grid.RowDefinitions> <RowDefinition Height="55*" /> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" /> <ColumnDefinition Width="*" /> </Grid.ColumnDefinitions> <TextBox Width="290" TextAlignment="Left" VerticalContentAlignment="Center" BorderThickness="0" BorderBrush="Transparent" Foreground="#FF6FB8FD" FontSize="24" TextWrapping="Wrap" Text="{Binding .}" Grid.Column="1" Grid.Row="1" MinHeight="55" Cursor="Hand" IsReadOnly="True" FontFamily="Arial" > <TextBox.Background> <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0"> <GradientStop Color="#FF013B73" Offset="0.501"/> <GradientStop Color="#FF091F34"/> <GradientStop Color="#FF014A8F" Offset="0.5"/> <GradientStop Color="#FF003363" Offset="1"/> </LinearGradientBrush> </TextBox.Background> </TextBox> </Grid> </ControlTemplate> <Style x:Key="MouseOverFocusStyle" TargetType="{x:Type TextBox}"> <Setter Property="Template" Value="{StaticResource MouseOverFocusTemplate}"/> </Style> <ControlTemplate x:Key="LostFocusTemplate" > <Grid> <Grid.RowDefinitions> <RowDefinition Height="55*" /> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" /> <ColumnDefinition Width="*" /> </Grid.ColumnDefinitions> <TextBox Width="290" TextAlignment="Left" VerticalContentAlignment="Center" BorderThickness="0" BorderBrush="Transparent" Foreground="#FF6FB8FD" FontSize="24" TextWrapping="Wrap" Text="{Binding .}" Grid.Column="1" Grid.Row="1" MinHeight="55" Cursor="Hand" IsReadOnly="True" FontFamily="Arial" > <TextBox.Background> <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <ScaleTransform CenterX="0.5" CenterY="0.5"/> <SkewTransform CenterX="0.5" CenterY="0.5"/> <RotateTransform CenterX="0.5" CenterY="0.5"/> <TranslateTransform/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <GradientStop Color="#FF091F34" Offset="1"/> <GradientStop Color="#FF002F5C" Offset="0.4"/> </LinearGradientBrush> </TextBox.Background> </TextBox> </Grid> </ControlTemplate> <Style x:Key="LostFocusStyle" TargetType="{x:Type TextBox}"> <Setter Property="Template" Value="{StaticResource LostFocusTemplate}"/> </Style> <ControlTemplate x:Key="GotFocusTemplate" > <Grid> <Grid.RowDefinitions> <RowDefinition Height="55*" /> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" /> <ColumnDefinition Width="*" /> </Grid.ColumnDefinitions> <TextBox Width="290" TextAlignment="Left" VerticalContentAlignment="Center" BorderThickness="0" BorderBrush="Transparent" Foreground="#FFE38E27" FontSize="24" TextWrapping="Wrap" Text="{Binding .}" Grid.Column="1" Grid.Row="1" MinHeight="55" Cursor="Hand" IsReadOnly="True" FontFamily="Arial" > <TextBox.Background> <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0"> <GradientStop Color="Black" Offset="0.501"/> <GradientStop Color="#FF091F34"/> <GradientStop Color="#FF002F5C" Offset="0.5"/> </LinearGradientBrush> </TextBox.Background> </TextBox> </Grid> </ControlTemplate> <Style x:Key="GotFocusStyle" TargetType="{x:Type TextBox}"> <Setter Property="Template" Value="{StaticResource GotFocusTemplate}"/> </Style> <Style TargetType="{x:Type Button}" x:Key="listButton"> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="Button"> <Border BorderBrush="Black" BorderThickness="1" Margin="-2,0,0,-1"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="55*" /> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" /> <ColumnDefinition Width="*" /> </Grid.ColumnDefinitions> <Grid.RenderTransform> <TransformGroup> <ScaleTransform ScaleX="1" ScaleY="1"/> <SkewTransform AngleX="0" AngleY="0"/> <RotateTransform Angle="0"/> <TranslateTransform X="0" Y="0"/> </TransformGroup> </Grid.RenderTransform> <!--<ScrollViewer x:Name="PART_ContentHost" />--> <TextBox Width="290" TextAlignment="Left" VerticalContentAlignment="Center" BorderThickness="0" BorderBrush="Transparent" Foreground="#FF6FB8FD" FontSize="24" Style="{StaticResource LostFocusStyle}" TextWrapping="Wrap" Text="{Binding .}" Grid.Column="1" Grid.Row="1" MinHeight="55" Cursor="Hand" IsReadOnly="True" FontFamily="Arial" Name="bar" > <TextBox.Background> <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <ScaleTransform CenterX="0.5" CenterY="0.5"/> <SkewTransform CenterX="0.5" CenterY="0.5"/> <RotateTransform CenterX="0.5" CenterY="0.5"/> <TranslateTransform/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <GradientStop Color="#FF091F34" Offset="1"/> <GradientStop Color="#FF002F5C" Offset="0.4"/> </LinearGradientBrush> </TextBox.Background> </TextBox> </Grid> </Border> <ControlTemplate.Triggers> <Trigger Property="IsMouseOver" Value="true"> <Setter TargetName="bar" Property="Style" Value="{StaticResource MouseOverFocusStyle}" /> </Trigger> </ControlTemplate.Triggers> </ControlTemplate> </Setter.Value> </Setter> </Style> <DataTemplate x:Key="CustomListData" DataType="{x:Type ListBoxItem}"> <Button Style="{StaticResource listButton}" /> </DataTemplate> </Window.Resources> <Window.DataContext> <ObjectDataProvider ObjectType="{x:Type local:ImageLoader}" MethodName="LoadImages" /> </Window.DataContext> <ListBox ItemsSource="{Binding}" Width="320" Background="#FF021422" BorderBrush="#FF1C4B79"> <ListBox.Resources> <SolidColorBrush x:Key="{x:Static SystemColors.HighlightBrushKey}">Transparent</SolidColorBrush> <Style TargetType="{x:Type ListBox}"> <Setter Property="ItemTemplate" Value="{StaticResource CustomListData }" /> <Setter Property="ScrollViewer.HorizontalScrollBarVisibility" Value="Disabled" /> </Style> </ListBox.Resources> </ListBox>

    Read the article

  • How do you convert a parent-child (adjacency) table to a nested set using PHP and MySQL?

    - by mrbinky3000
    I've spent the last few hours trying to find the solution to this question online. I've found plenty of examples on how to convert from nested set to adjacency... but few that go the other way around. The examples I have found either don't work or use MySQL procedures. Unfortunately, I can't use procedures for this project. I need a pure PHP solution. I have a table that uses the adjacency model below: id parent_id category 1 0 ROOT_NODE 2 1 Books 3 1 CD's 4 1 Magazines 5 2 Books/Hardcover 6 2 Books/Large Format 7 4 Magazines/Vintage And I would like to convert it to a Nested Set table below: id left right category 1 1 14 Root Node 2 2 7 Books 3 3 4 Books/Hardcover 4 5 6 Books/Large Format 5 8 9 CD's 6 10 13 Magazines 7 11 12 Magazines/Vintage Here is an image of what I need: I have a function, based on the pseudo code from this forum post (http://www.sitepoint.com/forums/showthread.php?t=320444) but it doesn't work. I get multiple rows that have the same value for left. This should not happen. <?php /** -- -- Table structure for table `adjacent_table` -- CREATE TABLE IF NOT EXISTS `adjacent_table` ( `id` int(11) NOT NULL AUTO_INCREMENT, `father_id` int(11) DEFAULT NULL, `category` varchar(128) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; -- -- Dumping data for table `adjacent_table` -- INSERT INTO `adjacent_table` (`id`, `father_id`, `category`) VALUES (1, 0, 'ROOT'), (2, 1, 'Books'), (3, 1, 'CD''s'), (4, 1, 'Magazines'), (5, 2, 'Hard Cover'), (6, 2, 'Large Format'), (7, 4, 'Vintage'); -- -- Table structure for table `nested_table` -- CREATE TABLE IF NOT EXISTS `nested_table` ( `id` int(11) NOT NULL AUTO_INCREMENT, `lft` int(11) DEFAULT NULL, `rgt` int(11) DEFAULT NULL, `category` varchar(128) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ; */ mysql_connect('localhost','USER','PASSWORD') or die(mysql_error()); mysql_select_db('DATABASE') or die(mysql_error()); adjacent_to_nested(0); /** * adjacent_to_nested * * Reads a "adjacent model" table and converts it to a "Nested Set" table. * @param integer $i_id Should be the id of the "root node" in the adjacent table; * @param integer $i_left Should only be used on recursive calls. Holds the current value for lft */ function adjacent_to_nested($i_id, $i_left = 0) { // the right value of this node is the left value + 1 $i_right = $i_left + 1; // get all children of this node $a_children = get_source_children($i_id); foreach ($a_children as $a) { // recursive execution of this function for each child of this node // $i_right is the current right value, which is incremented by the // import_from_dc_link_category method $i_right = adjacent_to_nested($a['id'], $i_right); // insert stuff into the our new "Nested Sets" table $s_query = " INSERT INTO `nested_table` (`id`, `lft`, `rgt`, `category`) VALUES( NULL, '".$i_left."', '".$i_right."', '".mysql_real_escape_string($a['category'])."' ) "; if (!mysql_query($s_query)) { echo "<pre>$s_query</pre>\n"; throw new Exception(mysql_error()); } echo "<p>$s_query</p>\n"; // get the newly created row id $i_new_nested_id = mysql_insert_id(); } return $i_right + 1; } /** * get_source_children * * Examines the "adjacent" table and finds all the immediate children of a node * @param integer $i_id The unique id for a node in the adjacent_table table * @return array Returns an array of results or an empty array if no results. */ function get_source_children($i_id) { $a_return = array(); $s_query = "SELECT * FROM `adjacent_table` WHERE `father_id` = '".$i_id."'"; if (!$i_result = mysql_query($s_query)) { echo "<pre>$s_query</pre>\n"; throw new Exception(mysql_error()); } if (mysql_num_rows($i_result) > 0) { while($a = mysql_fetch_assoc($i_result)) { $a_return[] = $a; } } return $a_return; } ?> This is the output of the above script. INSERT INTO nested_table (id, lft, rgt, category) VALUES( NULL, '2', '5', 'Hard Cover' ) INSERT INTO nested_table (id, lft, rgt, category) VALUES( NULL, '2', '7', 'Large Format' ) INSERT INTO nested_table (id, lft, rgt, category) VALUES( NULL, '1', '8', 'Books' ) INSERT INTO nested_table (id, lft, rgt, category) VALUES( NULL, '1', '10', 'CD\'s' ) INSERT INTO nested_table (id, lft, rgt, category) VALUES( NULL, '10', '13', 'Vintage' ) INSERT INTO nested_table (id, lft, rgt, category) VALUES( NULL, '1', '14', 'Magazines' ) INSERT INTO nested_table (id, lft, rgt, category) VALUES( NULL, '0', '15', 'ROOT' ) As you can see, there are multiple rows sharing the lft value of "1" same goes for "2" In a nested-set, the values for left and right must be unique. Here is an example of how to manually number the left and right ID's in a nested set: UPDATE - PROBLEM SOLVED First off, I had mistakenly believed that the source table (the one in adjacent-lists format) needed to be altered to include a source node. This is not the case. Secondly, I found a cached page on BING (of all places) with a class that does the trick. I've altered it for PHP5 and converted the original author's mysql related bits to basic PHP. He was using some DB class. You can convert them to your own database abstraction class later if you want. Obviously, if your "source table" has other columns that you want to move to the nested set table, you will have to adjust the write method in the class below. Hopefully this will save someone else from the same problems in the future. <?php /** -- -- Table structure for table `adjacent_table` -- DROP TABLE IF EXISTS `adjacent_table`; CREATE TABLE IF NOT EXISTS `adjacent_table` ( `id` int(11) NOT NULL AUTO_INCREMENT, `father_id` int(11) DEFAULT NULL, `category` varchar(128) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; -- -- Dumping data for table `adjacent_table` -- INSERT INTO `adjacent_table` (`id`, `father_id`, `category`) VALUES (1, 0, 'Books'), (2, 0, 'CD''s'), (3, 0, 'Magazines'), (4, 1, 'Hard Cover'), (5, 1, 'Large Format'), (6, 3, 'Vintage'); -- -- Table structure for table `nested_table` -- DROP TABLE IF EXISTS `nested_table`; CREATE TABLE IF NOT EXISTS `nested_table` ( `lft` int(11) NOT NULL DEFAULT '0', `rgt` int(11) DEFAULT NULL, `id` int(11) DEFAULT NULL, `category` varchar(128) DEFAULT NULL, PRIMARY KEY (`lft`), UNIQUE KEY `id` (`id`), UNIQUE KEY `rgt` (`rgt`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1; */ /** * @class tree_transformer * @author Paul Houle, Matthew Toledo * @created 2008-11-04 * @url http://gen5.info/q/2008/11/04/nested-sets-php-verb-objects-and-noun-objects/ */ class tree_transformer { private $i_count; private $a_link; public function __construct($a_link) { if(!is_array($a_link)) throw new Exception("First parameter should be an array. Instead, it was type '".gettype($a_link)."'"); $this->i_count = 1; $this->a_link= $a_link; } public function traverse($i_id) { $i_lft = $this->i_count; $this->i_count++; $a_kid = $this->get_children($i_id); if ($a_kid) { foreach($a_kid as $a_child) { $this->traverse($a_child); } } $i_rgt=$this->i_count; $this->i_count++; $this->write($i_lft,$i_rgt,$i_id); } private function get_children($i_id) { return $this->a_link[$i_id]; } private function write($i_lft,$i_rgt,$i_id) { // fetch the source column $s_query = "SELECT * FROM `adjacent_table` WHERE `id` = '".$i_id."'"; if (!$i_result = mysql_query($s_query)) { echo "<pre>$s_query</pre>\n"; throw new Exception(mysql_error()); } $a_source = array(); if (mysql_num_rows($i_result)) { $a_source = mysql_fetch_assoc($i_result); } // root node? label it unless already labeled in source table if (1 == $i_lft && empty($a_source['category'])) { $a_source['category'] = 'ROOT'; } // insert into the new nested tree table // use mysql_real_escape_string because one value "CD's" has a single ' $s_query = " INSERT INTO `nested_table` (`id`,`lft`,`rgt`,`category`) VALUES ( '".$i_id."', '".$i_lft."', '".$i_rgt."', '".mysql_real_escape_string($a_source['category'])."' ) "; if (!$i_result = mysql_query($s_query)) { echo "<pre>$s_query</pre>\n"; throw new Exception(mysql_error()); } else { // success: provide feedback echo "<p>$s_query</p>\n"; } } } mysql_connect('localhost','USER','PASSWORD') or die(mysql_error()); mysql_select_db('DATABASE') or die(mysql_error()); // build a complete copy of the adjacency table in ram $s_query = "SELECT `id`,`father_id` FROM `adjacent_table`"; $i_result = mysql_query($s_query); $a_rows = array(); while ($a_rows[] = mysql_fetch_assoc($i_result)); $a_link = array(); foreach($a_rows as $a_row) { $i_father_id = $a_row['father_id']; $i_child_id = $a_row['id']; if (!array_key_exists($i_father_id,$a_link)) { $a_link[$i_father_id]=array(); } $a_link[$i_father_id][]=$i_child_id; } $o_tree_transformer = new tree_transformer($a_link); $o_tree_transformer->traverse(0); ?>

    Read the article

  • SQL Monitor’s data repository: Alerts

    - by Chris Lambrou
    In my previous post, I introduced the SQL Monitor data repository, and described how the monitored objects are stored in a hierarchy in the data schema, in a series of tables with a _Keys suffix. In this post I had planned to describe how the actual data for the monitored objects is stored in corresponding tables with _StableSamples and _UnstableSamples suffixes. However, I’m going to postpone that until my next post, as I’ve had a request from a SQL Monitor user to explain how alerts are stored. In the SQL Monitor data repository, alerts are stored in tables belonging to the alert schema, which contains the following five tables: alert.Alert alert.Alert_Cleared alert.Alert_Comment alert.Alert_Severity alert.Alert_Type In this post, I’m only going to cover the alert.Alert and alert.Alert_Type tables. I may cover the other three tables in a later post. The most important table in this schema is alert.Alert, as each row in this table corresponds to a single alert. So let’s have a look at it. SELECT TOP 100 AlertId, AlertType, TargetObject, [Read], SubType FROM alert.Alert ORDER BY AlertId DESC;  AlertIdAlertTypeTargetObjectReadSubType 165550397:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,10 265549387:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,10 365548187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 11…     So what are we seeing here, then? Well, AlertId is an auto-incrementing identity column, so ORDER BY AlertId DESC ensures that we see the most recent alerts first. AlertType indicates the type of each alert, such as Job failed (6), Backup overdue (14) or Long-running query (12). The TargetObject column indicates which monitored object the alert is associated with. The Read column acts as a flag to indicate whether or not the alert has been read. And finally the SubType column is used in the case of a Custom metric (40) alert, to indicate which custom metric the alert pertains to. Okay, now lets look at some of those columns in more detail. The AlertType column is an easy one to start with, and it brings use nicely to the next table, data.Alert_Type. Let’s have a look at what’s in this table: SELECT AlertType, Event, Monitoring, Name, Description FROM alert.Alert_Type ORDER BY AlertType;  AlertTypeEventMonitoringNameDescription 1100Processor utilizationProcessor utilization (CPU) on a host machine stays above a threshold percentage for longer than a specified duration 2210SQL Server error log entryAn error is written to the SQL Server error log with a severity level above a specified value. 3310Cluster failoverThe active cluster node fails, causing the SQL Server instance to switch nodes. 4410DeadlockSQL deadlock occurs. 5500Processor under-utilizationProcessor utilization (CPU) on a host machine remains below a threshold percentage for longer than a specified duration 6610Job failedA job does not complete successfully (the job returns an error code). 7700Machine unreachableHost machine (Windows server) cannot be contacted on the network. 8800SQL Server instance unreachableThe SQL Server instance is not running or cannot be contacted on the network. 9900Disk spaceDisk space used on a logical disk drive is above a defined threshold for longer than a specified duration. 101000Physical memoryPhysical memory (RAM) used on the host machine stays above a threshold percentage for longer than a specified duration. 111100Blocked processSQL process is blocked for longer than a specified duration. 121200Long-running queryA SQL query runs for longer than a specified duration. 131400Backup overdueNo full backup exists, or the last full backup is older than a specified time. 141500Log backup overdueNo log backup exists, or the last log backup is older than a specified time. 151600Database unavailableDatabase changes from Online to any other state. 161700Page verificationTorn Page Detection or Page Checksum is not enabled for a database. 171800Integrity check overdueNo entry for an integrity check (DBCC DBINFO returns no date for dbi_dbccLastKnownGood field), or the last check is older than a specified time. 181900Fragmented indexesFragmentation level of one or more indexes is above a threshold percentage. 192400Job duration unusualThe duration of a SQL job duration deviates from its baseline duration by more than a threshold percentage. 202501Clock skewSystem clock time on the Base Monitor computer differs from the system clock time on a monitored SQL Server host machine by a specified number of seconds. 212700SQL Server Agent Service statusThe SQL Server Agent Service status matches the status specified. 222800SQL Server Reporting Service statusThe SQL Server Reporting Service status matches the status specified. 232900SQL Server Full Text Search Service statusThe SQL Server Full Text Search Service status matches the status specified. 243000SQL Server Analysis Service statusThe SQL Server Analysis Service status matches the status specified. 253100SQL Server Integration Service statusThe SQL Server Integration Service status matches the status specified. 263300SQL Server Browser Service statusThe SQL Server Browser Service status matches the status specified. 273400SQL Server VSS Writer Service statusThe SQL Server VSS Writer status matches the status specified. 283501Deadlock trace flag disabledThe monitored SQL Server’s trace flag cannot be enabled. 293600Monitoring stopped (host machine credentials)SQL Monitor cannot contact the host machine because authentication failed. 303700Monitoring stopped (SQL Server credentials)SQL Monitor cannot contact the SQL Server instance because authentication failed. 313800Monitoring error (host machine data collection)SQL Monitor cannot collect data from the host machine. 323900Monitoring error (SQL Server data collection)SQL Monitor cannot collect data from the SQL Server instance. 334000Custom metricThe custom metric value has passed an alert threshold. 344100Custom metric collection errorSQL Monitor cannot collect custom metric data from the target object. Basically, alert.Alert_Type is just a big reference table containing information about the 34 different alert types supported by SQL Monitor (note that the largest id is 41, not 34 – some alert types have been retired since SQL Monitor was first developed). The Name and Description columns are self evident, and I’m going to skip over the Event and Monitoring columns as they’re not very interesting. The AlertId column is the primary key, and is referenced by AlertId in the alert.Alert table. As such, we can rewrite our earlier query to join these two tables, in order to provide a more readable view of the alerts: SELECT TOP 100 AlertId, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType ORDER BY AlertId DESC;  AlertIdNameTargetObjectReadSubType 165550Monitoring error (SQL Server data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,00 265549Monitoring error (host machine data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,00 365548Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 Okay, the next column to discuss in the alert.Alert table is TargetObject. Oh boy, this one’s a bit tricky! The TargetObject of an alert is a serialized string representation of the position in the monitored object hierarchy of the object to which the alert pertains. The serialization format is somewhat convenient for parsing in the C# source code of SQL Monitor, and has some helpful characteristics, but it’s probably very awkward to manipulate in T-SQL. I could document the serialization format here, but it would be very dry reading, so perhaps it’s best to consider an example from the table above. Have a look at the alert with an AlertID of 65543. It’s a Backup overdue alert for the SqlMonitorData database running on the default instance of granger, my laptop. Each different alert type is associated with a specific type of monitored object in the object hierarchy (I described the hierarchy in my previous post). The Backup overdue alert is associated with databases, whose position in the object hierarchy is root → Cluster → SqlServer → Database. The TargetObject value identifies the target object by specifying the key properties at each level in the hierarchy, thus: Cluster: Name = "granger" SqlServer: Name = "" (an empty string, denoting the default instance) Database: Name = "SqlMonitorData" Well, look at the actual TargetObject value for this alert: "7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,". It is indeed composed of three parts, one for each level in the hierarchy: Cluster: "7:Cluster,1,4:Name,s7:granger," SqlServer: "9:SqlServer,1,4:Name,s0:," Database: "8:Database,1,4:Name,s14:SqlMonitorData," Each part is handled in exactly the same way, so let’s concentrate on the first part, "7:Cluster,1,4:Name,s7:granger,". It comprises the following: "7:Cluster," – This identifies the level in the hierarchy. "1," – This indicates how many different key properties there are to uniquely identify a cluster (we saw in my last post that each cluster is identified by a single property, its Name). "4:Name,s14:SqlMonitorData," – This represents the Name property, and its corresponding value, SqlMonitorData. It’s split up like this: "4:Name," – Indicates the name of the key property. "s" – Indicates the type of the key property, in this case, it’s a string. "14:SqlMonitorData," – Indicates the value of the property. At this point, you might be wondering about the format of some of these strings. Why is the string "Cluster" stored as "7:Cluster,"? Well an encoding scheme is used, which consists of the following: "7" – This is the length of the string "Cluster" ":" – This is a delimiter between the length of the string and the actual string’s contents. "Cluster" – This is the string itself. 7 characters. "," – This is a final terminating character that indicates the end of the encoded string. You can see that "4:Name,", "8:Database," and "14:SqlMonitorData," also conform to the same encoding scheme. In the example above, the "s" character is used to indicate that the value of the Name property is a string. If you explore the TargetObject property of alerts in your own SQL Monitor data repository, you might find other characters used for other non-string key property values. The different value types you might possibly encounter are as follows: "I" – Denotes a bigint value. For example, "I65432,". "g" – Denotes a GUID value. For example, "g32116732-63ae-4ab5-bd34-7dfdfb084c18,". "d" – Denotes a datetime value. For example, "d634815384796832438,". The value is stored as a bigint, rather than a native SQL datetime value. I’ll describe how datetime values are handled in the SQL Monitor data repostory in a future post. I suggest you have a look at the alerts in your own SQL Monitor data repository for further examples, so you can see how the TargetObject values are composed for each of the different types of alert. Let me give one further example, though, that represents a Custom metric alert, as this will help in describing the final column of interest in the alert.Alert table, SubType. Let me show you the alert I’m interested in: SELECT AlertId, a.AlertType, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType WHERE AlertId = 65769;  AlertIdAlertTypeNameTargetObjectReadSubType 16576940Custom metric7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 An AlertType value of 40 corresponds to the Custom metric alert type. The Name taken from the alert.Alert_Type table is simply Custom metric, but this doesn’t tell us anything about the specific custom metric that this alert pertains to. That’s where the SubType value comes in. For custom metric alerts, this provides us with the Id of the specific custom alert definition that can be found in the settings.CustomAlertDefinitions table. I don’t really want to delve into custom alert definitions yet (maybe in a later post), but an extra join in the previous query shows us that this alert pertains to the CPU pressure (avg runnable task count) custom metric alert. SELECT AlertId, a.AlertType, at.Name, cad.Name AS CustomAlertName, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType JOIN settings.CustomAlertDefinitions cad ON a.SubType = cad.Id WHERE AlertId = 65769;  AlertIdAlertTypeNameCustomAlertNameTargetObjectReadSubType 16576940Custom metricCPU pressure (avg runnable task count)7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 The TargetObject value in this case breaks down like this: "7:Cluster,1,4:Name,s7:granger," – Cluster named "granger". "9:SqlServer,1,4:Name,s0:," – SqlServer named "" (the default instance). "8:Database,1,4:Name,s6:master," – Database named "master". "12:CustomMetric,1,8:MetricId,I2," – Custom metric with an Id of 2. Note that the hierarchy for a custom metric is slightly different compared to the earlier Backup overdue alert. It’s root → Cluster → SqlServer → Database → CustomMetric. Also notice that, unlike Cluster, SqlServer and Database, the key property for CustomMetric is called MetricId (not Name), and the value is a bigint (not a string). Finally, delving into the custom metric tables is beyond the scope of this post, but for the sake of avoiding any future confusion, I’d like to point out that whilst the SubType references a custom alert definition, the MetricID value embedded in the TargetObject value references a custom metric definition. Although in this case both the custom metric definition and custom alert definition share the same Id value of 2, this is not generally the case. Okay, that’s enough for now, not least because as I’m typing this, it’s almost 2am, I have to go to work tomorrow, and my alarm is set for 6am – eek! In my next post, I’ll either cover the remaining three tables in the alert schema, or I’ll delve into the way SQL Monitor stores its monitoring data, as I’d originally planned to cover in this post.

    Read the article

  • Getting the innermost .NET Exception

    - by Rick Strahl
    Here's a trivial but quite useful function that I frequently need in dynamic execution of code: Finding the innermost exception when an exception occurs, because for many operations (for example Reflection invocations or Web Service calls) the top level errors returned can be rather generic. A good example - common with errors in Reflection making a method invocation - is this generic error: Exception has been thrown by the target of an invocation In the debugger it looks like this: In this case this is an AJAX callback, which dynamically executes a method (ExecuteMethod code) which in turn calls into an Amazon Web Service using the old Amazon WSE101 Web service extensions for .NET. An error occurs in the Web Service call and the innermost exception holds the useful error information which in this case points at an invalid web.config key value related to the System.Net connection APIs. The "Exception has been thrown by the target of an invocation" error is the Reflection APIs generic error message that gets fired when you execute a method dynamically and that method fails internally. The messages basically says: "Your code blew up in my face when I tried to run it!". Which of course is not very useful to tell you what actually happened. If you drill down the InnerExceptions eventually you'll get a more detailed exception that points at the original error and code that caused the exception. In the code above the actually useful exception is two innerExceptions down. In most (but not all) cases when inner exceptions are returned, it's the innermost exception that has the information that is really useful. It's of course a fairly trivial task to do this in code, but I do it so frequently that I use a small helper method for this: /// <summary> /// Returns the innermost Exception for an object /// </summary> /// <param name="ex"></param> /// <returns></returns> public static Exception GetInnerMostException(Exception ex) { Exception currentEx = ex; while (currentEx.InnerException != null) { currentEx = currentEx.InnerException; } return currentEx; } This code just loops through all the inner exceptions (if any) and assigns them to a temporary variable until there are no more inner exceptions. The end result is that you get the innermost exception returned from the original exception. It's easy to use this code then in a try/catch handler like this (from the example above) to retrieve the more important innermost exception: object result = null; string stringResult = null; try { if (parameterList != null) // use the supplied parameter list result = helper.ExecuteMethod(methodToCall,target, parameterList.ToArray(), CallbackMethodParameterType.Json,ref attr); else // grab the info out of QueryString Values or POST buffer during parameter parsing // for optimization result = helper.ExecuteMethod(methodToCall, target, null, CallbackMethodParameterType.Json, ref attr); } catch (Exception ex) { Exception activeException = DebugUtils.GetInnerMostException(ex); WriteErrorResponse(activeException.Message, ( HttpContext.Current.IsDebuggingEnabled ? ex.StackTrace : null ) ); return; } Another function that is useful to me from time to time is one that returns all inner exceptions and the original exception as an array: /// <summary> /// Returns an array of the entire exception list in reverse order /// (innermost to outermost exception) /// </summary> /// <param name="ex">The original exception to work off</param> /// <returns>Array of Exceptions from innermost to outermost</returns> public static Exception[] GetInnerExceptions(Exception ex) {     List<Exception> exceptions = new List<Exception>();     exceptions.Add(ex);       Exception currentEx = ex;     while (currentEx.InnerException != null)     {         exceptions.Add(ex);     }       // Reverse the order to the innermost is first     exceptions.Reverse();       return exceptions.ToArray(); } This function loops through all the InnerExceptions and returns them and then reverses the order of the array returning the innermost exception first. This can be useful in certain error scenarios where exceptions stack and you need to display information from more than one of the exceptions in order to create a useful error message. This is rare but certain database exceptions bury their exception info in mutliple inner exceptions and it's easier to parse through them in an array then to manually walk the exception stack. It's also useful if you need to log errors and want to see the all of the error detail from all exceptions. None of this is rocket science, but it's useful to have some helpers that make retrieval of the critical exception info trivial. Resources DebugUtils.cs utility class in the West Wind Web Toolkit© Rick Strahl, West Wind Technologies, 2005-2011Posted in CSharp  .NET  

    Read the article

  • Silverlight Tree View with Multiple Levels

    - by psheriff
    There are many examples of the Silverlight Tree View that you will find on the web, however, most of them only show you how to go to two levels. What if you have more than two levels? This is where understanding exactly how the Hierarchical Data Templates works is vital. In this blog post, I am going to break down how these templates work so you can really understand what is going on underneath the hood. To start, let’s look at the typical two-level Silverlight Tree View that has been hard coded with the values shown below: <sdk:TreeView>  <sdk:TreeViewItem Header="Managers">    <TextBlock Text="Michael" />    <TextBlock Text="Paul" />  </sdk:TreeViewItem>  <sdk:TreeViewItem Header="Supervisors">    <TextBlock Text="John" />    <TextBlock Text="Tim" />    <TextBlock Text="David" />  </sdk:TreeViewItem></sdk:TreeView> Figure 1 shows you how this tree view looks when you run the Silverlight application. Figure 1: A hard-coded, two level Tree View. Next, let’s create three classes to mimic the hard-coded Tree View shown above. First, you need an Employee class and an EmployeeType class. The Employee class simply has one property called Name. The constructor is created to accept a “name” argument that you can use to set the Name property when you create an Employee object. public class Employee{  public Employee(string name)  {    Name = name;  }   public string Name { get; set; }} Finally you create an EmployeeType class. This class has one property called EmpType and contains a generic List<> collection of Employee objects. The property that holds the collection is called Employees. public class EmployeeType{  public EmployeeType(string empType)  {    EmpType = empType;    Employees = new List<Employee>();  }   public string EmpType { get; set; }  public List<Employee> Employees { get; set; }} Finally we have a collection class called EmployeeTypes created using the generic List<> class. It is in the constructor for this class where you will build the collection of EmployeeTypes and fill it with Employee objects: public class EmployeeTypes : List<EmployeeType>{  public EmployeeTypes()  {    EmployeeType type;            type = new EmployeeType("Manager");    type.Employees.Add(new Employee("Michael"));    type.Employees.Add(new Employee("Paul"));    this.Add(type);     type = new EmployeeType("Project Managers");    type.Employees.Add(new Employee("Tim"));    type.Employees.Add(new Employee("John"));    type.Employees.Add(new Employee("David"));    this.Add(type);  }} You now have a data hierarchy in memory (Figure 2) which is what the Tree View control expects to receive as its data source. Figure 2: A hierachial data structure of Employee Types containing a collection of Employee objects. To connect up this hierarchy of data to your Tree View you create an instance of the EmployeeTypes class in XAML as shown in line 13 of Figure 3. The key assigned to this object is “empTypes”. This key is used as the source of data to the entire Tree View by setting the ItemsSource property as shown in Figure 3, Callout #1. Figure 3: You need to start from the bottom up when laying out your templates for a Tree View. The ItemsSource property of the Tree View control is used as the data source in the Hierarchical Data Template with the key of employeeTypeTemplate. In this case there is only one Hierarchical Data Template, so any data you wish to display within that template comes from the collection of Employee Types. The TextBlock control in line 20 uses the EmpType property of the EmployeeType class. You specify the name of the Hierarchical Data Template to use in the ItemTemplate property of the Tree View (Callout #2). For the second (and last) level of the Tree View control you use a normal <DataTemplate> with the name of employeeTemplate (line 14). The Hierarchical Data Template in lines 17-21 sets its ItemTemplate property to the key name of employeeTemplate (Line 19 connects to Line 14). The source of the data for the <DataTemplate> needs to be a property of the EmployeeTypes collection used in the Hierarchical Data Template. In this case that is the Employees property. In the Employees property there is a “Name” property of the Employee class that is used to display the employee name in the second level of the Tree View (Line 15). What is important here is that your lowest level in your Tree View is expressed in a <DataTemplate> and should be listed first in your Resources section. The next level up in your Tree View should be a <HierarchicalDataTemplate> which has its ItemTemplate property set to the key name of the <DataTemplate> and the ItemsSource property set to the data you wish to display in the <DataTemplate>. The Tree View control should have its ItemsSource property set to the data you wish to display in the <HierarchicalDataTemplate> and its ItemTemplate property set to the key name of the <HierarchicalDataTemplate> object. It is in this way that you get the Tree View to display all levels of your hierarchical data structure. Three Levels in a Tree View Now let’s expand upon this concept and use three levels in our Tree View (Figure 4). This Tree View shows that you now have EmployeeTypes at the top of the tree, followed by a small set of employees that themselves manage employees. This means that the EmployeeType class has a collection of Employee objects. Each Employee class has a collection of Employee objects as well. Figure 4: When using 3 levels in your TreeView you will have 2 Hierarchical Data Templates and 1 Data Template. The EmployeeType class has not changed at all from our previous example. However, the Employee class now has one additional property as shown below: public class Employee{  public Employee(string name)  {    Name = name;    ManagedEmployees = new List<Employee>();  }   public string Name { get; set; }  public List<Employee> ManagedEmployees { get; set; }} The next thing that changes in our code is the EmployeeTypes class. The constructor now needs additional code to create a list of managed employees. Below is the new code. public class EmployeeTypes : List<EmployeeType>{  public EmployeeTypes()  {    EmployeeType type;    Employee emp;    Employee managed;     type = new EmployeeType("Manager");    emp = new Employee("Michael");    managed = new Employee("John");    emp.ManagedEmployees.Add(managed);    managed = new Employee("Tim");    emp.ManagedEmployees.Add(managed);    type.Employees.Add(emp);     emp = new Employee("Paul");    managed = new Employee("Michael");    emp.ManagedEmployees.Add(managed);    managed = new Employee("Sara");    emp.ManagedEmployees.Add(managed);    type.Employees.Add(emp);    this.Add(type);     type = new EmployeeType("Project Managers");    type.Employees.Add(new Employee("Tim"));    type.Employees.Add(new Employee("John"));    type.Employees.Add(new Employee("David"));    this.Add(type);  }} Now that you have all of the data built in your classes, you are now ready to hook up this three-level structure to your Tree View. Figure 5 shows the complete XAML needed to hook up your three-level Tree View. You can see in the XAML that there are now two Hierarchical Data Templates and one Data Template. Again you list the Data Template first since that is the lowest level in your Tree View. The next Hierarchical Data Template listed is the next level up from the lowest level, and finally you have a Hierarchical Data Template for the first level in your tree. You need to work your way from the bottom up when creating your Tree View hierarchy. XAML is processed from the top down, so if you attempt to reference a XAML key name that is below where you are referencing it from, you will get a runtime error. Figure 5: For three levels in a Tree View you will need two Hierarchical Data Templates and one Data Template. Each Hierarchical Data Template uses the previous template as its ItemTemplate. The ItemsSource of each Hierarchical Data Template is used to feed the data to the previous template. This is probably the most confusing part about working with the Tree View control. You are expecting the content of the current Hierarchical Data Template to use the properties set in the ItemsSource property of that template. But you need to look to the template lower down in the XAML to see the source of the data as shown in Figure 6. Figure 6: The properties you use within the Content of a template come from the ItemsSource of the next template in the resources section. Summary Understanding how to put together your hierarchy in a Tree View is simple once you understand that you need to work from the bottom up. Start with the bottom node in your Tree View and determine what that will look like and where the data will come from. You then build the next Hierarchical Data Template to feed the data to the previous template you created. You keep doing this for each level in your Tree View until you get to the last level. The data for that last Hierarchical Data Template comes from the ItemsSource in the Tree View itself. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “Silverlight TreeView with Multiple Levels” from the drop down list.

    Read the article

  • Internet Explorer and Cookie Domains

    - by Rick Strahl
    I've been bitten by some nasty issues today in regards to using a domain cookie as part of my FormsAuthentication operations. In the app I'm currently working on we need to have single sign-on that spans multiple sub-domains (www.domain.com, store.domain.com, mail.domain.com etc.). That's what a domain cookie is meant for - when you set the cookie with a Domain value of the base domain the cookie stays valid for all sub-domains. I've been testing the app for quite a while and everything is working great. Finally I get around to checking the app with Internet Explorer and I start discovering some problems - specifically on my local machine using localhost. It appears that Internet Explorer (all versions) doesn't allow you to specify a domain of localhost, a local IP address or machine name. When you do, Internet Explorer simply ignores the cookie. In my last post I talked about some generic code I created to basically parse out the base domain from the current URL so a domain cookie would automatically used using this code:private void IssueAuthTicket(UserState userState, bool rememberMe) { FormsAuthenticationTicket ticket = new FormsAuthenticationTicket(1, userState.UserId, DateTime.Now, DateTime.Now.AddDays(10), rememberMe, userState.ToString()); string ticketString = FormsAuthentication.Encrypt(ticket); HttpCookie cookie = new HttpCookie(FormsAuthentication.FormsCookieName, ticketString); cookie.HttpOnly = true; if (rememberMe) cookie.Expires = DateTime.Now.AddDays(10); var domain = Request.Url.GetBaseDomain(); if (domain != Request.Url.DnsSafeHost) cookie.Domain = domain; HttpContext.Response.Cookies.Add(cookie); } This code works fine on all browsers but Internet Explorer both locally and on full domains. And it also works fine for Internet Explorer with actual 'real' domains. However, this code fails silently for IE when the domain is localhost or any other local address. In that case Internet Explorer simply refuses to accept the cookie and fails to log in. Argh! The end result is that the solution above trying to automatically parse the base domain won't work as local addresses end up failing. Configuration Setting Given this screwed up state of affairs, the best solution to handle this is a configuration setting. Forms Authentication actually has a domain key that can be set for FormsAuthentication so that's natural choice for the storing the domain name: <authentication mode="Forms"> <forms loginUrl="~/Account/Login" name="gnc" domain="mydomain.com" slidingExpiration="true" timeout="30" xdt:Transform="Replace"/> </authentication> Although I'm not actually letting FormsAuth set my cookie directly I can still access the domain name from the static FormsAuthentication.CookieDomain property, by changing the domain assignment code to:if (!string.IsNullOrEmpty(FormsAuthentication.CookieDomain)) cookie.Domain = FormsAuthentication.CookieDomain; The key is to only set the domain when actually running on a full authority, and leaving the domain key blank on the local machine to avoid the local address debacle. Note if you want to see this fail with IE, set the domain to domain="localhost" and watch in Fiddler what happens. Logging Out When specifying a domain key for a login it's also vitally important that that same domain key is used when logging out. Forms Authentication will do this automatically for you when the domain is set and you use FormsAuthentication.SignOut(). If you use an explicit Cookie to manage your logins or other persistant value, make sure that when you log out you also specify the domain. IOW, the expiring cookie you set for a 'logout' should match the same settings - name, path, domain - as the cookie you used to set the value.HttpCookie cookie = new HttpCookie("gne", ""); cookie.Expires = DateTime.Now.AddDays(-5); // make sure we use the same logic to release cookie var domain = Request.Url.GetBaseDomain(); if (domain != Request.Url.DnsSafeHost) cookie.Domain = domain; HttpContext.Response.Cookies.Add(cookie); I managed to get my code to do what I needed it to, but man I'm getting so sick and tired of fixing IE only bugs. I spent most of the day today fixing a number of small IE layout bugs along with this issue which took a bit of time to trace down.© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #005

    - by pinaldave
    Here is the list of curetted articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2006 SQL SERVER – Cursor to Kill All Process in Database I indeed wrote this cursor and when I often look back, I wonder how naive I was to write this. The reason for writing this cursor was to free up my database from any existing connection so I can do database operation. This worked fine but there can be a potentially big issue if there was any important transaction was killed by this process. There is another way to to achieve the same thing where we can use ALTER syntax to take database in single user mode. Read more about that over here and here. 2007 Rules of Third Normal Form and Normalization Advantage – 3NF The rules of 3NF are mentioned here Make a separate table for each set of related attributes, and give each table a primary key. If an attribute depends on only part of a multi-valued key, remove it to a separate table If attributes do not contribute to a description of the key, remove them to a separate table. Correct Syntax for Stored Procedure SP Sometime a simple question is the most important question. I often see in industry incorrectly written Stored Procedure. Few writes code after the most outer BEGIN…END and few writes code after the GO Statement. In this brief blog post, I have attempted to explain the same. 2008 Switch Between Result Pan and Query Pan – SQL Shortcut Many times when I am writing query I have to scroll the result displayed in the result set. Most of the developer uses the mouse to switch between and Query Pane and Result Pane. There are few developers who are crazy about Keyboard shortcuts. F6 is the keyword which can be used to switch between query pane and tabs of the result pane. Interesting Observation – Use of Index and Execution Plan Query Optimization is a complex game and it has its own rules. From the example in the article we have discovered that Query Optimizer does not use clustered index to retrieve data, sometime non clustered index provides optimal performance for retrieving Primary Key. When all the rows and columns are selected Primary Key should be used to select data as it provides optimal performance. 2009 Interesting Observation – TOP 100 PERCENT and ORDER BY If you pull up any application or system where there are more than 100 SQL Server Views are created – I am very confident that at one or two places you will notice the scenario wherein View the ORDER BY clause is used with TOP 100 PERCENT. SQL Server 2008 VIEW with ORDER BY clause does not throw an error; moreover, it does not acknowledge the presence of it as well. In this article we have taken three perfect examples and demonstrated which clause we should use when. Comma Separated Values (CSV) from Table Column A Very common question – How to create comma separated values from a table in the database? The answer is also very common if we use XML. Check out this article for quick learning on the same subject. Azure Start Guide – Step by Step Installation Guide Though Azure portal has changed a quite bit since I wrote this article, the concept used in this article are not old. They are still valid and many of the functions are still working as mentioned in the article. I believe this one article will put you on the track to use Azure! Size of Index Table for Each Index – Solution Earlier I have posted a small question on this blog and requested help from readers to participate here and provide a solution. The puzzle was to write a query that will return the size for each index that is on any particular table. We need a query that will return an additional column in the above listed query and it should contain the size of the index. This article presents two of the best solutions from the puzzle. 2010 Well, this week in 2010 was the week of puzzles as I posted three interesting puzzles. Till today I am noticing pretty good interesting in the puzzles. They are tricky but for sure brings a great value if you are a database developer for a long time. I suggest you go over this puzzles and their answers. Did you really know all of the answers? I am confident that reading following three blog post will for sure help you enhance the experience with T-SQL. SQL SERVER – Challenge – Puzzle – Usage of FAST Hint SQL SERVER – Puzzle – Challenge – Error While Converting Money to Decimal SQL SERVER – Challenge – Puzzle – Why does RIGHT JOIN Exists 2011 DVM sys.dm_os_sys_info Column Name Changed in SQL Server 2012 Have you ever faced a situation where something does not work? When you try to fix it - you enjoy fixing it and started to appreciate the breaking changes. Well, this was exactly I felt yesterday. Before I begin my story, I want to candidly state that I do not encourage anybody to use * in the SELECT statement. Now the disclaimer is over – I suggest you read the original story – you will love it! Get Directory Structure using Extended Stored Procedure xp_dirtree Here is the question to you – why would you do something in SQL Server where you can do the same task in command prompt much easily. Well, the answer is sometime there are real use cases when we have to do such thing. This is a similar example where I have demonstrated how in SQL Server 2012 we can use extended stored procedure to retrieve directory structure. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics

    - by Paulo Morgado
    C# 4.0 (and .NET 4.0) introduced covariance and contravariance to generic interfaces and delegates. But what is this variance thing? According to Wikipedia, in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometrical or physical entities changes when passing from one coordinate system to another.(*) But what does this have to do with C# or .NET? In type theory, a the type T is greater (>) than type S if S is a subtype (derives from) T, which means that there is a quantitative description for types in a type hierarchy. So, how does covariance and contravariance apply to C# (and .NET) generic types? In C# (and .NET), variance applies to generic type parameters and not to the resulting generic type. A generic type parameter is: covariant if the ordering of the generic types follows the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. contravariant if the ordering of the generic types is reversed from the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. invariant if neither of the above apply. If this definition is applied to arrays, we can see that arrays have always been covariant because this is valid code: object[] objectArray = new string[] { "string 1", "string 2" }; objectArray[0] = "string 3"; objectArray[1] = new object(); However, when we try to run this code, the second assignment will throw an ArrayTypeMismatchException. Although the compiler was fooled into thinking this was valid code because an object is being assigned to an element of an array of object, at run time, there is always a type check to guarantee that the runtime type of the definition of the elements of the array is greater or equal to the instance being assigned to the element. In the above example, because the runtime type of the array is array of string, the first assignment of array elements is valid because string = string and the second is invalid because string = object. This leads to the conclusion that, although arrays have always been covariant, they are not safely covariant – code that compiles is not guaranteed to run without errors. In C#, the way to define that a generic type parameter as covariant is using the out generic modifier: public interface IEnumerable<out T> { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> { T Current { get; } bool MoveNext(); } Notice the convenient use the pre-existing out keyword. Besides the benefit of not having to remember a new hypothetic covariant keyword, out is easier to remember because it defines that the generic type parameter can only appear in output positions — read-only properties and method return values. In a similar way, the way to define a type parameter as contravariant is using the in generic modifier: public interface IComparer<in T> { int Compare(T x, T y); } Once again, the use of the pre-existing in keyword makes it easier to remember that the generic type parameter can only be used in input positions — write-only properties and method non ref and non out parameters. Because covariance and contravariance apply only to the generic type parameters, a generic type definition can have both covariant and contravariant generic type parameters in its definition: public delegate TResult Func<in T, out TResult>(T arg); A generic type parameter that is not marked covariant (out) or contravariant (in) is invariant. All the types in the .NET Framework where variance could be applied to its generic type parameters have been modified to take advantage of this new feature. In summary, the rules for variance in C# (and .NET) are: Variance in type parameters are restricted to generic interface and generic delegate types. A generic interface or generic delegate type can have both covariant and contravariant type parameters. Variance applies only to reference types; if you specify a value type for a variant type parameter, that type parameter is invariant for the resulting constructed type. Variance does not apply to delegate combination. That is, given two delegates of types Action<Derived> and Action<Base>, you cannot combine the second delegate with the first although the result would be type safe. Variance allows the second delegate to be assigned to a variable of type Action<Derived>, but delegates can combine only if their types match exactly. If you want to learn more about variance in C# (and .NET), you can always read: Covariance and Contravariance in Generics — MSDN Library Exact rules for variance validity — Eric Lippert Events get a little overhaul in C# 4, Afterward: Effective Events — Chris Burrows Note: Because variance is a feature of .NET 4.0 and not only of C# 4.0, all this also applies to Visual Basic 10.

    Read the article

  • Persisting settings without using Options dialog in Visual Studio

    - by Utkarsh Shigihalli
    Originally posted on: http://geekswithblogs.net/onlyutkarsh/archive/2013/11/02/persisting-settings-without-using-options-dialog-in-visual-studio.aspxIn one of my previous blog post we have seen persisting settings using Visual Studio's options dialog. Visual Studio options has many advantages in automatically persisting user options for you. However, during our latest Team Rooms extension development, we decided to provide our users; ability to use our preferences directly from Team Explorer. The main reason was that we had only one simple option for user and we thought it is cumbersome for user to go to Tools –> Options dialog to change this. Another reason was, we wanted to highlight this setting to user as soon as he is using our extension.   So if you are in such a scenario where you do not want to use VS options window, but still would like to persist the settings, this post will guide you through. Visual Studio SDK provides two ways to persist settings in your extensions. One is using DialogPage as shown in my previous post. Another way is to use by implementing IProfileManager interface which I will explain in this post. Please note that the class implementing IProfileManager should be independent class. This is because, VS instantiates this class during Tools –> Import and Export Settings. IProfileManager provides 2 different sets of methods (total 4 methods) to persist the settings. They are LoadSettingsFromXml and SaveSettingsToXml – Implement these methods to persist settings to disk from VS settings storage. The VS will persist your settings along with other options to disk. LoadSettingsFromStorage and SaveSettingsToStorage – Implement these methods to persist settings to local storage, usually it be registry. VS calls LoadSettingsFromStorage method when it is initializing the package too. We are going to use the 2nd set of methods for this example. First, we are creating a separate class file called UserOptions.cs. Please note that, we also need to implement IComponent, which can be done by inheriting Component along with IProfileManager. [ComVisible(true)] [Guid("XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX")] public class UserOptions : Component, IProfileManager { private const string SUBKEY_NAME = "TForVS2013"; private const string TRAY_NOTIFICATIONS_STRING = "TrayNotifications"; ... } Define the property so that it can be used to set and get from other classes. public bool TrayNotifications { get; set; } Implement the members of IProfileManager. public void LoadSettingsFromStorage() { RegistryKey reg = null; try { using (reg = Package.UserRegistryRoot.OpenSubKey(SUBKEY_NAME)) { if (reg != null) { // Key already exists, so just update this setting. TrayNotifications = Convert.ToBoolean(reg.GetValue(TRAY_NOTIFICATIONS_STRING, true)); } } } catch (TeamRoomException exception) { TrayNotifications = true; ExceptionReporting.Report(exception); } finally { if (reg != null) { reg.Close(); } } } public void LoadSettingsFromXml(IVsSettingsReader reader) { reader.ReadSettingBoolean(TRAY_NOTIFICATIONS_STRING, out _isTrayNotificationsEnabled); TrayNotifications = (_isTrayNotificationsEnabled == 1); } public void ResetSettings() { } public void SaveSettingsToStorage() { RegistryKey reg = null; try { using (reg = Package.UserRegistryRoot.OpenSubKey(SUBKEY_NAME, true)) { if (reg != null) { // Key already exists, so just update this setting. reg.SetValue(TRAY_NOTIFICATIONS_STRING, TrayNotifications); } else { reg = Package.UserRegistryRoot.CreateSubKey(SUBKEY_NAME); reg.SetValue(TRAY_NOTIFICATIONS_STRING, TrayNotifications); } } } catch (TeamRoomException exception) { ExceptionReporting.Report(exception); } finally { if (reg != null) { reg.Close(); } } } public void SaveSettingsToXml(IVsSettingsWriter writer) { writer.WriteSettingBoolean(TRAY_NOTIFICATIONS_STRING, TrayNotifications ? 1 : 0); } Let me elaborate on the method implementation. The Package class provides UserRegistryRoot (which is HKCU\Microsoft\VisualStudio\12.0 for VS2013) property which can be used to create and read the registry keys. So basically, in the methods above, I am checking if the registry key exists already and if not, I simply create it. Also, in case there is an exception I return the default values. If the key already exists, I update the value. Also, note that you need to make sure that you close the key while exiting from the method. Very simple right? Accessing and settings is simple too. We just need to use the exposed property. UserOptions.TrayNotifications = true; UserOptions.SaveSettingsToStorage(); Reading settings is as simple as reading a property. UserOptions.LoadSettingsFromStorage(); var trayNotifications = UserOptions.TrayNotifications; Lastly, the most important step. We need to tell Visual Studio shell that our package exposes options using the UserOptions class. For this we need to decorate our package class with ProvideProfile attribute as below. [ProvideProfile(typeof(UserOptions), "TForVS2013", "TeamRooms", 110, 110, false, DescriptionResourceID = 401)] public sealed class TeamRooms : Microsoft.VisualStudio.Shell.Package { ... } That's it. If everything is alright, once you run the package you will also see your options appearing in "Import Export settings" window, which allows you to export your options.

    Read the article

  • Working with Reporting Services Filters–Part 1

    - by smisner
    There are two ways that you can filter data in Reporting Services. The first way, which usually provides a faster performance, is to use query parameters to apply a filter using the WHERE clause in a SQL statement. In that case, the structure of the filter depends upon the syntax recognized by the source database. Another way to filter data in Reporting Services is to apply a filter to a dataset, data region, or a group. Using this latter method, you can even apply multiple filters. However, the use of filter operators or the setup of multiple filters is not always obvious, so in this series of posts, I'll provide some more information about the configuration of filters. First, why not use query parameters exclusively for filtering? Here are a few reasons: You might want to apply a filter to part of the report, but not all of the report. Your dataset might retrieve data from a stored procedure, and doesn't allow you to pass a query parameter for filtering purposes. Your report might be set up as a snapshot on the report server and, in that case, cannot be dynamically filtered based on a query parameter. Next, let's look at how to set up a report filter in general. The process is the same whether you are applying the filter to a dataset, data region, or a group. When you go to the Filters page in the Properties dialog box for whichever of these items you selected (dataset, data region, group), you click the Add button to create a new filter. The interface looks like this: The Expression field is usually a field in the dataset, so to make it easier for you to make a selection,the drop-down list displays all of the current dataset fields. But notice the expression button to the right, which means that you can set up any type of expression-not just a dataset field. To the right of the expression button, you'll find a data type drop-down list. It's important to specify the correct data type for the field or expression you're using. Now for the operators. Here's a list of the options that you have: This Operator Performs This Action =, <>, >, >=, <, <=, Like Compares expression to value Top N, Bottom N Compares expression to Top (Bottom) set of N values (N = integer) Top %, Bottom % Compares expression to Top (Bottom) N percent of values (N = integer or float) Between Determines whether expression is between two values, inclusive In Determines whether expression is found in list of values Last, the Value is what you're comparing to the expression using the operator. The construction of a filter using some operators (=, <>, >, etc.) is fairly simple. If my dataset (for AdventureWorks data) has a Category field, and I have a parameter that prompts the user for a single category, I can set up a filter like this: Expression Data Type Operator Value [Category] Text = [@Category] But if I set the parameter to accept multiple values, I need to change the operator from = to In, just as I would have to do if I were using a query parameter. The parameter expression, [@Category], which translates to =Parameters!Category.Value, doesn’t need to change because it represents an array as soon as I change the parameter to allow multiple values. The “In” operator requires an array. With that in mind, let’s consider a variation on Value. Let’s say that I have a parameter that prompts the user for a particular year – and for simplicity’s sake, this parameter only allows a single value, and I have an expression that evaluates the previous year based on the user’s selection. Then I want to use these two values in two separate filters with an OR condition. That is, I want to filter either by the year selected OR by the year that was computed. If I create two filters, one for each year (as shown below), then the report will only display results if BOTH filter conditions are met – which would never be true. Expression Data Type Operator Value [CalendarYear] Integer = [@Year] [CalendarYear] Integer = =Parameters!Year.Value-1 To handle this scenario, we need to create a single filter that uses the “In” operator, and then set up the Value expression as an array. To create an array, we use the Split function after creating a string that concatenates the two values (highlighted in yellow) as shown below. Expression Data Type Operator Value =Cstr(Fields!CalendarYear.Value) Text In =Split( CStr(Parameters!Year.Value) + ”,” + CStr(Parameters!Year.Value-1) , “,”) Note that in this case, I had to apply a string conversion on the year integer so that I could concatenate the parameter selection with the calculated year. Pay attention to the second argument of the Split function—you must use a comma delimiter for the result to work correctly with the In operator. I also had to change the Expression value from [CalendarYear] (or =Fields!CalendarYear.Value) so that the expression would return a string that I could compare with the values in the string array. More fun with filter expressions in future posts!

    Read the article

  • C#/.NET Little Wonders: The Useful But Overlooked Sets

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  Today we will be looking at two set implementations in the System.Collections.Generic namespace: HashSet<T> and SortedSet<T>.  Even though most people think of sets as mathematical constructs, they are actually very useful classes that can be used to help make your application more performant if used appropriately. A Background From Math In mathematical terms, a set is an unordered collection of unique items.  In other words, the set {2,3,5} is identical to the set {3,5,2}.  In addition, the set {2, 2, 4, 1} would be invalid because it would have a duplicate item (2).  In addition, you can perform set arithmetic on sets such as: Intersections: The intersection of two sets is the collection of elements common to both.  Example: The intersection of {1,2,5} and {2,4,9} is the set {2}. Unions: The union of two sets is the collection of unique items present in either or both set.  Example: The union of {1,2,5} and {2,4,9} is {1,2,4,5,9}. Differences: The difference of two sets is the removal of all items from the first set that are common between the sets.  Example: The difference of {1,2,5} and {2,4,9} is {1,5}. Supersets: One set is a superset of a second set if it contains all elements that are in the second set. Example: The set {1,2,5} is a superset of {1,5}. Subsets: One set is a subset of a second set if all the elements of that set are contained in the first set. Example: The set {1,5} is a subset of {1,2,5}. If We’re Not Doing Math, Why Do We Care? Now, you may be thinking: why bother with the set classes in C# if you have no need for mathematical set manipulation?  The answer is simple: they are extremely efficient ways to determine ownership in a collection. For example, let’s say you are designing an order system that tracks the price of a particular equity, and once it reaches a certain point will trigger an order.  Now, since there’s tens of thousands of equities on the markets, you don’t want to track market data for every ticker as that would be a waste of time and processing power for symbols you don’t have orders for.  Thus, we just want to subscribe to the stock symbol for an equity order only if it is a symbol we are not already subscribed to. Every time a new order comes in, we will check the list of subscriptions to see if the new order’s stock symbol is in that list.  If it is, great, we already have that market data feed!  If not, then and only then should we subscribe to the feed for that symbol. So far so good, we have a collection of symbols and we want to see if a symbol is present in that collection and if not, add it.  This really is the essence of set processing, but for the sake of comparison, let’s say you do a list instead: 1: // class that handles are order processing service 2: public sealed class OrderProcessor 3: { 4: // contains list of all symbols we are currently subscribed to 5: private readonly List<string> _subscriptions = new List<string>(); 6:  7: ... 8: } Now whenever you are adding a new order, it would look something like: 1: public PlaceOrderResponse PlaceOrder(Order newOrder) 2: { 3: // do some validation, of course... 4:  5: // check to see if already subscribed, if not add a subscription 6: if (!_subscriptions.Contains(newOrder.Symbol)) 7: { 8: // add the symbol to the list 9: _subscriptions.Add(newOrder.Symbol); 10: 11: // do whatever magic is needed to start a subscription for the symbol 12: } 13:  14: // place the order logic! 15: } What’s wrong with this?  In short: performance!  Finding an item inside a List<T> is a linear - O(n) – operation, which is not a very performant way to find if an item exists in a collection. (I used to teach algorithms and data structures in my spare time at a local university, and when you began talking about big-O notation you could immediately begin to see eyes glossing over as if it was pure, useless theory that would not apply in the real world, but I did and still do believe it is something worth understanding well to make the best choices in computer science). Let’s think about this: a linear operation means that as the number of items increases, the time that it takes to perform the operation tends to increase in a linear fashion.  Put crudely, this means if you double the collection size, you might expect the operation to take something like the order of twice as long.  Linear operations tend to be bad for performance because they mean that to perform some operation on a collection, you must potentially “visit” every item in the collection.  Consider finding an item in a List<T>: if you want to see if the list has an item, you must potentially check every item in the list before you find it or determine it’s not found. Now, we could of course sort our list and then perform a binary search on it, but sorting is typically a linear-logarithmic complexity – O(n * log n) - and could involve temporary storage.  So performing a sort after each add would probably add more time.  As an alternative, we could use a SortedList<TKey, TValue> which sorts the list on every Add(), but this has a similar level of complexity to move the items and also requires a key and value, and in our case the key is the value. This is why sets tend to be the best choice for this type of processing: they don’t rely on separate keys and values for ordering – so they save space – and they typically don’t care about ordering – so they tend to be extremely performant.  The .NET BCL (Base Class Library) has had the HashSet<T> since .NET 3.5, but at that time it did not implement the ISet<T> interface.  As of .NET 4.0, HashSet<T> implements ISet<T> and a new set, the SortedSet<T> was added that gives you a set with ordering. HashSet<T> – For Unordered Storage of Sets When used right, HashSet<T> is a beautiful collection, you can think of it as a simplified Dictionary<T,T>.  That is, a Dictionary where the TKey and TValue refer to the same object.  This is really an oversimplification, but logically it makes sense.  I’ve actually seen people code a Dictionary<T,T> where they store the same thing in the key and the value, and that’s just inefficient because of the extra storage to hold both the key and the value. As it’s name implies, the HashSet<T> uses a hashing algorithm to find the items in the set, which means it does take up some additional space, but it has lightning fast lookups!  Compare the times below between HashSet<T> and List<T>: Operation HashSet<T> List<T> Add() O(1) O(1) at end O(n) in middle Remove() O(1) O(n) Contains() O(1) O(n)   Now, these times are amortized and represent the typical case.  In the very worst case, the operations could be linear if they involve a resizing of the collection – but this is true for both the List and HashSet so that’s a less of an issue when comparing the two. The key thing to note is that in the general case, HashSet is constant time for adds, removes, and contains!  This means that no matter how large the collection is, it takes roughly the exact same amount of time to find an item or determine if it’s not in the collection.  Compare this to the List where almost any add or remove must rearrange potentially all the elements!  And to find an item in the list (if unsorted) you must search every item in the List. So as you can see, if you want to create an unordered collection and have very fast lookup and manipulation, the HashSet is a great collection. And since HashSet<T> implements ICollection<T> and IEnumerable<T>, it supports nearly all the same basic operations as the List<T> and can use the System.Linq extension methods as well. All we have to do to switch from a List<T> to a HashSet<T>  is change our declaration.  Since List and HashSet support many of the same members, chances are we won’t need to change much else. 1: public sealed class OrderProcessor 2: { 3: private readonly HashSet<string> _subscriptions = new HashSet<string>(); 4:  5: // ... 6:  7: public PlaceOrderResponse PlaceOrder(Order newOrder) 8: { 9: // do some validation, of course... 10: 11: // check to see if already subscribed, if not add a subscription 12: if (!_subscriptions.Contains(newOrder.Symbol)) 13: { 14: // add the symbol to the list 15: _subscriptions.Add(newOrder.Symbol); 16: 17: // do whatever magic is needed to start a subscription for the symbol 18: } 19: 20: // place the order logic! 21: } 22:  23: // ... 24: } 25: Notice, we didn’t change any code other than the declaration for _subscriptions to be a HashSet<T>.  Thus, we can pick up the performance improvements in this case with minimal code changes. SortedSet<T> – Ordered Storage of Sets Just like HashSet<T> is logically similar to Dictionary<T,T>, the SortedSet<T> is logically similar to the SortedDictionary<T,T>. The SortedSet can be used when you want to do set operations on a collection, but you want to maintain that collection in sorted order.  Now, this is not necessarily mathematically relevant, but if your collection needs do include order, this is the set to use. So the SortedSet seems to be implemented as a binary tree (possibly a red-black tree) internally.  Since binary trees are dynamic structures and non-contiguous (unlike List and SortedList) this means that inserts and deletes do not involve rearranging elements, or changing the linking of the nodes.  There is some overhead in keeping the nodes in order, but it is much smaller than a contiguous storage collection like a List<T>.  Let’s compare the three: Operation HashSet<T> SortedSet<T> List<T> Add() O(1) O(log n) O(1) at end O(n) in middle Remove() O(1) O(log n) O(n) Contains() O(1) O(log n) O(n)   The MSDN documentation seems to indicate that operations on SortedSet are O(1), but this seems to be inconsistent with its implementation and seems to be a documentation error.  There’s actually a separate MSDN document (here) on SortedSet that indicates that it is, in fact, logarithmic in complexity.  Let’s put it in layman’s terms: logarithmic means you can double the collection size and typically you only add a single extra “visit” to an item in the collection.  Take that in contrast to List<T>’s linear operation where if you double the size of the collection you double the “visits” to items in the collection.  This is very good performance!  It’s still not as performant as HashSet<T> where it always just visits one item (amortized), but for the addition of sorting this is a good thing. Consider the following table, now this is just illustrative data of the relative complexities, but it’s enough to get the point: Collection Size O(1) Visits O(log n) Visits O(n) Visits 1 1 1 1 10 1 4 10 100 1 7 100 1000 1 10 1000   Notice that the logarithmic – O(log n) – visit count goes up very slowly compare to the linear – O(n) – visit count.  This is because since the list is sorted, it can do one check in the middle of the list, determine which half of the collection the data is in, and discard the other half (binary search).  So, if you need your set to be sorted, you can use the SortedSet<T> just like the HashSet<T> and gain sorting for a small performance hit, but it’s still faster than a List<T>. Unique Set Operations Now, if you do want to perform more set-like operations, both implementations of ISet<T> support the following, which play back towards the mathematical set operations described before: IntersectWith() – Performs the set intersection of two sets.  Modifies the current set so that it only contains elements also in the second set. UnionWith() – Performs a set union of two sets.  Modifies the current set so it contains all elements present both in the current set and the second set. ExceptWith() – Performs a set difference of two sets.  Modifies the current set so that it removes all elements present in the second set. IsSupersetOf() – Checks if the current set is a superset of the second set. IsSubsetOf() – Checks if the current set is a subset of the second set. For more information on the set operations themselves, see the MSDN description of ISet<T> (here). What Sets Don’t Do Don’t get me wrong, sets are not silver bullets.  You don’t really want to use a set when you want separate key to value lookups, that’s what the IDictionary implementations are best for. Also sets don’t store temporal add-order.  That is, if you are adding items to the end of a list all the time, your list is ordered in terms of when items were added to it.  This is something the sets don’t do naturally (though you could use a SortedSet with an IComparer with a DateTime but that’s overkill) but List<T> can. Also, List<T> allows indexing which is a blazingly fast way to iterate through items in the collection.  Iterating over all the items in a List<T> is generally much, much faster than iterating over a set. Summary Sets are an excellent tool for maintaining a lookup table where the item is both the key and the value.  In addition, if you have need for the mathematical set operations, the C# sets support those as well.  The HashSet<T> is the set of choice if you want the fastest possible lookups but don’t care about order.  In contrast the SortedSet<T> will give you a sorted collection at a slight reduction in performance.   Technorati Tags: C#,.Net,Little Wonders,BlackRabbitCoder,ISet,HashSet,SortedSet

    Read the article

  • Removing Duplicate Data From SQL Query Output For Display On A Web Page [migrated]

    - by doubleJ
    I had asked a similar question on stackoverflow but didn't really get anywhere. This page shows the output that I'm currently getting from my MSSQL server. I have a table of venue information (name, address, etc...) that our events happen on. Separately, I have a table of the actual events that are scheduled (an event may happen multiple times in one day and/or over multiple days). I join those tables with this query: <?php try { $dbh = new PDO("sqlsrv:Server=localhost;Database=Sermons", "", ""); $dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION); $sql = "SELECT TOP (100) PERCENT dbo.TblSermon.Day, dbo.TblSermon.Date, dbo.TblSermon.Time, dbo.TblSermon.Speaker, dbo.TblSermon.Series, dbo.TblSermon.Sarasota, dbo.TblSermon.NonFlc, dbo.TblJoinSermonLocation.MeetingName, dbo.TblLocation.Location, dbo.TblLocation.Pastors, dbo.TblLocation.Address, dbo.TblLocation.City, dbo.TblLocation.State, dbo.TblLocation.Zip, dbo.TblLocation.Country, dbo.TblLocation.Phone, dbo.TblLocation.Email, dbo.TblLocation.WebAddress FROM dbo.TblLocation RIGHT OUTER JOIN dbo.TblJoinSermonLocation ON dbo.TblLocation.ID = dbo.TblJoinSermonLocation.Location RIGHT OUTER JOIN dbo.TblSermon ON dbo.TblJoinSermonLocation.Sermon = dbo.TblSermon.ID WHERE (dbo.TblSermon.Date >= { fn NOW() }) ORDER BY dbo.TblSermon.Date, dbo.TblSermon.Time"; $stmt = $dbh->prepare($sql); $stmt->execute(); $stmt->setFetchMode(PDO::FETCH_ASSOC); foreach ($stmt as $row) { echo "<pre>"; print_r($row); echo "</pre>"; } unset($row); $dbh = null; } catch(PDOException $e) { echo $e->getMessage(); } ?> So, as it loops through the query results, it creates an array for each record and ends up like this: Array ( [Day] => Tuesday [Date] => 2012-10-30 00:00:00.000 [Time] => 07:00 PM [Speaker] => Keith Moore [Location] => The Ark Church [Pastors] => Alan & Joy Clayton [Address] => 450 Humble Tank Rd. [City] => Conroe [State] => TX [Zip] => 77305.0 [Phone] => (936) 756-1988 [Email] => [email protected] [WebAddress] => http://www.thearkchurch.org ) Array ( [Day] => Wednesday [Date] => 2012-10-31 00:00:00.000 [Time] => 07:00 PM [Speaker] => Keith Moore [Location] => The Ark Church [Pastors] => Alan & Joy Clayton [Address] => 450 Humble Tank Rd. [City] => Conroe [State] => TX [Zip] => 77305.0 [Phone] => (936) 756-1988 [Email] => [email protected] [WebAddress] => http://www.thearkchurch.org ) Array ( [Day] => Tuesday [Date] => 2012-11-06 00:00:00.000 [Time] => 07:00 PM [Speaker] => Keith Moore [Location] => Fellowship Of Faith Christian Center [Pastors] => Michael & Joan Kalstrup [Address] => 18999 Hwy. 59 [City] => Oakland [State] => IA [Zip] => 51560.0 [Phone] => (712) 482-3455 [Email] => [email protected] [WebAddress] => http://www.fellowshipoffaith.cc ) Array ( [Day] => Wednesday [Date] => 2012-11-14 00:00:00.000 [Time] => 07:00 PM [Speaker] => Keith Moore [Location] => Faith Family Church [Pastors] => Michael & Barbara Cameneti [Address] => 8200 Freedom Ave NW [City] => Canton [State] => OH [Zip] => 44720.0 [Phone] => (330) 492-0925 [Email] => [WebAddress] => http://www.myfaithfamily.com ) As you can see, The Ark Church and its associated contact information is duplicated, so when I work with those arrays and output them to the page, I see a bunch of duplicate content. I'd like to remove the duplicate information so that I get results similar to this: The Ark Church Alan & Joy Clayton 450 Humble Tank Rd. Conroe, TX 77305 (936) 756-1988 [email protected] http://www.thearkchurch.org Meetings: Tuesday, 2012-10-30 07:00 PM Wednesday, 2012-10-31 07:00 PM Fellowship Of Faith Christian Center Michael & Joan Kalstrup 18999 Hwy. 59 Oakland, IA 51560 (712) 482-3455 [email protected] http://www.fellowshipoffaith.cc Meetings: Tuesday, 2012-11-06 07:00 PM Faith Family Church Michael & Barbara Cameneti 8200 Freedom Ave NW Canton, OH 44720 (330) 492-0925 http://www.myfaithfamily.com Meetings: Wednesday, 2012-11-14 07:00 PM It doesn't necessarily have to end up like that (I'm not looking for code specific for these results, but a concept of how to not show the duplicated information). I'm assuming that an additional foreach or while will do it, but I haven't figured out any logic that says <?php if ($location == $previouslocation) echo ""; ?>.

    Read the article

  • CodePlex Daily Summary for Friday, August 15, 2014

    CodePlex Daily Summary for Friday, August 15, 2014Popular ReleasesGoogle .Net API: Drive.Sample: Google .NET Client API – Drive.SampleInstructions for the Google .NET Client API – Drive.Sample</h2> http://code.google.com/p/google-api-dotnet-client/source/browse/?repo=samples#hg%2FDrive.SampleBrowse Source, or main file http://code.google.com/p/google-api-dotnet-client/source/browse/Drive.Sample/Program.cs?repo=samplesProgram.cs <h3>1. Checkout Instructions</h3> <p><b>Prerequisites:</b> Install Visual Studio, and <a href="http://mercurial.selenic.com/">Mercurial</a>.</p> ...FineUI - jQuery / ExtJS based ASP.NET Controls: FineUI v4.1.1: -??Form??????????????(???-5929)。 -?TemplateField??ExpandOnDoubleClick、ExpandOnEnter、ExpandToSelectRow????(LZOM-5932)。 -BodyPadding???????,??“5”“5 10”,???????????“5px”“5px 10px”。 -??TriggerBox?EnableEdit=false????,??????????????(Jango_Jing-5450)。 -???????????DataKeyNames???????????(yygy-6002)。 -????????????????????????(Gnid-6018)。 -??PageManager???AutoSizePanelID????,??????????????????(yygy-6008)。 -?FState???????????????,????????????????(????-5925)。 -??????OnClientClick???return?????????(FineU...SEToolbox: SEToolbox 01.042.020 Release 1: Updated Mod support. On startup, only stock items will appear in the Components list. Upon selecting and loading a saved world, the mods for that world only will then be loaded, and only from the local drive. If a mod has not been downloaded in Space Engineers, it will not download it for you. If you are developing a Mod, hitting "Reload" will also reload the mods as well as the saved world. If SEToolbox is crashing when loading a saved world containing mods, it is most likely because one ...Gum UI Tool: Gum 0.6.09: Fixed bug which would not allow plugins to be loaded when the app was distributed. Added animation plugin7zbackup - PowerShell Script to Backup Files with 7zip: 7zBackup v. 1.9.8 Stable: Do you like this piece of software ? It took some time and effort to develop. Please consider helping me with a donation Feat : Lock file now holds process ID and RootDir. On subsequent launches script checks if previous process is still alive. In case it is not it will clean up orphaned junction root directory. Ensure no orphaned rootdirs are on disk and no lockfiles in %temp% directory before running this releaseDNN CMS Platform: 07.03.02: Major Highlights Fixed backwards compatibility issue with 3rd party control panels Fixed issue in the drag and drop functionality of the File Uploader in IE 11 and Safari Fixed issue where users were able to create pages with the same name Fixed issue that affected older versions of DNN that do not include the maxAllowedContentLength during upgrade Fixed issue that stopped some skins from being upgraded to newer versions Fixed issue that randomly showed an unexpected error during us...WordMat: WordMat for Mac: WordMat for Mac has a few limitations compared to the Windows version - Graph is not supported (Gnuplot, GeoGebra and Excel works) - Units are not supported yet (Coming up) The Mac version is yet as tested as the windows version.ConEmu - Windows console with tabs: ConEmu 140814 [Alpha]: ConEmu - developer build x86 and x64 versions. Written in C++, no additional packages required. Run "ConEmu.exe" or "ConEmu64.exe". Some useful information you may found: http://superuser.com/questions/tagged/conemu http://code.google.com/p/conemu-maximus5/wiki/ConEmuFAQ http://code.google.com/p/conemu-maximus5/wiki/TableOfContents If you want to use ConEmu in portable mode, just create empty "ConEmu.xml" file near to "ConEmu.exe" HP OneView PowerShell Library: HP OneView PowerShell Library 1.10.1193: Branch to HP OneView 1.10 Release. NOTE: This library version does not support older appliance versions. Fixed New-HPOVProfile to check for Firmware and BIOS management for supported platforms. Would erroneously error when neither -firmware or -bios were passed. Fixed Remove-HPOV* cmdlets which did not handle -force switch parameter correctly Fixed New-HPOVUplinkSet and New-HPOVNetwork Fixed Download-File where HTTP stream compression was not handled, resulting in incorrectly writt...NeoLua (Lua for .net dynamic language runtime): NeoLua-0.8.17: Fix: table.insert Fix: table auto convert Fix: Runtime-functions were defined as private it should be internal. Fix: min,max MichaelSenko release.MFCMAPI: August 2014 Release: Build: 15.0.0.1042 Full release notes at SGriffin's blog. If you just want to run the MFCMAPI or MrMAPI, get the executables. If you want to debug them, get the symbol files and the source. The 64 bit builds will only work on a machine with Outlook 2010/2013 64 bit installed. All other machines should use the 32 bit builds, regardless of the operating system. Facebook BadgeOooPlayer: 1.1: Added: Support for speex, TAK and OptimFrog files Added: An option to not to load cover art Added: Smaller package size Fixed: Unable to drag&drop audio files to playlist Updated: FLAC, WacPack and Opus playback libraries Updated: ID3v1 and ID3v2 tag librariesEWSEditor: EwsEditor 1.10 Release: • Export and import of items as a full fidelity steam works - without proxy classes! - I used raw EWS POSTs. • Turned off word wrap for EWS request field in EWS POST windows. • Several windows with scrolling texts boxes were limiting content to 32k - I removed this restriction. • Split server timezone info off to separate menu item from the timezone info windows so that the timezone info window could be used without logging into a mailbox. • Lots of updates to the TimeZone window. • UserAgen...Python Tools for Visual Studio: 2.1 RC: Release notes for PTVS 2.1 RC We’re pleased to announce the release candidate for Python Tools for Visual Studio 2.1. Python Tools for Visual Studio (PTVS) is an open-source plug-in for Visual Studio which supports programming with the Python language. PTVS supports a broad range of features including CPython/IronPython, editing, IntelliSense, interactive debugging, profiling, Microsoft Azure, IPython, and cross-platform debugging support. PTVS 2.1 RC is available for: Visual Studio Expre...Sense/Net ECM - Enterprise CMS: SenseNet 6.3.1 Community Edition: Sense/Net 6.3.1 Community EditionSense/Net 6.3.1 is an important step toward a more modular infrastructure, robustness and maintainability. With this release we finally introduce a packaging and a task management framework, and the Image Editor that will surely make the job of content editors more fun. Please review the changes and new features since Sense/Net 6.3 and give a feedback on our forum! Main new featuresSnAdmin (packaging framework) Task Management Image Editor OData REST A...Fluffy: Fluffy 0.3.35.4: Change log: Text editorSKGL - Serial Key Generating Library: SKGL Extension Methods 4 (1.0.5.1): This library contains methods for: Time change check (make sure the time has not been changed on the client computer) Key Validation (this will use http://serialkeymanager.com/ to validate keys against the database) Key Activation (this will, depending on the settings, activate a key with a specific machine code) Key Activation Trial (allows you to update a key if it is a trial key) Get Machine Code (calculates a machine code given any hash function) Get Eight Byte Hash (returns an...Touchmote: Touchmote 1.0 beta 13: Changes Less GPU usage Works together with other Xbox 360 controls Bug fixesModern UI for WPF: Modern UI 1.0.6: The ModernUI assembly including a demo app demonstrating the various features of Modern UI for WPF. BREAKING CHANGE LinkGroup.GroupName renamed to GroupKey NEW FEATURES Improved rendering on high DPI screens, including support for per-monitor DPI awareness available in Windows 8.1 (see also Per-monitor DPI awareness) New ModernProgressRing control with 8 builtin styles New LinkCommands.NavigateLink routed command New Visual Studio project templates 'Modern UI WPF App' and 'Modern UI W...ClosedXML - The easy way to OpenXML: ClosedXML 0.74.0: Multiple thread safe improvements including AdjustToContents XLHelper XLColor_Static IntergerExtensions.ToStringLookup Exception now thrown when saving a workbook with no sheets, instead of creating a corrupt workbook Fix for hyperlinks with non-ASCII Characters Added basic workbook protection Fix for error thrown, when a spreadsheet contained comments and images Fix to Trim function Fix Invalid operation Exception thrown when the formula functions MAX, MIN, and AVG referenc...New Projectsapple TV: Apple TV project homepageArma 3 Battle Eye Client: Arma3BEClientASP.NET MVC AngularJS w/ Google Maps API: ASP.NET MVC sample using Google Maps API w/ AngularJS.CC-Classwork: Classwork from CoderCampsCompanyPortal: CompanyPortalcore: Building an Internet of Things (IoT, also Cloud of Things or CoT) core, drawing inspirations from the pre-existing Linus Torvalds linux kernel made from GNU/nixCRM Early Bound Class Simplifier: Simplifies the creation of a Dynamics CRM Early Bound Class. Dirección Desconcentrada de Cultura: Este proyecto web se ha elaborado para la dirección desconcentrada de cultura de cajamarca a cargo de los practicantes de UPNC Sitemas computacionales.Energy Trail Site: NGO Site for designing and collaboration work.Hybrid Platform - Build anything: A Platform that built by loosely coupled architecture. You can build applications for Web, Desktop, Mobile, WCF Services - ASP.NET MVC on this concrete platformipad air: a web tool to sim display same as ipad airipad apps: A serices to support Ipad HD devise to request CURD for codeplex.comiphone 6: iphone6iphone air: Opend API lists for IPhone 6(iphone air)iphone apps: Bus API for iphoneiwatch: A priview version for iwtach API Named Colors in Silverlight: This project is a Silverlight dll to add the missing named colors from System.Windows.Media.Color. Once added as a reference, it makes using named colors easy!OOP_2113110295: Name: Nguyen Trung Thao ID 2113110295 Truong Cao Dang Cong Thuong Mon: OOPPagepark: PageparkProjektRepository: Eine virtuelle Forschungsumgebung (VFU) um Forschungsdaten und Artefakte zu sammeln, gemeinsam zu nutzen, erschließen und mit Metadaten anreichern zu könnenRamonaSniffer: This will be the repository to host the zigbee snifferseawol: A Blog system base on node.jsSonar settings for TFS Build: Sample of configurations for Sonar to work with TFS for copy/pasteSon's Homework and learning to code: Just a collection of coding projects to learn from.SunBurn Terrain Editor: A fully functional standalone WYSWYG terrain (height map and color map) editor. Built upon the SunBurn Platform Framework allowing scope for Linux and Mac ports????.????????: 1) ??????? ???????? ?? 2) C# ?????????? (??????) ??? ???????? ?????? ???? (? ??????? *.dbf) ? ????? ???? 3) WinForms-?????????? ??? ???????????? ?????? ????

    Read the article

  • Cardinality Estimation Bug with Lookups in SQL Server 2008 onward

    - by Paul White
    Cost-based optimization stands or falls on the quality of cardinality estimates (expected row counts).  If the optimizer has incorrect information to start with, it is quite unlikely to produce good quality execution plans except by chance.  There are many ways we can provide good starting information to the optimizer, and even more ways for cardinality estimation to go wrong.  Good database people know this, and work hard to write optimizer-friendly queries with a schema and metadata (e.g. statistics) that reduce the chances of poor cardinality estimation producing a sub-optimal plan.  Today, I am going to look at a case where poor cardinality estimation is Microsoft’s fault, and not yours. SQL Server 2005 SELECT th.ProductID, th.TransactionID, th.TransactionDate FROM Production.TransactionHistory AS th WHERE th.ProductID = 1 AND th.TransactionDate BETWEEN '20030901' AND '20031231'; The query plan on SQL Server 2005 is as follows (if you are using a more recent version of AdventureWorks, you will need to change the year on the date range from 2003 to 2007): There is an Index Seek on ProductID = 1, followed by a Key Lookup to find the Transaction Date for each row, and finally a Filter to restrict the results to only those rows where Transaction Date falls in the range specified.  The cardinality estimate of 45 rows at the Index Seek is exactly correct.  The table is not very large, there are up-to-date statistics associated with the index, so this is as expected. The estimate for the Key Lookup is also exactly right.  Each lookup into the Clustered Index to find the Transaction Date is guaranteed to return exactly one row.  The plan shows that the Key Lookup is expected to be executed 45 times.  The estimate for the Inner Join output is also correct – 45 rows from the seek joining to one row each time, gives 45 rows as output. The Filter estimate is also very good: the optimizer estimates 16.9951 rows will match the specified range of transaction dates.  Eleven rows are produced by this query, but that small difference is quite normal and certainly nothing to worry about here.  All good so far. SQL Server 2008 onward The same query executed against an identical copy of AdventureWorks on SQL Server 2008 produces a different execution plan: The optimizer has pushed the Filter conditions seen in the 2005 plan down to the Key Lookup.  This is a good optimization – it makes sense to filter rows out as early as possible.  Unfortunately, it has made a bit of a mess of the cardinality estimates. The post-Filter estimate of 16.9951 rows seen in the 2005 plan has moved with the predicate on Transaction Date.  Instead of estimating one row, the plan now suggests that 16.9951 rows will be produced by each clustered index lookup – clearly not right!  This misinformation also confuses SQL Sentry Plan Explorer: Plan Explorer shows 765 rows expected from the Key Lookup (it multiplies a rounded estimate of 17 rows by 45 expected executions to give 765 rows total). Workarounds One workaround is to provide a covering non-clustered index (avoiding the lookup avoids the problem of course): CREATE INDEX nc1 ON Production.TransactionHistory (ProductID) INCLUDE (TransactionDate); With the Transaction Date filter applied as a residual predicate in the same operator as the seek, the estimate is again as expected: We could also force the use of the ultimate covering index (the clustered one): SELECT th.ProductID, th.TransactionID, th.TransactionDate FROM Production.TransactionHistory AS th WITH (INDEX(1)) WHERE th.ProductID = 1 AND th.TransactionDate BETWEEN '20030901' AND '20031231'; Summary Providing a covering non-clustered index for all possible queries is not always practical, and scanning the clustered index will rarely be optimal.  Nevertheless, these are the best workarounds we have today. In the meantime, watch out for poor cardinality estimates when a predicate is applied as part of a lookup. The worst thing is that the estimate after the lookup join in the 2008+ plans is wrong.  It’s not hopelessly wrong in this particular case (45 versus 16.9951 is not the end of the world) but it easily can be much worse, and there’s not much you can do about it.  Any decisions made by the optimizer after such a lookup could be based on very wrong information – which can only be bad news. If you think this situation should be improved, please vote for this Connect item. © 2012 Paul White – All Rights Reserved twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • XNA: Huge Tile Map, long load times

    - by Zach
    Recently I built a tile map generator for a game project. What I am very proud of is that I finally got it to the point where I can have a GIANT 2D map build perfectly on my PC. About 120000pixels by 40000 pixels. I can go larger actually, but I have only 1 draw back. #1 ram, the map currently draws about 320MB of ram and I know the Xbox allows 512MB I think? #2 It takes 20 mins for the map to build then display on the Xbox, on my PC it take less then a few seconds. I need to bring that 20 minutes of generating from 20 mins to how ever little bit I can, and how can a lower the amount of RAM usage while still being able to generate my map. Right now everything is stored in Jagged Arrays, each piece generating in a size of 1280x720 (the mother piece). Up to the amount that I need, every block is exactly 40x40 pixels however the blocks get removed from a List or regenerated in a List depending how close the mother piece is to the player. Saving A LOT of CPU, so at all times its no more then looping through 5184 some blocks. Well at least I'm sure of this. But how can I lower my RAM usage without hurting the size of the map, and how can I lower these INSANE loading times? EDIT: Let me explain my self better. Also I'd like to let everyone know now that I'm inexperienced with many of these things. So here is an example of the arrays I'm using. Here is the overall in a shorter term: int[][] array = new int[30][]; array[0] = new int[] { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; array[1] = new int[] { 1, 3, 3, 3, 3, 1, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; that goes on for around 30 arrays downward. Now for every time it hits a 1, it goes and generates a tile map 1280x720 and it does that exactly the way it does it above. This is how I loop through those arrays: for (int i = 0; i < array.Length; i += 1) { for (int h = 0; h < array[i].Length; h += 1) { } { Now how the tiles are drawn and removed is something like this: public void Draw(SpriteBatch spriteBatch, Vector2 cam) { if (cam.X >= this.Position.X - 1280) { if (cam.X <= this.Position.X + 2560) { if (cam.Y >= this.Position.Y - 720) { if (cam.Y <= this.Position.Y + 1440) { if (visible) { if (once == 0) { once = 1; visible = false; regen(); } } for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles[i].Draw(spriteBatch, cam); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles[i].Draw(spriteBatch, cam); } } else { once = 0; for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles.RemoveAt(i); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles.RemoveAt(i); } } } else { once = 0; for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles.RemoveAt(i); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles.RemoveAt(i); } } } else { once = 0; for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles.RemoveAt(i); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles.RemoveAt(i); } } } else { once = 0; for (int i = Tiles.Count - 1; i >= 0; i--) { Tiles.RemoveAt(i); } for (int i = unWalkTiles.Count - 1; i >= 0; i--) { unWalkTiles.RemoveAt(i); } } } } If you guys still need more information just ask in the comments.

    Read the article

  • how do i make maximum minimum and average score statistic in this code? [on hold]

    - by goldensun player
    i wanna out put the maximum minimum and average score as a statistic category under the student ids and grades in the output file. how do i do that? here is the code: #include "stdafx.h" #include <iostream> #include <string> #include <fstream> #include <assert.h> using namespace std; int openfiles(ifstream& infile, ofstream& outfile); void Size(ofstream&, int, string); int main() { int num_student = 4, count, length, score2, w[6]; ifstream infile, curvingfile; char x; ofstream outfile; float score; string key, answer, id; do { openfiles(infile, outfile); // function calling infile >> key; // answer key for (int i = 0; i < num_student; i++) // loop over each student { infile >> id; infile >> answer; count = 0; length = key.size(); // length represents number of questions in exam from exam1.dat // size is a string function.... Size (outfile, length, answer); for (int j = 0; j < length; j++) // loop over each question { if (key[j] == answer[j]) count++; } score = (float) count / length; score2 = (int)(score * 100); outfile << id << " " << score2 << "%"; if (score2 >= 90)//<-----w[0] outfile << "A" << endl; else if (score2 >= 80)//<-----w[1] outfile << "B" << endl; else if (score2 >= 70)//<-----w[2] outfile << "C" << endl; else if (score2 >= 60)//<-----w[3] outfile << "D" << endl; else if (score2 >= 50)//<-----w[4] outfile << "E" << endl; else if (score2 < 50)//<-----w[5] outfile << "F" << endl; } cout << "Would you like to attempt a new trial? (y/n): "; cin >> x; } while (x == 'y' || x == 'Y'); return 0; } int openfiles(ifstream& infile, ofstream& outfile) { string name1, name2, name3, answerstring, curvedata; cin >> name1; name2; name3; if (name1 == "exit" || name2 == "exit" || name3 == "exit" ) return false; cout << "Input the name for the exam file: "; cin >> name1; infile.open(name1.c_str()); infile >> answerstring; cout << "Input the name for the curving file: "; cin >> name2; infile.open(name2.c_str()); infile >> curvedata; cout << "Input the name for the output: "; cin >> name3; outfile.open(name3.c_str()); return true; } void Size(ofstream& outfile, int length, string answer) { bool check;// extra answers, lesser answers... if (answer.size() > length) { outfile << "Unnecessary extra answers"; } else if (answer.size() < length) { outfile << "The remaining answers are incorrect"; } else { check = false; }; } and how do i use assert for preconditions and post conditional functions? i dont understand this that well...

    Read the article

  • Viewing the NetBeans Central Registry (Part 2)

    - by Geertjan
    Jens Hofschröer, who has one of the very best NetBeans Platform blogs (if you more or less understand German), and who wrote, sometime ago, the initial version of the Import Statement Organizer, as well as being the main developer of a great gear design & manufacturing tool on the NetBeans Platform in Aachen, commented on my recent blog entry "Viewing the NetBeans Central Registry", where the root Node of the Central Registry is shown in a BeanTreeView, with the words: "I wrapped that Node in a FilterNode to provide the 'position' attribute and the 'file extension'. All Children are wrapped too. Then I used an OutlineView to show these two properties. Great tool to find wrong layer entries." I asked him for the code he describes above and he sent it to me. He discussed it here in his blog, while all the code involved can be read below. The result is as follows, where you can see that the OutlineView shows information that my simple implementation (via a BeanTreeView) kept hidden: And so here is the definition of the Node. class LayerPropertiesNode extends FilterNode { public LayerPropertiesNode(Node node) { super(node, isFolder(node) ? Children.create(new LayerPropertiesFactory(node), true) : Children.LEAF); } private static boolean isFolder(Node node) { return null != node.getLookup().lookup(DataFolder.class); } @Override public String getDisplayName() { return getLookup().lookup(FileObject.class).getName(); } @Override public Image getIcon(int type) { FileObject fo = getLookup().lookup(FileObject.class); try { DataObject data = DataObject.find(fo); return data.getNodeDelegate().getIcon(type); } catch (DataObjectNotFoundException ex) { Exceptions.printStackTrace(ex); } return super.getIcon(type); } @Override public Image getOpenedIcon(int type) { return getIcon(type); } @Override public PropertySet[] getPropertySets() { Set set = Sheet.createPropertiesSet(); set.put(new PropertySupport.ReadOnly<Integer>( "position", Integer.class, "Position", null) { @Override public Integer getValue() throws IllegalAccessException, InvocationTargetException { FileObject fileEntry = getLookup().lookup(FileObject.class); Integer posValue = (Integer) fileEntry.getAttribute("position"); return posValue != null ? posValue : Integer.valueOf(0); } }); set.put(new PropertySupport.ReadOnly<String>( "ext", String.class, "Extension", null) { @Override public String getValue() throws IllegalAccessException, InvocationTargetException { FileObject fileEntry = getLookup().lookup(FileObject.class); return fileEntry.getExt(); } }); PropertySet[] original = super.getPropertySets(); PropertySet[] withLayer = new PropertySet[original.length + 1]; System.arraycopy(original, 0, withLayer, 0, original.length); withLayer[withLayer.length - 1] = set; return withLayer; } private static class LayerPropertiesFactory extends ChildFactory<FileObject> { private final Node context; public LayerPropertiesFactory(Node context) { this.context = context; } @Override protected boolean createKeys(List<FileObject> list) { FileObject folder = context.getLookup().lookup(FileObject.class); FileObject[] children = folder.getChildren(); List<FileObject> ordered = FileUtil.getOrder(Arrays.asList(children), false); list.addAll(ordered); return true; } @Override protected Node createNodeForKey(FileObject key) { AbstractNode node = new AbstractNode(org.openide.nodes.Children.LEAF, key.isFolder() ? Lookups.fixed(key, DataFolder.findFolder(key)) : Lookups.singleton(key)); return new LayerPropertiesNode(node); } } } Then here is the definition of the Action, which pops up a JPanel, displaying an OutlineView: @ActionID(category = "Tools", id = "de.nigjo.nb.layerview.LayerViewAction") @ActionRegistration(displayName = "#CTL_LayerViewAction") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 1450, separatorBefore = 1425) }) @Messages("CTL_LayerViewAction=Display XML Layer") public final class LayerViewAction implements ActionListener { @Override public void actionPerformed(ActionEvent e) { try { Node node = DataObject.find(FileUtil.getConfigRoot()).getNodeDelegate(); node = new LayerPropertiesNode(node); node = new FilterNode(node) { @Override public Component getCustomizer() { LayerView view = new LayerView(); view.getExplorerManager().setRootContext(this); return view; } @Override public boolean hasCustomizer() { return true; } }; NodeOperation.getDefault().customize(node); } catch (DataObjectNotFoundException ex) { Exceptions.printStackTrace(ex); } } private static class LayerView extends JPanel implements ExplorerManager.Provider { private final ExplorerManager em; public LayerView() { super(new BorderLayout()); em = new ExplorerManager(); OutlineView view = new OutlineView("entry"); view.addPropertyColumn("position", "Position"); view.addPropertyColumn("ext", "Extension"); add(view); } @Override public ExplorerManager getExplorerManager() { return em; } } }

    Read the article

  • Tweaking Hudson memory usage

    - by rovarghe
    Hudson 3.1 has some performance optimizations that greatly reduces its memory footprint. Prior to this Hudson used to always hold the entire data model (all jobs and all builds) in memory which affected scalability. Some installations configured heap sizes in excess of 1GB to counteract this. Hudson 3.1.x maintains an MRU cache and only loads jobs and builds as they are required. Because of the inability to change existing APIs and be backward compatible with plugins, there were limits to how far we could go with this approach. Memory optimizations almost always come with a related cost, in this case its additional I/O that has to be performed to load data on request. On a small site that has frequent traffic, this is usually not noticeable since the MRU cache will usually hold on to all the data. A large site with infrequent traffic might experience some delays when the first request hits the server after a long gap. If you have a large heap and are able to allocate more memory, the cache settings can be adjusted to take advantage of this and even go back to pre-3.1 behavior. All the cache settings can be passed as options to the JVM container (Tomcat or the default Jetty container) using the -D option. There are two caches, independant of each other, one for Jobs and the other for Builds. For the jobs cache: hudson.jobs.cache.evict_in_seconds ( default=60 ) Seconds from last access (could be because of a servlet request or a background cron thread) a job should be purged from the cache. Set this to 0 to never purge based on time. hudson.jobs.cache.initial_capacity ( default=1024 ) Initial number of jobs the cache can accomodate. Setting this to the number of jobs you typically display on your Hudson landing page or home page will speed up consecutive access to that page. If the default is too large you may consider downsizing and using that memory for the Builds cache instead. hudson.jobs.cache.max_entries ( default=1024) Maximum number of jobs in the cache. The default is large enough for most installations, but if you find I/O activity when always accessing the hudson home page you might consider increasing this, but first verify if the I/O is caused by frequent eviction (see above), rather than by the cache not being large enough. For the builds cache: The builds cache is used to store Build objects as they are read from storage. Typically this happens when a user drills down into the details of a particular Job from the hudson hom epage. The cache is shared among builds for different jobs since in most installations all jobs are not accessed with the same frequency, so a per-job builds cache would be a waste of memory. hudson.job.builds.cache.evict_in_seconds ( default=60 ) Same as the equivalent Job cache, applied to Build. hudson.job.builds.cache.initial_capacity" ( default=512 ) Same as equivalent Job cache setting. Note the smaller initial size. If your site stores a large number of builds and has frequent access to more builds you might consider bumping this up. hudson.job.builds.cache.max_entries ( default=10240 ) The default max is large enough for most installations, the builds cache has bigger sized objects, so be careful about increasing the upper limit on this. See section on monitoring below. Sample usage: java -jar hudson-war-3.1.2-SNAPSHOT.war -Dhudson.jobs.cache.evict_in_seconds=300 \ -Dhudson.job.builds.cache.evict_in_seconds=300 Monitoring cache usage The 'jmap' tool that comes with the JDK can be used to monitor cache performance in an indirect way by looking at the number of Job and Build objects in each cache. Find the PID of the hudson instance and run $ jmap -histo:live <pid | grep 'hudson.model.*Lazy.*Key$' Here's a sample output: num #instances #bytes class name 523: 28 896 hudson.model.RunMap$LazyRunValue$Key 1200: 3 96 hudson.model.LazyTopLevelItem$Key These are the keys to the Jobs (LazyTopLevelItem$Key) and Builds (RunMap$LazyRunValue$Key) in the caches, so counting the number of keys is a good indicator of the number of items in the cache at any given moment. The size in bytes can be ignored, they are just the size of the keys, not the actual sizes of the objects they hold. Those sizes can only be obtained with a profiler. With the output above we can conclude that there are 3 jobs and 28 builds in memory. The 28 builds can all be from 1 job or all 3 jobs. Over time on an idle system, these should get evicted and memory cache should be empty. In practice, because of background cron threads and triggers, jobs rarely fall down to zero. Access of a job or a build by a cron thread resets the eviction timer.

    Read the article

  • Traversing Java Object Arrays [migrated]

    - by Sundi
    Please Help. Program does not read Array rentBooks[] in the for() loop this option is selected when choosing option 2 then option 4 in the menu The Array reads perfectly when reading the items after the setBook() Method import java.io.File; import java.io.FileNotFoundException; import java.util.Scanner; import java.io.*; import java.util.Locale; import java.text.SimpleDateFormat ; class Library { protected static String Author; protected static String Title; SimpleDateFormat PublicationDate; int itemCode; int available = 1; } class Book extends Library { protected static String PublisherName; protected static String Edition; static Book[] rentBooks = new Book[5]; //Book[] rentBooks = new Book[5]; int count = 0; public Book() { String start= "start"; showBook.main(anza); } public void setBook( String Auth, String Titl, String PublishName) { this.Author = Auth; this.Title = Titl; this.PublisherName = PublishName; } public void getBook() { //System.out.println("*************BOOKS*************************"); System.out.println( "\n\nThe Author of the first Book is "+ this.Author ); System.out.println( "The Title of the book is "+ this.Title); System.out.println( "The Publisher of the book is "+ this.PublisherName ); // System.out.println( "The Edition of the book is "+ Edition ); } } class showBook{ static Book[] rentBooks = new Book[5]; static Book[] rentBooks2 = new Book[5]; static int a,b; //for ( a=0; a < 5; a++ ) //rentBooks2[a] = new Book(); public static void main(String[] args) { File file = new File("Book2.txt"); //Book libraryBooks = new Book(); int j; //initialise Array Class Objects for( j = 0; j < 5; j++) { rentBooks[j] = new Book(); } int i = 0; try{ Scanner scanner = new Scanner(file); scanner.useDelimiter(","); String loan=""; int loan2; while( scanner.hasNextLine()) { //Should the Books be Stored in An Array? // At the moment you have separate objects stored in unknown location String Author = scanner.next(); String Title = scanner.next(); String PublisherName = scanner.next(); if ( i < 4) { System.out.println(i); rentBooks[i].setBook(Author, Title, PublisherName); rentBooks[i].getBook(); // MEMBERS SHOWN i++; } public class readBook4{ public static void main(String[] args) { int number =0; System.out.println( "Please select one of the choices below " ); System.out.println( "Select option 1 to list all items in the library "); System.out.println( "Select option 2 to list the items by category"); System.out.println( "Select option 3 to choose item available in the library "); System.out.println( "Select option 7 to exit " ); InputStreamReader isr = new InputStreamReader( System.in); BufferedReader buffer = new BufferedReader( isr); String input = ""; try { input = buffer.readLine(); number = Integer.parseInt(input); //int number = Integer.parseInt( Edition); if ( number == 1 ) { System.out.println( " \nThanks you are reading "+ input); //showStudent.main(args); showPeriodical.main(args); showDVD.main(args); // showBook.main(args); } if ( number == 2 ) { //jht.cls(); int number2; System.out.println( "Please select one of the choices below " ); System.out.println( "Select option 4 to list Books only "); System.out.println( "Select option 5 to list the Periodicals only"); System.out.println( "Select option 6 to list DVDs only"); InputStreamReader isr2 = new InputStreamReader(System.in); BufferedReader buffer2 = new BufferedReader(isr2); String input2 = ""; try { input2 = buffer2.readLine(); buffer.close(); } catch(IOException e) { System.out.println("An input error has occured"); } //System.out.println("Thanks, you are reading" + input2); number2 = Integer.parseInt(input2); if ( number2 == 4 ) { showBook.main(args); } if ( number2 == 5 ) { showPeriodical.main(args); } if ( number2 == 6 ) { showDVD.main(args); } // readBook4.main(args); } if( number == 3 ) { //showBook.main(args); showBook.availableBooks(); showDVD.availableDVD(); showPeriodical.availablePeriodical(); } if ( number == 7 ) { showStudent.main(args); } buffer.close(); } catch( IOException e ) { System.out.println( " An input error has occured "); } //System.out.println( " \nThanks you are reading "+ input); } } } //buffer.close(); scanner.close(); } catch( FileNotFoundException e) { System.out.println("File not Found"); } for ( i=0; i < 5; i++ ) rentBooks[i].getBook(); //ARRAY NOT SHOWN } }

    Read the article

  • memory leak error when using an iterator

    - by Adnane Jaafari
    please i'm having this error if any one can explain it : while using an iterator in my methode public void createDemandeP() { if (demandep.getDateDebut().after(demandep.getDateFin())) { FacesContext .getCurrentInstance() .addMessage( null, new FacesMessage(FacesMessage.SEVERITY_WARN, "Attention aux dates", "la date de debut doit être avant la date de fin!")); } else if (demandep.getDateDebut().before(demandep.getDateFin())) { List<DemandeP> list = new ArrayList<DemandeP>(); list.addAll(chaletService.getChaletBylibelle(chaletChoisi).get(0) .getListDemandesP()); Iterator<DemandeP> it = list.iterator(); DemandeP d = it.next(); while (it.hasNext()) { if ((d.getDateDebut().compareTo(demandep.getDateDebut()) == 0) || (d.getDateFin().compareTo(demandep.getDateDebut()) == 0) || (d.getDateFin().compareTo(demandep.getDateFin()) == 0) || (d.getDateDebut().compareTo(demandep.getDateDebut()) == 0) || (d.getDateDebut().before(demandep.getDateDebut()) && d .getDateFin().after(demandep.getDateFin())) || (d.getDateDebut().before(demandep.getDateFin()) && d .getDateDebut().after(demandep.getDateDebut())) || (d.getDateFin().after(demandep.getDateDebut()) && d .getDateFin().before(demandep.getDateFin()))) { FacesContext.getCurrentInstance().getMessageList().clear(); FacesContext .getCurrentInstance() .addMessage( null, new FacesMessage( FacesMessage.SEVERITY_FATAL, "Periode Ou chalet indisponicle ", "Veillez choisir une autre marge de date !")); } } } else { demandep.setEtat("En traitement"); DateFormat dateFormat = new SimpleDateFormat("dd/MM/yyyy"); Date date = new Date(); try { demandep.setDateDemande(dateFormat.parse(dateFormat .format(date))); } catch (ParseException e) { System.out.println("errooor date"); e.printStackTrace(); } nameUser = auth.getName(); // System.out.println(nameUser); adherent = utilisateurService.findAdherentByNom(nameUser).get(0); demandep.setUtilisateur(adherent); // System.out.println(chaletService.getChaletBylibelle(chaletChoisi).get(0).getLibelle()); demandep.setChalet(chaletService.getChaletBylibelle(chaletChoisi) .get(0)); demandep.setNouvelleDemande(true); demandePService.ajouterDemandeP(demandep); } } oct. 23, 2013 7:19:30 PM org.apache.catalina.core.StandardContext reload INFO: Le rechargement du contexte [/ONICLFINAL] a démarré oct. 23, 2013 7:19:30 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:31 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:32 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:32 PM org.apache.catalina.core.ApplicationContext log INFO: Closing Spring root WebApplicationContext oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesJdbc SEVERE: The web application [/ONICLFINAL] registered the JDBC driver [com.mysql.jdbc.Driver] b but failed to unregister it when the web application was stopped. To prevent a memory leak, the JDBC Driver has been forcibly unregistered. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesThreads SEVERE: The web application [/ONICLFINAL] appears to have started a thread named [MySQL Statement Cancellation Timer] but has failed to stop it. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesThreads SE VERE: The web application [/ONICLFINAL] is still processing a request that has yet to finish. This is very likely to create a memory leak. You can control the time allowed for requests to finish by using the unloadDelay attribute of the standard Context implementation. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Hibernate Sessions registered for deferred close]) and a value of type [java.util.HashMap] (value [{org.hibernate.impl.SessionFactoryImpl@f6e256=[SessionImpl(PersistenceContext[entityKeys=[EntityKey[bo.DemandeP#1], EntityKey[bo.Utilisateur#3], EntityKey[bo.Chalet#1], EntityKey[bo.Role#2], EntityKey[bo.DemandeP#2]],collectionKeys=[CollectionKey[bo.Role.ListeUsers#2], CollectionKey[bo.Chalet.listPeriodes#1], CollectionKey[bo.Utilisateur.demandes#3], CollectionKey[bo.Utilisateur.demandesP#3], CollectionKey[bo.Chalet.listDemandesP#1]]];ActionQueue[insertions=[] updates=[] deletions=[] collectionCreations=[] collectionRemovals=[] collectionUpdates=[]])]}]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Request attributes]) and a value of type [org.springframework.web.context.request.ServletRequestAttributes] (value [org.apache.catalina.connector.RequestFacade@17f3488]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@51f78b]) and a value of type [org.springframework.security.core.context.SecurityContextImpl] (value [org.springframework.security.core.context.SecurityContextImpl@8e463c8b: Authentication: org.springframework.security.authentication.UsernamePasswordAuthenticationToken@8e463c8b: Principal: org.springframework.security.core.userdetails.User@311aa119: Username: maatouf; Password: [PROTECTED]; Enabled: true; AccountNonExpired: true; credentialsNonExpired: true; AccountNonLocked: true; Granted Authorities: ROLE_ADHER; Credentials: [PROTECTED]; Authenticated: true; Details: org.springframework.security.web.authentication.WebAuthenticationDetails@ffff4c9c: RemoteIpAddress: 0:0:0:0:0:0:0:1; SessionId: 14CD5D4E8E0E3AEB0367AB7115038FED; Granted Authorities: ROLE_ADHER]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@152e9b7]) and a value of type [net.sf.cglib.proxy.Callback[]] (value [[Lnet.sf.cglib.proxy.Callback;@6e1f4c]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [javax.faces.context.FacesContext$1] (value [javax.faces.context.FacesContext$1@9ecc6d]) and a value of type [com.sun.faces.context.FacesContextImpl] (value [com.sun.faces.context.FacesContextImpl@1c8bbed]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@1a9e75f]) and a value of type [com.sun.faces.context.FacesContextImpl] (value [com.sun.faces.context.FacesContextImpl@1c8bbed]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Locale context]) and a value of type [org.springframework.context.i18n.SimpleLocaleContext] (value [fr_FR]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [com.sun.faces.application.ApplicationAssociate$1] (value [com.sun.faces.application.ApplicationAssociate$1@195266b]) and a value of type [com.sun.faces.application.ApplicationAssociate] (value [com.sun.faces.application.ApplicationAssociate@10d595c]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:33 PM org.apache.catalina.loader.WebappClassLoader validateJarFile INFO: validateJarFile(D:\newWorkSpace\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wtpwebapps\ONICLF INAL\WEB-INF\lib\servlet-api-2.5.jar) - jar not loaded. See Servlet Spec 2.3, section 9.7.2. Offending class: javax/servlet/Servlet.class oct. 23, 2013 7:19:33 PM org.apache.catalina.core.ApplicationContext log

    Read the article

< Previous Page | 386 387 388 389 390 391 392 393 394 395 396 397  | Next Page >