Search Results

Search found 10366 results on 415 pages for 'const char pointer'.

Page 393/415 | < Previous Page | 389 390 391 392 393 394 395 396 397 398 399 400  | Next Page >

  • Segfault when iterating over a map<string, string> and drawing its contents using SDL_TTF

    - by Michael Stahre
    I'm not entirely sure this question belongs on gamedev.stackexchange, but I'm technically working on a game and working with SDL, so it might not be entirely offtopic. I've written a class called DebugText. The point of the class is to have a nice way of printing values of variables to the game screen. The idea is to call SetDebugText() with the variables in question every time they change or, as is currently the case, every time the game's Update() is called. The issue is that when iterating over the map that contains my variables and their latest updated values, I get segfaults. See the comments in DrawDebugText() below, it specifies where the error happens. I've tried splitting the calls to it-first and it-second into separate lines and found that the problem doesn't always happen when calling it-first. It alters between it-first and it-second. I can't find a pattern. It doesn't fail on every call to DrawDebugText() either. It might fail on the third time DrawDebugText() is called, or it might fail on the fourth. Class header: #ifndef CLIENT_DEBUGTEXT_H #define CLIENT_DEBUGTEXT_H #include <Map> #include <Math.h> #include <sstream> #include <SDL.h> #include <SDL_ttf.h> #include "vector2.h" using std::string; using std::stringstream; using std::map; using std::pair; using game::Vector2; namespace game { class DebugText { private: TTF_Font* debug_text_font; map<string, string>* debug_text_list; public: void SetDebugText(string var, bool value); void SetDebugText(string var, float value); void SetDebugText(string var, int value); void SetDebugText(string var, Vector2 value); void SetDebugText(string var, string value); int DrawDebugText(SDL_Surface*, SDL_Rect*); void InitDebugText(); void Clear(); }; } #endif Class source file: #include "debugtext.h" namespace game { // Copypasta function for handling the toString conversion template <class T> inline string to_string (const T& t) { stringstream ss (stringstream::in | stringstream::out); ss << t; return ss.str(); } // Initializes SDL_TTF and sets its font void DebugText::InitDebugText() { if(TTF_WasInit()) TTF_Quit(); TTF_Init(); debug_text_font = TTF_OpenFont("LiberationSans-Regular.ttf", 16); TTF_SetFontStyle(debug_text_font, TTF_STYLE_NORMAL); } // Iterates over the current debug_text_list and draws every element on the screen. // After drawing with SDL you need to get a rect specifying the area on the screen that was changed and tell SDL that this part of the screen needs to be updated. this is done in the game's Draw() function // This function sets rects_to_update to the new list of rects provided by all of the surfaces and returns the number of rects in the list. These two parameters are used in Draw() when calling on SDL_UpdateRects(), which takes an SDL_Rect* and a list length int DebugText::DrawDebugText(SDL_Surface* screen, SDL_Rect* rects_to_update) { if(debug_text_list == NULL) return 0; if(!TTF_WasInit()) InitDebugText(); rects_to_update = NULL; // Specifying the font color SDL_Color font_color = {0xff, 0x00, 0x00, 0x00}; // r, g, b, unused int row_count = 0; string line; // The iterator variable map<string, string>::iterator it; // Gets the iterator and iterates over it for(it = debug_text_list->begin(); it != debug_text_list->end(); it++) { // Takes the first value (the name of the variable) and the second value (the value of the parameter in string form) //---------THIS LINE GIVES ME SEGFAULTS----- line = it->first + ": " + it->second; //------------------------------------------ // Creates a surface with the text on it that in turn can be rendered to the screen itself later SDL_Surface* debug_surface = TTF_RenderText_Solid(debug_text_font, line.c_str(), font_color); if(debug_surface == NULL) { // A standard check for errors fprintf(stderr, "Error: %s", TTF_GetError()); return NULL; } else { // If SDL_TTF did its job right, then we now set a destination rect row_count++; SDL_Rect dstrect = {5, 5, 0, 0}; // x, y, w, h dstrect.x = 20; dstrect.y = 20*row_count; // Draws the surface with the text on it to the screen int res = SDL_BlitSurface(debug_surface,NULL,screen,&dstrect); if(res != 0) { //Just an error check fprintf(stderr, "Error: %s", SDL_GetError()); return NULL; } // Creates a new rect to specify the area that needs to be updated with SDL_Rect* new_rect_to_update = (SDL_Rect*) malloc(sizeof(SDL_Rect)); new_rect_to_update->h = debug_surface->h; new_rect_to_update->w = debug_surface->w; new_rect_to_update->x = dstrect.x; new_rect_to_update->y = dstrect.y; // Just freeing the surface since it isn't necessary anymore SDL_FreeSurface(debug_surface); // Creates a new list of rects with room for the new rect SDL_Rect* newtemp = (SDL_Rect*) malloc(row_count*sizeof(SDL_Rect)); // Copies the data from the old list of rects to the new one memcpy(newtemp, rects_to_update, (row_count-1)*sizeof(SDL_Rect)); // Adds the new rect to the new list newtemp[row_count-1] = *new_rect_to_update; // Frees the memory used by the old list free(rects_to_update); // And finally redirects the pointer to the old list to the new list rects_to_update = newtemp; newtemp = NULL; } } // When the entire map has been iterated over, return the number of lines that were drawn, ie. the number of rects in the returned rect list return row_count; } // The SetDebugText used by all the SetDebugText overloads // Takes two strings, inserts them into the map as a pair void DebugText::SetDebugText(string var, string value) { if (debug_text_list == NULL) { debug_text_list = new map<string, string>(); } debug_text_list->erase(var); debug_text_list->insert(pair<string, string>(var, value)); } // Writes the bool to a string and calls SetDebugText(string, string) void DebugText::SetDebugText(string var, bool value) { string result; if (value) result = "True"; else result = "False"; SetDebugText(var, result); } // Does the same thing, but uses to_string() to convert the float void DebugText::SetDebugText(string var, float value) { SetDebugText(var, to_string(value)); } // Same as above, but int void DebugText::SetDebugText(string var, int value) { SetDebugText(var, to_string(value)); } // Vector2 is a struct of my own making. It contains the two float vars x and y void DebugText::SetDebugText(string var, Vector2 value) { SetDebugText(var + ".x", to_string(value.x)); SetDebugText(var + ".y", to_string(value.y)); } // Empties the list. I don't actually use this in my code. Shame on me for writing something I don't use. void DebugText::Clear() { if(debug_text_list != NULL) debug_text_list->clear(); } }

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • Parent Objects

    - by Ali Bahrami
    Support for Parent Objects was added in Solaris 11 Update 1. The following material is adapted from the PSARC arc case, and the Solaris Linker and Libraries Manual. A "plugin" is a shared object, usually loaded via dlopen(), that is used by a program in order to allow the end user to add functionality to the program. Examples of plugins include those used by web browsers (flash, acrobat, etc), as well as mdb and elfedit modules. The object that loads the plugin at runtime is called the "parent object". Unlike most object dependencies, the parent is not identified by name, but by its status as the object doing the load. Historically, building a good plugin is has been more complicated than it should be: A parent and its plugin usually share a 2-way dependency: The plugin provides one or more routines for the parent to call, and the parent supplies support routines for use by the plugin for things like memory allocation and error reporting. It is a best practice to build all objects, including plugins, with the -z defs option, in order to ensure that the object specifies all of its dependencies, and is self contained. However: The parent is usually an executable, which cannot be linked to via the usual library mechanisms provided by the link editor. Even if the parent is a shared object, which could be a normal library dependency to the plugin, it may be desirable to build plugins that can be used by more than one parent, in which case embedding a dependency NEEDED entry for one of the parents is undesirable. The usual way to build a high quality plugin with -z defs uses a special mapfile provided by the parent. This mapfile defines the parent routines, specifying the PARENT attribute (see example below). This works, but is inconvenient, and error prone. The symbol table in the parent already describes what it makes available to plugins — ideally the plugin would obtain that information directly rather than from a separate mapfile. The new -z parent option to ld allows a plugin to link to the parent and access the parent symbol table. This differs from a typical dependency: No NEEDED record is created. The relationship is recorded as a logical connection to the parent, rather than as an explicit object name However, it operates in the same manner as any other dependency in terms of making symbols available to the plugin. When the -z parent option is used, the link-editor records the basename of the parent object in the dynamic section, using the new tag DT_SUNW_PARENT. This is an informational tag, which is not used by the runtime linker to locate the parent, but which is available for diagnostic purposes. The ld(1) manpage documentation for the -z parent option is: -z parent=object Specifies a "parent object", which can be an executable or shared object, against which to link the output object. This option is typically used when creating "plugin" shared objects intended to be loaded by an executable at runtime via the dlopen() function. The symbol table from the parent object is used to satisfy references from the plugin object. The use of the -z parent option makes symbols from the object calling dlopen() available to the plugin. Example For this example, we use a main program, and a plugin. The parent provides a function named parent_callback() for the plugin to call. The plugin provides a function named plugin_func() to the parent: % cat main.c #include <stdio.h> #include <dlfcn.h> #include <link.h> void parent_callback(void) { printf("plugin_func() has called parent_callback()\n"); } int main(int argc, char **argv) { typedef void plugin_func_t(void); void *hdl; plugin_func_t *plugin_func; if (argc != 2) { fprintf(stderr, "usage: main plugin\n"); return (1); } if ((hdl = dlopen(argv[1], RTLD_LAZY)) == NULL) { fprintf(stderr, "unable to load plugin: %s\n", dlerror()); return (1); } plugin_func = (plugin_func_t *) dlsym(hdl, "plugin_func"); if (plugin_func == NULL) { fprintf(stderr, "unable to find plugin_func: %s\n", dlerror()); return (1); } (*plugin_func)(); return (0); } % cat plugin.c #include <stdio.h> extern void parent_callback(void); void plugin_func(void) { printf("parent has called plugin_func() from plugin.so\n"); parent_callback(); } Building this in the traditional manner, without -zdefs: % cc -o main main.c % cc -G -o plugin.so plugin.c % ./main ./plugin.so parent has called plugin_func() from plugin.so plugin_func() has called parent_callback() As noted above, when building any shared object, the -z defs option is recommended, in order to ensure that the object is self contained and specifies all of its dependencies. However, the use of -z defs prevents the plugin object from linking due to the unsatisfied symbol from the parent object: % cc -zdefs -G -o plugin.so plugin.c Undefined first referenced symbol in file parent_callback plugin.o ld: fatal: symbol referencing errors. No output written to plugin.so A mapfile can be used to specify to ld that the parent_callback symbol is supplied by the parent object. % cat plugin.mapfile $mapfile_version 2 SYMBOL_SCOPE { global: parent_callback { FLAGS = PARENT }; }; % cc -zdefs -Mplugin.mapfile -G -o plugin.so plugin.c However, the -z parent option to ld is the most direct solution to this problem, allowing the plugin to actually link against the parent object, and obtain the available symbols from it. An added benefit of using -z parent instead of a mapfile, is that the name of the parent object is recorded in the dynamic section of the plugin, and can be displayed by the file utility: % cc -zdefs -zparent=main -G -o plugin.so plugin.c % elfdump -d plugin.so | grep PARENT [0] SUNW_PARENT 0xcc main % file plugin.so plugin.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent main, dynamically linked, not stripped % ./main ./plugin.so parent has called plugin_func() from plugin.so plugin_func() has called parent_callback() We can also observe this in elfedit plugins on Solaris systems running Solaris 11 Update 1 or newer: % file /usr/lib/elfedit/dyn.so /usr/lib/elfedit/dyn.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent elfedit, dynamically linked, not stripped, no debugging information available Related Other Work The GNU ld has an option named --just-symbols that can be used in a similar manner: --just-symbols=filename Read symbol names and their addresses from filename, but do not relocate it or include it in the output. This allows your output file to refer symbolically to absolute locations of memory defined in other programs. You may use this option more than once. -z parent is a higher level operation aimed specifically at simplifying the construction of high quality plugins. Although it employs the same operation, it differs from --just symbols in 2 significant ways: There can only be one parent. The parent is recorded in the created object, and can be displayed by 'file', or other similar tools.

    Read the article

  • Working With Extended Events

    - by Fatherjack
    SQL Server 2012 has made working with Extended Events (XE) pretty simple when it comes to what sessions you have on your servers and what options you have selected and so forth but if you are like me then you still have some SQL Server instances that are 2008 or 2008 R2. For those servers there is no built-in way to view the Extended Event sessions in SSMS. I keep coming up against the same situations – Where are the xel log files? What events, actions or predicates are set for the events on the server? What sessions are there on the server already? I got tired of this being a perpetual question and wrote some TSQL to save as a snippet in SQL Prompt so that these details are permanently only a couple of clicks away. First, some history. If you just came here for the code skip down a few paragraphs and it’s all there. If you want a little time to reminisce about SQL Server then stick with me through the next paragraph or two. We are in a bit of a cross-over period currently, there are many versions of SQL Server but I would guess that SQL Server 2008, 2008 R2 and 2012 comprise the majority of installations. With each of these comes a set of management tools, of which SQL Server Management Studio (SSMS) is one. In 2008 and 2008 R2 Extended Events made their first appearance and there was no way to work with them in the SSMS interface. At some point the Extended Events guru Jonathan Kehayias (http://www.sqlskills.com/blogs/jonathan/) created the SQL Server 2008 Extended Events SSMS Addin which is really an excellent tool to ease XE session administration. This addin will install in SSMS 2008 or 2008R2 but not SSMS 2012. If you use a compatible version of SSMS then I wholly recommend downloading and using it to make your work with XE much easier. If you have SSMS 2012 installed, and there is no reason not to as it will let you work with all versions of SQL Server, then you cannot install this addin. If you are working with SQL Server 2012 then SSMS 2012 has built in functionality to manage XE sessions – this functionality does not apply for 2008 or 2008 R2 instances though. This means you are somewhat restricted and have to use TSQL to manage XE sessions on older versions of SQL Server. OK, those of you that skipped ahead for the code, you need to start from here: So, you are working with SSMS 2012 but have a SQL Server that is an earlier version that needs an XE session created or you think there is a session created but you aren’t sure, or you know it’s there but can’t remember if it is running and where the output is going. How do you find out? Well, none of the information is hidden as such but it is a bit of a wrangle to locate it and it isn’t a lot of code that is unlikely to remain in your memory. I have created two pieces of code. The first examines the SYS.Server_Event_… management views in combination with the SYS.DM_XE_… management views to give the name of all sessions that exist on the server, regardless of whether they are running or not and two pieces of TSQL code. One piece will alter the state of the session: if the session is running then the code will stop the session if executed and vice versa. The other piece of code will drop the selected session. If the session is running then the code will stop it first. Do not execute the DROP code unless you are sure you have the Create code to hand. It will be dropped from the server without a second chance to change your mind. /**************************************************************/ /***   To locate and describe event sessions on a server    ***/ /***                                                        ***/ /***   Generates TSQL to start/stop/drop sessions           ***/ /***                                                        ***/ /***        Jonathan Allen - @fatherjack                    ***/ /***                 June 2013                                ***/ /***                                                        ***/ /**************************************************************/ SELECT  [EES].[name] AS [Session Name - all sessions] ,         CASE WHEN [MXS].[name] IS NULL THEN ISNULL([MXS].[name], 'Stopped')              ELSE 'Running'         END AS SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'ALTER EVENT SESSION [' + [EES].[name]                          + '] ON SERVER STATE = START;')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP;'         END AS ALTER_SessionState ,         CASE WHEN [MXS].[name] IS NULL              THEN ISNULL([MXS].[name],                          'DROP EVENT SESSION [' + [EES].[name]                          + '] ON SERVER; -- This WILL drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.')              ELSE 'ALTER EVENT SESSION [' + [EES].[name]                   + '] ON SERVER STATE = STOP; ' + CHAR(10)                   + '-- DROP EVENT SESSION [' + [EES].[name]                   + '] ON SERVER; -- This WILL stop and drop the session. It will no longer exist. Don't do it unless you are certain you can recreate it if you need it.'         END AS DROP_Session FROM    [sys].[server_event_sessions] AS EES         LEFT JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name] WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) ORDER BY SessionState GO I have excluded the system_health and AlwaysOn sessions as I don’t want to accidentally execute the drop script for these sessions that are created as part of the SQL Server installation. It is possible to recreate the sessions but that is a whole lot of aggravation I’d rather avoid. The second piece of code gathers details of running XE sessions only and provides information on the Events being collected, any predicates that are set on those events, the actions that are set to be collected, where the collected information is being logged and if that logging is to a file target, where that file is located. /**********************************************/ /***    Running Session summary                ***/ /***                                        ***/ /***    Details key values of XE sessions     ***/ /***    that are in a running state            ***/ /***                                        ***/ /***        Jonathan Allen - @fatherjack    ***/ /***        June 2013                        ***/ /***                                        ***/ /**********************************************/ SELECT  [EES].[name] AS [Session Name - running sessions] ,         [EESE].[name] AS [Event Name] ,         COALESCE([EESE].[predicate], 'unfiltered') AS [Event Predicate Filter(s)] ,         [EESA].[Action] AS [Event Action(s)] ,         [EEST].[Target] AS [Session Target(s)] ,         ISNULL([EESF].[value], 'No file target in use') AS [File_Target_UNC] -- select * FROM    [sys].[server_event_sessions] AS EES         INNER JOIN [sys].[dm_xe_sessions] AS MXS ON [EES].[name] = [MXS].[name]         INNER JOIN [sys].[server_event_session_events] AS [EESE] ON [EES].[event_session_id] = [EESE].[event_session_id]         LEFT JOIN [sys].[server_event_session_fields] AS EESF ON ( [EES].[event_session_id] = [EESF].[event_session_id]                                                               AND [EESF].[name] = 'filename'                                                               )         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + sest.name                                         FROM    [sys].[server_event_session_targets]                                                 AS SEST                                         WHERE   [EES].[event_session_id] = [SEST].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Target]                     ) AS EEST         CROSS APPLY ( SELECT    STUFF(( SELECT  ', ' + [sesa].NAME                                         FROM    [sys].[server_event_session_actions]                                                 AS sesa                                         WHERE   [sesa].[event_session_id] = [EES].[event_session_id]                                       FOR                                         XML PATH('')                                       ), 1, 2, '') AS [Action]                     ) AS EESA WHERE   [EES].[name] NOT IN ( 'system_health', 'AlwaysOn_health' ) /*Optional to exclude 'out-of-the-box' traces*/ I hope that these scripts are useful to you and I would be obliged if you would keep my name in the script comments. I have no problem with you using it in production or personal circumstances, however it has no warranty or guarantee. Don’t use it unless you understand it and are happy with what it is going to do. I am not ever responsible for the consequences of executing this script on your servers.

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • A Good Developer is So Hard to Find

    - by James Michael Hare
    Let me start out by saying I want to damn the writers of the Toughest Developer Puzzle Ever – 2. It is eating every last shred of my free time! But as I've been churning through each puzzle and marvelling at the brain teasers and trivia within, I began to think about interviewing developers and why it seems to be so hard to find good ones.  The problem is, it seems like no matter how hard we try to find the perfect way to separate the chaff from the wheat, inevitably someone will get hired who falls far short of expectations or someone will get passed over for missing a piece of trivia or a tricky brain teaser that could have been an excellent team member.   In shops that are primarily software-producing businesses or other heavily IT-oriented businesses (Microsoft, Amazon, etc) there often exists a much tighter bond between HR and the hiring development staff because development is their life-blood. Unfortunately, many of us work in places where IT is viewed as a cost or just a means to an end. In these shops, too often, HR and development staff may work against each other due to differences in opinion as to what a good developer is or what one is worth.  It seems that if you ask two different people what makes a good developer, often you will get three different opinions.   With the exception of those shops that are purely development-centric (you guys have it much easier!), most other shops have management who have very little knowledge about the development process.  Their view can often be that development is simply a skill that one learns and then once aquired, that developer can produce widgets as good as the next like workers on an assembly-line floor.  On the other side, you have many developers that feel that software development is an art unto itself and that the ability to create the most pure design or know the most obscure of keywords or write the shortest-possible obfuscated piece of code is a good coder.  So is it a skill?  An Art?  Or something entirely in between?   Saying that software is merely a skill and one just needs to learn the syntax and tools would be akin to saying anyone who knows English and can use Word can write a 300 page book that is accurate, meaningful, and stays true to the point.  This just isn't so.  It takes more than mere skill to take words and form a sentence, join those sentences into paragraphs, and those paragraphs into a document.  I've interviewed candidates who could answer obscure syntax and keyword questions and once they were hired could not code effectively at all.  So development must be more than a skill.   But on the other end, we have art.  Is development an art?  Is our end result to produce art?  I can marvel at a piece of code -- see it as concise and beautiful -- and yet that code most perform some stated function with accuracy and efficiency and maintainability.  None of these three things have anything to do with art, per se.  Art is beauty for its own sake and is a wonderful thing.  But if you apply that same though to development it just doesn't hold.  I've had developers tell me that all that matters is the end result and how you code it is entirely part of the art and I couldn't disagree more.  Yes, the end result, the accuracy, is the prime criteria to be met.  But if code is not maintainable and efficient, it would be just as useless as a beautiful car that breaks down once a week or that gets 2 miles to the gallon.  Yes, it may work in that it moves you from point A to point B and is pretty as hell, but if it can't be maintained or is not efficient, it's not a good solution.  So development must be something less than art.   In the end, I think I feel like development is a matter of craftsmanship.  We use our tools and we use our skills and set about to construct something that satisfies a purpose and yet is also elegant and efficient.  There is skill involved, and there is an art, but really it boils down to being able to craft code.  Crafting code is far more than writing code.  Anyone can write code if they know the syntax, but so few people can actually craft code that solves a purpose and craft it well.  So this is what I want to find, I want to find code craftsman!  But how?   I used to ask coding-trivia questions a long time ago and many people still fall back on this.  The thought is that if you ask the candidate some piece of coding trivia and they know the answer it must follow that they can craft good code.  For example:   What C++ keyword can be applied to a class/struct field to allow it to be changed even from a const-instance of that class/struct?  (answer: mutable)   So what do we prove if a candidate can answer this?  Only that they know what mutable means.  One would hope that this would infer that they'd know how to use it, and more importantly when and if it should ever be used!  But it rarely does!  The problem with triva questions is that you will either: Approve a really good developer who knows what some obscure keyword is (good) Reject a really good developer who never needed to use that keyword or is too inexperienced to know how to use it (bad) Approve a really bad developer who googled "C++ Interview Questions" and studied like hell but can't craft (very bad) Many HR departments love these kind of tests because they are short and easy to defend if a legal issue arrises on hiring decisions.  After all it's easy to say a person wasn't hired because they scored 30 out of 100 on some trivia test.  But unfortunately, you've eliminated a large part of your potential developer pool and possibly hired a few duds.  There are times I've hired candidates who knew every trivia question I could throw out them and couldn't craft.  And then there are times I've interviewed candidates who failed all my trivia but who I took a chance on who were my best finds ever.    So if not trivia, then what?  Brain teasers?  The thought is, these type of questions measure the thinking power of a candidate.  The problem is, once again, you will either: Approve a good candidate who has never heard the problem and can solve it (good) Reject a good candidate who just happens not to see the "catch" because they're nervous or it may be really obscure (bad) Approve a candidate who has studied enough interview brain teasers (once again, you can google em) to recognize the "catch" or knows the answer already (bad). Once again, you're eliminating good candidates and possibly accepting bad candidates.  In these cases, I think testing someone with brain teasers only tests their ability to answer brain teasers, not the ability to craft code. So how do we measure someone's ability to craft code?  Here's a novel idea: have them code!  Give them a computer and a compiler, or a whiteboard and a pen, or paper and pencil and have them construct a piece of code.  It just makes sense that if we're going to hire someone to code we should actually watch them code.  When they're done, we can judge them on several criteria: Correctness - does the candidate's solution accurately solve the problem proposed? Accuracy - is the candidate's solution reasonably syntactically correct? Efficiency - did the candidate write or use the more efficient data structures or algorithms for the job? Maintainability - was the candidate's code free of obfuscation and clever tricks that diminish readability? Persona - are they eager and willing or aloof and egotistical?  Will they work well within your team? It may sound simple, or it may sound crazy, but when I'm looking to hire a developer, I want to see them actually develop well-crafted code.

    Read the article

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • SSAO Distortion

    - by Robert Xu
    I'm currently (attempting) to add SSAO to my engine, except it's...not really work, to say the least. I use a deferred renderer to render my scene. I have four render targets: Albedo, Light, Normal, and Depth. Here are the parameters for all of them (Surface Format, Depth Format): Albedo: 32-bit ARGB, Depth24Stencil8 Light: 32-bit ARGB, None Normal: 32-bit ARGB, None Depth: 8-bit R (Single), Depth24Stencil8 To generate my random noise map for the SSAO, I do the following for each pixel in the noise map: Vector3 v3 = Vector3.Zero; double z = rand.NextDouble() * 2.0 - 1.0; double r = Math.Sqrt(1.0 - z * z); double angle = rand.NextDouble() * MathHelper.TwoPi; v3.X = (float)(r * Math.Cos(angle)); v3.Y = (float)(r * Math.Sin(angle)); v3.Z = (float)z; v3 += offset; v3 *= 0.5f; result[i] = new Color(v3); This is my GBuffer rendering effect: PixelInput RenderGBufferColorVertexShader(VertexInput input) { PixelInput pi = ( PixelInput ) 0; pi.Position = mul(input.Position, WorldViewProjection); pi.Normal = mul(input.Normal, WorldInverseTranspose); pi.Color = input.Color; pi.TPosition = pi.Position; pi.WPosition = input.Position; return pi; } GBufferTarget RenderGBufferColorPixelShader(PixelInput input) { GBufferTarget output = ( GBufferTarget ) 0; float3 position = input.TPosition.xyz / input.TPosition.w; output.Albedo = lerp(float4(1.0f, 1.0f, 1.0f, 1.0f), input.Color, ColorFactor); output.Normal = EncodeNormal(input.Normal); output.Depth = position.z; return output; } And here is the SSAO effect: float4 EncodeNormal(float3 normal) { return float4((normal.xyz * 0.5f) + 0.5f, 0.0f); } float3 DecodeNormal(float4 encoded) { return encoded * 2.0 - 1.0f; } float Intensity; float Size; float2 NoiseOffset; float4x4 ViewProjection; float4x4 ViewProjectionInverse; texture DepthMap; texture NormalMap; texture RandomMap; const float3 samples[16] = { float3(0.01537562, 0.01389096, 0.02276565), float3(-0.0332658, -0.2151698, -0.0660736), float3(-0.06420016, -0.1919067, 0.5329634), float3(-0.05896204, -0.04509097, -0.03611697), float3(-0.1302175, 0.01034653, 0.01543675), float3(0.3168565, -0.182557, -0.01421785), float3(-0.02134448, -0.1056605, 0.00576055), float3(-0.3502164, 0.281433, -0.2245609), float3(-0.00123525, 0.00151868, 0.02614773), float3(0.1814744, 0.05798516, -0.02362876), float3(0.07945167, -0.08302628, 0.4423518), float3(0.321987, -0.05670302, -0.05418307), float3(-0.00165138, -0.00410309, 0.00537362), float3(0.01687791, 0.03189049, -0.04060405), float3(-0.04335613, -0.00530749, 0.06443053), float3(0.8474263, -0.3590308, -0.02318038), }; sampler DepthSampler = sampler_state { Texture = DepthMap; MipFilter = Point; MinFilter = Point; MagFilter = Point; AddressU = Clamp; AddressV = Clamp; AddressW = Clamp; }; sampler NormalSampler = sampler_state { Texture = NormalMap; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; AddressU = Clamp; AddressV = Clamp; AddressW = Clamp; }; sampler RandomSampler = sampler_state { Texture = RandomMap; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; }; struct VertexInput { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; }; struct PixelInput { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; }; PixelInput SSAOVertexShader(VertexInput input) { PixelInput pi = ( PixelInput ) 0; pi.Position = input.Position; pi.TextureCoordinates = input.TextureCoordinates; return pi; } float3 GetXYZ(float2 uv) { float depth = tex2D(DepthSampler, uv); float2 xy = uv * 2.0f - 1.0f; xy.y *= -1; float4 p = float4(xy, depth, 1); float4 q = mul(p, ViewProjectionInverse); return q.xyz / q.w; } float3 GetNormal(float2 uv) { return DecodeNormal(tex2D(NormalSampler, uv)); } float4 SSAOPixelShader(PixelInput input) : COLOR0 { float depth = tex2D(DepthSampler, input.TextureCoordinates); float3 position = GetXYZ(input.TextureCoordinates); float3 normal = GetNormal(input.TextureCoordinates); float occlusion = 1.0f; float3 reflectionRay = DecodeNormal(tex2D(RandomSampler, input.TextureCoordinates + NoiseOffset)); for (int i = 0; i < 16; i++) { float3 sampleXYZ = position + reflect(samples[i], reflectionRay) * Size; float4 screenXYZW = mul(float4(sampleXYZ, 1.0f), ViewProjection); float3 screenXYZ = screenXYZW.xyz / screenXYZW.w; float2 sampleUV = float2(screenXYZ.x * 0.5f + 0.5f, 1.0f - (screenXYZ.y * 0.5f + 0.5f)); float frontMostDepthAtSample = tex2D(DepthSampler, sampleUV); if (frontMostDepthAtSample < screenXYZ.z) { occlusion -= 1.0f / 16.0f; } } return float4(occlusion * Intensity * float3(1.0, 1.0, 1.0), 1.0); } technique SSAO { pass Pass0 { VertexShader = compile vs_3_0 SSAOVertexShader(); PixelShader = compile ps_3_0 SSAOPixelShader(); } } However, when I use the effect, I get some pretty bad distortion: Here's the light map that goes with it -- is the static-like effect supposed to be like that? I've noticed that even if I'm looking at nothing, I still get the static-like effect. (you can see it in the screenshot; the top half doesn't have any geometry yet it still has the static-like effect) Also, does anyone have any advice on how to effectively debug shaders?

    Read the article

  • Why Is Faulty Behaviour In The .NET Framework Not Fixed?

    - by Alois Kraus
    Here is the scenario: You have a Windows Form Application that calls a method via Invoke or BeginInvoke which throws exceptions. Now you want to find out where the error did occur and how the method has been called. Here is the output we do get when we call Begin/EndInvoke or simply Invoke The actual code that was executed was like this:         private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }            [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));   The faulting method is called GenerateError which does throw a NotImplementedException exception and wraps it in a NotSupportedException.           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         } It is clear that the method F2 and F1 did actually throw these exceptions but we do not see them in the call stack. If we directly call the InvokingFunction and catch and print the exception we can find out very easily how we did get into this situation. We see methods F1,F2,GenerateError and InvokingFunction directly in the stack trace and we see that actually two exceptions did occur. Here is for comparison what we get from Invoke/EndInvoke System.NotImplementedException: Inner Exception     StackTrace:    at System.Windows.Forms.Control.MarshaledInvoke(Control caller, Delegate method, Object[] args, Boolean synchronous)     at System.Windows.Forms.Control.Invoke(Delegate method, Object[] args)     at WindowsFormsApplication1.AppForm.InvokingFunction(CallMode mode)     at WindowsFormsApplication1.AppForm.cInvoke_Click(Object sender, EventArgs e)     at System.Windows.Forms.Control.OnClick(EventArgs e)     at System.Windows.Forms.Button.OnClick(EventArgs e) The exception message is kept but the stack starts running from our Invoke call and not from the faulting method F2. We have therefore no clue where this exception did occur! The stack starts running at the method MarshaledInvoke because the exception is rethrown with the throw catchedException which resets the stack trace. That is bad but things are even worse because if previously lets say 5 exceptions did occur .NET will return only the first (innermost) exception. That does mean that we do not only loose the original call stack but all other exceptions and all data contained therein as well. It is a pity that MS does know about this and simply closes this issue as not important. Programmers will play a lot more around with threads than before thanks to TPL, PLINQ that do come with .NET 4. Multithreading is hyped quit a lot in the press and everybody wants to use threads. But if the .NET Framework makes it nearly impossible to track down the easiest UI multithreading issue I have a problem with that. The problem has been reported but obviously not been solved. .NET 4 Beta 2 did not have changed that dreaded GetBaseException call in MarshaledInvoke to return only the innermost exception of the complete exception stack. It is really time to fix this. WPF on the other hand does the right thing and wraps the exceptions inside a TargetInvocationException which makes much more sense. But Not everybody uses WPF for its daily work and Windows forms applications will still be used for a long time. Below is the code to repro the issues shown and how the exceptions can be rendered in a meaningful way. The default Exception.ToString implementation generates a hard to interpret stack if several nested exceptions did occur. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.Threading; using System.Globalization; using System.Runtime.CompilerServices;   namespace WindowsFormsApplication1 {     public partial class AppForm : Form     {         enum CallMode         {             Direct = 0,             BeginInvoke = 1,             Invoke = 2         };           public AppForm()         {             InitializeComponent();             Thread.CurrentThread.CurrentUICulture = CultureInfo.InvariantCulture;             Application.ThreadException += new System.Threading.ThreadExceptionEventHandler(Application_ThreadException);         }           void Application_ThreadException(object sender, System.Threading.ThreadExceptionEventArgs e)         {             cOutput.Text = PrintException(e.Exception, 0, null).ToString();         }           private void cDirectUnhandled_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Direct);         }           private void cDirectCall_Click(object sender, EventArgs e)         {             try             {                 InvokingFunction(CallMode.Direct);             }             catch (Exception ex)             {                 cOutput.Text = PrintException(ex, 0, null).ToString();             }         }           private void cInvoke_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.Invoke);         }           private void cBeginInvokeCall_Click(object sender, EventArgs e)         {             InvokingFunction(CallMode.BeginInvoke);         }           [MethodImpl(MethodImplOptions.NoInlining)]         void InvokingFunction(CallMode mode)         {             switch (mode)             {                 case CallMode.Direct:                     GenerateError();                     break;                 case CallMode.Invoke:                     this.Invoke(new MethodInvoker(GenerateError));                     break;                 case CallMode.BeginInvoke:                     IAsyncResult res = this.BeginInvoke(new MethodInvoker(GenerateError));                     this.EndInvoke(res);                     break;             }         }           [MethodImpl(MethodImplOptions.NoInlining)]         void GenerateError()         {             F1();         }           private void F1()         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new NotSupportedException("Outer Exception", ex);             }         }           private void F2()         {            throw new NotImplementedException("Inner Exception");         }           StringBuilder PrintException(Exception ex, int identLevel, StringBuilder sb)         {             StringBuilder builtStr = sb;             if( builtStr == null )                 builtStr = new StringBuilder();               if( ex == null )                 return builtStr;                 WriteLine(builtStr, String.Format("{0}: {1}", ex.GetType().FullName, ex.Message), identLevel);             WriteLine(builtStr, String.Format("StackTrace: {0}", ShortenStack(ex.StackTrace)), identLevel + 1);             builtStr.AppendLine();               return PrintException(ex.InnerException, ++identLevel, builtStr);         }               void WriteLine(StringBuilder sb, string msg, int identLevel)         {             foreach (string trimmedLine in SplitToLines(msg)                                            .Select( (line) => line.Trim()) )             {                 for (int i = 0; i < identLevel; i++)                     sb.Append('\t');                 sb.Append(trimmedLine);                 sb.AppendLine();             }         }           string ShortenStack(string stack)         {             int nonAppFrames = 0;             // Skip stack frames not part of our app but include two foreign frames and skip the rest             // If our stack frame is encountered reset counter to 0             return SplitToLines(stack)                               .Where((line) =>                               {                                   nonAppFrames = line.Contains("WindowsFormsApplication1") ? 0 : nonAppFrames + 1;                                   return nonAppFrames < 3;                               })                              .Select((line) => line)                              .Aggregate("", (current, line) => current + line + Environment.NewLine);         }           static char[] NewLines = Environment.NewLine.ToCharArray();         string[] SplitToLines(string str)         {             return str.Split(NewLines, StringSplitOptions.RemoveEmptyEntries);         }     } }

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Pluggable Rules for Entity Framework Code First

    - by Ricardo Peres
    Suppose you want a system that lets you plug custom validation rules on your Entity Framework context. The rules would control whether an entity can be saved, updated or deleted, and would be implemented in plain .NET. Yes, I know I already talked about plugable validation in Entity Framework Code First, but this is a different approach. An example API is in order, first, a ruleset, which will hold the collection of rules: 1: public interface IRuleset : IDisposable 2: { 3: void AddRule<T>(IRule<T> rule); 4: IEnumerable<IRule<T>> GetRules<T>(); 5: } Next, a rule: 1: public interface IRule<T> 2: { 3: Boolean CanSave(T entity, DbContext ctx); 4: Boolean CanUpdate(T entity, DbContext ctx); 5: Boolean CanDelete(T entity, DbContext ctx); 6: String Name 7: { 8: get; 9: } 10: } Let’s analyze what we have, starting with the ruleset: Only has methods for adding a rule, specific to an entity type, and to list all rules of this entity type; By implementing IDisposable, we allow it to be cancelled, by disposing of it when we no longer want its rules to be applied. A rule, on the other hand: Has discrete methods for checking if a given entity can be saved, updated or deleted, which receive as parameters the entity itself and a pointer to the DbContext to which the ruleset was applied; Has a name property for helping us identifying what failed. A ruleset really doesn’t need a public implementation, all we need is its interface. The private (internal) implementation might look like this: 1: sealed class Ruleset : IRuleset 2: { 3: private readonly IDictionary<Type, HashSet<Object>> rules = new Dictionary<Type, HashSet<Object>>(); 4: private ObjectContext octx = null; 5:  6: internal Ruleset(ObjectContext octx) 7: { 8: this.octx = octx; 9: } 10:  11: public void AddRule<T>(IRule<T> rule) 12: { 13: if (this.rules.ContainsKey(typeof(T)) == false) 14: { 15: this.rules[typeof(T)] = new HashSet<Object>(); 16: } 17:  18: this.rules[typeof(T)].Add(rule); 19: } 20:  21: public IEnumerable<IRule<T>> GetRules<T>() 22: { 23: if (this.rules.ContainsKey(typeof(T)) == true) 24: { 25: foreach (IRule<T> rule in this.rules[typeof(T)]) 26: { 27: yield return (rule); 28: } 29: } 30: } 31:  32: public void Dispose() 33: { 34: this.octx.SavingChanges -= RulesExtensions.OnSaving; 35: RulesExtensions.rulesets.Remove(this.octx); 36: this.octx = null; 37:  38: this.rules.Clear(); 39: } 40: } Basically, this implementation: Stores the ObjectContext of the DbContext to which it was created for, this is so that later we can remove the association; Has a collection - a set, actually, which does not allow duplication - of rules indexed by the real Type of an entity (because of proxying, an entity may be of a type that inherits from the class that we declared); Has generic methods for adding and enumerating rules of a given type; Has a Dispose method for cancelling the enforcement of the rules. A (really dumb) rule applied to Product might look like this: 1: class ProductRule : IRule<Product> 2: { 3: #region IRule<Product> Members 4:  5: public String Name 6: { 7: get 8: { 9: return ("Rule 1"); 10: } 11: } 12:  13: public Boolean CanSave(Product entity, DbContext ctx) 14: { 15: return (entity.Price > 10000); 16: } 17:  18: public Boolean CanUpdate(Product entity, DbContext ctx) 19: { 20: return (true); 21: } 22:  23: public Boolean CanDelete(Product entity, DbContext ctx) 24: { 25: return (true); 26: } 27:  28: #endregion 29: } The DbContext is there because we may need to check something else in the database before deciding whether to allow an operation or not. And here’s how to apply this mechanism to any DbContext, without requiring the usage of a subclass, by means of an extension method: 1: public static class RulesExtensions 2: { 3: private static readonly MethodInfo getRulesMethod = typeof(IRuleset).GetMethod("GetRules"); 4: internal static readonly IDictionary<ObjectContext, Tuple<IRuleset, DbContext>> rulesets = new Dictionary<ObjectContext, Tuple<IRuleset, DbContext>>(); 5:  6: private static Type GetRealType(Object entity) 7: { 8: return (entity.GetType().Assembly.IsDynamic == true ? entity.GetType().BaseType : entity.GetType()); 9: } 10:  11: internal static void OnSaving(Object sender, EventArgs e) 12: { 13: ObjectContext octx = sender as ObjectContext; 14: IRuleset ruleset = rulesets[octx].Item1; 15: DbContext ctx = rulesets[octx].Item2; 16:  17: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Added)) 18: { 19: Object entity = entry.Entity; 20: Type realType = GetRealType(entity); 21:  22: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 23: { 24: if (rule.CanSave(entity, ctx) == false) 25: { 26: throw (new Exception(String.Format("Cannot save entity {0} due to rule {1}", entity, rule.Name))); 27: } 28: } 29: } 30:  31: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Deleted)) 32: { 33: Object entity = entry.Entity; 34: Type realType = GetRealType(entity); 35:  36: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 37: { 38: if (rule.CanDelete(entity, ctx) == false) 39: { 40: throw (new Exception(String.Format("Cannot delete entity {0} due to rule {1}", entity, rule.Name))); 41: } 42: } 43: } 44:  45: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Modified)) 46: { 47: Object entity = entry.Entity; 48: Type realType = GetRealType(entity); 49:  50: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 51: { 52: if (rule.CanUpdate(entity, ctx) == false) 53: { 54: throw (new Exception(String.Format("Cannot update entity {0} due to rule {1}", entity, rule.Name))); 55: } 56: } 57: } 58: } 59:  60: public static IRuleset CreateRuleset(this DbContext context) 61: { 62: Tuple<IRuleset, DbContext> ruleset = null; 63: ObjectContext octx = (context as IObjectContextAdapter).ObjectContext; 64:  65: if (rulesets.TryGetValue(octx, out ruleset) == false) 66: { 67: ruleset = rulesets[octx] = new Tuple<IRuleset, DbContext>(new Ruleset(octx), context); 68: 69: octx.SavingChanges += OnSaving; 70: } 71:  72: return (ruleset.Item1); 73: } 74: } It relies on the SavingChanges event of the ObjectContext to intercept the saving operations before they are actually issued. Yes, it uses a bit of dynamic magic! Very handy, by the way! So, let’s put it all together: 1: using (MyContext ctx = new MyContext()) 2: { 3: IRuleset rules = ctx.CreateRuleset(); 4: rules.AddRule(new ProductRule()); 5:  6: ctx.Products.Add(new Product() { Name = "xyz", Price = 50000 }); 7:  8: ctx.SaveChanges(); //an exception is fired here 9:  10: //when we no longer need to apply the rules 11: rules.Dispose(); 12: } Feel free to use it and extend it any way you like, and do give me your feedback! As a final note, this can be easily changed to support plain old Entity Framework (not Code First, that is), if that is what you are using.

    Read the article

  • how to use serial port in UDK using windows DLL and DLLBind directive?

    - by Shayan Abbas
    I want to use serial port in UDK, For that purpose i use a windows DLL and DLLBind directive. I have a thread in windows DLL for serial port data recieve event. My problem is: this thread doesn't work properly. Please Help me. below is my code SerialPortDLL Code: // SerialPortDLL.cpp : Defines the exported functions for the DLL application. // #include "stdafx.h" #include "Cport.h" extern "C" { // This is an example of an exported variable //SERIALPORTDLL_API int nSerialPortDLL=0; // This is an example of an exported function. //SERIALPORTDLL_API int fnSerialPortDLL(void) //{ // return 42; //} CPort *sp; __declspec(dllexport) void Open(wchar_t* portName) { sp = new CPort(portName); //MessageBox(0,L"ha ha!!!",L"ha ha",0); //MessageBox(0,portName,L"ha ha",0); } __declspec(dllexport) void Close() { sp->Close(); MessageBox(0,L"ha ha!!!",L"ha ha",0); } __declspec(dllexport) wchar_t *GetData() { return sp->GetData(); } __declspec(dllexport) unsigned int GetDSR() { return sp->getDSR(); } __declspec(dllexport) unsigned int GetCTS() { return sp->getCTS(); } __declspec(dllexport) unsigned int GetRing() { return sp->getRing(); } } CPort class code: #include "stdafx.h" #include "CPort.h" #include "Serial.h" CSerial serial; HANDLE HandleOfThread; LONG lLastError = ERROR_SUCCESS; bool fContinue = true; HANDLE hevtOverlapped; HANDLE hevtStop; OVERLAPPED ov = {0}; //char szBuffer[101] = ""; wchar_t *szBuffer = L""; wchar_t *data = L""; DWORD WINAPI ThreadHandler( LPVOID lpParam ) { // Keep reading data, until an EOF (CTRL-Z) has been received do { MessageBox(0,L"ga ga!!!",L"ga ga",0); //Sleep(10); // Wait for an event lLastError = serial.WaitEvent(&ov); if (lLastError != ERROR_SUCCESS) { //LOG( " Unable to wait for a COM-port event" ); } // Setup array of handles in which we are interested HANDLE ahWait[2]; ahWait[0] = hevtOverlapped; ahWait[1] = hevtStop; // Wait until something happens switch (::WaitForMultipleObjects(sizeof(ahWait)/sizeof(*ahWait),ahWait,FALSE,INFINITE)) { case WAIT_OBJECT_0: { // Save event const CSerial::EEvent eEvent = serial.GetEventType(); // Handle break event if (eEvent & CSerial::EEventBreak) { //LOG( " ### BREAK received ###" ); } // Handle CTS event if (eEvent & CSerial::EEventCTS) { //LOG( " ### Clear to send %s ###", serial.GetCTS() ? "on":"off" ); } // Handle DSR event if (eEvent & CSerial::EEventDSR) { //LOG( " ### Data set ready %s ###", serial.GetDSR() ? "on":"off" ); } // Handle error event if (eEvent & CSerial::EEventError) { switch (serial.GetError()) { case CSerial::EErrorBreak: /*LOG( " Break condition" );*/ break; case CSerial::EErrorFrame: /*LOG( " Framing error" );*/ break; case CSerial::EErrorIOE: /*LOG( " IO device error" );*/ break; case CSerial::EErrorMode: /*LOG( " Unsupported mode" );*/ break; case CSerial::EErrorOverrun: /*LOG( " Buffer overrun" );*/ break; case CSerial::EErrorRxOver: /*LOG( " Input buffer overflow" );*/ break; case CSerial::EErrorParity: /*LOG( " Input parity error" );*/ break; case CSerial::EErrorTxFull: /*LOG( " Output buffer full" );*/ break; default: /*LOG( " Unknown" );*/ break; } } // Handle ring event if (eEvent & CSerial::EEventRing) { //LOG( " ### RING ###" ); } // Handle RLSD/CD event if (eEvent & CSerial::EEventRLSD) { //LOG( " ### RLSD/CD %s ###", serial.GetRLSD() ? "on" : "off" ); } // Handle data receive event if (eEvent & CSerial::EEventRecv) { // Read data, until there is nothing left DWORD dwBytesRead = 0; do { // Read data from the COM-port lLastError = serial.Read(szBuffer,33,&dwBytesRead); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to read from COM-port" ); } if( dwBytesRead == 33 && szBuffer[0]=='$' ) { // Finalize the data, so it is a valid string szBuffer[dwBytesRead] = '\0'; ////LOG( "\n%s\n", szBuffer ); data = szBuffer; } } while (dwBytesRead > 0); } } break; case WAIT_OBJECT_0+1: { // Set the continue bit to false, so we'll exit fContinue = false; } break; default: { // Something went wrong //LOG( "Error while calling WaitForMultipleObjects" ); } break; } } while (fContinue); MessageBox(0,L"kka kk!!!",L"kka ga",0); return 0; } CPort::CPort(wchar_t *portName) { // Attempt to open the serial port (COM2) //lLastError = serial.Open(_T(portName),0,0,true); lLastError = serial.Open(portName,0,0,true); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to open COM-port" ); } // Setup the serial port (115200,8N1, which is the default setting) lLastError = serial.Setup(CSerial::EBaud115200,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port setting" ); } // Register only for the receive event lLastError = serial.SetMask(CSerial::EEventBreak | CSerial::EEventCTS | CSerial::EEventDSR | CSerial::EEventError | CSerial::EEventRing | CSerial::EEventRLSD | CSerial::EEventRecv); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port event mask" ); } // Use 'non-blocking' reads, because we don't know how many bytes // will be received. This is normally the most convenient mode // (and also the default mode for reading data). lLastError = serial.SetupReadTimeouts(CSerial::EReadTimeoutNonblocking); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port read timeout" ); } // Create a handle for the overlapped operations hevtOverlapped = ::CreateEvent(0,TRUE,FALSE,0);; if (hevtOverlapped == 0) { //LOG( "Unable to create manual-reset event for overlapped I/O" ); } // Setup the overlapped structure ov.hEvent = hevtOverlapped; // Open the "STOP" handle hevtStop = ::CreateEvent(0,TRUE,FALSE,_T("Overlapped_Stop_Event")); if (hevtStop == 0) { //LOG( "Unable to create manual-reset event for stop event" ); } HandleOfThread = CreateThread( NULL, 0, ThreadHandler, 0, 0, NULL); } CPort::~CPort() { //fContinue = false; //CloseHandle( HandleOfThread ); //serial.Close(); } void CPort::Close() { fContinue = false; CloseHandle( HandleOfThread ); serial.Close(); } wchar_t *CPort::GetData() { return data; } bool CPort::getCTS() { return serial.GetCTS(); } bool CPort::getDSR() { return serial.GetDSR(); } bool CPort::getRing() { return serial.GetRing(); } Unreal Script Code: class MyPlayerController extends GamePlayerController DLLBind(SerialPortDLL); dllimport final function Open(string portName); dllimport final function Close(); dllimport final function string GetData();

    Read the article

  • Sending HTML to Gmail always lands in Spam

    - by cartaysm
    I am having an issue with sending HTML emails to Gmail. I can send them to Yahoo, Hotmail, RR, AOL, etc. with no problem at all, but when I send them to Gmail I get kicked to spam. I have checked my IP with a lot of different list to make sure it is not listed anywhere, which it is not. spamhaus = is not listed in the DBL abuse.net = is not listed in the SBL abuse.net = is not listed in the PBL abuse.net = is not listed in the XBL spamcop = not listed in bl.spamcop.net host 24.172.204.xxx xxx.204.172.24.in-addr.arpa domain name pointer xxxevents.com. host xxxevents.com xxxevents.com has address 24.172.204.xxx xxxevents.com mail is handled by 10 mail.xxxevents.com. I am just trying to send a very VERY basic HTML message (listed below). I use an Ubuntu server, swiftmailer, multipart/alternative (HTML & plain), SPF = pass, and I am going to setup DKIM today to see if that fixes it (but I doubt it will)... For now I will only post the message I sent that gets kicked to spam and can provide any details needed. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head><title>Triathlon</title></head> <body> <table cellpadding="0" cellspacing="0"> <tr> <td> <p>Thank you for attending our 4th annual Triathlon/Duathlon/5k at Hueston Woods State Park on August 12th. This event is held annually to raise research funding for Crohn's Disease, Ulcerative Colitis, and Muscular Dystrophy diseases.</p> </td> </tr> <tr> <td> <p>As you know the results and pictures have been posted on our home page at since Sunday 8/13/2012. Now we also have updated our Facebook page with those photos and you can start tagging yourself or downloading the pictures now! <br /> our page and tag yourself at </p> <p> test test </p> <p>Race day events is professionally managed by Speedy-Feet</p> </td> </tr> </table> </body> </html> Just plain text works great, I thought maybe wording was messing me up but not the case... I am almost done install opendkim so I will be able to rule that out very soon. Edit: Okay installed opendkim and I am getting passing results so I sent the html I posted above it went through just fine. So now when I start to add a few more lines I am getting kicked back to spam again. Here is updated html code: ` <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head><title>Triathlon</title></head> <body> <table cellpadding="0" cellspacing="0"> <tr> <td> <center><a href='http://xxxevents.com' target="_blank"> <font face="Verdana, Arial, Helvetica, sans-serif" color="#666666" size="2"> <img src="http://xxxevents.com/marketemailimages/xxxlogo.png" alt="xxx It Events | Raising funds for Crohns, Colitis, and Muscular Dystrophy" border="0" /> </font></a></center> </td> <tr> <td> <p>Thank you for attending our 4th annual Triathlon/Duathlon/5k at Hueston Woods State Park on August 12th. This event is held annually to raise research funding for Crohn's Disease, Ulcerative Colitis, and Muscular Dystrophy diseases.</p> </td> </tr> <tr> <td> <p>As you know the results and pictures have been posted on our home page at since Sunday 8/13/2012. Now we also have updated our Facebook page with those photos and you can start tagging yourself or downloading the pictures now! <br /> our page and tag yourself at </p> <p> test test </p> <p>Race day events is professionally managed by Speedy-Feet</p> </td> </tr> </table> <table width="100%" border="0" cellspacing="0" cellpadding="0"> <tr> <td valign="top"> <div align="center" style="font-family:Verdana, Arial, Helvetica, sans-serif; font-size:10px;"><br />PO Box xxx Maineville, OH 45039<br /> <a href="mailto:[email protected]">[email protected]</a> | <a href='http://xxxevents.com' target="_blank">xxxevents.com</a><br /> <br /> </div> </td> </tr> </table> </body> </html>`

    Read the article

  • OpenGL font rendering

    - by DEElekgolo
    I am trying to make an openGL text rendering class using FreeType. I was originally following this code but it doesn't seem to work out for me. I get nothing reguardless of what parameters I put for Draw(). class Font { public: Font() { if (FT_Init_FreeType(&ftLibrary)) { printf("Could not initialize FreeType library\n"); return; } glGenBuffers(1,&iVerts); } bool Load(std::string sFont, unsigned int Size = 12.0f) { if (FT_New_Face(ftLibrary,sFont.c_str(),0,&ftFace)) { printf("Could not open font: %s\n",sFont.c_str()); return true; } iSize = Size; FT_Set_Pixel_Sizes(ftFace,0,(int)iSize); FT_GlyphSlot gGlyph = ftFace->glyph; //Generating the texture atlas. //Rather than some amazing rectangular packing method, I'm just going //to have one long strip of letters with the height being that of the font size. int width = 0; int height = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { printf("Error rendering letter %c for font %s.\n",i,sFont.c_str()); } width += gGlyph->bitmap.width; height += std::max(height,gGlyph->bitmap.rows); } //Generate the openGL texture glActiveTexture(GL_TEXTURE0); //if I texture exists then delete it. iTexture ? glDeleteBuffers(1,&iTexture):0; glGenTextures(1,&iTexture); glBindTexture(GL_TEXTURE_2D,iTexture); glPixelStorei(GL_UNPACK_ALIGNMENT,1); glTexImage2D(GL_TEXTURE_2D,0,GL_ALPHA,width,height,0,GL_ALPHA,GL_UNSIGNED_BYTE,0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //load the glyphs and set the glyph data int x = 0; for (int i = 32; i < 128; i++) { if (FT_Load_Char(ftFace,i,FT_LOAD_RENDER)) { //if it cant load the character continue; } //load the glyph map into the texture glTexSubImage2D(GL_TEXTURE_2D,0,x,0, gGlyph->bitmap.width, gGlyph->bitmap.rows, GL_ALPHA, GL_UNSIGNED_BYTE, gGlyph->bitmap.buffer); //move the "pen" down the strip x += gGlyph->bitmap.width; chars[i].ax = (float)(gGlyph->advance.x >> 6); chars[i].ay = (float)(gGlyph->advance.y >> 6); chars[i].bw = (float)gGlyph->bitmap.width; chars[i].bh = (float)gGlyph->bitmap.rows; chars[i].bl = (float)gGlyph->bitmap_left; chars[i].bt = (float)gGlyph->bitmap_top; chars[i].tx = (float)x/width; } printf("Loaded font: %s\n",sFont.c_str()); return true; } void Draw(std::string sString,Vector2f vPos = Vector2f(0,0),Vector2f vScale = Vector2f(1,1)) { struct pPoint { pPoint() { x = y = s = t = 0; } pPoint(float a,float b,float c,float d) { x = a; y = b; s = c; t = d; } float x,y; float s,t; }; pPoint* cCoordinates = new pPoint[6*sString.length()]; int n = 0; for (const char *p = sString.c_str(); *p; p++) { float x2 = vPos.x() + chars[*p].bl * vScale.x(); float y2 = -vPos.y() - chars[*p].bt * vScale.y(); float w = chars[*p].bw * vScale.x(); float h = chars[*p].bh * vScale.y(); float x = vPos.x() + chars[*p].ax * vScale.x(); float y = vPos.y() + chars[*p].ay * vScale.y(); //skip characters with no pixels //still advances though if (!w || !h) { continue; } //triangle one cCoordinates[n++] = pPoint( x2 , -y2 , chars[*p].tx , 0); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2 , chars[*p].tx + chars[*p].bw / w , 0); cCoordinates[n++] = pPoint( x2 , -y2-h , chars[*p].tx , chars[*p].bh / h); cCoordinates[n++] = pPoint( x2+w , -y2-h , chars[*p].tx + chars[*p].bw / w , chars[*p].bh / h); } glBindBuffer(GL_ARRAY_BUFFER,iVerts); glBindBuffer(GL_TEXTURE_2D,iTexture); //Vertices glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].x); //TexCoord 0 glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2,GL_FLOAT,sizeof(pPoint),&cCoordinates[0].s); glCullFace(GL_NONE); glBufferData(GL_ARRAY_BUFFER,6*sString.length(),cCoordinates,GL_DYNAMIC_DRAW); glDrawArrays(GL_TRIANGLES,0,n); glCullFace(GL_BACK); glBindBuffer(GL_ARRAY_BUFFER,0); glBindBuffer(GL_TEXTURE_2D,0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } ~Font() { glDeleteBuffers(1,&iVerts); glDeleteBuffers(1,&iTexture); } private: unsigned int iSize; //openGL texture atlas unsigned int iTexture; //openGL geometry buffer; unsigned int iVerts; FT_Library ftLibrary; FT_Face ftFace; struct Character { float ax,ay;//Advance float bw,bh;//bitmap size float bl,bt;//bitmap left and top float tx; } chars[128]; };

    Read the article

  • The Great Divorce

    - by BlackRabbitCoder
    I have a confession to make: I've been in an abusive relationship for more than 17 years now.  Yes, I am not ashamed to admit it, but I'm finally doing something about it. I met her in college, she was new and sexy and amazingly fast -- and I'd never met anything like her before.  Her style and her power captivated me and I couldn't wait to learn more about her.  I took a chance on her, and though I learned a lot from her -- and will always be grateful for my time with her -- I think it's time to move on. Her name was C++, and she so outshone my previous love, C, that any thoughts of going back evaporated in the heat of this new romance.  She promised me she'd be gentle and not hurt me the way C did.  She promised me she'd clean-up after herself better than C did.  She promised me she'd be less enigmatic and easier to keep happy than C was.  But I was deceived.  Oh sure, as far as truth goes, it wasn't a complete lie.  To some extent she was more fun, more powerful, safer, and easier to maintain.  But it just wasn't good enough -- or at least it's not good enough now. I loved C++, some part of me still does, it's my first-love of programming languages and I recognize its raw power, its blazing speed, and its improvements over its predecessor.  But with today's hardware, at speeds we could only dream to conceive of twenty years ago, that need for speed -- at the cost of all else -- has died, and that has left my feelings for C++ moribund. If I ever need to write an operating system or a device driver, then I might need that speed.  But 99% of the time I don't.  I'm a business-type programmer and chances are 90% of you are too, and even the ones who need speed at all costs may be surprised by how much you sacrifice for that.   That's not to say that I don't want my software to perform, and it's not to say that in the business world we don't care about speed or that our job is somehow less difficult or technical.  There's many times we write programs to handle millions of real-time updates or handle thousands of financial transactions or tracking trading algorithms where every second counts.  But if I choose to write my code in C++ purely for speed chances are I'll never notice the speed increase -- and equally true chances are it will be far more prone to crash and far less easy to maintain.  Nearly without fail, it's the macro-optimizations you need, not the micro-optimizations.  If I choose to write a O(n2) algorithm when I could have used a O(n) algorithm -- that can kill me.  If I choose to go to the database to load a piece of unchanging data every time instead of caching it on first load -- that too can kill me.  And if I cross the network multiple times for pieces of data instead of getting it all at once -- yes that can also kill me.  But choosing an overly powerful and dangerous mid-level language to squeeze out every last drop of performance will realistically not make stock orders process any faster, and more likely than not open up the system to more risk of crashes and resource leaks. And that's when my love for C++ began to die.  When I noticed that I didn't need that speed anymore.  That that speed was really kind of a lie.  Sure, I can be super efficient and pack bits in a byte instead of using separate boolean values.  Sure, I can use an unsigned char instead of an int.  But in the grand scheme of things it doesn't matter as much as you think it does.  The key is maintainability, and that's where C++ failed me.  I like to tell the other developers I work with that there's two levels of correctness in coding: Is it immediately correct? Will it stay correct? That is, you can hack together any piece of code and make it correct to satisfy a task at hand, but if a new developer can't come in tomorrow and make a fairly significant change to it without jeopardizing that correctness, it won't stay correct. Some people laugh at me when I say I now prefer maintainability over speed.  But that is exactly the point.  If you focus solely on speed you tend to produce code that is much harder to maintain over the long hall, and that's a load of technical debt most shops can't afford to carry and end up completely scrapping code before it's time.  When good code is written well for maintainability, though, it can be correct both now and in the future. And you know the best part is?  My new love is nearly as fast as C++, and in some cases even faster -- and better than that, I know C# will treat me right.  Her creators have poured hundreds of thousands of hours of time into making her the sexy beast she is today.  They made her easy to understand and not an enigmatic mess.  They made her consistent and not moody and amorphous.  And they made her perform as fast as I care to go by optimizing her both at compile time and a run-time. Her code is so elegant and easy on the eyes that I'm not worried where she will run to or what she'll pull behind my back.  She is powerful enough to handle all my tasks, fast enough to execute them with blazing speed, maintainable enough so that I can rely on even fairly new peers to modify my work, and rich enough to allow me to satisfy any need.  C# doesn't ask me to clean up her messes!  She cleans up after herself and she tries to make my life easier for me by taking on most of those optimization tasks C++ asked me to take upon myself.  Now, there are many of you who would say that I am the cause of my own grief, that it was my fault C++ didn't behave because I didn't pay enough attention to her.  That I alone caused the pain she inflicted on me.  And to some extent, you have a point.  But she was so high maintenance, requiring me to know every twist and turn of her vast and unrestrained power that any wrong term or bout of forgetfulness was met with painful reminders that she wasn't going to watch my back when I made a mistake.  But C#, she loves me when I'm good, and she loves me when I'm bad, and together we make beautiful code that is both fast and safe. So that's why I'm leaving C++ behind.  She says she's changing for me, but I have no interest in what C++0x may bring.  Oh, I'll still keep in touch, and maybe I'll see her now and again when she brings her problems to my door and asks for some attention -- for I always have a soft spot for her, you see.  But she's out of my house now.  I have three kids and a dog and a cat, and all require me to clean up after them, why should I have to clean up after my programming language as well?

    Read the article

  • JSP Precompilation for ADF Applications

    - by Duncan Mills
    A question that comes up from time to time, particularly in relation to build automation, is how to best pre-compile the .jspx and .jsff files in an ADF application. Thus ensuring that the app is ready to run as soon as it's installed into WebLogic. In the normal run of things, the first poor soul to hit a page pays the price and has to wait a little whilst the JSP is compiled into a servlet. Everyone else subsequently gets a free lunch. So it's a reasonable thing to want to do... Let Me List the Ways So forth to Google (other search engines are available)... which lead me to a fairly old article on WLDJ - Removing Performance Bottlenecks Through JSP Precompilation. Technololgy wise, it's somewhat out of date, but the one good point that it made is that it's really not very useful to try and use the precompile option in the weblogic.xml file. That's a really good observation - particularly if you're trying to integrate a pre-compile step into a Hudson Continuous Integration process. That same article mentioned an alternative approach for programmatic pre-compilation using weblogic.jspc. This seemed like a much more useful approach for a CI environment. However, weblogic.jspc is now obsoleted by weblogic.appc so we'll use that instead.  Thanks to Steve for the pointer there. And So To APPC APPC has documentation - always a great place to start, and supports usage both from Ant via the wlappc task and from the command line using the weblogic.appc command. In my testing I took the latter approach. Usage, as the documentation will show you, is superficially pretty simple.  The nice thing here, is that you can pass an existing EAR file (generated of course using OJDeploy) and that EAR will be updated in place with the freshly compiled servlet classes created from the JSPs. Appc takes care of all the unpacking, compiling and re-packing of the EAR for you. Neat.  So we're done right...? Not quite. The Devil is in the Detail  OK so I'm being overly dramatic but it's not all plain sailing, so here's a short guide to using weblogic.appc to compile a simple ADF application without pain.  Information You'll Need The following is based on the assumption that you have a stand-alone WLS install with the Application Development  Runtime installed and a suitable ADF enabled domain created. This could of course all be run off of a JDeveloper install as well 1. Your Weblogic home directory. Everything you need is relative to this so make a note.  In my case it's c:\builds\wls_ps4. 2. Next deploy your EAR as normal and have a peek inside it using your favourite zip management tool. First of all look at the weblogic-application.xml inside the EAR /META-INF directory. Have a look for any library references. Something like this: <library-ref>    <library-name>adf.oracle.domain</library-name> </library-ref>   Make a note of the library ref (adf.oracle.domain in this case) , you'll need that in a second. 3. Next open the nested WAR file within the EAR and then have a peek inside the weblogic.xml file in the /WEB-INF directory. Again  make a note of the library references. 4. Now start the WebLogic as per normal and run the WebLogic console app (e.g. http://localhost:7001/console). In the Domain Structure navigator, select Deployments. 5. For each of the libraries you noted down drill into the library definition and make a note of the .war, .ear or .jar that defines the library. For example, in my case adf.oracle.domain maps to "C:\ builds\ WLS_PS4\ oracle_common\ modules\ oracle. adf. model_11. 1. 1\ adf. oracle. domain. ear". Note the extra spaces that are salted throughout this string as it is displayed in the console - just to make it annoying, you'll have to strip these out. 6. Finally you'll need the location of the adfsharebean.jar. We need to pass this on the classpath for APPC so that the ADFConfigLifeCycleCallBack listener can be found. In a more complex app of your own you may need additional classpath entries as well.  Now we're ready to go, and it's a simple matter of applying the information we have gathered into the relevant command line arguments for the utility A Simple CMD File to Run APPC  Here's the stub .cmd file I'm using on Windows to run this. @echo offREM Stub weblogic.appc Runner setlocal set WLS_HOME=C:\builds\WLS_PS4 set ADF_LIB_ROOT=%WLS_HOME%\oracle_common\modulesset COMMON_LIB_ROOT=%WLS_HOME%\wlserver_10.3\common\deployable-libraries set ADF_WEBAPP=%ADF_LIB_ROOT%\oracle.adf.view_11.1.1\adf.oracle.domain.webapp.war set ADF_DOMAIN=%ADF_LIB_ROOT%\oracle.adf.model_11.1.1\adf.oracle.domain.ear set JSTL=%COMMON_LIB_ROOT%\jstl-1.2.war set JSF=%COMMON_LIB_ROOT%\jsf-1.2.war set ADF_SHARE=%ADF_LIB_ROOT%\oracle.adf.share_11.1.1\adfsharembean.jar REM Set up the WebLogic Environment so appc can be found call %WLS_HOME%\wlserver_10.3\server\bin\setWLSEnv.cmd CLS REM Now compile away!java weblogic.appc -verbose -library %ADF_WEBAPP%,%ADF_DOMAIN%,%JSTL%,%JSF% -classpath %ADF_SHARE% %1 endlocal Running the above on a target ADF .ear  file will zip through and create all of the relevant compiled classes inside your nested .war file in the \WEB-INF\classes\jsp_servlet\ directory (but don't take my word for it, run it and take a look!) And So... In the immortal words of  the Pet Shop Boys, Was It Worth It? Well, here's where you'll have to do your own testing. In  my case here, with a simple ADF application, pre-compilation shaved an non-scientific "3 Elephants" off of the initial page load time for the first access of each page. That's a pretty significant payback for such a simple step to add into your CI process, so why not give it a go.

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • RIF PRD: Presentation syntax issues

    - by Charles Young
    Over Christmas I got to play a bit with the W3C RIF PRD and came across a few issues which I thought I would record for posterity. Specifically, I was working on a grammar for the presentation syntax using a GLR grammar parser tool (I was using the current CTP of ‘M’ (MGrammer) and Intellipad – I do so hope the MS guys don’t kill off M and Intellipad now they have dropped the other parts of SQL Server Modelling). I realise that the presentation syntax is non-normative and that any issues with it do not therefore compromise the standard. However, presentation syntax is useful in its own right, and it would be great to iron out any issues in a future revision of the standard. The main issues are actually not to do with the grammar at all, but rather with the ‘running example’ in the RIF PRD recommendation. I started with the code provided in Example 9.1. There are several discrepancies when compared with the EBNF rules documented in the standard. Broadly the problems can be categorised as follows: ·      Parenthesis mismatch – the wrong number of parentheses are used in various places. For example, in GoldRule, the RHS of the rule (the ‘Then’) is nested in the LHS (‘the If’). In NewCustomerAndWidgetRule, the RHS is orphaned from the LHS. Together with additional incorrect parenthesis, this leads to orphanage of UnknownStatusRule from the entire Document. ·      Invalid use of parenthesis in ‘Forall’ constructs. Parenthesis should not be used to enclose formulae. Removal of the invalid parenthesis gave me a feeling of inconsistency when comparing formulae in Forall to formulae in If. The use of parenthesis is not actually inconsistent in these two context, but in an If construct it ‘feels’ as if you are enclosing formulae in parenthesis in a LISP-like fashion. In reality, the parenthesis is simply being used to group subordinate syntax elements. The fact that an If construct can contain only a single formula as an immediate child adds to this feeling of inconsistency. ·      Invalid representation of compact URIs (CURIEs) in the context of Frame productions. In several places the URIs are not qualified with a namespace prefix (‘ex1:’). This conflicts with the definition of CURIEs in the RIF Datatypes and Built-Ins 1.0 document. Here are the productions: CURIE          ::= PNAME_LN                  | PNAME_NS PNAME_LN       ::= PNAME_NS PN_LOCAL PNAME_NS       ::= PN_PREFIX? ':' PN_LOCAL       ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|'.')* PN_CHARS)? PN_CHARS       ::= PN_CHARS_U                  | '-' | [0-9] | #x00B7                  | [#x0300-#x036F] | [#x203F-#x2040] PN_CHARS_U     ::= PN_CHARS_BASE                  | '_' PN_CHARS_BASE ::= [A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6]                  | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF]                  | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF]                  | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD]                  | [#x10000-#xEFFFF] PN_PREFIX      ::= PN_CHARS_BASE ((PN_CHARS|'.')* PN_CHARS)? The more I look at CURIEs, the more my head hurts! The RIF specification allows prefixes and colons without local names, which surprised me. However, the CURIE Syntax 1.0 working group note specifically states that this form is supported…and then promptly provides a syntactic definition that seems to preclude it! However, on (much) deeper inspection, it appears that ‘ex1:’ (for example) is allowed, but would really represent a ‘fragment’ of the ‘reference’, rather than a prefix! Ouch! This is so completely ambiguous that it surely calls into question the whole CURIE specification.   In any case, RIF does not allow local names without a prefix. ·      Missing ‘External’ specifiers for built-in functions and predicates.  The EBNF specification enforces this for terms within frames, but does not appear to enforce (what I believe is) the correct use of External on built-in predicates. In any case, the running example only specifies ‘External’ once on the predicate in UnknownStatusRule. External() is required in several other places. ·      The List used on the LHS of UnknownStatusRule is comma-delimited. This is not supported by the EBNF definition. Similarly, the argument list of pred:list-contains is illegally comma-delimited. ·      Unnecessary use of conjunction around a single formula in DiscountRule. This is strictly legal in the EBNF, but redundant.   All the above issues concern the presentation syntax used in the running example. There are a few minor issues with the grammar itself. Note that Michael Kiefer stated in his paper “Rule Interchange Format: The Framework” that: “The presentation syntax of RIF … is an abstract syntax and, as such, it omits certain details that might be important for unambiguous parsing.” ·      The grammar cannot differentiate unambiguously between strategies and priorities on groups. A processor is forced to resolve this by detecting the use of IRIs and integers. This could easily be fixed in the grammar.   ·      The grammar cannot unambiguously parse the ‘->’ operator in frames. Specifically, ‘-’ characters are allowed in PN_LOCAL names and hence a parser cannot determine if ‘status->’ is (‘status’ ‘->’) or (‘status-’ ‘>’).   One way to fix this is to amend the PN_LOCAL production as follows: PN_LOCAL ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|'.')* ((PN_CHARS)-('-')))? However, unilaterally changing the definition of this production, which is defined in the SPARQL Query Language for RDF specification, makes me uncomfortable. ·      I assume that the presentation syntax is case-sensitive. I couldn’t find this stated anywhere in the documentation, but function/predicate names do appear to be documented as being case-sensitive. ·      The EBNF does not specify whitespace handling. A couple of productions (RULE and ACTION_BLOCK) are crafted to enforce the use of whitespace. This is not necessary. It seems inconsistent with the rest of the specification and can cause parsing issues. In addition, the Const production exhibits whitespaces issues. The intention may have been to disallow the use of whitespace around ‘^^’, but any direct implementation of the EBNF will probably allow whitespace between ‘^^’ and the SYMSPACE. Of course, I am being a little nit-picking about all this. On the whole, the EBNF translated very smoothly and directly to ‘M’ (MGrammar) and proved to be fairly complete. I have encountered far worse issues when translating other EBNF specifications into usable grammars.   I can’t imagine there would be any difficulty in implementing the same grammar in Antlr, COCO/R, gppg, XText, Bison, etc. A general observation, which repeats a point made above, is that the use of parenthesis in the presentation syntax can feel inconsistent and un-intuitive.   It isn’t actually inconsistent, but I think the presentation syntax could be improved by adopting braces, rather than parenthesis, to delimit subordinate syntax elements in a similar way to so many programming languages. The familiarity of braces would communicate the structure of the syntax more clearly to people like me.  If braces were adopted, parentheses could be retained around ‘var (frame | ‘new()’) constructs in action blocks. This use of parenthesis feels very LISP-like, and I think that this is my issue. It’s as if the presentation syntax represents the deformed love-child of LISP and C. In some places (specifically, action blocks), parenthesis is used in a LISP-like fashion. In other places it is used like braces in C. I find this quite confusing. Here is a corrected version of the running example (Example 9.1) in compliant presentation syntax: Document(    Prefix( ex1 <http://example.com/2009/prd2> )    (* ex1:CheckoutRuleset *)  Group rif:forwardChaining (     (* ex1:GoldRule *)    Group 10 (      Forall ?customer such that And(?customer # ex1:Customer                                     ?customer[ex1:status->"Silver"])        (Forall ?shoppingCart such that ?customer[ex1:shoppingCart->?shoppingCart]           (If Exists ?value (And(?shoppingCart[ex1:value->?value]                                  External(pred:numeric-greater-than-or-equal(?value 2000))))            Then Do(Modify(?customer[ex1:status->"Gold"])))))      (* ex1:DiscountRule *)    Group (      Forall ?customer such that ?customer # ex1:Customer        (If Or( ?customer[ex1:status->"Silver"]                ?customer[ex1:status->"Gold"])         Then Do ((?s ?customer[ex1:shoppingCart-> ?s])                  (?v ?s[ex1:value->?v])                  Modify(?s [ex1:value->External(func:numeric-multiply (?v 0.95))]))))      (* ex1:NewCustomerAndWidgetRule *)    Group (      Forall ?customer such that And(?customer # ex1:Customer                                     ?customer[ex1:status->"New"] )        (If Exists ?shoppingCart ?item                   (And(?customer[ex1:shoppingCart->?shoppingCart]                        ?shoppingCart[ex1:containsItem->?item]                        ?item # ex1:Widget ) )         Then Do( (?s ?customer[ex1:shoppingCart->?s])                  (?val ?s[ex1:value->?val])                  (?voucher ?customer[ex1:voucher->?voucher])                  Retract(?customer[ex1:voucher->?voucher])                  Retract(?voucher)                  Modify(?s[ex1:value->External(func:numeric-multiply(?val 0.90))]))))      (* ex1:UnknownStatusRule *)    Group (      Forall ?customer such that ?customer # ex1:Customer        (If Not(Exists ?status                       (And(?customer[ex1:status->?status]                            External(pred:list-contains(List("New" "Bronze" "Silver" "Gold") ?status)) )))         Then Do( Execute(act:print(External(func:concat("New customer: " ?customer))))                  Assert(?customer[ex1:status->"New"]))))  ) )   I hope that helps someone out there :-)

    Read the article

  • Data-driven animation states

    - by user8363
    I'm trying to handle animations in a 2D game engine hobby project, without hard-coding them. Hard coding animation states seems like a common but very strange phenomenon, to me. A little background: I'm working with an entity system where components are bags of data and subsystems act upon them. I chose to use a polling system to update animation states. With animation states I mean: "walking_left", "running_left", "walking_right", "shooting", ... My idea to handle animations was to design it as a data driven model. Data could be stored in an xml file, a rdbms, ... And could be loaded at the start of a game / level/ ... This way you can easily edit animations and transitions without having to go change the code everywhere in your game. As an example I made an xml draft of the data definitions I had in mind. One very important piece of data would simply be the description of an animation. An animation would have a unique id (a descriptive name). It would hold a reference id to an image (the sprite sheet it uses, because different animations may use different sprite sheets). The frames per second to run the animation on. The "replay" here defines if an animation should be run once or infinitely. Then I defined a list of rectangles as frames. <animation id='WIZARD_WALK_LEFT'> <image id='WIZARD_WALKING' /> <fps>50</fps> <replay>true</replay> <frames> <rectangle> <x>0</x> <y>0</y> <width>45</width> <height>45</height> </rectangle> <rectangle> <x>45</x> <y>0</y> <width>45</width> <height>45</height> </rectangle> </frames> </animation> Animation data would be loaded and held in an animation resource pool and referenced by game entities that are using it. It would be treated as a resource like an image, a sound, a texture, ... The second piece of data to define would be a state machine to handle animation states and transitions. This defines each state a game entity can be in, which states it can transition to and what triggers that state change. This state machine would differ from entity to entity. Because a bird might have states "walking" and "flying" while a human would only have the state "walking". However it could be shared by different entities because multiple humans will probably have the same states (especially when you define some common NPCs like monsters, etc). Additionally an orc might have the same states as a human. Just to demonstrate that this state definition might be shared but only by a select group of game entities. <state id='IDLE'> <event trigger='LEFT_DOWN' goto='MOVING_LEFT' /> <event trigger='RIGHT_DOWN' goto='MOVING_RIGHT' /> </state> <state id='MOVING_LEFT'> <event trigger='LEFT_UP' goto='IDLE' /> <event trigger='RIGHT_DOWN' goto='MOVING_RIGHT' /> </state> <state id='MOVING_RIGHT'> <event trigger='RIGHT_UP' goto='IDLE' /> <event trigger='LEFT_DOWN' goto='MOVING_LEFT' /> </state> These states can be handled by a polling system. Each game tick it grabs the current state of a game entity and checks all triggers. If a condition is met it changes the entity's state to the "goto" state. The last part I was struggling with was how to bind animation data and animation states to an entity. The most logical approach seemed to me to add a pointer to the state machine data an entity uses and to define for each state in that machine what animation it uses. Here is an xml example how I would define the animation behavior and graphical representation of some common entities in a game, by addressing animation state and animation data id. Note that both "wizard" and "orc" have the same animation states but a different animation. Also, a different animation could mean a different sprite sheet, or even a different sequence of animations (an animation could be longer or shorter). <entity name="wizard"> <state id="IDLE" animation="WIZARD_IDLE" /> <state id="MOVING_LEFT" animation="WIZARD_WALK_LEFT" /> </entity> <entity name="orc"> <state id="IDLE" animation="ORC_IDLE" /> <state id="MOVING_LEFT" animation="ORC_WALK_LEFT" /> </entity> When the entity is being created it would add a list of states with state machine data and an animation data reference. In the future I would use the entity system to build whole entities by defining components in a similar xml format. -- This is what I have come up with after some research. However I had some trouble getting my head around it, so I was hoping op some feedback. Is there something here what doesn't make sense, or is there a better way to handle these things? I grasped the idea of iterating through frames but I'm having trouble to take it a step further and this is my attempt to do that.

    Read the article

  • Looking into the JQuery Overlays Plugin

    - by nikolaosk
    I have been using JQuery for a couple of years now and it has helped me to solve many problems on the client side of web development.  You can find all my posts about JQuery in this link. In this post I will be providing you with a hands-on example on the JQuery Overlays Plugin.If you want you can have a look at this post, where I describe the JQuery Cycle Plugin.You can find another post of mine talking about the JQuery Carousel Lite Plugin here. Another post of mine regarding the JQuery Image Zoom Plugin can be found here.I will be writing more posts regarding the most commonly used JQuery Plugins. With the JQuery Overlays Plugin we can provide the user (overlay) with more information about an image when the user hovers over the image. I have been using extensively this plugin in my websites. In this hands-on example I will be using Expression Web 4.0.This application is not a free application. You can use any HTML editor you like. You can use Visual Studio 2012 Express edition. You can download it here.  You can download this plugin from this link. I launch Expression Web 4.0 and then I type the following HTML markup (I am using HTML 5) <html lang="en"> <head>    <link rel="stylesheet" href="ImageOverlay.css" type="text/css" media="screen" />    <script type="text/javascript" src="jquery-1.8.3.min.js"></script>    <script type="text/javascript" src="jquery.ImageOverlay.min.js"></script>         <script type="text/javascript">        $(function () {            $("#Liverpool").ImageOverlay();        });    </script>   </head><body>    <ul id="Liverpool" class="image-overlay">        <li>            <a href="www.liverpoolfc.com">                <img alt="Liverpool" src="championsofeurope.jpg" />                <div class="caption">                    <h3>Liverpool Football club</h3>                    <p>The greatest club in the world</p>                </div>            </a>        </li>    </ul></body></html> This is a very simple markup. I have added references to the JQuery library (current version is 1.8.3) and the JQuery Overlays Plugin. Then I add 1 image in the element with "id=Liverpool". There is a caption class as well, where I place the text I want to show when the mouse hovers over the image. The caption class and the Liverpool id element are styled in the ImageOverlay.css file that can also be downloaded with the plugin.You can style the various elements of the html markup in the .css file. The Javascript code that makes it all happen follows.   <script type="text/javascript">        $(function () {            $("#Liverpool").ImageOverlay();        });    </script>        I am just calling the ImageOverlay function for the Liverpool ID element.The contents of ImageOverlay.css file follow .image-overlay { list-style: none; text-align: left; }.image-overlay li { display: inline; }.image-overlay a:link, .image-overlay a:visited, .image-overlay a:hover, .image-overlay a:active { text-decoration: none; }.image-overlay a:link img, .image-overlay a:visited img, .image-overlay a:hover img, .image-overlay a:active img { border: none; }.image-overlay a{    margin: 9px;    float: left;    background: #fff;    border: solid 2px;    overflow: hidden;    position: relative;}.image-overlay img{    position: absolute;    top: 0;    left: 0;    border: 0;}.image-overlay .caption{    float: left;    position: absolute;    background-color: #000;    width: 100%;    cursor: pointer;    /* The way to change overlay opacity is the follow properties. Opacity is a tricky issue due to        longtime IE abuse of it, so opacity is not offically supported - use at your own risk.         To play it safe, disable overlay opacity in IE. */    /* For Firefox/Opera/Safari/Chrome */    opacity: .8;    /* For IE 5-7 */    filter: progid:DXImageTransform.Microsoft.Alpha(Opacity=80);    /* For IE 8 */    -MS-filter: "progid:DXImageTransform.Microsoft.Alpha(Opacity=80)";}.image-overlay .caption h1, .image-overlay .caption h2, .image-overlay .caption h3,.image-overlay .caption h4, .image-overlay .caption h5, .image-overlay .caption h6{    margin: 10px 0 10px 2px;    font-size: 26px;    font-weight: bold;    padding: 0 0 0 5px;    color:#92171a;}.image-overlay p{    text-indent: 0;    margin: 10px;    font-size: 1.2em;} It couldn't be any simpler than that. I view my simple page in Internet Explorer 10 and it works as expected. I have tested this simple solution in all major browsers and it works fine.Have a look at the picture below. You can test it yourself and see the results in your favorite browser. Hope it helps!!!

    Read the article

  • Execution plan warnings–The final chapter

    - by Dave Ballantyne
    In my previous posts (here and here), I showed examples of some of the execution plan warnings that have been added to SQL Server 2012.  There is one other warning that is of interest to me : “Unmatched Indexes”. Firstly, how do I know this is the final one ?  The plan is an XML document, right ? So that means that it can have an accompanying XSD.  As an XSD is a schema definition, we can poke around inside it to find interesting things that *could* be in the final XML file. The showplan schema is stored in the folder Microsoft SQL Server\110\Tools\Binn\schemas\sqlserver\2004\07\showplan and by comparing schemas over releases you can get a really good idea of any new functionality that has been added. Here is the section of the Sql Server 2012 showplan schema that has been interesting me so far : <xsd:complexType name="AffectingConvertWarningType"> <xsd:annotation> <xsd:documentation>Warning information for plan-affecting type conversion</xsd:documentation> </xsd:annotation> <xsd:sequence> <!-- Additional information may go here when available --> </xsd:sequence> <xsd:attribute name="ConvertIssue" use="required"> <xsd:simpleType> <xsd:restriction base="xsd:string"> <xsd:enumeration value="Cardinality Estimate" /> <xsd:enumeration value="Seek Plan" /> <!-- to be extended here --> </xsd:restriction> </xsd:simpleType> </xsd:attribute> <xsd:attribute name="Expression" type ="xsd:string" use="required" /></xsd:complexType><xsd:complexType name="WarningsType"> <xsd:annotation> <xsd:documentation>List of all possible iterator or query specific warnings (e.g. hash spilling, no join predicate)</xsd:documentation> </xsd:annotation> <xsd:choice minOccurs="1" maxOccurs="unbounded"> <xsd:element name="ColumnsWithNoStatistics" type="shp:ColumnReferenceListType" minOccurs="0" maxOccurs="1" /> <xsd:element name="SpillToTempDb" type="shp:SpillToTempDbType" minOccurs="0" maxOccurs="unbounded" /> <xsd:element name="Wait" type="shp:WaitWarningType" minOccurs="0" maxOccurs="unbounded" /> <xsd:element name="PlanAffectingConvert" type="shp:AffectingConvertWarningType" minOccurs="0" maxOccurs="unbounded" /> </xsd:choice> <xsd:attribute name="NoJoinPredicate" type="xsd:boolean" use="optional" /> <xsd:attribute name="SpatialGuess" type="xsd:boolean" use="optional" /> <xsd:attribute name="UnmatchedIndexes" type="xsd:boolean" use="optional" /> <xsd:attribute name="FullUpdateForOnlineIndexBuild" type="xsd:boolean" use="optional" /></xsd:complexType> I especially like the “to be extended here” comment,  high hopes that we will see more of these in the future.   So “Unmatched Indexes” was a warning that I couldn’t get and many thanks must go to Fabiano Amorim (b|t) for showing me the way.   Filtered indexes were introduced in Sql Server 2008 and are really useful if you only need to index only a portion of the data within a table.  However,  if your SQL code uses a variable as a predicate on the filtered data that matches the filtered condition, then the filtered index cannot be used as, naturally,  the value in the variable may ( and probably will ) change and therefore will need to read data outside the index.  As an aside,  you could use option(recompile) here , in which case the optimizer will build a plan specific to the variable values and use the filtered index,  but that can bring about other problems.   To demonstrate this warning, we need to generate some test data :   DROP TABLE #TestTab1GOCREATE TABLE #TestTab1 (Col1 Int not null, Col2 Char(7500) not null, Quantity Int not null)GOINSERT INTO #TestTab1 VALUES (1,1,1),(1,2,5),(1,2,10),(1,3,20), (2,1,101),(2,2,105),(2,2,110),(2,3,120)GO and then add a filtered index CREATE INDEX ixFilter ON #TestTab1 (Col1)WHERE Quantity = 122 Now if we execute SELECT COUNT(*) FROM #TestTab1 WHERE Quantity = 122 We will see the filtered index being scanned But if we parameterize the query DECLARE @i INT = 122SELECT COUNT(*) FROM #TestTab1 WHERE Quantity = @i The plan is very different a table scan, as the value of the variable used in the predicate can change at run time, and also we see the familiar warning triangle. If we now look at the properties pane, we will see two pieces of information “Warnings” and “UnmatchedIndexes”. So, handily, we are being told which filtered index is not being used due to parameterization.

    Read the article

  • Restoring databases to a set drive and directory

    - by okeofs
     Restoring databases to a set drive and directory Introduction Often people say that necessity is the mother of invention. In this case I was faced with the dilemma of having to restore several databases, with multiple ‘ndf’ files, and having to restore them with different physical file names, drives and directories on servers other than the servers from which they originated. As most of us would do, I went to Google to see if I could find some code to achieve this task and found some interesting snippets on Pinal Dave’s website. Naturally, I had to take it further than the code snippet, HOWEVER it was a great place to start. Creating a temp table to hold database file details First off, I created a temp table which would hold the details of the individual data files within the database. Although there are a plethora of fields (within the temp table below), I utilize LogicalName only within this example. The temporary table structure may be seen below:   create table #tmp ( LogicalName nvarchar(128)  ,PhysicalName nvarchar(260)  ,Type char(1)  ,FileGroupName nvarchar(128)  ,Size numeric(20,0)  ,MaxSize numeric(20,0), Fileid tinyint, CreateLSN numeric(25,0), DropLSN numeric(25, 0), UniqueID uniqueidentifier, ReadOnlyLSN numeric(25,0), ReadWriteLSN numeric(25,0), BackupSizeInBytes bigint, SourceBlocSize int, FileGroupId int, LogGroupGUID uniqueidentifier, DifferentialBaseLSN numeric(25,0), DifferentialBaseGUID uniqueidentifier, IsReadOnly bit, IsPresent bit,  TDEThumbPrint varchar(50) )    We now declare and populate a variable(@path), setting the variable to the path to our SOURCE database backup. declare @path varchar(50) set @path = 'P:\DATA\MYDATABASE.bak'   From this point, we insert the file details of our database into the temp table. Note that we do so by utilizing a restore statement HOWEVER doing so in ‘filelistonly’ mode.   insert #tmp EXEC ('restore filelistonly from disk = ''' + @path + '''')   At this point, I depart from what I gleaned from Pinal Dave.   I now instantiate a few more local variables. The use of each variable will be evident within the cursor (which follows):   Declare @RestoreString as Varchar(max) Declare @NRestoreString as NVarchar(max) Declare @LogicalName  as varchar(75) Declare @counter as int Declare @rows as int set @counter = 1 select @rows = COUNT(*) from #tmp  -- Count the number of records in the temp                                    -- table   Declaring and populating the cursor At this point I do realize that many people are cringing about the use of a cursor. Being an Oracle professional as well, I have learnt that there is a time and place for cursors. I would remind the reader that the data that will be read into the cursor is from a local temp table and as such, any locking of the records (within the temp table) is not really an issue.   DECLARE MY_CURSOR Cursor  FOR  Select LogicalName  From #tmp   Parsing the logical names from within the cursor. A small caveat that works in our favour,  is that the first logical name (of our database) is the logical name of the primary data file (.mdf). Other files, except for the very last logical name, belong to secondary data files. The last logical name is that of our database log file.   I now open my cursor and populate the variable @RestoreString Open My_Cursor  set @RestoreString =  'RESTORE DATABASE [MYDATABASE] FROM DISK = N''P:\DATA\ MYDATABASE.bak''' + ' with  '   We now fetch the first record from the temp table.   Fetch NEXT FROM MY_Cursor INTO @LogicalName   While there are STILL records left within the cursor, we dynamically build our restore string. Note that we are using concatenation to create ‘one big restore executable string’.   Note also that the target physical file name is hardwired, as is the target directory.   While (@@FETCH_STATUS <> -1) BEGIN IF (@@FETCH_STATUS <> -2) -- As long as there are no rows missing select @RestoreString = case  when @counter = 1 then -- This is the mdf file    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.mdf' + '''' + ', '   -- OK, if it passes through here we are dealing with an .ndf file -- Note that Counter must be greater than 1 and less than the number of rows.   when @counter > 1 and @counter < @rows then -- These are the ndf file(s)    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ndf' + '''' + ', '   -- OK, if it passes through here we are dealing with the log file When @LogicalName like '%log%' then    @RestoreString + 'move  N''' + @LogicalName + '''' + ' TO N’’X:\DATA1\'+ @LogicalName + '.ldf' +'''' end --Increment the counter   set @counter = @counter + 1 FETCH NEXT FROM MY_CURSOR INTO @LogicalName END   At this point we have populated the varchar(max) variable @RestoreString with a concatenation of all the necessary file names. What we now need to do is to run the sp_executesql stored procedure, to effect the restore.   First, we must place our ‘concatenated string’ into an nvarchar based variable. Obviously this will only work as long as the length of @RestoreString is less than varchar(max) / 2.   set @NRestoreString = @RestoreString EXEC sp_executesql @NRestoreString   Upon completion of this step, the database should be restored to the server. I now close and deallocate the cursor, and to be clean, I would also drop my temp table.   CLOSE MY_CURSOR DEALLOCATE MY_CURSOR GO   Conclusion Restoration of databases on different servers with different physical names and on different drives are a fact of life. Through the use of a few variables and a simple cursor, we may achieve an efficient and effective way to achieve this task.

    Read the article

  • How to begin? Windows 8 Development

    - by Dennis Vroegop
    Ok. I convinced you in my last post to do some Win8 development. You want a piece of that cake, or whatever your reasons may be. Good! Welcome to the club! Now let me ask you a question: what are you going to write? Ah. That’s the big one, isn’t it? What indeed? If you have been creating applications for computers before you’re in for quite a shock. The way people perceive apps on a tablet is quite different from what we know as applications. There’s a reason we call them apps instead of applications! Yes, technically they are applications but we don’t call them apps only because it sounds cool. The abbreviated form of the word applications itself is a pointer. Apps are small. Apps are focused. Apps are more lightweight. Apps do one thing but they do that one thing extremely good. In the ‘old’ days we wrote huge systems. We build ecosystems of services, screens, databases and more to create a system that provides value for the user. Think about it: what application do you use most at work? Can you in one sentence describe what it is, or what it does and yet still distinctively describe its purpose? I doubt you can. Let’s have a look at Outlouk. We all know it and we all love or hate it. But what is it? A mail program? No, there’s so much more there: calendar, contacts, RSS feeds and so on. Some call it a ‘collaboration’  application but that’s not really true as well. After all, why should a collaboration application give me my schedule for the day? I think the best way to describe Outlook is “client for Exchange”  although that isn’t accurate either. Anyway: Outlook is a great application but it’s not an ‘app’ and therefor not very suitable for WinRT. Ok. Disclaimer here: yes, you can write big applications for WinRT. Some will. But that’s not what 99.9% of the developers will do. So I am stating here that big applications are not meant for WinRT. If 0.01% of the developers think that this is nonsense then they are welcome to go ahead but for the majority here this is not what we’re talking about. So: Apps are small, lightweight and good at what they do but only at that. If you’re a Phone developer you already know that: Phone apps on any platform fit the description I have above. If you’ve ever worked in a large cooperation before you might have seen one of these before: the Mission Statement. It’s supposed to be a oneliner that sums up what the company is supposed to do. Funny enough: although this doesn’t work for large companies it does work for defining your app. A mission statement for an app describes what it does. If it doesn’t fit in the mission statement then your app is going to get to big and will fail. A statement like this should be in the following style “<your app name> is the best app to <describe single task>” Fill in the blanks, write it and go! Mmm.. not really. There are some things there we need to think about. But the statement is a very, very important one. If you cannot fit your app in that line you’re preparing to fail. Your app will become to big, its purpose will be unclear and it will be hard to use. People won’t download it and those who do will give it a bad rating therefor preventing that huge success you’ve been dreaming about. Stick to the statement! Ok, let’s give it a try: “PlanesAreCool” is the best app to do planespotting in the field. You might have seen these people along runways of airports: taking photographs of airplanes and noting down their numbers and arrival- and departure times. We are going to help them out with our great app! If you look at the statement, can you guess what it does? I bet you can. If you find out it isn’t clear enough of if it’s too broad, refine it. This is probably the most important step in the development of your app so give it enough time! So. We’ve got the statement. Print it out, stick it to the wall and look at it. What does it tell you? If you see this, what do you think the app does? Write that down. Sit down with some friends and talk about it. What do they expect from an app like this? Write that down as well. Brainstorm. Make a list of features. This is mine: Note planes Look up aircraft carriers Add pictures of that plane Look up airfields Notify friends of new spots Look up details of a type of plane Plot a graph with arrival and departure times Share new spots on social media Look up history of a particular aircraft Compare your spots with friends Write down arrival times Write down departure times Write down wind conditions Write down the runway they take Look up weather conditions for next spotting day Invite friends to join you for a day of spotting. Now, I must make it clear that I am not a planespotter nor do I know what one does. So if the above list makes no sense, I apologize. There is a lesson: write apps for stuff you know about…. First of all, let’s look at our statement and then go through the list of features. Remove everything that has nothing to do with that statement! If you end up with an empty list, try again with both steps. Note planes Look up aircraft carriers Add pictures of that plane Look up airfields Notify friends of new spots Look up details of a type of plane Plot a graph with arrival and departure times Share new spots on social media Look up history of a particular aircraft Compare your spots with friends Write down arrival times Write down departure times Write down wind conditions Write down the runway they take Look up weather conditions for next spotting day Invite friends to join you for a day of spotting. That's better. The things I removed could be pretty useful to a plane spotter and could be fun to write. But do they match the statement? I said that the app is for spotting in the field, so “look up airfields” doesn’t belong there: I know where I am so why look it up? And the same goes for inviting friends or looking up the weather conditions for tomorrow. I am at the airfield right now, looking through my binoculars at the planes. I know the weather now and I don’t care about tomorrow. If you feel the items you’ve crossed out are valuable, then why not write another app? One that says “SpotNoter” is the best app for preparing a day of spotting with my friends. That’s a different app! Remember: Win8 apps are small and very good at doing ONE thing, and one thing only! If you have made that list, it’s time to prepare the navigation of your app. The navigation is how users see your app and how they use it. We’ll do that next time!

    Read the article

  • Struct Method for Loops Problem

    - by Annalyne
    I have tried numerous times how to make a do-while loop using the float constructor for my code but it seems it does not work properly as I wanted. For summary, I am making a TBRPG in C++ and I encountered few problems. But before that, let me post my code. #include <iostream> #include <string> #include <ctime> #include <cstdlib> using namespace std; int char_level = 1; //the starting level of the character. string town; //town string town_name; //the name of the town the character is in. string charname; //holds the character's name upon the start of the game int gems = 0; //holds the value of the games the character has. const int MAX_ITEMS = 15; //max items the character can carry string inventory [MAX_ITEMS]; //the inventory of the character in game int itemnum = 0; //number of items that the character has. bool GameOver = false; //boolean intended for the game over scr. string monsterTroop [] = {"Slime", "Zombie", "Imp", "Sahaguin, Hounds, Vampire"}; //monster name float monsterTroopHealth [] = {5.0f, 10.0f, 15.0f, 20.0f, 25.0f}; // the health of the monsters int monLifeBox; //life carrier of the game's enemy troops int enemNumber; //enemy number //inventory[itemnum++] = "Sword"; class RPG_Game_Enemy { public: void enemyAppear () { srand(time(0)); enemNumber = 1+(rand()%3); if (enemNumber == 1) cout << monsterTroop[1]; //monster troop 1 else if (enemNumber == 2) cout << monsterTroop[2]; //monster troop 2 else if (enemNumber == 3) cout << monsterTroop[3]; //monster troop 3 else if (enemNumber == 4) cout << monsterTroop[4]; //monster troop 4 } void enemDefeat () { cout << "The foe has been defeated. You are victorious." << endl; } void enemyDies() { //if the enemy dies: //collapse declaration cout << "The foe vanished and you are victorious!" << endl; } }; class RPG_Scene_Battle { public: RPG_Scene_Battle(float ini_health) : health (ini_health){}; float getHealth() { return health; } void setHealth(float rpg_val){ health = rpg_val;}; private: float health; }; //---------------------------------------------------------------// // Conduct Damage for the Scene Battle's Damage //---------------------------------------------------------------// float conductDamage(RPG_Scene_Battle rpg_tr, float damage) { rpg_tr.setHealth(rpg_tr.getHealth() - damage); return rpg_tr.getHealth(); }; // ------------------------------------------------------------- // void RPG_Scene_DisplayItem () { cout << "Items: \n"; for (int i=0; i < itemnum; ++i) cout << inventory[i] <<endl; }; In this code I have so far, the problem I have is the battle scene. For example, the player battles a Ghost with 10 HP, when I use a do while loop to subtract the HP of the character and the enemy, it only deducts once in the do while. Some people said I should use a struct, but I have no idea how to make it. Is there a way someone can display a code how to implement it on my game? Edit: I made the do-while by far like this: do RPG_Scene_Battle (player, 20.0f); RPG_Scene_Battle (enemy, 10.0f); cout << "Battle starts!" <<endl; cout << "You used a blade skill and deducted 2 hit points to the enemy!" conductDamage (enemy, 2.0f); while (enemy!=0) also, I made something like this: #include <iostream> using namespace std; int gems = 0; class Entity { public: Entity(float startingHealth) : health(startingHealth){}; // initialize health float getHealth(){return health;} void setHealth(float value){ health = value;}; private: float health; }; float subtractHealthFrom(Entity& ent, float damage) { ent.setHealth(ent.getHealth() - damage); return ent.getHealth(); }; int main () { Entity character(10.0f); Entity enemy(10.0f); cout << "Hero Life: "; cout << subtractHealthFrom(character, 2.0f) <<endl; cout << "Monster Life: "; cout << subtractHealthFrom(enemy, 2.0f) <<endl; cout << "Hero Life: "; cout << subtractHealthFrom(character, 2.0f) <<endl; cout << "Monster Life: "; cout << subtractHealthFrom(enemy, 2.0f) <<endl; }; Struct method, they say, should solve this problem. How can I continously deduct hp from the enemy? Whenever I deduct something, it would return to its original value -_-

    Read the article

  • C# 2D Camera Max Zoom

    - by Craig
    I have a simple ship sprite moving around the screen along with a 2D Camera. I have zooming in and out working, however when I zoom out it goes past the world bounds and has the cornflower blue background showing. How do I sort it that I can only zoom out as far as showing the entire world (which is a picture of OZ) and thats it? I dont want any of the cornflower blue showing. Cheers! namespace GamesCoursework_1 { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; // player variables Texture2D Ship; Vector2 Ship_Position; float Ship_Rotation = 0.0f; Vector2 Ship_Origin; Vector2 Ship_Velocity; const float tangentialVelocity = 4f; float friction = 0.05f; static Point CameraViewport = new Point(800, 800); Camera2d cam = new Camera2d((int)CameraViewport.X, (int)CameraViewport.Y); //Size of world static Point worldSize = new Point(1600, 1600); // Screen variables static Point worldCenter = new Point(worldSize.X / 2, worldSize.Y / 2); Rectangle playerBounds = new Rectangle(CameraViewport.X / 2, CameraViewport.Y / 2, worldSize.X - CameraViewport.X, worldSize.Y - CameraViewport.Y); Rectangle worldBounds = new Rectangle(0, 0, worldSize.X, worldSize.Y); Texture2D background; public Game1() { graphics = new GraphicsDeviceManager(this); graphics.PreferredBackBufferWidth = CameraViewport.X; graphics.PreferredBackBufferHeight = CameraViewport.Y; Content.RootDirectory = "Content"; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here Ship = Content.Load<Texture2D>("Ship"); Ship_Origin.X = Ship.Width / 2; Ship_Origin.Y = Ship.Height / 2; background = Content.Load<Texture2D>("aus"); Ship_Position = new Vector2(worldCenter.X, worldCenter.Y); cam.Pos = Ship_Position; cam.Zoom = 1f; } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); // TODO: Add your update logic here Ship_Position = Ship_Velocity + Ship_Position; keyPressed(); base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // TODO: Add your drawing code here spriteBatch.Begin(SpriteSortMode.Deferred, BlendState.AlphaBlend, null, null, null,null, cam.get_transformation(GraphicsDevice)); spriteBatch.Draw(background, Vector2.Zero, Color.White); spriteBatch.Draw(Ship, Ship_Position, Ship.Bounds, Color.White, Ship_Rotation, Ship_Origin, 1.0f, SpriteEffects.None, 0f); spriteBatch.End(); base.Draw(gameTime); } private void Ship_Move(Vector2 move) { Ship_Position += move; } private void keyPressed() { KeyboardState keyState; // Move right keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Keys.Right)) { Ship_Rotation = Ship_Rotation + 0.1f; } if (keyState.IsKeyDown(Keys.Left)) { Ship_Rotation = Ship_Rotation - 0.1f; } if (keyState.IsKeyDown(Keys.Up)) { Ship_Velocity.X = (float)Math.Cos(Ship_Rotation) * tangentialVelocity; Ship_Velocity.Y = (float)Math.Sin(Ship_Rotation) * tangentialVelocity; if ((int)Ship_Position.Y < playerBounds.Bottom && (int)Ship_Position.Y > playerBounds.Top) cam._pos.Y = Ship_Position.Y; if ((int)Ship_Position.X > playerBounds.Left && (int)Ship_Position.X < playerBounds.Right) cam._pos.X = Ship_Position.X; Ship_Position += new Vector2(tangentialVelocity, 0); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(tangentialVelocity * 2, 0.0f); Ship_Position += new Vector2(-tangentialVelocity, 0.0f); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(-tangentialVelocity * 2, 0.0f); Ship_Position += new Vector2(0.0f, -tangentialVelocity); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(0.0f, -tangentialVelocity * 2); Ship_Position += new Vector2(0.0f, tangentialVelocity); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(0.0f, 2 * tangentialVelocity); } else if(Ship_Velocity != Vector2.Zero) { float i = Ship_Velocity.X; float j = Ship_Velocity.Y; Ship_Velocity.X = i -= friction * i; Ship_Velocity.Y = j -= friction * j; if ((int)Ship_Position.Y < playerBounds.Bottom && (int)Ship_Position.Y > playerBounds.Top) cam._pos.Y = Ship_Position.Y; if ((int)Ship_Position.X > playerBounds.Left && (int)Ship_Position.X < playerBounds.Right) cam._pos.X = Ship_Position.X; Ship_Position += new Vector2(tangentialVelocity, 0); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(tangentialVelocity * 2, 0.0f); Ship_Position += new Vector2(-tangentialVelocity, 0.0f); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(-tangentialVelocity * 2, 0.0f); Ship_Position += new Vector2(0.0f, -tangentialVelocity); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(0.0f, -tangentialVelocity * 2); Ship_Position += new Vector2(0.0f, tangentialVelocity); if (!worldBounds.Contains(new Point((int)Ship_Position.X, (int)Ship_Position.Y))) Ship_Position -= new Vector2(0.0f, 2 * tangentialVelocity); } if (keyState.IsKeyDown(Keys.Q)) { if (cam.Zoom < 2f) cam.Zoom += 0.05f; } if (keyState.IsKeyDown(Keys.A)) { if (cam.Zoom > 0.3f) cam.Zoom -= 0.05f; } } } }

    Read the article

< Previous Page | 389 390 391 392 393 394 395 396 397 398 399 400  | Next Page >