Search Results

Search found 21563 results on 863 pages for 'game testing'.

Page 398/863 | < Previous Page | 394 395 396 397 398 399 400 401 402 403 404 405  | Next Page >

  • "has no motion" warnings

    - by Adam R. Grey
    When I reimport my project's Library, I get lots of warnings such as State combat.Ghoul Attack has no motion but I have no idea why. In this specific case, I looked up Ghoul Attack. Here's the state in which it appears, in the only animator controller that includes anything called Ghoul Attack: State: m_ObjectHideFlags: 3 m_PrefabParentObject: {fileID: 0} m_PrefabInternal: {fileID: 0} m_Name: Ghoul Attack m_Speed: 1 m_CycleOffset: 0 m_Motions: - {fileID: 7400000, guid: 0db269712a91fd641b6dd5e0e4c6d507, type: 3} - {fileID: 0} m_ParentStateMachine: {fileID: 110708233} m_Position: {x: 492, y: 132, z: 0} m_IKOnFeet: 1 m_Mirror: 0 m_Tag: I thought perhaps that second one - {fileID: 0} was throwing up the warning incorrectly, so I removed it. There was no effect, I still get warnings about Ghoul Attack. So given that the only state I know of with that name does in fact have motion, what is this warning actually trying to tell me?

    Read the article

  • Using multiple indexes with buffer objects in OpenTK

    - by Rushyo
    I've got multiple buffers in OpenGL holding data on position, normals and texcoords. I also have an equal number of buffers holding distinct index data for each of those buffers. I quite like this format (indvidual indexes for each buffer) utilised by COLLADA since it strikes me as optimally efficient at accessing each buffer. I've set up pointers to the relevant data arrays using VertexPointer, NormalPointer, etc however I have no way to assign pointers to the index buffers since DrawElements appear to only look at one ElementArrayBuffer. Can I utilise multiple indices some way or will I be better off using a different technique which can support this? I'd prefer to keep the distinct indices if at all possible.

    Read the article

  • XNA Diffuse Shader Issue. Edge lighting problem. Image Attached

    - by adtither
    As you can see in this image the diffuse shading is working correctly in some places but in other places such as the the bottom of the sphere you can see the squares/triangles of the mesh. Any idea what would be causing this? Let me know if you need anymore information related to code. I can upload my normals calculations and shader effect if required. EDIT: Here's a link to the shader I'm using http://pastebin.com/gymVc7CP Link to normals calculations: http://pastebin.com/KnMGdzHP Seems to be an issue with edge lighting. Can't seem to see where I'm going wrong with the normals calculations though.

    Read the article

  • Multi Pass Blend

    - by Kirk Patrick
    I am seeking the simplest working example of a two pass HLSL pixel shader. It can do anything really, but the main idea is to perform "ping ponging" to take the output of the first pass and then send it for the second pass. In my example I want to draw to the R channel and then draw to the G channel and produce a simple Venn Diagram in the shader, but need to detect overlap. I can currently detect one or the other but not overlap. There are a red and green circle overlapping, and I want to put a dynamic texture map in the overlap region. I can currently put it in either or. Below is how it looks in the shader. -------------------------------- Texture2D shaderTexture; SamplerState SampleType; ////////////// // TYPEDEFS // ////////////// struct PixelInputType { float4 position : SV_POSITION; float2 tex0 : TEXCOORD0; float2 tex1 : TEXCOORD1; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 main(PixelInputType input) : SV_TARGET { float4 textureColor0; float4 textureColor1; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor0 = shaderTexture.Sample(SampleType, input.tex0); textureColor1 = shaderTexture.Sample(SampleType, input.tex1); if (input.color[0]==1.0f && input.color[1]==1.0f) // Requires multi-pass textureColor0 = textureColor1; return textureColor0; } Here is the calling code (that needs to be modified) m_d3dContext->IASetVertexBuffers(0, 2, vbs, strides, offsets); m_d3dContext->IASetIndexBuffer(m_indexBuffer.Get(), DXGI_FORMAT_R32_UINT,0); m_d3dContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_d3dContext->IASetInputLayout(m_inputLayout.Get()); m_d3dContext->VSSetShader(m_vertexShader.Get(), nullptr, 0); m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf()); m_d3dContext->PSSetShader(m_pixelShader.Get(), nullptr, 0); m_d3dContext->PSSetShaderResources(0, 1, m_SRV.GetAddressOf()); m_d3dContext->PSSetSamplers(0, 1, m_QuadsTexSamplerState.GetAddressOf());

    Read the article

  • Rotate a vector by given degrees (errors when value over 90)

    - by Ivan
    I created a function to rotate a vector by a given number of degrees. It seems to work fine when given values in the range -90 to +90. Beyond this, the amount of rotation decreases, i.e., I think objects are rotating the same amount for 80 and 100 degrees. I think this diagram might be a clue to my problem, but I don't quite understand what it's showing. Must I use a different trig function depending on the radians value? The programming examples I've been able to find look similar to mine (not varying the trig functions). Vector2D.prototype.rotate = function(angleDegrees) { var radians = angleDegrees * (Math.PI / 180); var ca = Math.cos(radians); var sa = Math.sin(radians); var rx = this.x*ca - this.y*sa; var ry = this.x*sa + this.y*ca; this.x = rx; this.y = ry; };

    Read the article

  • Moving player in direciton camera is facing

    - by Samurai Fox
    I have a 3rd person camera which can rotate around the player. My problem is that wherever camera is facing, players forward is always the same direction. For example when camera is facing the right side of the player, when I press button to move forward, I want player to turn to the left and make that the "new forward". My camera script so far: using UnityEngine; using System.Collections; public class PlayerScript : MonoBehaviour { public float RotateSpeed = 150, MoveSpeed = 50; float DeltaTime; void Update() { DeltaTime = Time.deltaTime; transform.Rotate(0, Input.GetAxis("LeftX") * RotateSpeed * DeltaTime, 0); transform.Translate(0, 0, -Input.GetAxis("LeftY") * MoveSpeed * DeltaTime); } } public class CameraScript : MonoBehaviour { public GameObject Target; public float RotateSpeed = 170, FollowDistance = 20, FollowHeight = 10; float RotateSpeedPerTime, DesiredRotationAngle, DesiredHeight, CurrentRotationAngle, CurrentHeight, Yaw, Pitch; Quaternion CurrentRotation; void LateUpdate() { RotateSpeedPerTime = RotateSpeed * Time.deltaTime; DesiredRotationAngle = Target.transform.eulerAngles.y; DesiredHeight = Target.transform.position.y + FollowHeight; CurrentRotationAngle = transform.eulerAngles.y; CurrentHeight = transform.position.y; CurrentRotationAngle = Mathf.LerpAngle(CurrentRotationAngle, DesiredRotationAngle, 0); CurrentHeight = Mathf.Lerp(CurrentHeight, DesiredHeight, 0); CurrentRotation = Quaternion.Euler(0, CurrentRotationAngle, 0); transform.position = Target.transform.position; transform.position -= CurrentRotation * Vector3.forward * FollowDistance; transform.position = new Vector3(transform.position.x, CurrentHeight, transform.position.z); Yaw = Input.GetAxis("Right Horizontal") * RotateSpeedPerTime; Pitch = Input.GetAxis("Right Vertical") * RotateSpeedPerTime; transform.Translate(new Vector3(Yaw, -Pitch, 0)); transform.position = new Vector3(transform.position.x, transform.position.y, transform.position.z); transform.LookAt(Target.transform); } }

    Read the article

  • Self learning automated movement

    - by Super1
    I am trying to make a small demo in Javascript, I have a black border and a car the car travels randomly and a line is drawn of its trail. When the user click inside the area it creates an object (we'll call this the wall). If the car hits the wall then it goes back 3 paces and tries a different route. When its hit the wall it needs to log down its location so it does NOT make that mistake again. Here is my example: http://jsfiddle.net/Jtq3E/ How can I get the car to move by itself and create a trail?

    Read the article

  • Level of detail algorithm not functioning correctly

    - by Darestium
    I have been working on this problem for months; I have been creating Planet Generator of sorts, after more than 6 months of work I am no closer to finishing it then I was 4 months ago. My problem; The terrain does not subdivide in the correct locations properly, it almost seems as if there is a ghost camera next to me, and the quads subdivide based on the position of this "ghost camera". Here is a video of the broken program: http://www.youtube.com/watch?v=NF_pHeMOju8 The best example of the problem occurs around 0:36. For detail limiting, I am going for a chunked LOD approach, which subdivides the terrain based on how far you are away from it. I use a "depth table" to determine how many subdivisions should take place. void PQuad::construct_depth_table(float distance) { tree[0] = -1; for (int i = 1; i < MAX_DEPTH; i++) { tree[i] = distance; distance /= 2.0f; } } The chuncked LOD relies on the child/parent structure of quads, the depth is determined by a constant e.g: if the constant is 6, there are six levels of detail. The quads which should be drawn go through a distance test from the player to the centre of the quad. void PQuad::get_recursive(glm::vec3 player_pos, std::vector<PQuad*>& out_children) { for (size_t i = 0; i < children.size(); i++) { children[i].get_recursive(player_pos, out_children); } if (this->should_draw(player_pos) || this->depth == 0) { out_children.emplace_back(this); } } bool PQuad::should_draw(glm::vec3 player_position) { float distance = distance3(player_position, centre); if (distance < tree[depth]) { return true; } return false; } The root quad has four children which could be visualized like the following: [] [] [] [] Where each [] is a child. Each child has the same amount of children up until the detail limit, the quads which have are 6 iterations deep are leaf nodes, these nodes have no children. Each node has a corresponding Mesh, each Mesh structure has 16x16 Quad-shapes, each Mesh's Quad-shapes halves in size each detail level deeper - creating more detail. void PQuad::construct_children() { // Calculate the position of the Quad based on the parent's location calculate_position(); if (depth < (int)MAX_DEPTH) { children.reserve((int)NUM_OF_CHILDREN); for (int i = 0; i < (int)NUM_OF_CHILDREN; i++) { children.emplace_back(PQuad(this->face_direction, this->radius)); PQuad *child = &children.back(); child->set_depth(depth + 1); child->set_child_index(i); child->set_parent(this); child->construct_children(); } } else { leaf = true; } } The following function creates the vertices for each quad, I feel that it may play a role in the problem - I just can't determine what is causing the problem. void PQuad::construct_vertices(std::vector<glm::vec3> *vertices, std::vector<Color3> *colors) { vertices->reserve(quad_width * quad_height); for (int y = 0; y < quad_height; y++) { for (int x = 0; x < quad_width; x++) { switch (face_direction) { case YIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, quad_height - 1.0f, -(position.y + y * element_width))); break; case YDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, 0.0f, -(position.y + y * element_width))); break; case XIncreasing: vertices->emplace_back(glm::vec3(quad_width - 1.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case XDecreasing: vertices->emplace_back(glm::vec3(0.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case ZIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, 0.0f)); break; case ZDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, -(quad_width - 1.0f))); break; } // Position the bottom, right, front vertex of the cube from being (0,0,0) to (-16, -16, 16) (*vertices)[vertices->size() - 1] -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); colors->emplace_back(Color3(255.0f, 255.0f, 255.0f, false)); } } switch (face_direction) { case YIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, quad_height - 1.0f, -(position.y + quad_height / 2.0f)); break; case YDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, 0.0f, -(position.y + quad_height / 2.0f)); break; case XIncreasing: this->centre = glm::vec3(quad_width - 1.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case XDecreasing: this->centre = glm::vec3(0.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case ZIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, 0.0f); break; case ZDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, -(quad_height - 1.0f)); break; } this->centre -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); } Any help in discovering what is causing this "subdivding in the wrong place" would be greatly appreciated.

    Read the article

  • Circular motion on low powered hardware

    - by Akroy
    I was thinking about platforms and enemies moving in circles in old 2D games, and I was wondering how that was done. I understand parametric equations, and it's trivial to use sin and cos to do it, but could an NES or SNES make real time trig calls? I admit heavy ignorance, but I thought those were expensive operations. Is there some clever way to calculate that motion more cheaply? I've been working on deriving an algorithm from trig sum identities that would only use precalculated trig, but that seems convoluted.

    Read the article

  • Camera Collision inside the room model

    - by sanddy
    I am having a problem in Calculating the camera collision for my Room model which consists of sofa, tables and other models. The users shall be moving the camera front, back, rotating so i need to make sure that the camera does not collide with any of the models with in the room. I have treated all my models inside the room by BoundingBox[] and the camera by BoundingSphere. So, far i have implemented collision by looking into the tutorial from http://www.toymaker.info/Games/XNA/html/xna_model_collisions.html which was great. But, I guess the problem lies in the Transformation part. I debugged and found some points to be at Vector(-XXX,-XXX,-XXX) where X is digit. Also i found my radius of some models where too large(in thousand, i just looked into its radius value before converting to BoundingBox). Do I need to scale the model for collision??? Below are my code:- On My LoadContent(): Matrix[] transforms = new Matrix[myModel.Bones.Count]; myModel.CopyAbsoluteBoneTransformsTo(transforms); int index = 0; box = new List<BoundingBox>(); BoundingBox worldModel = Utility.CalculateBoundingBox(myModel); foreach (ModelMesh mesh in myModel.Meshes) { Vector3[] obb = new Vector3[8]; worldModel.GetCorners(obb); Vector3[] asdf = (Vector3[])obb.Clone(); Vector3.Transform(obb, ref transforms[mesh.ParentBone.Index], obb); BoundingBox worldBox = BoundingBox.CreateFromPoints(obb); box.Add(worldBox); index++; } On CameraPosition Update: BoundingSphere bs = new BoundingSphere(this.cameraPos, 5.0f); if (RoomWalkthrough.Utility.CheckCollision(bs, bb)) { // Do Something } Please Help.

    Read the article

  • Repeat a part of spritesheet as background

    - by Moiblpadde
    So I'm trying to repeat a part of my spritesheet as a background (js, canvas). My code so far: var canvas = $("#board")[0], ctx = canvas.getContext("2d"), sprite = new Image(); sprite.src = "spritesheet.png"; sprite.onload = function(){ ctx.fillStyle = ctx.createPattern(spriteBg, "repeat"); ctx.fillRect(0, 25, 500, 500); } This is fine, but as you can see, it repeat the whole sprite, not just a part of it, and I just can't figure out how to do it D:

    Read the article

  • Drawing multiple objects from one Vertex Buffer Object in OpenGL/OpenTK

    - by stoney78us
    I am trying to experimenting drawing method using VBO in OpenGL. Many people normally use 1 vbo to store one object data array. I was trying to do something quite opposite which is storing multiple object data into 1 vbo then drawing it. There is story behind why i want to do this. I want to group many of objects as a single object sometime. However my code doesn't do the justice. Following is my pseudo code: //Data double[] vertices = {line strip 1, line strip 2, line strip 3}; //series of vertices int linestrip1offset = index of the first vertex in line strip 1; int linestrip2offset = index of the first vertex in line strip 2; int linestrip3offset = index of the first vertex in line strip 3; int linestrip1VertexNum = number of vertices in linestrip 1; int linestrip2VertexNum = number of vertices in linestrip 2; int linestrip3VertexNum = number of vertices in linestrip 3; //Setting Up void init() { int[] vBO = new int[1]; GL.GenBuffer(1, vBO); GL.BindBuffer(BufferTarget.ArrayBuffer, vBO[0]); GL.BufferData(BufferTarget.ArrayBuffer, new IntPtr(_vertices.Length * sizeof(double)), _vertices, BufferUsageHint.StaticDraw); GL.EnableClientState(Array.VertexArray); } //Drawing void draw() { GL.BindBuffer(BufferTarget.ArrayBuffer, vBO[0]); GL.EnableClientState(ArrayCap.VertexArray); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip1offset); //drawing first linestrip GL.DrawArrays(drawMode, linestrip1offset , linestrip1VertexNum ); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip2offset); //drawing second linestrip GL.DrawArrays(drawMode, linestrip2offset , linestrip2VertexNum ); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip3offset); //drawing third linestrip GL.DrawArrays(drawMode, linestrip3offset , linestrip3VertexNum ); GL.DisableClientState(ArrayCap.VertexArray); GL.BindBuffer(BufferTarget.ArrayBuffer, 0); } I don't know what i did wrong but i think technically it should work where we can tell OpenGL which part of the data in the vBO to be drawn.

    Read the article

  • Entity Component System for HUD and GUI

    - by Jason L.
    This is a very rough sketch of how I currently have things designed. It should, at least, give an idea of how my ECS is currently designed. If you notice in that diagram, I have basically split the HUD out of the ECS. They have their own set of things (HudLayer, HudComponent, etc) and are handled differently. This is where I'm struggling, though. There are many different instances in which the HUD will need to know about entities. Not just data changing (I have an event dispatcher for that), but the actual entity and all it encompasses. There are also situations where entities will need to be able to query the HUD for data. Let's take a couple examples: First, my equipment screen. On here I can change the equipment on a character (Entity). In order for this to happen, I need to know about the entity. At least I think I do? How can I handle this? The second scenario involves my Systems needing to query a HudComponent for data. A specific example would be my battle system. Each "team" is given a 3x3 grid they can move around in. See here: Skills target these cells, and not the player, so I would need a way for my systems to determine which cells are occupied and which are not. Basically I need a way for two way communication between Systems and my HUD. I know it's recommended (by some people, anyways) to take your HUD out of the ECS. Is that appropriate in my case?

    Read the article

  • How to proceed on the waypoint path?

    - by Alpha Carinae
    I'm using Dijkstra algorithm to find shortest path and I'm drawing this path on the screen. As the character object moves on, path updates itself(shortens as the object approaches the target and gets longer as the object moves away from it.) I tried to visualize my problem. This is the beginning state. 'A' node is the target, path is the blue and the object is the green one. I draw this path, from object to the closest node. In this case my problem occurs. Because 'D' node is more closer to the object than 'C' node, something like this happens: So, how can i decide that the object passed the 'D' node? Path should be look like this: One thing comes to my mind is that I use some distance variables between the two closest nodes in the route path. (In this example these are 'C' and 'D' nodes.) As the object approaches 'C' and moves away from the 'D' node at the same time, this means character passed the 'D'. However, I think there are some standardized and easy ways to solve this. What approach should I take?

    Read the article

  • Remove box2d bodies after collision deduction android?

    - by jubin
    Can any one explain me how to destroy box2d body when collide i have tried but my application crashed.First i have checked al collisions then add all the bodies in array who i want to destroy.I am trying to learning this tutorial My all the bodies are falling i want these bodies should destroy when these bodies will collide my actor monkey but when it collide it destroy but my aplication crashed.I have googled and from google i got the application crash reasons we should not destroy body in step funtion but i am removing body in the last of tick method. could any one help me or provide me code aur check my code why i am getting this prblem or how can i destroy box2d bodies. This is my code what i am doing. Please could any one check my code and tell me what is i am doing wrong for removing bodies. The code is for multiple box2d objects falling on my actor monkey it should be destroy when it will fall on the monkey.It is destroing but my application crahes. static class Box2DLayer extends CCLayer { protected static final float PTM_RATIO = 32.0f; protected static final float WALK_FACTOR = 3.0f; protected static final float MAX_WALK_IMPULSE = 0.2f; protected static final float ANIM_SPEED = 0.3f; int isLeft=0; String dir=""; int x =0; float direction; CCColorLayer objectHint; // protected static final float PTM_RATIO = 32.0f; protected World _world; protected static Body spriteBody; CGSize winSize = CCDirector.sharedDirector().winSize(); private static int count = 200; protected static Body monkey_body; private static Body bodies; CCSprite monkey; float animDelay; int animPhase; CCSpriteSheet danceSheet = CCSpriteSheet.spriteSheet("phases.png"); CCSprite _block; List<Body> toDestroy = new ArrayList<Body>(); //CCSpriteSheet _spriteSheet; private static MyContactListener _contactListener = new MyContactListener(); public Box2DLayer() { this.setIsAccelerometerEnabled(true); CCSprite bg = CCSprite.sprite("jungle.png"); addChild(bg,0); bg.setAnchorPoint(0,0); bg.setPosition(0,0); CGSize s = CCDirector.sharedDirector().winSize(); // Use scaled width and height so that our boundaries always match the current screen float scaledWidth = s.width/PTM_RATIO; float scaledHeight = s.height/PTM_RATIO; Vector2 gravity = new Vector2(0.0f, -30.0f); boolean doSleep = false; _world = new World(gravity, doSleep); // Create edges around the entire screen // Define the ground body. BodyDef bxGroundBodyDef = new BodyDef(); bxGroundBodyDef.position.set(0.0f, 0.0f); // The body is also added to the world. Body groundBody = _world.createBody(bxGroundBodyDef); // Register our contact listener // Define the ground box shape. PolygonShape groundBox = new PolygonShape(); Vector2 bottomLeft = new Vector2(0f,0f); Vector2 topLeft = new Vector2(0f,scaledHeight); Vector2 topRight = new Vector2(scaledWidth,scaledHeight); Vector2 bottomRight = new Vector2(scaledWidth,0f); // bottom groundBox.setAsEdge(bottomLeft, bottomRight); groundBody.createFixture(groundBox,0); // top groundBox.setAsEdge(topLeft, topRight); groundBody.createFixture(groundBox,0); // left groundBox.setAsEdge(topLeft, bottomLeft); groundBody.createFixture(groundBox,0); // right groundBox.setAsEdge(topRight, bottomRight); groundBody.createFixture(groundBox,0); CCSprite floorbg = CCSprite.sprite("grassbehind.png"); addChild(floorbg,1); floorbg.setAnchorPoint(0,0); floorbg.setPosition(0,0); CCSprite floorfront = CCSprite.sprite("grassfront.png"); floorfront.setTag(2); this.addBoxBodyForSprite(floorfront); addChild(floorfront,3); floorfront.setAnchorPoint(0,0); floorfront.setPosition(0,0); addChild(danceSheet); //CCSprite monkey = CCSprite.sprite(danceSheet, CGRect.make(0, 0, 48, 73)); //addChild(danceSprite); monkey = CCSprite.sprite("arms_up.png"); monkey.setTag(2); monkey.setPosition(200,100); BodyDef spriteBodyDef = new BodyDef(); spriteBodyDef.type = BodyType.DynamicBody; spriteBodyDef.bullet=true; spriteBodyDef.position.set(200 / PTM_RATIO, 300 / PTM_RATIO); monkey_body = _world.createBody(spriteBodyDef); monkey_body.setUserData(monkey); PolygonShape spriteShape = new PolygonShape(); spriteShape.setAsBox(monkey.getContentSize().width/PTM_RATIO/2, monkey.getContentSize().height/PTM_RATIO/2); FixtureDef spriteShapeDef = new FixtureDef(); spriteShapeDef.shape = spriteShape; spriteShapeDef.density = 2.0f; spriteShapeDef.friction = 0.70f; spriteShapeDef.restitution = 0.0f; monkey_body.createFixture(spriteShapeDef); //Vector2 force = new Vector2(10, 10); //monkey_body.applyLinearImpulse(force, spriteBodyDef.position); addChild(monkey,10000); this.schedule(tickCallback); this.schedule(createobjects, 2.0f); objectHint = CCColorLayer.node(ccColor4B.ccc4(255,0,0,128), 200f, 100f); addChild(objectHint, 15000); objectHint.setVisible(false); _world.setContactListener(_contactListener); } private UpdateCallback tickCallback = new UpdateCallback() { public void update(float d) { tick(d); } }; private UpdateCallback createobjects = new UpdateCallback() { public void update(float d) { secondUpdate(d); } }; private void secondUpdate(float dt) { this.addNewSprite(); } public void addBoxBodyForSprite(CCSprite sprite) { BodyDef spriteBodyDef = new BodyDef(); spriteBodyDef.type = BodyType.StaticBody; //spriteBodyDef.bullet=true; spriteBodyDef.position.set(sprite.getPosition().x / PTM_RATIO, sprite.getPosition().y / PTM_RATIO); spriteBody = _world.createBody(spriteBodyDef); spriteBody.setUserData(sprite); Vector2 verts[] = { new Vector2(-11.8f / PTM_RATIO, -24.5f / PTM_RATIO), new Vector2(11.7f / PTM_RATIO, -24.0f / PTM_RATIO), new Vector2(29.2f / PTM_RATIO, -14.0f / PTM_RATIO), new Vector2(28.7f / PTM_RATIO, -0.7f / PTM_RATIO), new Vector2(8.0f / PTM_RATIO, 18.2f / PTM_RATIO), new Vector2(-29.0f / PTM_RATIO, 18.7f / PTM_RATIO), new Vector2(-26.3f / PTM_RATIO, -12.2f / PTM_RATIO) }; PolygonShape spriteShape = new PolygonShape(); spriteShape.set(verts); //spriteShape.setAsBox(sprite.getContentSize().width/PTM_RATIO/2, //sprite.getContentSize().height/PTM_RATIO/2); FixtureDef spriteShapeDef = new FixtureDef(); spriteShapeDef.shape = spriteShape; spriteShapeDef.density = 2.0f; spriteShapeDef.friction = 0.70f; spriteShapeDef.restitution = 0.0f; spriteShapeDef.isSensor=true; spriteBody.createFixture(spriteShapeDef); } public void addNewSprite() { count=0; Random rand = new Random(); int Number = rand.nextInt(10); switch(Number) { case 0: _block = CCSprite.sprite("banana.png"); break; case 1: _block = CCSprite.sprite("backpack.png");break; case 2: _block = CCSprite.sprite("statue.png");break; case 3: _block = CCSprite.sprite("pineapple.png");break; case 4: _block = CCSprite.sprite("bananabunch.png");break; case 5: _block = CCSprite.sprite("hat.png");break; case 6: _block = CCSprite.sprite("canteen.png");break; case 7: _block = CCSprite.sprite("banana.png");break; case 8: _block = CCSprite.sprite("statue.png");break; case 9: _block = CCSprite.sprite("hat.png");break; } int padding=20; //_block.setPosition(CGPoint.make(100, 100)); // Determine where to spawn the target along the Y axis CGSize winSize = CCDirector.sharedDirector().displaySize(); int minY = (int)(_block.getContentSize().width / 2.0f); int maxY = (int)(winSize.width - _block.getContentSize().width / 2.0f); int rangeY = maxY - minY; int actualY = rand.nextInt(rangeY) + minY; // Create block and add it to the layer float xOffset = padding+_block.getContentSize().width/2+((_block.getContentSize().width+padding)*count); _block.setPosition(CGPoint.make(actualY, 750)); _block.setTag(1); float w = _block.getContentSize().width; objectHint.setVisible(true); objectHint.changeWidth(w); objectHint.setPosition(actualY-w/2, 460); this.addChild(_block,10000); // Create ball body and shape BodyDef ballBodyDef1 = new BodyDef(); ballBodyDef1.type = BodyType.DynamicBody; ballBodyDef1.position.set(actualY/PTM_RATIO, 480/PTM_RATIO); bodies = _world.createBody(ballBodyDef1); bodies.setUserData(_block); PolygonShape circle1 = new PolygonShape(); Vector2 verts[] = { new Vector2(-11.8f / PTM_RATIO, -24.5f / PTM_RATIO), new Vector2(11.7f / PTM_RATIO, -24.0f / PTM_RATIO), new Vector2(29.2f / PTM_RATIO, -14.0f / PTM_RATIO), new Vector2(28.7f / PTM_RATIO, -0.7f / PTM_RATIO), new Vector2(8.0f / PTM_RATIO, 18.2f / PTM_RATIO), new Vector2(-29.0f / PTM_RATIO, 18.7f / PTM_RATIO), new Vector2(-26.3f / PTM_RATIO, -12.2f / PTM_RATIO) }; circle1.set(verts); FixtureDef ballShapeDef1 = new FixtureDef(); ballShapeDef1.shape = circle1; ballShapeDef1.density = 10.0f; ballShapeDef1.friction = 0.0f; ballShapeDef1.restitution = 0.1f; bodies.createFixture(ballShapeDef1); count++; //Remove(); } @Override public void ccAccelerometerChanged(float accelX, float accelY, float accelZ) { //Apply the directional impulse /*float impulse = monkey_body.getMass()*accelY*WALK_FACTOR; Vector2 force = new Vector2(impulse, 0); monkey_body.applyLinearImpulse(force, monkey_body.getWorldCenter());*/ walk(accelY); //Remove(); } private void walk(float accelY) { // TODO Auto-generated method stub direction = accelY; } private void Remove() { for (Iterator<MyContact> it1 = _contactListener.mContacts.iterator(); it1.hasNext();) { MyContact contact = it1.next(); Body bodyA = contact.fixtureA.getBody(); Body bodyB = contact.fixtureB.getBody(); // See if there's any user data attached to the Box2D body // There should be, since we set it in addBoxBodyForSprite if (bodyA.getUserData() != null && bodyB.getUserData() != null) { CCSprite spriteA = (CCSprite) bodyA.getUserData(); CCSprite spriteB = (CCSprite) bodyB.getUserData(); // Is sprite A a cat and sprite B a car? If so, push the cat // on a list to be destroyed... if (spriteA.getTag() == 1 && spriteB.getTag() == 2) { //Log.v("dsfds", "dsfsd"+bodyA); //_world.destroyBody(bodyA); // removeChild(spriteA, true); toDestroy.add(bodyA); } // Is sprite A a car and sprite B a cat? If so, push the cat // on a list to be destroyed... else if (spriteA.getTag() == 2 && spriteB.getTag() == 1) { //Log.v("dsfds", "dsfsd"+bodyB); toDestroy.add(bodyB); } } } // Loop through all of the box2d bodies we want to destroy... for (Iterator<Body> it1 = toDestroy.iterator(); it1.hasNext();) { Body body = it1.next(); // See if there's any user data attached to the Box2D body // There should be, since we set it in addBoxBodyForSprite if (body.getUserData() != null) { // We know that the user data is a sprite since we set // it that way, so cast it... CCSprite sprite = (CCSprite) body.getUserData(); // Remove the sprite from the scene _world.destroyBody(body); removeChild(sprite, true); } // Destroy the Box2D body as well // _contactListener.mContacts.remove(0); } } public synchronized void tick(float delta) { synchronized (_world) { _world.step(delta, 8, 3); //_world.clearForces(); //addNewSprite(); } CCAnimation danceAnimation = CCAnimation.animation("dance", 1.0f); // Iterate over the bodies in the physics world Iterator<Body> it = _world.getBodies(); while(it.hasNext()) { Body b = it.next(); Object userData = b.getUserData(); if (userData != null && userData instanceof CCSprite) { //Synchronize the Sprites position and rotation with the corresponding body CCSprite sprite = (CCSprite)userData; if(sprite.getTag()==1) { //b.applyLinearImpulse(force, pos); sprite.setPosition(b.getPosition().x * PTM_RATIO, b.getPosition().y * PTM_RATIO); sprite.setRotation(-1.0f * ccMacros.CC_RADIANS_TO_DEGREES(b.getAngle())); } else { //Apply the directional impulse float impulse = monkey_body.getMass()*direction*WALK_FACTOR; Vector2 force = new Vector2(impulse, 0); b.applyLinearImpulse(force, b.getWorldCenter()); sprite.setPosition(b.getPosition().x * PTM_RATIO, b.getPosition().y * PTM_RATIO); animDelay -= 1.0f/60.0f; if(animDelay <= 0) { animDelay = ANIM_SPEED; animPhase++; if(animPhase > 2) { animPhase = 1; } } if(direction < 0 ) { isLeft=1; } else { isLeft=0; } if(isLeft==1) { dir = "left"; } else { dir = "right"; } float standingLimit = (float) 0.1f; float vX = monkey_body.getLinearVelocity().x; if((vX > -standingLimit)&& (vX < standingLimit)) { // Log.v("sasd", "standing"); } else { } } } } Remove(); } } Sorry for my english. Thanks in advance.

    Read the article

  • 2d shapes in XNA 4.0?

    - by Lautaro
    Having some experience of XNA but none of 3D programming. I have an idea i want to realize but i have not decided to do it in 3d or 2d. Im not sure which one will be best in XNA. I want to have a shape like a blob that can reshape depending on input. The morphing does not need to be very advanced. It could be a circle (2d) or globe (3d) that just has one point that moves slightly in a random direction. In ASP.NET i have made this through the 2d Draw classes where i can make lines, circles, squares etc and then modify the points that makes them up. But it seems to me that XNA does not have classes for making 2d shapes (can i get this confirmed?). If it had, then this would be the quickest solution for me.

    Read the article

  • How to control a spaceship near a planet in Unity3D?

    - by tyjkenn
    Right now I have spaceship orbiting a small planet. I'm trying to make an effective control system for that spaceship, but it always end up spinning out of control. After spinning the ship to change direction, the thrusters thrust the wrong way. Normal airplane controls don't work, since the ship is able to leave the atmosphere and go to other planets, in the journey going "upside-down". Could someone please enlighten me on how to get thrusters to work the way they are supposed to?

    Read the article

  • Simulating smooth movement along a line after calculating a collision containing a restitution of zero in 2D

    - by Casey
    [for tl;dr see after listing] //...Code to determine shapes types involved in collision here... //...Rectangle-Line collision detected. if(_rbTest->GetCollisionShape()->Intersects(*_ground->GetCollisionShape())) { //Convert incoming shape to a line. a2de::Line l(*dynamic_cast<a2de::Line*>(_ground->GetCollisionShape())); //Get line's normal. a2de::Vector2D normal_vector(l.GetSlope().GetY(), -l.GetSlope().GetX()); a2de::Vector2D::Normalize(normal_vector); //Accumulate forces involved. a2de::Vector2D intermediate_forces; a2de::Vector2D normal_force = normal_vector * _rbTest->GetMass() * _world->GetGravityHandler()->GetGravityValue(); intermediate_forces += normal_force; //Calculate final velocity: See [1] double Ma = _rbTest->GetMass(); a2de::Vector2D Ua = _rbTest->GetVelocity(); double Mb = _ground->GetMass(); a2de::Vector2D Ub = _ground->GetVelocity(); double mCr = Mb * _ground->GetRestitution(); a2de::Vector2D collision_velocity( ((Ma * Ua) + (Mb * Ub) + ((mCr * Ub) - (mCr * Ua))) / (Ma + Mb)); //Calculate reflection vector: See [2] a2de::Vector2D reflect_velocity( -collision_velocity + 2 * (a2de::Vector2D::DotProduct(collision_velocity, normal_vector)) * normal_vector ); //Affect velocity to account for restitution of colliding bodies. reflect_velocity *= (_ground->GetRestitution() * _rbTest->GetRestitution()); _rbTest->SetVelocity(reflect_velocity); //THE ULTIMATE ISSUE STEMS FROM THE FOLLOWING LINE: //Move object away from collision one pixel to prevent constant collision. _rbTest->SetPosition(_rbTest->GetPosition() + normal_vector); _rbTest->ApplyImpulse(intermediate_forces); } Sources: (1) Wikipedia: Coefficient of Restitution: Speeds after impact (2) Wikipedia: Specular Reflection: Direction of reflection First, I have a system in place to account for friction (that is, a coefficient of friction) but is not used right now (in addition, it is zero, which should not affect the math anyway). I'll deal with that after I get this working. Anyway, when the restitution of either object involved in the collision is zero the object stops as required, but if movement along the same direction (again, irrespective of the friction value that isn't used) as the line is attempted the object moves as if slogging through knee deep snow. If I remove the line of code in question and the object is not push away one pixel the object barely moves at all. All because the object collides, is stopped, is pushed up, collides, is stopped...etc. OR collides, is stopped, collides, is stopped, etc... TL;DR How do I only account for a collision ONCE for restitution purposes (BONUS: but CONTINUALLY for frictional purposes, to be implemented later)

    Read the article

  • Staggered Isometric Map: Calculate map coordinates for point on screen

    - by Chris
    I know there are already a lot of resources about this, but I haven't found one that matches my coordinate system and I'm having massive trouble adjusting any of those solutions to my needs. What I learned is that the best way to do this is to use a transformation matrix. Implementing that is no problem, but I don't know in which way I have to transform the coordinate space. Here's an image that shows my coordinate system: How do I transform a point on screen to this coordinate system?

    Read the article

  • Map and fill texture using PBO (OpenGL 3.3)

    - by NtscCobalt
    I'm learning OpenGL 3.3 trying to do the following (as it is done in D3D)... Create Texture of Width, Height, Pixel Format Map texture memory Loop write pixels Unmap texture memory Set Texture Render Right now though it renders as if the entire texture is black. I can't find a reliable source for information on how to do this though. Almost every tutorial I've found just uses glTexSubImage2D and passes a pointer to memory. Here is basically what my code does... (In this case it is generating an 1-byte Alpha Only texture but it is rendering it as the red channel for debugging) GLuint pixelBufferID; glGenBuffers(1, &pixelBufferID); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBufferID); glBufferData(GL_PIXEL_UNPACK_BUFFER, 512 * 512 * 1, nullptr, GL_STREAM_DRAW); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); GLuint textureID; glGenTextures(1, &textureID); glBindTexture(GL_TEXTURE_2D, textureID); glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, 512, 512, 0, GL_RED, GL_UNSIGNED_BYTE, nullptr); glBindTexture(GL_TEXTURE_2D, 0); glBindTexture(GL_TEXTURE_2D, textureID); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pixelBufferID); void *Memory = glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY); // Memory copied here, I know this is valid because it is the same loop as in my working D3D version glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); And then here is the render loop. // This chunk left in for completeness glUseProgram(glProgramId); glBindVertexArray(glVertexArrayId); glBindBuffer(GL_ARRAY_BUFFER, glVertexBufferId); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 20, 0); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 20, 12); GLuint transformLocationID = glGetUniformLocation(3, 'transform'); glUniformMatrix4fv(transformLocationID , 1, true, somematrix) // Not sure if this is all I need to do glBindTexture(GL_TEXTURE_2D, pTex->glTextureId); GLuint textureLocationID = glGetUniformLocation(glProgramId, "texture"); glUniform1i(textureLocationID, 0); glDrawArrays(GL_TRIANGLES, Offset*3, Triangles*3); Vertex Shader #version 330 core in vec3 Position; in vec2 TexCoords; out vec2 TexOut; uniform mat4 transform; void main() { TexOut = TexCoords; gl_Position = vec4(Position, 1.0) * transform; } Pixel Shader #version 330 core uniform sampler2D texture; in vec2 TexCoords; out vec4 fragColor; void main() { // Output color fragColor.r = texture2D(texture, TexCoords).r; fragColor.g = 0.0f; fragColor.b = 0.0f; fragColor.a = 1.0; }

    Read the article

  • Blender: How to "meshify" an object I made from Bezier curves

    - by capcom
    I made a star shape using Bezier curves, and extruded it (see pic below): What I want to do is give it a rounder look - not just around the edges by using beveling. I want it to kind of look like this (well, that shape anyway): How would I go about doing this? Please keep in mind that I am extremely new to Blender. I thought that I could somehow turn this star into those default shapes that have tonnes of squares which I could pull out, and apply a mirror to it so that the same thing happens on both sides. I really don't know how to do it, and would appreciate your help.

    Read the article

  • How to Make Objects Fall Faster in a Physics Simulation

    - by David Dimalanta
    I used the collision physics (i.e. Box2d, Physics Body Editor) and implemented onto the java code. I'm trying to make the fall speed higher according to the examples: It falls slower if light object (i.e. feather). It falls faster depending on the object (i.e. pebble, rock, car). I decided to double its falling speed for more excitement. I tried adding the mass but the speed of falling is constant instead of gaining more speed. check my code that something I put under input processor's touchUp() return method under same roof of the class that implements InputProcessor and Screen: @Override public boolean touchUp(int screenX, int screenY, int pointer, int button) { // TODO Touch Up Event if(is_Next_Fruit_Touched) { BodyEditorLoader Fruit_Loader = new BodyEditorLoader(Gdx.files.internal("Shape_Physics/Fruity Physics.json")); Fruit_BD.type = BodyType.DynamicBody; Fruit_BD.position.set(x, y); FixtureDef Fruit_FD = new FixtureDef(); // --> Allows you to make the object's physics. Fruit_FD.density = 1.0f; Fruit_FD.friction = 0.7f; Fruit_FD.restitution = 0.2f; MassData mass = new MassData(); mass.mass = 5f; Fruit_Body[n] = world.createBody(Fruit_BD); Fruit_Body[n].setActive(true); // --> Let your dragon fall. Fruit_Body[n].setMassData(mass); Fruit_Body[n].setGravityScale(1.0f); System.out.println("Eggs... " + n); Fruit_Loader.attachFixture(Fruit_Body[n], Body, Fruit_FD, Fruit_IMG.getWidth()); Fruit_Origin = Fruit_Loader.getOrigin(Body, Fruit_IMG.getWidth()).cpy(); is_Next_Fruit_Touched = false; up = y; Gdx.app.log("Initial Y-coordinate", "Y at " + up); //Once it's touched, the next fruit will set to drag. if(n < 50) { n++; }else{ System.exit(0); } } return true; } And take note, at show() method , the view size from the camera is at 720x1280: camera_1 = new OrthographicCamera(); camera_1.viewportHeight = 1280; camera_1.viewportWidth = 720; camera_1.position.set(camera_1.viewportWidth * 0.5f, camera_1.viewportHeight * 0.5f, 0f); camera_1.update(); I know it's a good idea to add weight to make the falling object falls faster once I released the finger from the touchUp() after I picked the object from the upper right of the screen but the speed remains either constant or slow. How can I solve this? Can you help?

    Read the article

  • Why don't Normal maps in tangent space have a single blue color?

    - by seahorse
    Normal maps are predominantly blue in color because the z component maps to Blue and since normals point out of the surface in the z direction we see Blue as the predominant component. If the above is true then why are normal maps just of one color i.e. blue and they should not be having any other shades(not even shades of blue) Since by definition tangent space is perpendicular to normal at any point we should have the normal always pointing in the Z (Blue direction) with no X(Red component) and Y(Green component). Thus the normal map(since it is a "normal map") should have had color of normals which is just the Blue(Z =Blue compoennt = 1, R=0, G=0) and the normal map should have been of only Blue color with no shades in between. But even then normal maps are not so, and they have gradients of shades in them, why is this so?

    Read the article

  • How can I downsample a texture using FBOs?

    - by snape
    I am rendering a scene to FBO as my render target whose size is 8 times the size of the orignal screen in OpenGL. Now i wan to downsample the texture generated by FBO to the size of the screen so as to achieve spatial anti aliasing. How do i achieve the down sampling ? Please provide implementation details. Note : If there is a better way of doing anti aliasing in FBOs please mention that too. I am trying to remove the aliasing in the image attached below.

    Read the article

  • Height Map Mapping to "Chunked" Quadrilateralized Spherical Cube

    - by user3684950
    I have been working on a procedural spherical terrain generator for a few months which has a quadtree LOD system. The system splits the six faces of a quadrilateralized spherical cube into smaller "quads" or "patches" as the player approaches those faces. What I can't figure out is how to generate height maps for these patches. To generate the heights I am using a 3D ridged multi fractals algorithm. For now I can only displace the vertices of the patches directly using the output from the ridged multi fractals. I don't understand how I generate height maps that allow the vertices of a terrain patch to be mapped to pixels in the height map. The only thing I can think of is taking each vertex in a patch, plug that into the RMF and take that position and translate into u,v coordinates then determine the pixel position directly from the u,v coordinates and determine the grayscale color based on the height. I feel as if this is the right approach but there are a few other things that may further complicate my problem. First of all I intend to use "height maps" with a pixel resolution of 192x192 while the vertex "resolution" of each terrain patch is only 16x16 - meaning that I don't have any vertices to sample for the RMF for most of the pixels. The main reason the height map resolution is higher so that I can use it to generate a normal map (otherwise the height maps serve little purpose as I can just directly displace vertices as I currently am). I am pretty much following this paper very closely. This is, essentially, the part I am having trouble with. Using the cube-to-sphere mapping and the ridged multifractal algorithm previously described, a normalized height value ([0, 1]) is calculated. Using this height value, the terrain position is calculated and stored in the first three channels of the positionmap (RGB) – this will be used to calculate the normalmap. The fourth channel (A) is used to store the height value itself, to be used in the heightmap. The steps in the first sentence are my primary problem. I don't understand how the pixel positions correspond to positions on the sphere and what positions are sampled for the RMF to generate the pixels if only vertices cannot be used.

    Read the article

< Previous Page | 394 395 396 397 398 399 400 401 402 403 404 405  | Next Page >