Search Results

Search found 40650 results on 1626 pages for 'multiple select'.

Page 405/1626 | < Previous Page | 401 402 403 404 405 406 407 408 409 410 411 412  | Next Page >

  • find substrings inside string

    - by senzacionale
    How can i find substrings inside string and then remember and delete it when i found it. EXAMPLE: select * from (select a.iid_organizacijske_enote, a.sifra_organizacijske_enote "Sifra OE", a.naziv_organizacijske_enote "Naziv OE", a.tip_organizacijske_enote "Tip OE" I would like to get all word inside " ", so Sifra OE Naziv OE TIP OE and return select * from (select a.iid_organizacijske_enote, a.sifra_organizacijske_enote, a.naziv_organizacijske_enote, a.tip_organizacijske_enote i try with regex, indexOf() but no one works ok

    Read the article

  • HQl equivalent of sql query

    - by kash
    String SQL_QUERY = "SELECT count(*) FROM (SELECT * FROM Url as U where U.pageType=" + 1 + " group by U.pageId having count(U.pageId) = 1)"; query = session.createQuery(SQL_QUERY); I am getting an error org.hibernate.hql.ast.QuerySyntaxException: unexpected token: ( near line 1, column 23 [ SELECT count() FROM (SELECT * FROM Url as U where U.pageType = 2 group by U.pageId having count(U.pageId) = 1)]

    Read the article

  • how to querry on the database without accessing the tables, correct the database but not the tables

    - by user287745
    used is c# sql vs 08 sql server 2005 express whenever and where ever an sql select statement is used, its always like select * from tablename or count statement is alsi like select count something from table name for selecting or doing anything on the tables, i would like to know which tables exits in my the database i am connected to! so like select alltablenames from database_name. please guide.

    Read the article

  • Selecting the 2nd row in sql

    - by Alex Chen
    I want to select the second row only from the table. From the ClientUserName column. SELECT ClientUserName, DestHost, count(DestHost) counts FROM #ProxyLog_record WHERE ClientUserName = (Select top 1 ClientUserName from #ProxyLog_count_2) GROUP BY ClientUserName, DestHost ORDER BY counts DESC The (Select top 1 ClientUserName from #ProxyLog_count_2) shows top 1 only but I need to get the 2nd data from that table. How can I do this?

    Read the article

  • MySQL: Update table column from subquery result

    - by Jhourlad Estrella
    On the Members table are columns "MemberID" and "PointsEarned". I want to update the PointsEarned column from the result of this query: SELECT m.MemberID, m.UserName, ( (SELECT COUNT(*) FROM EventsLog as e WHERE e.MemberID=m.MemberID AND e.EventsTypeID=2)*10 ) + ( (SELECT COUNT(*) FROM EventsLog as e WHERE e.MemberID=m.MemberID AND e.EventsTypeID=3)*3 ) + ( (SELECT COUNT(*) FROM ChatMessages as c WHERE c.MemberID=m.MemberID)*.1 ) as PointsEarned FROM Members as m Can anybody tell me how I should do it with a single query? Thanks!

    Read the article

  • MYSQL: Udate table column from subquery result

    - by Jhourlad Estrella
    On the Members table are columns "MemberID" and "PointsEarned". I want to update the PointsEarned column from the result of this query: SELECT m.MemberID, m.UserName, ( (SELECT COUNT(*) FROM EventsLog as e WHERE e.MemberID=m.MemberID AND e.EventsTypeID=2)*10 ) + ( (SELECT COUNT(*) FROM EventsLog as e WHERE e.MemberID=m.MemberID AND e.EventsTypeID=3)*3 ) + ( (SELECT COUNT(*) FROM ChatMessages as c WHERE c.MemberID=m.MemberID)*.1 ) as PointsEarned FROM Members as m Can anybody tell me how I should do it with a single query? Thanks!

    Read the article

  • mysql query to get unique value from one column

    - by vesselyp
    i have a table named locations of which i want to select and get values in such a way that it should select only distinct values from a column but select all other values . table name: locations column names 1: country values : America, India, India, India column names 2: state/Province : Newyork, Punjab, Karnataka, kerala when i select i should get India only once and all the three states listed under India . is ther any way..??? sombody please help

    Read the article

  • How to write stored procedure to do this?

    - by chobo
    I would like to create a stored procedure that takes in a string of comma separated values like this "1,2,3,4", and break it apart and use those numbers to run a query on a different table. so in the same stored procedure it would do something like select somefield from sometable where somefield = 1 select somefield from sometable where somefield = 2 select somefield from sometable where somefield = 3 select somefield from sometable where somefield = 4 Thanks!

    Read the article

  • Sum of a summation in mysql

    - by dames
    I have the following query, in the top select statement (sum(l.app_ln_amnt)/count(l.app_ln_amnt)) works well but in the union I want to find the total of (sum(l.app_ln_amnt)/count(l.app_ln_amnt)) query from the top select statement However my solution seems to be off I need some help please select (sum(l.app_ln_amnt)/count(l.app_ln_amnt)), from receipt_history l UNION select SUM(sum(l.app_ln_amnt)/count(l.app_ln_amnt)), from receipt_history l

    Read the article

  • Running query from scratch with something like exec function?

    - by Steel Plume
    Hi, is it possible to make something similar to the following with Postgresql without using a function? pseudo sql code: select * from sometable where somecol = somevalue AND someothercol IN exec( 'select something from exclusionlist' ) My primary intention is to build up a table with predefined queries to call inside a where clause pseudo sql code: select * from sometable where somecol = somevalue AND someothercol IN exec( select query from predefinedqueries where id=someid )

    Read the article

  • In a C# app, what is the most optimal way to insert many records into sql server?

    - by Otter
    I need to perform a very large sql server insert from a c# application. Somewhere in the range of 20,000 through 50,000 records. What is the fastest way through SQL server to perform the insert? There are several options I know of, but I don't know which is the fastest. insert into MyTable(column1, column2, ..., column*) select 'value','value',...,'value' union select 'value','value',...,'value' VS insert into MyTable(column1, column2, ..., column*) exec('select ''value'',''value'',...,''value''' 'select ''value'',''value'',...,''value''') VS bulk insert from a data file VS Any better way that you know of :)

    Read the article

  • oracle query returns 4 duplicates of each row

    - by ajoe
    hello, I am Running a oracle query, it seems to work except that it returns 4 dupes of each result. here is the code: Select * from (Select a.*, rownum rnum From (SELECT NEW_USER.*, NEW_EHS_QUIZ_COMPLETE.datetime FROM NEW_USER, NEW_EHS_QUIZ_COMPLETE WHERE EXISTS(select * from NEW_EHS_QUIZ_COMPLETE where NEW_USER.id=NEW_EHS_QUIZ_COMPLETE.USER_ID) ORDER by last_name ASC ) a where rownum <= #pgtop# ) where rnum >= #pgbot# does anyone know why this isnt working properly? thanks in advance.

    Read the article

  • SQL Syntax for testing objects before creating views & functions

    - by Scott Weinstein
    I'm trying to figure out the syntax for creating a view (or function) but only if a dependent CLR assembly exits. I've tried both IF EXISTS (SELECT name FROM sys.assemblies WHERE name = 'MyCLRAssembly') begin create view dbo.MyView as select GETDATE() as C1 end and IF EXISTS (SELECT name FROM sys.assemblies WHERE name = 'MyCLRAssembly') create view dbo.MyView as select GETDATE() as C1 go Neither work. I get Msg 156, Level 15, State 1, Line 2 Incorrect syntax near the keyword 'view'. How can this be done?

    Read the article

  • MySQL VIEW vs. embedded query, which one is faster?

    - by Vincenzo
    I'm going to optimize a MySQL embedded query with a view, but I'm not sure whether it will give an effect: SELECT id FROM (SELECT * FROM t); I want to convert it to: CREATE VIEW v AS SELECT * FROM t; SELECT id FROM v; I've heard about "indexed views" in SQL Server, but I'm not sure about MySQL. Any help would be appreciated. Thanks!

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • A way to return multiple return values from a method: put method inside class representing return value. Is it a good design?

    - by john smith optional
    I need to return 2 values from a method. My approach is as follows: create an inner class with 2 fields that will be used to keep those 2 values put the method inside that class instantiate the class and call the method. The only thing that will be changed in the method is that in the end it will assign those 2 values to the fields of the instance. Then I can address those values by referencing to the fields of that object. Is it a good design and why?

    Read the article

  • Multiple Kickstarter campaigns. Good? Bad? Ugly?

    - by BerickCook
    I've been toying with the idea of doing a Kickstarter for my game to help fund some good artists to replace the placeholder graphics I currently have. Just a small goal of $2k or so. Regardless of whether the campaign is successful this time, would it be considered a faux pas to do another, larger kickstarter once the game is looking better? Would the rewards need to be the same, or could I offer better rewards at lower donation levels for the first one as an "early adopter" bonus?

    Read the article

  • What are the Search engine affects of registering the same domain on multiple top level domains (ie. .com, .ie, .nl etc.)?

    - by user1020317
    I'm looking to register a few more domains for my company, I have my-company.com at the moment, but now require my-company.com.au and my-company.nl and some others.. I'm running through my options and wondering what is the best.. Duplicate all the content on the .com package and make a replica at the other domains Buy the other domains but do a 301 redirect back to the .com domain. Create a full new website with different content for the new domains, thus having no text duplication We currently sell over the world so would like to raise our Search rankings in various countries, can this be done by buying the domain in the country, and if so, how will the above methods affect our search rankings. Any other suggestions are welcome!

    Read the article

  • Apache-Mina FTPServer Issue — unable to login into apache ftp server while using database user manager

    - by piyush
    I am unable to login into apache ftp server while using database user manager: while entering username and password,I am getting following error in log file: [ INFO] 2013-02-07 20:51:07,779 [] [0:0:0:0:0:0:0:1] RECEIVED: USER piyush [ INFO] 2013-02-07 20:51:07,781 [piyush] [0:0:0:0:0:0:0:1] SENT: 331 User name okay, need password for piyush. [ INFO] 2013-02-07 20:51:07,784 [piyush] [0:0:0:0:0:0:0:1] RECEIVED: PASS ***** [ WARN] 2013-02-07 20:51:07,785 [piyush] [0:0:0:0:0:0:0:1] User failed to log in [ WARN] 2013-02-07 20:51:08,285 [piyush] [0:0:0:0:0:0:0:1] Login failure - piyush [ INFO] 2013-02-07 20:51:08,286 [piyush] [0:0:0:0:0:0:0:1] SENT: 530 Authentication failed. [ INFO] 2013-02-07 20:51:08,286 [piyush] [0:0:0:0:0:0:0:1] RECEIVED: QUIT [ INFO] 2013-02-07 20:51:08,290 [piyush] [0:0:0:0:0:0:0:1] SENT: 221 Goodbye. [ INFO] 2013-02-07 20:51:08,291 [piyush] [0:0:0:0:0:0:0:1] CLOSED here is my xml file ftpd-typical.xml: <?xml version="1.0" encoding="UTF-8"?> <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <server xmlns="http://mina.apache.org/ftpserver/spring/v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:beans="http://www.springframework.org/schema/beans" xsi:schemaLocation=" http://mina.apache.org/ftpserver/spring/v1 http://mina.apache.org/ftpserver/ftpserver-1.0.xsd " id="Prometheus"> <listeners> <nio-listener name="default" port="2121" /> </listeners> <db-user-manager encrypt-passwords="salted"> <data-source> <beans:bean class="org.apache.commons.dbcp.BasicDataSource" > <beans:property name="driverClassName" value="com.mysql.jdbc.Driver" /> <beans:property name="url" value="jdbc:mysql://localhost/apache_test" /> <beans:property name="username" value="amy" /> <beans:property name="password" value="piyush" /> </beans:bean> </data-source> <insert-user>INSERT INTO FTP_USER (userid, userpassword, homedirectory, enableflag, writepermission, idletime, uploadrate, downloadrate) VALUES ('{userid}', '{userpassword}', '{homedirectory}', {enableflag}, {writepermission}, {idletime}, {uploadrate}, {downloadrate}) </insert-user> <update-user>UPDATE FTP_USER SET userpassword='{userpassword}',homedirectory='{homedirectory}',enableflag={enableflag},writepermission={writepermission},idletime={idletime},uploadrate={uploadrate},downloadrate={downloadrate} WHERE userid='{userid}' </update-user> <delete-user>DELETE FROM FTP_USER WHERE userid = '{userid}' </delete-user> <select-user>SELECT userid, userpassword, homedirectory, enableflag, writepermission, idletime, uploadrate, downloadrate, maxloginnumber, maxloginperip FROM FTP_USER WHERE userid = '{userid}' </select-user> <select-all-users>SELECT userid FROM FTP_USER ORDER BY userid </select-all-users> <is-admin>SELECT userid FROM FTP_USER WHERE userid='{userid}' AND userid='admin' </is-admin> <authenticate>SELECT userpassword from FTP_USER WHERE userid='{userid}'</authenticate> </db-user-manager> </server>

    Read the article

  • How to "select file" with Python script? . Google App Engine . Python .

    - by draconisthe0ry
    I'm trying to create an online application for a python function i have created. in my script, i input the path of my file for the computer (input_path = '/users/user/desktop/input.txt') but i'm not sure how to go about this using Google App Engine . I have the choice between 3 templates: flask, django, and bottle . I really do believe this question is relevant for people transitioning from scripts to web-based applications. Do I need to incorporate GUI stuff from Tkinter or something? There has to be a way to simply select a file to use for the input path in an interactive way using python scripts

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Working with PivotTables in Excel

    - by Mark Virtue
    PivotTables are one of the most powerful features of Microsoft Excel.  They allow large amounts of data to be analyzed and summarized in just a few mouse clicks. In this article, we explore PivotTables, understand what they are, and learn how to create and customize them. Note:  This article is written using Excel 2010 (Beta).  The concept of a PivotTable has changed little over the years, but the method of creating one has changed in nearly every iteration of Excel.  If you are using a version of Excel that is not 2010, expect different screens from the ones you see in this article. A Little History In the early days of spreadsheet programs, Lotus 1-2-3 ruled the roost.  Its dominance was so complete that people thought it was a waste of time for Microsoft to bother developing their own spreadsheet software (Excel) to compete with Lotus.  Flash-forward to 2010, and Excel’s dominance of the spreadsheet market is greater than Lotus’s ever was, while the number of users still running Lotus 1-2-3 is approaching zero.  How did this happen?  What caused such a dramatic reversal of fortunes? Industry analysts put it down to two factors:  Firstly, Lotus decided that this fancy new GUI platform called “Windows” was a passing fad that would never take off.  They declined to create a Windows version of Lotus 1-2-3 (for a few years, anyway), predicting that their DOS version of the software was all anyone would ever need.  Microsoft, naturally, developed Excel exclusively for Windows.  Secondly, Microsoft developed a feature for Excel that Lotus didn’t provide in 1-2-3, namely PivotTables.  The PivotTables feature, exclusive to Excel, was deemed so staggeringly useful that people were willing to learn an entire new software package (Excel) rather than stick with a program (1-2-3) that didn’t have it.  This one feature, along with the misjudgment of the success of Windows, was the death-knell for Lotus 1-2-3, and the beginning of the success of Microsoft Excel. Understanding PivotTables So what is a PivotTable, exactly? Put simply, a PivotTable is a summary of some data, created to allow easy analysis of said data.  But unlike a manually created summary, Excel PivotTables are interactive.  Once you have created one, you can easily change it if it doesn’t offer the exact insights into your data that you were hoping for.  In a couple of clicks the summary can be “pivoted” – rotated in such a way that the column headings become row headings, and vice versa.  There’s a lot more that can be done, too.  Rather than try to describe all the features of PivotTables, we’ll simply demonstrate them… The data that you analyze using a PivotTable can’t be just any data – it has to be raw data, previously unprocessed (unsummarized) – typically a list of some sort.  An example of this might be the list of sales transactions in a company for the past six months. Examine the data shown below: Notice that this is not raw data.  In fact, it is already a summary of some sort.  In cell B3 we can see $30,000, which apparently is the total of James Cook’s sales for the month of January.  So where is the raw data?  How did we arrive at the figure of $30,000?  Where is the original list of sales transactions that this figure was generated from?  It’s clear that somewhere, someone must have gone to the trouble of collating all of the sales transactions for the past six months into the summary we see above.  How long do you suppose this took?  An hour?  Ten?  Probably. If we were to track down the original list of sales transactions, it might look something like this: You may be surprised to learn that, using the PivotTable feature of Excel, we can create a monthly sales summary similar to the one above in a few seconds, with only a few mouse clicks.  We can do this – and a lot more too! How to Create a PivotTable First, ensure that you have some raw data in a worksheet in Excel.  A list of financial transactions is typical, but it can be a list of just about anything:  Employee contact details, your CD collection, or fuel consumption figures for your company’s fleet of cars. So we start Excel… …and we load such a list… Once we have the list open in Excel, we’re ready to start creating the PivotTable. Click on any one single cell within the list: Then, from the Insert tab, click the PivotTable icon: The Create PivotTable box appears, asking you two questions:  What data should your new PivotTable be based on, and where should it be created?  Because we already clicked on a cell within the list (in the step above), the entire list surrounding that cell is already selected for us ($A$1:$G$88 on the Payments sheet, in this example).  Note that we could select a list in any other region of any other worksheet, or even some external data source, such as an Access database table, or even a MS-SQL Server database table.  We also need to select whether we want our new PivotTable to be created on a new worksheet, or on an existing one.  In this example we will select a new one: The new worksheet is created for us, and a blank PivotTable is created on that worksheet: Another box also appears:  The PivotTable Field List.  This field list will be shown whenever we click on any cell within the PivotTable (above): The list of fields in the top part of the box is actually the collection of column headings from the original raw data worksheet.  The four blank boxes in the lower part of the screen allow us to choose the way we would like our PivotTable to summarize the raw data.  So far, there is nothing in those boxes, so the PivotTable is blank.  All we need to do is drag fields down from the list above and drop them in the lower boxes.  A PivotTable is then automatically created to match our instructions.  If we get it wrong, we only need to drag the fields back to where they came from and/or drag new fields down to replace them. The Values box is arguably the most important of the four.  The field that is dragged into this box represents the data that needs to be summarized in some way (by summing, averaging, finding the maximum, minimum, etc).  It is almost always numerical data.  A perfect candidate for this box in our sample data is the “Amount” field/column.  Let’s drag that field into the Values box: Notice that (a) the “Amount” field in the list of fields is now ticked, and “Sum of Amount” has been added to the Values box, indicating that the amount column has been summed. If we examine the PivotTable itself, we indeed find the sum of all the “Amount” values from the raw data worksheet: We’ve created our first PivotTable!  Handy, but not particularly impressive.  It’s likely that we need a little more insight into our data than that. Referring to our sample data, we need to identify one or more column headings that we could conceivably use to split this total.  For example, we may decide that we would like to see a summary of our data where we have a row heading for each of the different salespersons in our company, and a total for each.  To achieve this, all we need to do is to drag the “Salesperson” field into the Row Labels box: Now, finally, things start to get interesting!  Our PivotTable starts to take shape….   With a couple of clicks we have created a table that would have taken a long time to do manually. So what else can we do?  Well, in one sense our PivotTable is complete.  We’ve created a useful summary of our source data.  The important stuff is already learned!  For the rest of the article, we will examine some ways that more complex PivotTables can be created, and ways that those PivotTables can be customized. First, we can create a two-dimensional table.  Let’s do that by using “Payment Method” as a column heading.  Simply drag the “Payment Method” heading to the Column Labels box: Which looks like this: Starting to get very cool! Let’s make it a three-dimensional table.  What could such a table possibly look like?  Well, let’s see… Drag the “Package” column/heading to the Report Filter box: Notice where it ends up…. This allows us to filter our report based on which “holiday package” was being purchased.  For example, we can see the breakdown of salesperson vs payment method for all packages, or, with a couple of clicks, change it to show the same breakdown for the “Sunseekers” package: And so, if you think about it the right way, our PivotTable is now three-dimensional.  Let’s keep customizing… If it turns out, say, that we only want to see cheque and credit card transactions (i.e. no cash transactions), then we can deselect the “Cash” item from the column headings.  Click the drop-down arrow next to Column Labels, and untick “Cash”: Let’s see what that looks like…As you can see, “Cash” is gone. Formatting This is obviously a very powerful system, but so far the results look very plain and boring.  For a start, the numbers that we’re summing do not look like dollar amounts – just plain old numbers.  Let’s rectify that. A temptation might be to do what we’re used to doing in such circumstances and simply select the whole table (or the whole worksheet) and use the standard number formatting buttons on the toolbar to complete the formatting.  The problem with that approach is that if you ever change the structure of the PivotTable in the future (which is 99% likely), then those number formats will be lost.  We need a way that will make them (semi-)permanent. First, we locate the “Sum of Amount” entry in the Values box, and click on it.  A menu appears.  We select Value Field Settings… from the menu: The Value Field Settings box appears. Click the Number Format button, and the standard Format Cells box appears: From the Category list, select (say) Accounting, and drop the number of decimal places to 0.  Click OK a few times to get back to the PivotTable… As you can see, the numbers have been correctly formatted as dollar amounts. While we’re on the subject of formatting, let’s format the entire PivotTable.  There are a few ways to do this.  Let’s use a simple one… Click the PivotTable Tools/Design tab: Then drop down the arrow in the bottom-right of the PivotTable Styles list to see a vast collection of built-in styles: Choose any one that appeals, and look at the result in your PivotTable:   Other Options We can work with dates as well.  Now usually, there are many, many dates in a transaction list such as the one we started with.  But Excel provides the option to group data items together by day, week, month, year, etc.  Let’s see how this is done. First, let’s remove the “Payment Method” column from the Column Labels box (simply drag it back up to the field list), and replace it with the “Date Booked” column: As you can see, this makes our PivotTable instantly useless, giving us one column for each date that a transaction occurred on – a very wide table! To fix this, right-click on any date and select Group… from the context-menu: The grouping box appears.  We select Months and click OK: Voila!  A much more useful table: (Incidentally, this table is virtually identical to the one shown at the beginning of this article – the original sales summary that was created manually.) Another cool thing to be aware of is that you can have more than one set of row headings (or column headings): …which looks like this…. You can do a similar thing with column headings (or even report filters). Keeping things simple again, let’s see how to plot averaged values, rather than summed values. First, click on “Sum of Amount”, and select Value Field Settings… from the context-menu that appears: In the Summarize value field by list in the Value Field Settings box, select Average: While we’re here, let’s change the Custom Name, from “Average of Amount” to something a little more concise.  Type in something like “Avg”: Click OK, and see what it looks like.  Notice that all the values change from summed totals to averages, and the table title (top-left cell) has changed to “Avg”: If we like, we can even have sums, averages and counts (counts = how many sales there were) all on the same PivotTable! Here are the steps to get something like that in place (starting from a blank PivotTable): Drag “Salesperson” into the Column Labels Drag “Amount” field down into the Values box three times For the first “Amount” field, change its custom name to “Total” and it’s number format to Accounting (0 decimal places) For the second “Amount” field, change its custom name to “Average”, its function to Average and it’s number format to Accounting (0 decimal places) For the third “Amount” field, change its name to “Count” and its function to Count Drag the automatically created field from Column Labels to Row Labels Here’s what we end up with: Total, average and count on the same PivotTable! Conclusion There are many, many more features and options for PivotTables created by Microsoft Excel – far too many to list in an article like this.  To fully cover the potential of PivotTables, a small book (or a large website) would be required.  Brave and/or geeky readers can explore PivotTables further quite easily:  Simply right-click on just about everything, and see what options become available to you.  There are also the two ribbon-tabs: PivotTable Tools/Options and Design.  It doesn’t matter if you make a mistake – it’s easy to delete the PivotTable and start again – a possibility old DOS users of Lotus 1-2-3 never had. We’ve included an Excel that should work with most versions of Excel, so you can download to practice your PivotTable skills. Download Our Practice Excel File Similar Articles Productive Geek Tips Magnify Selected Cells In Excel 2007Share Access Data with Excel in Office 2010Make Excel 2007 Print Gridlines In Workbook FileMake Excel 2007 Always Save in Excel 2003 FormatConvert Older Excel Documents to Excel 2007 Format TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Ben & Jerry’s Free Cone Day, 3/23/10 New Stinger from McAfee Helps Remove ‘FakeAlert’ Threats Google Apps Marketplace: Tools & Services For Google Apps Users Get News Quick and Precise With Newser Scan for Viruses in Ubuntu using ClamAV Replace Your Windows Task Manager With System Explorer

    Read the article

  • Setting up a new Silverlight 4 Project with WCF RIA Services

    - by Kevin Grossnicklaus
    Many of my clients are actively using Silverlight 4 and RIA Services to build powerful line of business applications.  Getting things set up correctly is critical to being to being able to take full advantage of the RIA services plumbing and when developers struggle with the setup they tend to shy away from the solution as a whole.  I’m a big proponent of RIA services and wanted to take the opportunity to share some of my experiences in setting up these types of projects.  In late 2010 I presented a RIA Services Master Class here in St. Louis, MO through my firm (ArchitectNow) and the information shared in this post was promised during that presentation. One other thing I want to mention before diving in is the existence of a number of other great posts on this subject.  I’ve learned a lot from many of them and wanted to call out a few of them.  The purpose of my post is to point out some of the gotchas that people get caught up on in the process but I would still encourage you to do as much additional research as you can to find the perfect setup for your needs. Here are a few additional blog posts and articles you should check out on the subject: http://msdn.microsoft.com/en-us/library/ee707351(VS.91).aspx http://adam-thompson.com/post/2010/07/03/Getting-Started-with-WCF-RIA-Services-for-Silverlight-4.aspx Technologies I don’t intend for this post to turn into a full WCF RIA Services tutorial but I did want to point out what technologies we will be using: Visual Studio.NET 2010 Silverlight 4.0 WCF RIA Services for Visual Studio 2010 Entity Framework 4.0 I also wanted to point out that the screenshots came from my personal development box which has a number of additional plug-ins and frameworks loaded so a few of the screenshots might not match 100% with what you see on your own machines. If you do not have Visual Studio 2010 you can download the express version from http://www.microsoft.com/express.  The Silverlight 4.0 tools and the WCF RIA Services components are installed via the Web Platform Installer (http://www.microsoft.com/web/download). Also, the examples given in this post are done in C#…sorry to you VB folks but the concepts are 100% identical. Setting up anew RIA Services Project This section will provide a step-by-step walkthrough of setting up a new RIA services project using a shared DLL for server side code and a simple Entity Framework model for data access.  All projects are created with the consistent ArchitectNow.RIAServices filename prefix and default namespace.  This would be modified to match your companies standards. First, open Visual Studio and open the new project window via File->New->Project.  In the New Project window, select the Silverlight folder in the Installed Templates section on the left and select “Silverlight Application” as your project type.  Verify your solution name and location are set appropriately.  Note that the project name we specified in the example below ends with .Client.  This indicates the name which will be given to our Silverlight project. I consider Silverlight a client-side technology and thus use this name to reflect that.  Click Ok to continue. During the creation on a new Silverlight 4 project you will be prompted with the following dialog to create a new web ASP.NET web project to host your Silverlight content.  As we are demonstrating the setup of a WCF RIA Services infrastructure, make sure the “Enable WCF RIA Services” option is checked and click OK.  Obviously, there are some other options here which have an effect on your solution and you are welcome to look around.  For our example we are going to leave the ASP.NET Web Application Project selected.  If you are interested in having your Silverlight project hosted in an MVC 2 application or a Web Site project these options are available as well.  Also, whichever web project type you select, the name can be modified here as well.  Note that it defaults to the same name as your Silverlight project with the addition of a .Web suffix. At this point, your full Silverlight 4 project and host ASP.NET Web Application should be created and will now display in your Visual Studio solution explorer as part of a single Visual Studio solution as follows: Now we want to add our WCF RIA Services projects to this same solution.  To do so, right-click on the Solution node in the solution explorer and select Add->New Project.  In the New Project dialog again select the Silverlight folder under the Visual C# node on the left and, in the main area of the screen, select the WCF RIA Services Class Library project template as shown below.  Make sure your project name is set appropriately as well.  For the sample below, we will name the project “ArchitectNow.RIAServices.Server.Entities”.   The .Server.Entities suffix we use is meant to simply indicate that this particular project will contain our WCF RIA Services entity classes (as you will see below).  Click OK to continue. Once you have created the WCF RIA Services Class Library specified above, Visual Studio will automatically add TWO projects to your solution.  The first will be an project called .Server.Entities (using our naming conventions) and the other will have the same name with a .Web extension.  The full solution (with all 4 projects) is shown in the image below.  The .Entities project will essentially remain empty and is actually a Silverlight 4 class library that will contain generated RIA Services domain objects.  It will be referenced by our front-end Silverlight project and thus allow for simplified sharing of code between the client and the server.   The .Entities.Web project is a .NET 4.0 class library into which we will put our data access code (via Entity Framework).  This is our server side code and business logic and the RIA Services plumbing will maintain a link between this project and the front end.  Specific entities such as our domain objects and other code we set to be shared will be copied automatically into the .Entities project to be used in both the front end and the back end. At this point, we want to do a little cleanup of the projects in our solution and we will do so by deleting the “Class1.cs” class from both the .Entities project and the .Entities.Web project.  (Has anyone ever intentionally named a class “Class1”?) Next, we need to configure a few references to make RIA Services work.  THIS IS A KEY STEP THAT CAUSES MANY HEADACHES FOR DEVELOPERS NEW TO THIS INFRASTRUCTURE! Using the Add References dialog in Visual Studio, add a project reference from the *.Client project (our Silverlight 4 client) to the *.Entities project (our RIA Services class library).  Next, again using the Add References dialog in Visual Studio, add a project reference from the *.Client.Web project (our ASP.NET host project) to the *.Entities.Web project (our back-end data services DLL).  To get to the Add References dialog, simply right-click on the project you with to add a reference to in the Visual Studio solution explorer and select “Add Reference” from the resulting context menu.  You will want to make sure these references are added as “Project” references to simplify your future debugging.  To reiterate the reference direction using the project names we have utilized in this example thus far:  .Client references .Entities and .Client.Web reference .Entities.Web.  If you have opted for a different naming convention, then the Silverlight project must reference the RIA Services Silverlight class library and the ASP.NET host project must reference the server-side class library. Next, we are going to add a new Entity Framework data model to our data services project (.Entities.Web).  We will do this by right clicking on this project (ArchitectNow.Server.Entities.Web in the above diagram) and selecting Add->New Project.  In the New Project dialog we will select ADO.NET Entity Data Model as in the following diagram.  For now we will call this simply SampleDataModel.edmx and click OK. It is worth pointing out that WCF RIA Services is in no way tied to the Entity Framework as a means of accessing data and any data access technology is supported (as long as the server side implementation maps to the RIA Services pattern which is a topic beyond the scope of this post).  We are using EF to quickly demonstrate the RIA Services concepts and setup infrastructure, as such, I am not providing a database schema with this post but am instead connecting to a small sample database on my local machine.  The following diagram shows a simple EF Data Model with two tables that I reverse engineered from a local data store.   If you are putting together your own solution, feel free to reverse engineer a few tables from any local database to which you have access. At this point, once you have an EF data model generated as an EDMX into your .Entites.Web project YOU MUST BUILD YOUR SOLUTION.  I know it seems strange to call that out but it important that the solution be built at this point for the next step to be successful.  Obviously, if you have any build errors, these must be addressed at this point. At this point we will add a RIA Services Domain Service to our .Entities.Web project (our server side code).  We will need to right-click on the .Entities.Web project and select Add->New Item.  In the Add New Item dialog, select Domain Service Class and verify the name of your new Domain Service is correct (ours is called SampleService.cs in the image below).  Next, click "Add”. After clicking “Add” to include the Domain Service Class in the selected project, you will be presented with the following dialog.  In it, you can choose which entities from the selected EDMX to include in your services and if they should be allowed to be edited (i.e. inserted, updated, or deleted) via this service.  If the “Available DataContext/ObjectContext classes” dropdown is empty, this indicates you have not yes successfully built your project after adding your EDMX.  I would also recommend verifying that the “Generate associated classes for metadata” option is selected.  Once you have selected the appropriate options, click “OK”. Once you have added the domain service class to the .Entities.Web project, the resulting solution should look similar to the following: Note that in the solution you now have a SampleDataModel.edmx which represents your EF data mapping to your database and a SampleService.cs which will contain a large amount of generated RIA Services code which RIA Services utilizes to access this data from the Silverlight front-end.  You will put all your server side data access code and logic into the SampleService.cs class.  The SampleService.metadata.cs class is for decorating the generated domain objects with attributes from the System.ComponentModel.DataAnnotations namespace for validation purposes. FINAL AND KEY CONFIGURATION STEP!  One key step that causes significant headache to developers configuring RIA Services for the first time is the fact that, when we added the EDMX to the .Entities.Web project for our EF data access, a connection string was generated and placed within a newly generated App.Context file within that project.  While we didn’t point it out at the time you can see it in the image above.  This connection string will be required for the EF data model to successfully locate it’s data.  Also, when we added the Domain Service class to the .Entities.Web project, a number of RIA Services configuration options were added to the same App.Config file.   Unfortunately, when we ultimately begin to utilize the RIA Services infrastructure, our Silverlight UI will be making RIA services calls through the ASP.NET host project (i.e. .Client.Web).  This host project has a reference to the .Entities.Web project which actually contains the code so all will pass through correctly EXCEPT the fact that the host project will utilize it’s own Web.Config for any configuration settings.  For this reason we must now merge all the sections of the App.Config file in the .Entities.Web project into the Web.Config file in the .Client.Web project.  I know this is a bit tedious and I wish there were a simpler solution but it is required for our RIA Services Domain Service to be made available to the front end Silverlight project.  Much of this manual merge can be achieved by simply cutting and pasting from App.Config into Web.Config.  Unfortunately, the <system.webServer> section will exist in both and the contents of this section will need to be manually merged.  Fortunately, this is a step that needs to be taken only once per solution.  As you add additional data structures and Domain Services methods to the server no additional changes will be necessary to the Web.Config. Next Steps At this point, we have walked through the basic setup of a simple RIA services solution.  Unfortunately, there is still a lot to know about RIA services and we have not even begun to take advantage of the plumbing which we just configured (meaning we haven’t even made a single RIA services call).  I plan on posting a few more introductory posts over the next few weeks to take us to this step.  If you have any questions on the content in this post feel free to reach out to me via this Blog and I’ll gladly point you in (hopefully) the right direction. Resources Prior to closing out this post, I wanted to share a number or resources to help you get started with RIA services.  While I plan on posting more on the subject, I didn’t invent any of this stuff and wanted to give credit to the following areas for helping me put a lot of these pieces into place.   The books and online resources below will go a long way to making you extremely productive with RIA services in the shortest time possible.  The only thing required of you is the dedication to take advantage of the resources available. Books Pro Business Applications with Silverlight 4 http://www.amazon.com/Pro-Business-Applications-Silverlight-4/dp/1430272074/ref=sr_1_2?ie=UTF8&qid=1291048751&sr=8-2 Silverlight 4 in Action http://www.amazon.com/Silverlight-4-Action-Pete-Brown/dp/1935182374/ref=sr_1_1?ie=UTF8&qid=1291048751&sr=8-1 Pro Silverlight for the Enterprise (Books for Professionals by Professionals) http://www.amazon.com/Pro-Silverlight-Enterprise-Books-Professionals/dp/1430218673/ref=sr_1_3?ie=UTF8&qid=1291048751&sr=8-3 Web Content RIA Services http://channel9.msdn.com/Blogs/RobBagby/NET-RIA-Services-in-5-Minutes http://silverlight.net/riaservices/ http://www.silverlight.net/learn/videos/all/net-ria-services-intro/ http://www.silverlight.net/learn/videos/all/ria-services-support-visual-studio-2010/ http://channel9.msdn.com/learn/courses/Silverlight4/SL4BusinessModule2/SL4LOB_02_01_RIAServices http://www.myvbprof.com/MainSite/index.aspx#/zSL4_RIA_01 http://channel9.msdn.com/blogs/egibson/silverlight-firestarter-ria-services http://msdn.microsoft.com/en-us/library/ee707336%28v=VS.91%29.aspx Silverlight www.silverlight.net http://msdn.microsoft.com/en-us/silverlight4trainingcourse.aspx http://channel9.msdn.com/shows/silverlighttv

    Read the article

  • More CPU cores may not always lead to better performance – MAXDOP and query memory distribution in spotlight

    - by sqlworkshops
    More hardware normally delivers better performance, but there are exceptions where it can hinder performance. Understanding these exceptions and working around it is a major part of SQL Server performance tuning.   When a memory allocating query executes in parallel, SQL Server distributes memory to each task that is executing part of the query in parallel. In our example the sort operator that executes in parallel divides the memory across all tasks assuming even distribution of rows. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union.   In reality, how often are column values evenly distributed, think about an example; are employees working for your company distributed evenly across all the Zip codes or mainly concentrated in the headquarters? What happens when you sort result set based on Zip codes? Do all products in the catalog sell equally or are few products hot selling items?   One of my customers tested the below example on a 24 core server with various MAXDOP settings and here are the results:MAXDOP 1: CPU time = 1185 ms, elapsed time = 1188 msMAXDOP 4: CPU time = 1981 ms, elapsed time = 1568 msMAXDOP 8: CPU time = 1918 ms, elapsed time = 1619 msMAXDOP 12: CPU time = 2367 ms, elapsed time = 2258 msMAXDOP 16: CPU time = 2540 ms, elapsed time = 2579 msMAXDOP 20: CPU time = 2470 ms, elapsed time = 2534 msMAXDOP 0: CPU time = 2809 ms, elapsed time = 2721 ms - all 24 cores.In the above test, when the data was evenly distributed, the elapsed time of parallel query was always lower than serial query.   Why does the query get slower and slower with more CPU cores / higher MAXDOP? Maybe you can answer this question after reading the article; let me know: [email protected].   Well you get the point, let’s see an example.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go   Let’s create the temporary table #FireDrill with all possible Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip from Employees update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --First serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) goThe query took 1011 ms to complete.   The execution plan shows the 77816 KB of memory was granted while the estimated rows were 799624.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1912 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 799624.  The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead. Sort properties shows the rows are unevenly distributed over the 4 threads.   Sort Warnings in SQL Server Profiler.   Intermediate Summary: The reason for the higher duration with parallel plan was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001. Now let’s update the Employees table and distribute employees evenly across all Zip codes.   update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go   The query took 751 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.   Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 661 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 784707.  Sort properties shows the rows are evenly distributed over the 4 threads. No Sort Warnings in SQL Server Profiler.    Intermediate Summary: When employees were distributed unevenly, concentrated on 1 Zip code, parallel sort spilled while serial sort performed well without spilling to tempdb. When the employees were distributed evenly across all Zip codes, parallel sort and serial sort did not spill to tempdb. This shows uneven data distribution may affect the performance of some parallel queries negatively. For detailed discussion of memory allocation, refer to webcasts available at www.sqlworkshops.com/webcasts.     Some of you might conclude from the above execution times that parallel query is not faster even when there is no spill. Below you can see when we are joining limited amount of Zip codes, parallel query will be fasted since it can use Bitmap Filtering.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go  Let’s create the temporary table #FireDrill with limited Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip       from Employees where Zip between 1800 and 2001 update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 989 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 785594. No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1799 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 785594.  Sort Warnings in SQL Server Profiler.    The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead.  Intermediate Summary: The reason for the higher duration with parallel plan even with limited amount of Zip codes was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001.   Now let’s update the Employees table and distribute employees evenly across all Zip codes. update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 250  ms to complete.  The execution plan shows the 9016 KB of memory was granted while the estimated rows were 79973.8.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0.  --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 85 ms to complete.  The execution plan shows the 13152 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.    Here you see, parallel query is much faster than serial query since SQL Server is using Bitmap Filtering to eliminate rows before the hash join.   Parallel queries are very good for performance, but in some cases it can hinder performance. If one identifies the reason for these hindrances, then it is possible to get the best out of parallelism. I covered many aspects of monitoring and tuning parallel queries in webcasts (www.sqlworkshops.com/webcasts) and articles (www.sqlworkshops.com/articles). I suggest you to watch the webcasts and read the articles to better understand how to identify and tune parallel query performance issues.   Summary: One has to avoid sort spill over tempdb and the chances of spills are higher when a query executes in parallel with uneven data distribution. Parallel query brings its own advantage, reduced elapsed time and reduced work with Bitmap Filtering. So it is important to understand how to avoid spills over tempdb and when to execute a query in parallel.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan  

    Read the article

  • Recover Data Like a Forensics Expert Using an Ubuntu Live CD

    - by Trevor Bekolay
    There are lots of utilities to recover deleted files, but what if you can’t boot up your computer, or the whole drive has been formatted? We’ll show you some tools that will dig deep and recover the most elusive deleted files, or even whole hard drive partitions. We’ve shown you simple ways to recover accidentally deleted files, even a simple method that can be done from an Ubuntu Live CD, but for hard disks that have been heavily corrupted, those methods aren’t going to cut it. In this article, we’ll examine four tools that can recover data from the most messed up hard drives, regardless of whether they were formatted for a Windows, Linux, or Mac computer, or even if the partition table is wiped out entirely. Note: These tools cannot recover data that has been overwritten on a hard disk. Whether a deleted file has been overwritten depends on many factors – the quicker you realize that you want to recover a file, the more likely you will be able to do so. Our setup To show these tools, we’ve set up a small 1 GB hard drive, with half of the space partitioned as ext2, a file system used in Linux, and half the space partitioned as FAT32, a file system used in older Windows systems. We stored ten random pictures on each hard drive. We then wiped the partition table from the hard drive by deleting the partitions in GParted. Is our data lost forever? Installing the tools All of the tools we’re going to use are in Ubuntu’s universe repository. To enable the repository, open Synaptic Package Manager by clicking on System in the top-left, then Administration > Synaptic Package Manager. Click on Settings > Repositories and add a check in the box labelled “Community-maintained Open Source software (universe)”. Click Close, and then in the main Synaptic Package Manager window, click the Reload button. Once the package list has reloaded, and the search index rebuilt, search for and mark for installation one or all of the following packages: testdisk, foremost, and scalpel. Testdisk includes TestDisk, which can recover lost partitions and repair boot sectors, and PhotoRec, which can recover many different types of files from tons of different file systems. Foremost, originally developed by the US Air Force Office of Special Investigations, recovers files based on their headers and other internal structures. Foremost operates on hard drives or drive image files generated by various tools. Finally, scalpel performs the same functions as foremost, but is focused on enhanced performance and lower memory usage. Scalpel may run better if you have an older machine with less RAM. Recover hard drive partitions If you can’t mount your hard drive, then its partition table might be corrupted. Before you start trying to recover your important files, it may be possible to recover one or more partitions on your drive, recovering all of your files with one step. Testdisk is the tool for the job. Start it by opening a terminal (Applications > Accessories > Terminal) and typing in: sudo testdisk If you’d like, you can create a log file, though it won’t affect how much data you recover. Once you make your choice, you’re greeted with a list of the storage media on your machine. You should be able to identify the hard drive you want to recover partitions from by its size and label. TestDisk asks you select the type of partition table to search for. In most cases (ext2/3, NTFS, FAT32, etc.) you should select Intel and press Enter. Highlight Analyse and press enter. In our case, our small hard drive has previously been formatted as NTFS. Amazingly, TestDisk finds this partition, though it is unable to recover it. It also finds the two partitions we just deleted. We are able to change their attributes, or add more partitions, but we’ll just recover them by pressing Enter. If TestDisk hasn’t found all of your partitions, you can try doing a deeper search by selecting that option with the left and right arrow keys. We only had these two partitions, so we’ll recover them by selecting Write and pressing Enter. Testdisk informs us that we will have to reboot. Note: If your Ubuntu Live CD is not persistent, then when you reboot you will have to reinstall any tools that you installed earlier. After restarting, both of our partitions are back to their original states, pictures and all. Recover files of certain types For the following examples, we deleted the 10 pictures from both partitions and then reformatted them. PhotoRec Of the three tools we’ll show, PhotoRec is the most user-friendly, despite being a console-based utility. To start recovering files, open a terminal (Applications > Accessories > Terminal) and type in: sudo photorec To begin, you are asked to select a storage device to search. You should be able to identify the right device by its size and label. Select the right device, and then hit Enter. PhotoRec asks you select the type of partition to search. In most cases (ext2/3, NTFS, FAT, etc.) you should select Intel and press Enter. You are given a list of the partitions on your selected hard drive. If you want to recover all of the files on a partition, then select Search and hit enter. However, this process can be very slow, and in our case we only want to search for pictures files, so instead we use the right arrow key to select File Opt and press Enter. PhotoRec can recover many different types of files, and deselecting each one would take a long time. Instead, we press “s” to clear all of the selections, and then find the appropriate file types – jpg, gif, and png – and select them by pressing the right arrow key. Once we’ve selected these three, we press “b” to save these selections. Press enter to return to the list of hard drive partitions. We want to search both of our partitions, so we highlight “No partition” and “Search” and then press Enter. PhotoRec prompts for a location to store the recovered files. If you have a different healthy hard drive, then we recommend storing the recovered files there. Since we’re not recovering very much, we’ll store it on the Ubuntu Live CD’s desktop. Note: Do not recover files to the hard drive you’re recovering from. PhotoRec is able to recover the 20 pictures from the partitions on our hard drive! A quick look in the recup_dir.1 directory that it creates confirms that PhotoRec has recovered all of our pictures, save for the file names. Foremost Foremost is a command-line program with no interactive interface like PhotoRec, but offers a number of command-line options to get as much data out of your had drive as possible. For a full list of options that can be tweaked via the command line, open up a terminal (Applications > Accessories > Terminal) and type in: foremost –h In our case, the command line options that we are going to use are: -t, a comma-separated list of types of files to search for. In our case, this is “jpeg,png,gif”. -v, enabling verbose-mode, giving us more information about what foremost is doing. -o, the output folder to store recovered files in. In our case, we created a directory called “foremost” on the desktop. -i, the input that will be searched for files. This can be a disk image in several different formats; however, we will use a hard disk, /dev/sda. Our foremost invocation is: sudo foremost –t jpeg,png,gif –o foremost –v –i /dev/sda Your invocation will differ depending on what you’re searching for and where you’re searching for it. Foremost is able to recover 17 of the 20 files stored on the hard drive. Looking at the files, we can confirm that these files were recovered relatively well, though we can see some errors in the thumbnail for 00622449.jpg. Part of this may be due to the ext2 filesystem. Foremost recommends using the –d command-line option for Linux file systems like ext2. We’ll run foremost again, adding the –d command-line option to our foremost invocation: sudo foremost –t jpeg,png,gif –d –o foremost –v –i /dev/sda This time, foremost is able to recover all 20 images! A final look at the pictures reveals that the pictures were recovered with no problems. Scalpel Scalpel is another powerful program that, like Foremost, is heavily configurable. Unlike Foremost, Scalpel requires you to edit a configuration file before attempting any data recovery. Any text editor will do, but we’ll use gedit to change the configuration file. In a terminal window (Applications > Accessories > Terminal), type in: sudo gedit /etc/scalpel/scalpel.conf scalpel.conf contains information about a number of different file types. Scroll through this file and uncomment lines that start with a file type that you want to recover (i.e. remove the “#” character at the start of those lines). Save the file and close it. Return to the terminal window. Scalpel also has a ton of command-line options that can help you search quickly and effectively; however, we’ll just define the input device (/dev/sda) and the output folder (a folder called “scalpel” that we created on the desktop). Our invocation is: sudo scalpel /dev/sda –o scalpel Scalpel is able to recover 18 of our 20 files. A quick look at the files scalpel recovered reveals that most of our files were recovered successfully, though there were some problems (e.g. 00000012.jpg). Conclusion In our quick toy example, TestDisk was able to recover two deleted partitions, and PhotoRec and Foremost were able to recover all 20 deleted images. Scalpel recovered most of the files, but it’s very likely that playing with the command-line options for scalpel would have enabled us to recover all 20 images. These tools are lifesavers when something goes wrong with your hard drive. If your data is on the hard drive somewhere, then one of these tools will track it down! Similar Articles Productive Geek Tips Recover Deleted Files on an NTFS Hard Drive from a Ubuntu Live CDUse an Ubuntu Live CD to Securely Wipe Your PC’s Hard DriveReset Your Ubuntu Password Easily from the Live CDBackup Your Windows Live Writer SettingsAdding extra Repositories on Ubuntu TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Awe inspiring, inter-galactic theme (Win 7) Case Study – How to Optimize Popular Wordpress Sites Restore Hidden Updates in Windows 7 & Vista Iceland an Insurance Job? Find Downloads and Add-ins for Outlook Recycle !

    Read the article

< Previous Page | 401 402 403 404 405 406 407 408 409 410 411 412  | Next Page >