Search Results

Search found 33291 results on 1332 pages for 'development environment'.

Page 406/1332 | < Previous Page | 402 403 404 405 406 407 408 409 410 411 412 413  | Next Page >

  • What prefer a game developer company? UDK experience or c++ game projects?

    - by momboco
    What prefer a game developer company? A developer with experience in UDK engine ? or, a developer with projects made entirely in c++ with a graphics engine like Ogre3D? I think that a coder can demonstrate better his abilities with games made in c++, because it requires a knowledge deeper in many fields. However, currently there is a lot of companies that develop his games with UDK. Now I don't know if is better specialize in a game engine like UDK.

    Read the article

  • Tile Collision & Sliding against tiles

    - by Devin Rawlek
    I have a tile based map with a top down camera. My sprite stops moving when he collides with a wall in any of the four directions however I am trying to get the sprite to slide along the wall if more than one directional key is pressed after being stopped. Tiles are set to 32 x 32. Here is my code; // Gets Tile Player Is Standing On var splatterTileX = (int)player.Position.X / Engine.TileWidth; var splatterTileY = (int)player.Position.Y / Engine.TileHeight; // Foreach Layer In World Splatter Map Layers foreach (var layer in WorldSplatterTileMapLayers) { // If Sprite Is Not On Any Edges if (splatterTileX < layer.Width - 1 && splatterTileX > 0 && splatterTileY < layer.Height - 1 && splatterTileY > 0) { tileN = layer.GetTile(splatterTileX, splatterTileY - 1); // North tileNE = layer.GetTile(splatterTileX + 1, splatterTileY - 1); // North-East tileE = layer.GetTile(splatterTileX + 1, splatterTileY); // East tileSE = layer.GetTile(splatterTileX + 1, splatterTileY + 1); // South-East tileS = layer.GetTile(splatterTileX, splatterTileY + 1); // South tileSW = layer.GetTile(splatterTileX - 1, splatterTileY + 1); // South-West tileW = layer.GetTile(splatterTileX - 1, splatterTileY); // West tileNW = layer.GetTile(splatterTileX - 1, splatterTileY - 1); // North-West } // If Sprite Is Not On Any X Edges And Is On -Y Edge if (splatterTileX < layer.Width - 1 && splatterTileX > 0 && splatterTileY == 0) { tileE = layer.GetTile(splatterTileX + 1, splatterTileY); // East tileSE = layer.GetTile(splatterTileX + 1, splatterTileY + 1); // South-East tileS = layer.GetTile(splatterTileX, splatterTileY + 1); // South tileSW = layer.GetTile(splatterTileX - 1, splatterTileY + 1); // South-West tileW = layer.GetTile(splatterTileX - 1, splatterTileY); // West } // If Sprite Is On +X And -Y Edges if (splatterTileX == layer.Width - 1 && splatterTileY == 0) { tileS = layer.GetTile(splatterTileX, splatterTileY + 1); // South tileSW = layer.GetTile(splatterTileX - 1, splatterTileY + 1); // South-West tileW = layer.GetTile(splatterTileX - 1, splatterTileY); // West } // If Sprite Is On +X Edge And Y Is Not On Any Edge if (splatterTileX == layer.Width - 1 && splatterTileY < layer.Height - 1 && splatterTileY > 0) { tileS = layer.GetTile(splatterTileX, splatterTileY + 1); // South tileSW = layer.GetTile(splatterTileX - 1, splatterTileY + 1); // South-West tileW = layer.GetTile(splatterTileX - 1, splatterTileY); // West tileNW = layer.GetTile(splatterTileX - 1, splatterTileY - 1); // North-West tileN = layer.GetTile(splatterTileX, splatterTileY - 1); // North } // If Sprite Is On +X And +Y Edges if (splatterTileX == layer.Width - 1 && splatterTileY == layer.Height - 1) { tileW = layer.GetTile(splatterTileX - 1, splatterTileY); // West tileNW = layer.GetTile(splatterTileX - 1, splatterTileY - 1); // North-West tileN = layer.GetTile(splatterTileX, splatterTileY - 1); // North } // If Sprite Is Not On Any X Edges And Is On +Y Edge if (splatterTileX < (layer.Width - 1) && splatterTileX > 0 && splatterTileY == layer.Height - 1) { tileW = layer.GetTile(splatterTileX - 1, splatterTileY); // West tileNW = layer.GetTile(splatterTileX - 1, splatterTileY - 1); // North-West tileN = layer.GetTile(splatterTileX, splatterTileY - 1); // North tileNE = layer.GetTile(splatterTileX + 1, splatterTileY - 1); // North-East tileE = layer.GetTile(splatterTileX + 1, splatterTileY); // East } // If Sprite Is On -X And +Y Edges if (splatterTileX == 0 && splatterTileY == layer.Height - 1) { tileN = layer.GetTile(splatterTileX, splatterTileY - 1); // North tileNE = layer.GetTile(splatterTileX + 1, splatterTileY - 1); // North-East tileE = layer.GetTile(splatterTileX + 1, splatterTileY); // East } // If Sprite Is On -X Edge And Y Is Not On Any Edges if (splatterTileX == 0 && splatterTileY < (layer.Height - 1) && splatterTileY > 0) { tileN = layer.GetTile(splatterTileX, splatterTileY - 1); // North tileNE = layer.GetTile(splatterTileX + 1, splatterTileY - 1); // North-East tileE = layer.GetTile(splatterTileX + 1, splatterTileY); // East tileSE = layer.GetTile(splatterTileX + 1, splatterTileY + 1); // South-East tileS = layer.GetTile(splatterTileX, splatterTileY + 1); // South } // If Sprite Is In The Top Left Corner if (splatterTileX == 0 && splatterTileY == 0) { tileE = layer.GetTile(splatterTileX + 1, splatterTileY); // East tileSE = layer.GetTile(splatterTileX + 1, splatterTileY + 1); // South-East tileS = layer.GetTile(splatterTileX, splatterTileY + 1); // South } // Creates A New Rectangle For TileN tileN.TileRectangle = new Rectangle(splatterTileX * Engine.TileWidth, (splatterTileY - 1) * Engine.TileHeight, Engine.TileWidth, Engine.TileHeight); // Tile Collision Detection Between Player Rectangle And N Tile var tileNCollision = player.Rectangle.Intersects(tileN.TileRectangle); // Creates A New Rectangle For TileNE tileNE.TileRectangle = new Rectangle((splatterTileX + 1) * Engine.TileWidth, (splatterTileY - 1) * Engine.TileHeight, Engine.TileWidth, Engine.TileHeight); // Tile Collision Detection Between Player Rectangle And NE Tile var tileNECollision = player.Rectangle.Intersects(tileNE.TileRectangle); // Creates A New Rectangle For TileE tileE.TileRectangle = new Rectangle((splatterTileX + 1) * Engine.TileWidth, splatterTileY * Engine.TileHeight, Engine.TileWidth, Engine.TileHeight); // Tile Collision Detection Between Player Rectangle And E Tile var tileECollision = player.Rectangle.Intersects(tileE.TileRectangle); // Creates A New Rectangle For TileSE tileSE.TileRectangle = new Rectangle((splatterTileX + 1) * Engine.TileWidth, (splatterTileY + 1) * Engine.TileHeight, Engine.TileWidth, Engine.TileHeight); // Tile Collision Detection Between Player Rectangle And SE Tile var tileSECollision = player.Rectangle.Intersects(tileSE.TileRectangle); // Creates A New Rectangle For TileS tileS.TileRectangle = new Rectangle(splatterTileX * Engine.TileWidth, (splatterTileY + 1) * Engine.TileHeight, Engine.TileWidth, Engine.TileHeight); // Tile Collision Detection Between Player Rectangle And S Tile var tileSCollision = player.Rectangle.Intersects(tileS.TileRectangle); // Creates A New Rectangle For TileSW tileSW.TileRectangle = new Rectangle((splatterTileX - 1) * Engine.TileWidth, (splatterTileY + 1) * Engine.TileHeight, Engine.TileWidth, Engine.TileHeight); // Tile Collision Detection Between Player Rectangle And SW Tile var tileSWCollision = player.Rectangle.Intersects(tileSW.TileRectangle); // Creates A New Rectangle For TileW tileW.TileRectangle = new Rectangle((splatterTileX - 1) * Engine.TileWidth, splatterTileY * Engine.TileHeight, Engine.TileWidth, Engine.TileHeight); // Tile Collision Detection Between Player Rectangle And Current Tile var tileWCollision = player.Rectangle.Intersects(tileW.TileRectangle); // Creates A New Rectangle For TileNW tileNW.TileRectangle = new Rectangle((splatterTileX - 1) * Engine.TileWidth, (splatterTileY - 1) * Engine.TileHeight, Engine.TileWidth, Engine.TileHeight); // Tile Collision Detection Between Player Rectangle And Current Tile var tileNWCollision = player.Rectangle.Intersects(tileNW.TileRectangle); // Allow Sprite To Occupy More Than One Tile if (tileNCollision && tileN.TileBlocked == false) { tileN.TileOccupied = true; } if (tileECollision && tileE.TileBlocked == false) { tileE.TileOccupied = true; } if (tileSCollision && tileS.TileBlocked == false) { tileS.TileOccupied = true; } if (tileWCollision && tileW.TileBlocked == false) { tileW.TileOccupied = true; } // Player Up if (keyState.IsKeyDown(Keys.W) || (gamePadOneState.DPad.Up == ButtonState.Pressed)) { player.CurrentAnimation = AnimationKey.Up; if (tileN.TileOccupied == false) { if (tileNWCollision && tileNW.TileBlocked || tileNCollision && tileN.TileBlocked || tileNECollision && tileNE.TileBlocked) { playerMotion.Y = 0; } else playerMotion.Y = -1; } else if (tileN.TileOccupied) { if (tileNWCollision && tileNW.TileBlocked || tileNECollision && tileNE.TileBlocked) { playerMotion.Y = 0; } else playerMotion.Y = -1; } } // Player Down if (keyState.IsKeyDown(Keys.S) || (gamePadOneState.DPad.Down == ButtonState.Pressed)) { player.CurrentAnimation = AnimationKey.Down; // Check Collision With Tiles if (tileS.TileOccupied == false) { if (tileSWCollision && tileSW.TileBlocked || tileSCollision && tileS.TileBlocked || tileSECollision && tileSE.TileBlocked) { playerMotion.Y = 0; } else playerMotion.Y = 1; } else if (tileS.TileOccupied) { if (tileSWCollision && tileSW.TileBlocked || tileSECollision && tileSE.TileBlocked) { playerMotion.Y = 0; } else playerMotion.Y = 1; } } // Player Left if (keyState.IsKeyDown(Keys.A) || (gamePadOneState.DPad.Left == ButtonState.Pressed)) { player.CurrentAnimation = AnimationKey.Left; if (tileW.TileOccupied == false) { if (tileNWCollision && tileNW.TileBlocked || tileWCollision && tileW.TileBlocked || tileSWCollision && tileSW.TileBlocked) { playerMotion.X = 0; } else playerMotion.X = -1; } else if (tileW.TileOccupied) { if (tileNWCollision && tileNW.TileBlocked || tileSWCollision && tileSW.TileBlocked) { playerMotion.X = 0; } else playerMotion.X = -1; } } // Player Right if (keyState.IsKeyDown(Keys.D) || (gamePadOneState.DPad.Right == ButtonState.Pressed)) { player.CurrentAnimation = AnimationKey.Right; if (tileE.TileOccupied == false) { if (tileNECollision && tileNE.TileBlocked || tileECollision && tileE.TileBlocked || tileSECollision && tileSE.TileBlocked) { playerMotion.X = 0; } else playerMotion.X = 1; } else if (tileE.TileOccupied) { if (tileNECollision && tileNE.TileBlocked || tileSECollision && tileSE.TileBlocked) { playerMotion.X = 0; } else playerMotion.X = 1; } } I have my tile detection setup so the 8 tiles around the sprite are the only ones detected. The collision variable is true if the sprites rectangle intersects with one of the detected tiles. The sprites origin is centered at 16, 16 on the image so whenever this point goes over to the next tile it calls the surrounding tiles. I am trying to have collision detection like in the game Secret of Mana. If I remove the diagonal checks the sprite will pass through thoses tiles because whichever tile the sprites origin is on will be the detection center. So if the sprite is near the edge of the tile and then goes up it looks like half the sprite is walking through the wall. Is there a way for the detection to occur for each tile the sprite's rectangle touches?

    Read the article

  • Saving game data to server [on hold]

    - by Eugene Lim
    What's the best method to save the player's data to the server? Method to store the game saves Which one of the following method should I use ? Using a database structure(e.g.. mySQL) to store the game data as blobs? Using the server hard disk to store the saved game data as binary data files? Method to send saved game data to server What method should I use ? socketIO web socket a web-based scripting language to receive the game data as binary? for example, a php script to handle binary data and save it to file Meta-data I read that some games store saved game meta-data in database structures. What kind of meta data is useful to store?

    Read the article

  • How can I find the right UV coordinates for interpolating a bezier curve?

    - by ssb
    I'll let this picture do the talking. I'm trying to create a mesh from a bezier curve and then add a texture to it. The problem here is that the interpolation points along the curve do not increase linearly, so points farther from the control point (near the endpoints) stretch and those in the bend contract, causing the texture to be uneven across the curve, which can be problematic when using a pattern like stripes on a road. How can I determine how far along the curve the vertices actually are so I can give a proper UV coordinate? EDIT: Allow me to clarify that I'm not talking about the trapezoidal distortion of the roads. That I know is normal and I'm not concerned about. I've updated the image to show more clearly where my concerns are. Interpolating over the curve I get 10 segments, but each of these 10 segments is not spaced at an equal point along the curve, so I have to account for this in assigning UV data to vertices or else the road texture will stretch/shrink depending on how far apart vertices are at that particular part of the curve.

    Read the article

  • Android Can't get two virtual joysticks to move independently and at the same time

    - by Cole
    @Override public boolean onTouch(View v, MotionEvent event) { // TODO Auto-generated method stub float r = 70; float centerLx = (float) (screenWidth*.3425); float centerLy = (float) (screenHeight*.4958); float centerRx = (float) (screenWidth*.6538); float centerRy = (float) (screenHeight*.4917); float dx = 0; float dy = 0; float theta; float c; int action = event.getAction(); int actionCode = action & MotionEvent.ACTION_MASK; int pid = (action & MotionEvent.ACTION_POINTER_INDEX_MASK) >> MotionEvent.ACTION_POINTER_INDEX_SHIFT; int fingerid = event.getPointerId(pid); int x = (int) event.getX(pid); int y = (int) event.getY(pid); c = FloatMath.sqrt(dx*dx + dy*dy); theta = (float) Math.atan(Math.abs(dy/dx)); switch (actionCode) { case MotionEvent.ACTION_DOWN: case MotionEvent.ACTION_POINTER_DOWN: //if touching down on left stick, set leftstick ID to this fingerid. if(x < screenWidth/2 && c<r*.8) { lsId = fingerid; dx = x-centerLx; dy = y-centerLy; touchingLs = true; } else if(x > screenWidth/2 && c<r*.8) { rsId = fingerid; dx = x-centerRx; dy = y-centerRy; touchingRs = true; } break; case MotionEvent.ACTION_MOVE: if (touchingLs && fingerid == lsId) { dx = x - centerLx; dy = y - centerLy; }else if (touchingRs && fingerid == rsId) { dx = x - centerRx; dy = y - centerRy; } c = FloatMath.sqrt(dx*dx + dy*dy); theta = (float) Math.atan(Math.abs(dy/dx)); //if touching outside left radius and moving left stick if(c >= r && touchingLs && fingerid == lsId) { if(dx>0 && dy<0) { //top right quadrant lsX = r * FloatMath.cos(theta); lsY = -(r * FloatMath.sin(theta)); Log.i("message", "top right"); } if(dx<0 && dy<0) { //top left quadrant lsX = -(r * FloatMath.cos(theta)); lsY = -(r * FloatMath.sin(theta)); Log.i("message", "top left"); } if(dx<0 && dy>0) { //bottom left quadrant lsX = -(r * FloatMath.cos(theta)); lsY = r * FloatMath.sin(theta); Log.i("message", "bottom left"); } else if(dx > 0 && dy > 0){ //bottom right quadrant lsX = r * FloatMath.cos(theta); lsY = r * FloatMath.sin(theta); Log.i("message", "bottom right"); } } if(c >= r && touchingRs && fingerid == rsId) { if(dx>0 && dy<0) { //top right quadrant rsX = r * FloatMath.cos(theta); rsY = -(r * FloatMath.sin(theta)); Log.i("message", "top right"); } if(dx<0 && dy<0) { //top left quadrant rsX = -(r * FloatMath.cos(theta)); rsY = -(r * FloatMath.sin(theta)); Log.i("message", "top left"); } if(dx<0 && dy>0) { //bottom left quadrant rsX = -(r * FloatMath.cos(theta)); rsY = r * FloatMath.sin(theta); Log.i("message", "bottom left"); } else if(dx > 0 && dy > 0) { rsX = r * FloatMath.cos(theta); rsY = r * FloatMath.sin(theta); Log.i("message", "bottom right"); } } else { if(c < r && touchingLs && fingerid == lsId) { lsX = dx; lsY = dy; } if(c < r && touchingRs && fingerid == rsId){ rsX = dx; rsY = dy; } } break; case MotionEvent.ACTION_UP: case MotionEvent.ACTION_POINTER_UP: if (fingerid == lsId) { lsId = -1; lsX = 0; lsY = 0; touchingLs = false; } else if (fingerid == rsId) { rsId = -1; rsX = 0; rsY = 0; touchingRs = false; } break; } return true; } There's a left joystick and a right joystick. Right now only one will move at a time. If someone could set me on the right track I would be incredibly grateful cause I've been having nightmares about this problem.

    Read the article

  • problem with loading in .FBX meshes in DirectX 10

    - by N0xus
    I'm trying to load in meshes into DirectX 10. I've created a bunch of classes that handle it and allow me to call in a mesh with only a single line of code in my main game class. How ever, when I run the program this is what renders: In the debug output window the following errors keep appearing: D3D10: ERROR: ID3D10Device::DrawIndexed: Input Assembler - Vertex Shader linkage error: Signatures between stages are incompatible. The reason is that Semantic 'TEXCOORD' is defined for mismatched hardware registers between the output stage and input stage. [ EXECUTION ERROR #343: DEVICE_SHADER_LINKAGE_REGISTERINDEX ] D3D10: ERROR: ID3D10Device::DrawIndexed: Input Assembler - Vertex Shader linkage error: Signatures between stages are incompatible. The reason is that the input stage requires Semantic/Index (POSITION,0) as input, but it is not provided by the output stage. [ EXECUTION ERROR #342: DEVICE_SHADER_LINKAGE_SEMANTICNAME_NOT_FOUND ] The thing is, I've no idea how to fix this. The code I'm using does work and I've simply brought all of that code into a new project of mine. There are no build errors and this only appears when the game is running The .fx file is as follows: float4x4 matWorld; float4x4 matView; float4x4 matProjection; struct VS_INPUT { float4 Pos:POSITION; float2 TexCoord:TEXCOORD; }; struct PS_INPUT { float4 Pos:SV_POSITION; float2 TexCoord:TEXCOORD; }; Texture2D diffuseTexture; SamplerState diffuseSampler { Filter = MIN_MAG_MIP_POINT; AddressU = WRAP; AddressV = WRAP; }; // // Vertex Shader // PS_INPUT VS( VS_INPUT input ) { PS_INPUT output=(PS_INPUT)0; float4x4 viewProjection=mul(matView,matProjection); float4x4 worldViewProjection=mul(matWorld,viewProjection); output.Pos=mul(input.Pos,worldViewProjection); output.TexCoord=input.TexCoord; return output; } // // Pixel Shader // float4 PS(PS_INPUT input ) : SV_Target { return diffuseTexture.Sample(diffuseSampler,input.TexCoord); //return float4(1.0f,1.0f,1.0f,1.0f); } RasterizerState NoCulling { FILLMODE=SOLID; CULLMODE=NONE; }; technique10 Render { pass P0 { SetVertexShader( CompileShader( vs_4_0, VS() ) ); SetGeometryShader( NULL ); SetPixelShader( CompileShader( ps_4_0, PS() ) ); SetRasterizerState(NoCulling); } } In my game, the .fx file and model are called and set as follows: Loading in shader file //Set the shader flags - BMD DWORD dwShaderFlags = D3D10_SHADER_ENABLE_STRICTNESS; #if defined( DEBUG ) || defined( _DEBUG ) dwShaderFlags |= D3D10_SHADER_DEBUG; #endif ID3D10Blob * pErrorBuffer=NULL; if( FAILED( D3DX10CreateEffectFromFile( TEXT("TransformedTexture.fx" ), NULL, NULL, "fx_4_0", dwShaderFlags, 0, md3dDevice, NULL, NULL, &m_pEffect, &pErrorBuffer, NULL ) ) ) { char * pErrorStr = ( char* )pErrorBuffer->GetBufferPointer(); //If the creation of the Effect fails then a message box will be shown MessageBoxA( NULL, pErrorStr, "Error", MB_OK ); return false; } //Get the technique called Render from the effect, we need this for rendering later on m_pTechnique=m_pEffect->GetTechniqueByName("Render"); //Number of elements in the layout UINT numElements = TexturedLitVertex::layoutSize; //Get the Pass description, we need this to bind the vertex to the pipeline D3D10_PASS_DESC PassDesc; m_pTechnique->GetPassByIndex( 0 )->GetDesc( &PassDesc ); //Create Input layout to describe the incoming buffer to the input assembler if (FAILED(md3dDevice->CreateInputLayout( TexturedLitVertex::layout, numElements,PassDesc.pIAInputSignature, PassDesc.IAInputSignatureSize, &m_pVertexLayout ) ) ) { return false; } model loading: m_pTestRenderable=new CRenderable(); //m_pTestRenderable->create<TexturedVertex>(md3dDevice,8,6,vertices,indices); m_pModelLoader = new CModelLoader(); m_pTestRenderable = m_pModelLoader->loadModelFromFile( md3dDevice,"armoredrecon.fbx" ); m_pGameObjectTest = new CGameObject(); m_pGameObjectTest->setRenderable( m_pTestRenderable ); // Set primitive topology, how are we going to interpet the vertices in the vertex buffer md3dDevice->IASetPrimitiveTopology( D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST ); if ( FAILED( D3DX10CreateShaderResourceViewFromFile( md3dDevice, TEXT( "armoredrecon_diff.png" ), NULL, NULL, &m_pTextureShaderResource, NULL ) ) ) { MessageBox( NULL, TEXT( "Can't load Texture" ), TEXT( "Error" ), MB_OK ); return false; } m_pDiffuseTextureVariable = m_pEffect->GetVariableByName( "diffuseTexture" )->AsShaderResource(); m_pDiffuseTextureVariable->SetResource( m_pTextureShaderResource ); Finally, the draw function code: //All drawing will occur between the clear and present m_pViewMatrixVariable->SetMatrix( ( float* )m_matView ); m_pWorldMatrixVariable->SetMatrix( ( float* )m_pGameObjectTest->getWorld() ); //Get the stride(size) of the a vertex, we need this to tell the pipeline the size of one vertex UINT stride = m_pTestRenderable->getStride(); //The offset from start of the buffer to where our vertices are located UINT offset = m_pTestRenderable->getOffset(); ID3D10Buffer * pVB=m_pTestRenderable->getVB(); //Bind the vertex buffer to input assembler stage - md3dDevice->IASetVertexBuffers( 0, 1, &pVB, &stride, &offset ); md3dDevice->IASetIndexBuffer( m_pTestRenderable->getIB(), DXGI_FORMAT_R32_UINT, 0 ); //Get the Description of the technique, we need this in order to loop through each pass in the technique D3D10_TECHNIQUE_DESC techDesc; m_pTechnique->GetDesc( &techDesc ); //Loop through the passes in the technique for( UINT p = 0; p < techDesc.Passes; ++p ) { //Get a pass at current index and apply it m_pTechnique->GetPassByIndex( p )->Apply( 0 ); //Draw call md3dDevice->DrawIndexed(m_pTestRenderable->getNumOfIndices(),0,0); //m_pD3D10Device->Draw(m_pTestRenderable->getNumOfVerts(),0); } Is there anything I've clearly done wrong or are missing? Spent 2 weeks trying to workout what on earth I've done wrong to no avail. Any insight a fresh pair eyes could give on this would be great.

    Read the article

  • Do I need to store a generic rotation point/radius for rotating around a point other than the origin for object transforms?

    - by Casey
    I'm having trouble implementing a non-origin point rotation. I have a class Transform that stores each component separately in three 3D vectors for position, scale, and rotation. This is fine for local rotations based on the center of the object. The issue is how do I determine/concatenate non-origin rotations in addition to origin rotations. Normally this would be achieved as a Transform-Rotate-Transform for the center rotation followed by a Transform-Rotate-Transform for the non-origin point. The problem is because I am storing the individual components, the final Transform matrix is not calculated until needed by using the individual components to fill an appropriate Matrix. (See GetLocalTransform()) Do I need to store an additional rotation (and radius) for world rotations as well or is there a method of implementation that works while only using the single rotation value? Transform.h #ifndef A2DE_CTRANSFORM_H #define A2DE_CTRANSFORM_H #include "../a2de_vals.h" #include "CMatrix4x4.h" #include "CVector3D.h" #include <vector> A2DE_BEGIN class Transform { public: Transform(); Transform(Transform* parent); Transform(const Transform& other); Transform& operator=(const Transform& rhs); virtual ~Transform(); void SetParent(Transform* parent); void AddChild(Transform* child); void RemoveChild(Transform* child); Transform* FirstChild(); Transform* LastChild(); Transform* NextChild(); Transform* PreviousChild(); Transform* GetChild(std::size_t index); std::size_t GetChildCount() const; std::size_t GetChildCount(); void SetPosition(const a2de::Vector3D& position); const a2de::Vector3D& GetPosition() const; a2de::Vector3D& GetPosition(); void SetRotation(const a2de::Vector3D& rotation); const a2de::Vector3D& GetRotation() const; a2de::Vector3D& GetRotation(); void SetScale(const a2de::Vector3D& scale); const a2de::Vector3D& GetScale() const; a2de::Vector3D& GetScale(); a2de::Matrix4x4 GetLocalTransform() const; a2de::Matrix4x4 GetLocalTransform(); protected: private: a2de::Vector3D _position; a2de::Vector3D _scale; a2de::Vector3D _rotation; std::size_t _curChildIndex; Transform* _parent; std::vector<Transform*> _children; }; A2DE_END #endif Transform.cpp #include "CTransform.h" #include "CVector2D.h" #include "CVector4D.h" A2DE_BEGIN Transform::Transform() : _position(), _scale(1.0, 1.0), _rotation(), _curChildIndex(0), _parent(nullptr), _children() { /* DO NOTHING */ } Transform::Transform(Transform* parent) : _position(), _scale(1.0, 1.0), _rotation(), _curChildIndex(0), _parent(parent), _children() { /* DO NOTHING */ } Transform::Transform(const Transform& other) : _position(other._position), _scale(other._scale), _rotation(other._rotation), _curChildIndex(0), _parent(other._parent), _children(other._children) { /* DO NOTHING */ } Transform& Transform::operator=(const Transform& rhs) { if(this == &rhs) return *this; this->_position = rhs._position; this->_scale = rhs._scale; this->_rotation = rhs._rotation; this->_curChildIndex = 0; this->_parent = rhs._parent; this->_children = rhs._children; return *this; } Transform::~Transform() { _children.clear(); _parent = nullptr; } void Transform::SetParent(Transform* parent) { _parent = parent; } void Transform::AddChild(Transform* child) { if(child == nullptr) return; _children.push_back(child); } void Transform::RemoveChild(Transform* child) { if(_children.empty()) return; _children.erase(std::remove(_children.begin(), _children.end(), child), _children.end()); } Transform* Transform::FirstChild() { if(_children.empty()) return nullptr; return *(_children.begin()); } Transform* Transform::LastChild() { if(_children.empty()) return nullptr; return *(_children.end()); } Transform* Transform::NextChild() { if(_children.empty()) return nullptr; std::size_t s(_children.size()); if(_curChildIndex >= s) { _curChildIndex = s; return nullptr; } return _children[_curChildIndex++]; } Transform* Transform::PreviousChild() { if(_children.empty()) return nullptr; if(_curChildIndex == 0) { return nullptr; } return _children[_curChildIndex--]; } Transform* Transform::GetChild(std::size_t index) { if(_children.empty()) return nullptr; if(index > _children.size()) return nullptr; return _children[index]; } std::size_t Transform::GetChildCount() const { if(_children.empty()) return 0; return _children.size(); } std::size_t Transform::GetChildCount() { return static_cast<const Transform&>(*this).GetChildCount(); } void Transform::SetPosition(const a2de::Vector3D& position) { _position = position; } const a2de::Vector3D& Transform::GetPosition() const { return _position; } a2de::Vector3D& Transform::GetPosition() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetPosition()); } void Transform::SetRotation(const a2de::Vector3D& rotation) { _rotation = rotation; } const a2de::Vector3D& Transform::GetRotation() const { return _rotation; } a2de::Vector3D& Transform::GetRotation() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetRotation()); } void Transform::SetScale(const a2de::Vector3D& scale) { _scale = scale; } const a2de::Vector3D& Transform::GetScale() const { return _scale; } a2de::Vector3D& Transform::GetScale() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetScale()); } a2de::Matrix4x4 Transform::GetLocalTransform() const { Matrix4x4 p((_parent ? _parent->GetLocalTransform() : a2de::Matrix4x4::GetIdentity())); Matrix4x4 t(a2de::Matrix4x4::GetTranslationMatrix(_position)); Matrix4x4 r(a2de::Matrix4x4::GetRotationMatrix(_rotation)); Matrix4x4 s(a2de::Matrix4x4::GetScaleMatrix(_scale)); return (p * t * r * s); } a2de::Matrix4x4 Transform::GetLocalTransform() { return static_cast<const Transform&>(*this).GetLocalTransform(); } A2DE_END

    Read the article

  • Box2d - Attaching a fired arrow to a moving enemy

    - by Satchmo Brown
    I am firing an arrow from the player to moving enemies. When the arrow hits the enemy, I want it to attach exactly where it hit and cause the enemy (a square) to tumble to the ground. Excluding the logistics of the movement and the spin (it already works), I am stuck on the attaching of the two bodies. I tried to weld them together initially but when they fell, they rotated in opposite directions. I have figured that a revolute joint is probably what I am after. The problem is that I can't figure out a way to attach them right where they collide. Using code from iforce2d: b2RevoluteJointDef revoluteJointDef; revoluteJointDef.bodyA = m_body; revoluteJointDef.bodyB = m_e->m_body; revoluteJointDef.collideConnected = true; revoluteJointDef.localAnchorA.Set(0,0);//the top right corner of the box revoluteJointDef.localAnchorB.Set(0,0);//center of the circle b2RevoluteJoint m_joint = *(b2RevoluteJoint*)m_game->m_world->CreateJoint( &revoluteJointDef ); m_body->SetLinearVelocity(m_e->m_body->GetLinearVelocity()); This attaches them but in the center of both of their points. Does anyone know how I would go about getting the exact point of collision so I can link these? Is this even the right method of doing this? Update: I have the exact point of collision. But I still am not sure this is even the method I want to go about this. Really, I just want to attach body A to B and have body B unaffected in any way.

    Read the article

  • When to detect collisions in game loop

    - by Ciaran
    My game loop uses a fixed time step to do "physics" updates, say every 20 ms. In here I move objects. I draw frames as frequently as possible. I work out a value between 0 and 1 to represent the proportion of the physics tick that is complete and interpolate between the previous and current physics state before drawing. It results in a smoother game assuming the frame rate is higher than the physics update rate. I am currently doing the collision detection in the physics update routine. I was wondering should it instead take place in the interpolated draw routine where the positions match what the user sees? Collisions can result in explosions by the way.

    Read the article

  • Slick and Timers?

    - by user3491043
    I'm making a game where I need events to happen in a precise amount of time. Explanation : I want that event A happens at 12000ms, and event B happens every 10000ms. So "if"s should looks like this. //event A if(Ticks == 12000) //do things //even B if(Ticks % 10000 == 0) //do stuff But now how can I have this "Ticks" value ? I tried to declare an int and then increasing it in the update method, I tried 2 ways of increasing it : Ticks++; It doesn't works because the update method is not always called every microseconds. Ticks += delta; It's kinda good but the delta is not always equals to 1, so I can miss the precise values I need in the if statements So if you know how can I do events in a precise amount of time please tell me how can I do this

    Read the article

  • What to think about when designing a simple GUI for a quiz game

    - by PeterK
    I am coming close to finish my first iPhone game ever, as a matter of fact also my first programming experience ever, which is a quiz game. I have all the functionality i want and is currently polishing it both from a code point of view as well as looking at the GUI. My initial idea was not to use any specific graphics but rather focus on the game experience and simplicity and by that only using background color, orange, and white text as well as buttons. The design is based on that all ages, from learning to read, should be able to host and play this game. However, as i am now getting close to the finish line i am starting to think what is needed from a GUI point of view. I would like to ask for some advice what to think about when designing a GUI. Is it considered OK without any 'fancy' graphics, what is the risk without it etc.? Also, what colors goes well together if i choose to use a simple GUI. I am thinking about color blindness etc. In other words how do i design a good and effective GUI for a simple game as mine? Thanks

    Read the article

  • Ledge grab and climb in Unity3D

    - by BallzOfSteel
    I just started on a new project. In this project one of the main gameplay mechanics is that you can grab a ledge on certain points in a level and hang on to it. Now my question, since I've been wrestling with this for quite a while now. How could I actually implement this? I have tried it with animations, but it's just really ugly since the player will snap to a certain point where the animation starts.

    Read the article

  • Tower defence game poison tower in fieldrunners dynamics

    - by Syed Ali Haider Abidi
    I had made a 2d tower defence game in unity3d.done all the pathfinder tower upgrading cash stuff.now the dynamics. can one help me in making the dynamics of the paint tower..please remember as its a 2d game so i am working on spritesheets. This tower is more likely poison tower in fieldrunners.fow now i have only one image which follows the enemy but it remains the same but in fieldrunners its more realistic.it changes its direction when the enemies are on different angles.

    Read the article

  • XNA 4.0 - Normal mapping shader - strange texture artifacts

    - by Taylor
    I recently started using custom shader. Shader can do diffuse and specular lighting and normal mapping. But normal mapping is causing really ugly artifacts (some sort of pixeling noise) for textures in greater distance. It looks like this: Image link This is HLSL code: // Matrix float4x4 World : World; float4x4 View : View; float4x4 Projection : Projection; //Textury texture2D ColorMap; sampler2D ColorMapSampler = sampler_state { Texture = <ColorMap>; MinFilter = Anisotropic; MagFilter = Linear; MipFilter = Linear; MaxAnisotropy = 16; }; texture2D NormalMap; sampler2D NormalMapSampler = sampler_state { Texture = <NormalMap>; MinFilter = Anisotropic; MagFilter = Linear; MipFilter = Linear; MaxAnisotropy = 16; }; // Light float4 AmbientColor : Color; float AmbientIntensity; float3 DiffuseDirection : LightPosition; float4 DiffuseColor : Color; float DiffuseIntensity; float4 SpecularColor : Color; float3 CameraPosition : CameraPosition; float Shininess; // The input for the VertexShader struct VertexShaderInput { float4 Position : POSITION0; float2 TexCoord : TEXCOORD0; float3 Normal : NORMAL0; float3 Binormal : BINORMAL0; float3 Tangent : TANGENT0; }; // The output from the vertex shader, used for later processing struct VertexShaderOutput { float4 Position : POSITION0; float2 TexCoord : TEXCOORD0; float3 View : TEXCOORD1; float3x3 WorldToTangentSpace : TEXCOORD2; }; // The VertexShader. VertexShaderOutput VertexShaderFunction(VertexShaderInput input, float3 Normal : NORMAL) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); output.TexCoord = input.TexCoord; output.WorldToTangentSpace[0] = mul(normalize(input.Tangent), World); output.WorldToTangentSpace[1] = mul(normalize(input.Binormal), World); output.WorldToTangentSpace[2] = mul(normalize(input.Normal), World); output.View = normalize(float4(CameraPosition,1.0) - worldPosition); return output; } // The Pixel Shader float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { float4 color = tex2D(ColorMapSampler, input.TexCoord); float3 normalMap = 2.0 *(tex2D(NormalMapSampler, input.TexCoord)) - 1.0; normalMap = normalize(mul(normalMap, input.WorldToTangentSpace)); float4 normal = float4(normalMap,1.0); float4 diffuse = saturate(dot(-DiffuseDirection,normal)); float4 reflect = normalize(2*diffuse*normal-float4(DiffuseDirection,1.0)); float4 specular = pow(saturate(dot(reflect,input.View)), Shininess); return color * AmbientColor * AmbientIntensity + color * DiffuseIntensity * DiffuseColor * diffuse + color * SpecularColor * specular; } // Techniques technique Lighting { pass Pass1 { VertexShader = compile vs_2_0 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } Any advice? Thanks!

    Read the article

  • ASSIMP in my program is much slower to import than ASSIMP view program

    - by Marco
    The problem is really simple: if I try to load with the function aiImportFileExWithProperties a big model in my software (around 200.000 vertices), it takes more than one minute. If I try to load the very same model with ASSIMP view, it takes 2 seconds. For this comparison, both my software and Assimp view are using the dll version of the library at 64 bit, compiled by myself (Assimp64.dll). This is the relevant piece of code in my software // default pp steps unsigned int ppsteps = aiProcess_CalcTangentSpace | // calculate tangents and bitangents if possible aiProcess_JoinIdenticalVertices | // join identical vertices/ optimize indexing aiProcess_ValidateDataStructure | // perform a full validation of the loader's output aiProcess_ImproveCacheLocality | // improve the cache locality of the output vertices aiProcess_RemoveRedundantMaterials | // remove redundant materials aiProcess_FindDegenerates | // remove degenerated polygons from the import aiProcess_FindInvalidData | // detect invalid model data, such as invalid normal vectors aiProcess_GenUVCoords | // convert spherical, cylindrical, box and planar mapping to proper UVs aiProcess_TransformUVCoords | // preprocess UV transformations (scaling, translation ...) aiProcess_FindInstances | // search for instanced meshes and remove them by references to one master aiProcess_LimitBoneWeights | // limit bone weights to 4 per vertex aiProcess_OptimizeMeshes | // join small meshes, if possible; aiProcess_SplitByBoneCount | // split meshes with too many bones. Necessary for our (limited) hardware skinning shader 0; cout << "Loading " << pFile << "... "; aiPropertyStore* props = aiCreatePropertyStore(); aiSetImportPropertyInteger(props,AI_CONFIG_IMPORT_TER_MAKE_UVS,1); aiSetImportPropertyFloat(props,AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,80.f); aiSetImportPropertyInteger(props,AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_LINE | aiPrimitiveType_POINT); aiSetImportPropertyInteger(props,AI_CONFIG_GLOB_MEASURE_TIME,1); //aiSetImportPropertyInteger(props,AI_CONFIG_PP_PTV_KEEP_HIERARCHY,1); // Call ASSIMPs C-API to load the file scene = (aiScene*)aiImportFileExWithProperties(pFile.c_str(), ppsteps | /* default pp steps */ aiProcess_GenSmoothNormals | // generate smooth normal vectors if not existing aiProcess_SplitLargeMeshes | // split large, unrenderable meshes into submeshes aiProcess_Triangulate | // triangulate polygons with more than 3 edges //aiProcess_ConvertToLeftHanded | // convert everything to D3D left handed space aiProcess_SortByPType | // make 'clean' meshes which consist of a single typ of primitives 0, NULL, props); aiReleasePropertyStore(props); if(!scene){ cout << aiGetErrorString() << endl; return 0; } this is the relevant piece of code in assimp view code // default pp steps unsigned int ppsteps = aiProcess_CalcTangentSpace | // calculate tangents and bitangents if possible aiProcess_JoinIdenticalVertices | // join identical vertices/ optimize indexing aiProcess_ValidateDataStructure | // perform a full validation of the loader's output aiProcess_ImproveCacheLocality | // improve the cache locality of the output vertices aiProcess_RemoveRedundantMaterials | // remove redundant materials aiProcess_FindDegenerates | // remove degenerated polygons from the import aiProcess_FindInvalidData | // detect invalid model data, such as invalid normal vectors aiProcess_GenUVCoords | // convert spherical, cylindrical, box and planar mapping to proper UVs aiProcess_TransformUVCoords | // preprocess UV transformations (scaling, translation ...) aiProcess_FindInstances | // search for instanced meshes and remove them by references to one master aiProcess_LimitBoneWeights | // limit bone weights to 4 per vertex aiProcess_OptimizeMeshes | // join small meshes, if possible; aiProcess_SplitByBoneCount | // split meshes with too many bones. Necessary for our (limited) hardware skinning shader 0; aiPropertyStore* props = aiCreatePropertyStore(); aiSetImportPropertyInteger(props,AI_CONFIG_IMPORT_TER_MAKE_UVS,1); aiSetImportPropertyFloat(props,AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE,g_smoothAngle); aiSetImportPropertyInteger(props,AI_CONFIG_PP_SBP_REMOVE,nopointslines ? aiPrimitiveType_LINE | aiPrimitiveType_POINT : 0 ); aiSetImportPropertyInteger(props,AI_CONFIG_GLOB_MEASURE_TIME,1); //aiSetImportPropertyInteger(props,AI_CONFIG_PP_PTV_KEEP_HIERARCHY,1); // Call ASSIMPs C-API to load the file g_pcAsset->pcScene = (aiScene*)aiImportFileExWithProperties(g_szFileName, ppsteps | /* configurable pp steps */ aiProcess_GenSmoothNormals | // generate smooth normal vectors if not existing aiProcess_SplitLargeMeshes | // split large, unrenderable meshes into submeshes aiProcess_Triangulate | // triangulate polygons with more than 3 edges aiProcess_ConvertToLeftHanded | // convert everything to D3D left handed space aiProcess_SortByPType | // make 'clean' meshes which consist of a single typ of primitives 0, NULL, props); aiReleasePropertyStore(props); As you can see the code is nearly identical because I copied from assimp view. What could be the reason for such a difference in performance? The two software are using the same dll Assimp64.dll (compiled in my computer with vc++ 2010 express) and the same function aiImportFileExWithProperties to load the model, so I assume that the actual code employed is the same. How is it possible that the function aiImportFileExWithProperties is 100 times slower when called by my sotware than when called by assimp view? What am I missing? I am not good with dll, dynamic and static libraries so I might be missing something obvious. ------------------------------ UPDATE I found out the reason why the code is going slower. Basically I was running my software with "Start debugging" in VC++ 2010 Express. If I run the code outside VC++ 2010 I get same performance of assimp view. However now I have a new question. Why does the dll perform slower in VC++ debugging? I compiled it in release mode without debugging information. Is there any way to have the dll go fast in debugmode i.e. not debugging the dll? Because I am interested in debugging only my own code, not the dll that I assume is already working fine. I do not want to wait 2 minutes every time I want to load my software to debug. Does this request make sense?

    Read the article

  • Drawing beam effect in UDK?

    - by sgrif
    I'm having trouble drawing a particle effect between two actors in UDK - Both the source and the target are not static objects, so as far as I can tell I need to do it in the code not in kismet. Here's what I've got at the moment and it seems to not be doing anything at all. Ideas? BeamEmitter[0] = new(self) class'UTParticleSystemComponent'; BeamEmitter[0].SetAbsolute(false, false, false); BeamEmitter[0].SetTemplate(BeamTemplate[0]); BeamEmitter[0].SetTickGroup(TG_PostUpdateWork); BeamEmitter[0].bUpdateComponentInTick = true; self.AttachComponent(BeamEmitter[0]); BeamEmitter[0].SetBeamEndPoint(2, tarPos); BeamEmitter[0].ActivateSystem();

    Read the article

  • Does XNA 4 support 3D affine transformations for 2D images?

    - by Paul Baker Salt Shaker
    Looooong story short I'm essentially trying to code Mode 7 in XNA. Before I continue bashing my brains out in research and various failed matrix math equations; I just want to make sure that XNA supports this just out-of-the-box (so to speak). I'd prefer not to have to import other libraries, because I want to learn how it works myself that way I understand the whole thing better. However that's all for naught if it won't work at all. So no opengl, directx, etc if possible (will eventually do it just to optimize everything, but not for now). tl;dr: Can I has Mode 7 in XNA?

    Read the article

  • XNA: Rotating Bones

    - by MLM
    XNA 4.0 I am trying to learn how to rotate bones on a very simple tank model I made in Cinema 4D. It is rigged by 3 bones, Root - Main - Turret - Barrel I have binded all of the objects to the bones so that all translations/rotations work as planned in C4D. I exported it as .fbx I based my test project after: http://create.msdn.com/en-US/education/catalog/sample/simple_animation I can build successfully with no errors but all the rotations I try to do to my bones have no effect. I can transform my Root successfully using below but the bone transforms have no effect: myModel.Root.Transform = world; Matrix turretRotation = Matrix.CreateRotationY(MathHelper.ToRadians(37)); Matrix barrelRotation = Matrix.CreateRotationX(barrelRotationValue); MainBone.Transform = MainTransform; TurretBone.Transform = turretRotation * TurretTransform; BarrelBone.Transform = barrelRotation * BarrelTransform; I am wondering if my model is just not right or something important I am missing in the code. Here is my Game1.cs using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace ModelTesting { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; float aspectRatio; Tank myModel; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here myModel = new Tank(); base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: use this.Content to load your game content here myModel.Load(Content); aspectRatio = graphics.GraphicsDevice.Viewport.AspectRatio; } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); // TODO: Add your update logic here float time = (float)gameTime.TotalGameTime.TotalSeconds; // Move the pieces /* myModel.TurretRotation = (float)Math.Sin(time * 0.333f) * 1.25f; myModel.BarrelRotation = (float)Math.Sin(time * 0.25f) * 0.333f - 0.333f; */ base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.CornflowerBlue); // Calculate the camera matrices. float time = (float)gameTime.TotalGameTime.TotalSeconds; Matrix rotation = Matrix.CreateRotationY(MathHelper.ToRadians(45)); Matrix view = Matrix.CreateLookAt(new Vector3(2000, 500, 0), new Vector3(0, 150, 0), Vector3.Up); Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4, graphics.GraphicsDevice.Viewport.AspectRatio, 10, 10000); // TODO: Add your drawing code here myModel.Draw(rotation, view, projection); base.Draw(gameTime); } } } And here is my tank class: using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; namespace ModelTesting { public class Tank { Model myModel; // Array holding all the bone transform matrices for the entire model. // We could just allocate this locally inside the Draw method, but it // is more efficient to reuse a single array, as this avoids creating // unnecessary garbage. public Matrix[] boneTransforms; // Shortcut references to the bones that we are going to animate. // We could just look these up inside the Draw method, but it is more // efficient to do the lookups while loading and cache the results. ModelBone MainBone; ModelBone TurretBone; ModelBone BarrelBone; // Store the original transform matrix for each animating bone. Matrix MainTransform; Matrix TurretTransform; Matrix BarrelTransform; // current animation positions float turretRotationValue; float barrelRotationValue; /// <summary> /// Gets or sets the turret rotation amount. /// </summary> public float TurretRotation { get { return turretRotationValue; } set { turretRotationValue = value; } } /// <summary> /// Gets or sets the barrel rotation amount. /// </summary> public float BarrelRotation { get { return barrelRotationValue; } set { barrelRotationValue = value; } } /// <summary> /// Load the model /// </summary> public void Load(ContentManager Content) { // TODO: use this.Content to load your game content here myModel = Content.Load<Model>("Models\\simple_tank02"); MainBone = myModel.Bones["Main"]; TurretBone = myModel.Bones["Turret"]; BarrelBone = myModel.Bones["Barrel"]; MainTransform = MainBone.Transform; TurretTransform = TurretBone.Transform; BarrelTransform = BarrelBone.Transform; // Allocate the transform matrix array. boneTransforms = new Matrix[myModel.Bones.Count]; } public void Draw(Matrix world, Matrix view, Matrix projection) { myModel.Root.Transform = world; Matrix turretRotation = Matrix.CreateRotationY(MathHelper.ToRadians(37)); Matrix barrelRotation = Matrix.CreateRotationX(barrelRotationValue); MainBone.Transform = MainTransform; TurretBone.Transform = turretRotation * TurretTransform; BarrelBone.Transform = barrelRotation * BarrelTransform; myModel.CopyAbsoluteBoneTransformsTo(boneTransforms); // Draw the model, a model can have multiple meshes, so loop foreach (ModelMesh mesh in myModel.Meshes) { // This is where the mesh orientation is set foreach (BasicEffect effect in mesh.Effects) { effect.World = boneTransforms[mesh.ParentBone.Index]; effect.View = view; effect.Projection = projection; effect.EnableDefaultLighting(); } // Draw the mesh, will use the effects set above mesh.Draw(); } } } }

    Read the article

  • Using textureGrad for anisotropic integration approximation

    - by Amxx
    I'm trying to develop a real time rendering method using real time acquired envmap (cubemap) for lightning. This implies that my envmap can change as often as every frame and I therefore cannot use any method base on precomputation of the envmap (such as convolution with BRDF...) So far my method worked well with Phong BRDF. For specular contribution I direclty read the value in my sampleCube and I use mipmap levels + linear filter for simulating the roughtness of the material considered: int size = textureSize(envmap, 0).x; float specular_level = log2(size * sqrt(3.0)) - 0.5 * log2(ns + 1); vec3 env_specular = ks * specular_color * textureLod(envmap, l_g, specular_level); From this method I would like to upgrade to a microfacet based BRDF. I already have algorithm for evaluating the shape (including anisotropic direction) of the reflection but I cannot manage to read the values I want in my sampleCube. I believe I have to use textureGrad(envmap, l_g, X, Y); with l_g being the reflection direction in global space but I cannot manage to find which values to give to X and Y in order to correctly specify the area I want to consider. What value should I give to X and Y in orther for textureGrad(envmap, l_g, X, Y); to give the same result as textureLod(envmap, l_g, specular_level);

    Read the article

  • Converting to and from local and world 3D coordinate spaces?

    - by James Bedford
    Hey guys, I've been following a guide I found here (http://knol.google.com/k/matrices-for-3d-applications-view-transformation) on constructing a matrix that will allow me to 3D coordinates to an object's local coordinate space, and back again. I've tried to implement these two matrices using my object's look, side, up and location vectors and it seems to be working for the first three coordinates. I'm a little confused as to what I should expect for the w coordinate. Here are couple of examples from the print outs I've made of the matricies that are constructed. I'm passing a test vector of [9, 8, 14, 1] each time to see if I can convert both ways: Basic example: localize matrix: Matrix: 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 5.237297 -45.530716 11.021271 1.000000 globalize matrix: Matrix: 0.000000 0.000000 1.000000 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 -11.021271 -45.530716 -5.237297 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(14.000000, 8.000000, 9.000000, -161.812256) worldTest: Vector4f(9.000000, 8.000000, 14.000000, -727.491455) More complicated example: localize matrix: Matrix: 0.052504 -0.000689 -0.998258 0.000000 0.052431 0.998260 0.002068 0.000000 0.997241 -0.052486 0.052486 0.000000 58.806095 2.979346 -39.396252 1.000000 globalize matrix: Matrix: 0.052504 0.052431 0.997241 0.000000 -0.000689 0.998260 -0.052486 0.000000 -0.998258 0.002068 0.052486 0.000000 -42.413120 5.975957 -56.419727 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(-13.508600, 8.486917, 9.290090, 2.542114) worldTest: Vector4f(9.000190, 7.993863, 13.990230, 102.057129) As you can see in the more complicated example, the coordinates after converting both ways loose some precision, but this isn't a problem. I'm just wondering how I should deal with the last (w) coordinate? Should I just set it to 1 after performing the matrix multiplication, or does it look like I've done something wrong? Thanks in advance for your help!

    Read the article

  • Issue with multiplayer interpolation

    - by Ben Cracknell
    In a fast-paced multiplayer game I'm working on, there is an issue with the interpolation algorithm. You can see it clearly in the image below. Cyan: Local position when a packet is received Red: Position received from packet (goal) Blue: Line from local position to goal when packet is received Black: Local position every frame As you can see, the local position seems to oscillate around the goals instead of moving between them smoothly. Here is the code: // local transform position when the last packet arrived. Will lerp from here to the goal private Vector3 positionAtLastPacket; // location received from last packet private Vector3 goal; // time since the last packet arrived private float currentTime; // estimated time to reach goal (also the expected time of the next packet) private float timeToReachGoal; private void PacketReceived(Vector3 position, float timeBetweenPackets) { positionAtLastPacket = transform.position; goal = position; timeToReachGoal = timeBetweenPackets; currentTime = 0; Debug.DrawRay(transform.position, Vector3.up, Color.cyan, 5); // current local position Debug.DrawLine(transform.position, goal, Color.blue, 5); // path to goal Debug.DrawRay(goal, Vector3.up, Color.red, 5); // received goal position } private void FrameUpdate() { currentTime += Time.deltaTime; float delta = currentTime/timeToReachGoal; transform.position = FreeLerp(positionAtLastPacket, goal, currentTime / timeToReachGoal); // current local position Debug.DrawRay(transform.position, Vector3.up * 0.5f, Color.black, 5); } /// <summary> /// Lerp without being locked to 0-1 /// </summary> Vector3 FreeLerp(Vector3 from, Vector3 to, float t) { return from + (to - from) * t; } Any idea about what's going on?

    Read the article

  • Game Over function is not working Starling

    - by aNgeLyN omar
    I've been following a tutorial over the web but it somehow did not show something about creating a game over function. I am new to the Starling framework and Actionscript so I'm kind of still trying to find a way to make it work. Here's the complete snippet of the code. package screens { import flash.geom.Rectangle; import flash.utils.getTimer; import events.NavigationEvent; import objects.GameBackground; import objects.Hero; import objects.Item; import objects.Obstacle; import starling.display.Button; import starling.display.Image; import starling.display.Sprite; import starling.events.Event; import starling.events.Touch; import starling.events.TouchEvent; import starling.text.TextField; import starling.utils.deg2rad; public class InGame extends Sprite { private var screenInGame:InGame; private var screenWelcome:Welcome; private var startButton:Button; private var playAgain:Button; private var bg:GameBackground; private var hero:Hero; private var timePrevious:Number; private var timeCurrent:Number; private var elapsed:Number; private var gameState:String; private var playerSpeed:Number = 0; private var hitObstacle:Number = 0; private const MIN_SPEED:Number = 650; private var scoreDistance:int; private var obstacleGapCount:int; private var gameArea:Rectangle; private var touch:Touch; private var touchX:Number; private var touchY:Number; private var obstaclesToAnimate:Vector.<Obstacle>; private var itemsToAnimate:Vector.<Item>; private var scoreText:TextField; private var remainingLives:TextField; private var gameOverText:TextField; private var iconSmall:Image; static private var lives:Number = 2; public function InGame() { super(); this.addEventListener(starling.events.Event.ADDED_TO_STAGE, onAddedToStage); } private function onAddedToStage(event:Event):void { this.removeEventListener(Event.ADDED_TO_STAGE, onAddedToStage); drawGame(); scoreText = new TextField(300, 100, "Score: 0", "MyFontName", 35, 0xD9D919, true); remainingLives = new TextField(600, 100, "Lives: " + lives +" X ", "MyFontName", 35, 0xD9D919, true); iconSmall = new Image(Assets.getAtlas().getTexture("darnahead1")); iconSmall.x = 360; iconSmall.y = 40; this.addChild(iconSmall); this.addChild(scoreText); this.addChild(remainingLives); } private function drawGame():void { bg = new GameBackground(); this.addChild(bg); hero = new Hero(); hero.x = stage.stageHeight / 2; hero.y = stage.stageWidth / 2; this.addChild(hero); startButton = new Button(Assets.getAtlas().getTexture("startButton")); startButton.x = stage.stageWidth * 0.5 - startButton.width * 0.5; startButton.y = stage.stageHeight * 0.5 - startButton.height * 0.5; this.addChild(startButton); gameArea = new Rectangle(0, 100, stage.stageWidth, stage.stageHeight - 250); } public function disposeTemporarily():void { this.visible = false; } public function initialize():void { this.visible = true; this.addEventListener(Event.ENTER_FRAME, checkElapsed); hero.x = -stage.stageWidth; hero.y = stage.stageHeight * 0.5; gameState ="idle"; playerSpeed = 0; hitObstacle = 0; bg.speed = 0; scoreDistance = 0; obstacleGapCount = 0; obstaclesToAnimate = new Vector.<Obstacle>(); itemsToAnimate = new Vector.<Item>(); startButton.addEventListener(Event.TRIGGERED, onStartButtonClick); //var mainStage:InGame =InGame.current.nativeStage; //mainStage.dispatchEvent(new Event(Event.COMPLETE)); //playAgain.addEventListener(Event.TRIGGERED, onRetry); } private function onStartButtonClick(event:Event):void { startButton.visible = false; startButton.removeEventListener(Event.TRIGGERED, onStartButtonClick); launchHero(); } private function launchHero():void { this.addEventListener(TouchEvent.TOUCH, onTouch); this.addEventListener(Event.ENTER_FRAME, onGameTick); } private function onTouch(event:TouchEvent):void { touch = event.getTouch(stage); touchX = touch.globalX; touchY = touch.globalY; } private function onGameTick(event:Event):void { switch(gameState) { case "idle": if(hero.x < stage.stageWidth * 0.5 * 0.5) { hero.x += ((stage.stageWidth * 0.5 * 0.5 + 10) - hero.x) * 0.05; hero.y = stage.stageHeight * 0.5; playerSpeed += (MIN_SPEED - playerSpeed) * 0.05; bg.speed = playerSpeed * elapsed; } else { gameState = "flying"; } break; case "flying": if(hitObstacle <= 0) { hero.y -= (hero.y - touchY) * 0.1; if(-(hero.y - touchY) < 150 && -(hero.y - touchY) > -150) { hero.rotation = deg2rad(-(hero.y - touchY) * 0.2); } if(hero.y > gameArea.bottom - hero.height * 0.5) { hero.y = gameArea.bottom - hero.height * 0.5; hero.rotation = deg2rad(0); } if(hero.y < gameArea.top + hero.height * 0.5) { hero.y = gameArea.top + hero.height * 0.5; hero.rotation = deg2rad(0); } } else { hitObstacle-- cameraShake(); } playerSpeed -= (playerSpeed - MIN_SPEED) * 0.01; bg.speed = playerSpeed * elapsed; scoreDistance += (playerSpeed * elapsed) * 0.1; scoreText.text = "Score: " + scoreDistance; initObstacle(); animateObstacles(); createEggItems(); animateItems(); remainingLives.text = "Lives: "+lives + " X "; if(lives == 0) { gameState = "over"; } break; case "over": gameOver(); break; } } private function gameOver():void { gameOverText = new TextField(800, 400, "Hero WAS KILLED!!!", "MyFontName", 50, 0xD9D919, true); scoreText = new TextField(800, 600, "Score: "+scoreDistance, "MyFontName", 30, 0xFFFFFF, true); this.addChild(scoreText); this.addChild(gameOverText); playAgain = new Button(Assets.getAtlas().getTexture("button_tryAgain")); playAgain.x = stage.stageWidth * 0.5 - startButton.width * 0.5; playAgain.y = stage.stageHeight * 0.75 - startButton.height * 0.75; this.addChild(playAgain); playAgain.addEventListener(Event.TRIGGERED, onRetry); } private function onRetry(event:Event):void { playAgain.visible = false; gameOverText.visible = false; scoreText.visible = false; var btnClicked:Button = event.target as Button; if((btnClicked as Button) == playAgain) { this.dispatchEvent(new NavigationEvent(NavigationEvent.CHANGE_SCREEN, {id: "playnow"}, true)); } disposeTemporarily(); } private function animateItems():void { var itemToTrack:Item; for(var i:uint = 0; i < itemsToAnimate.length; i++) { itemToTrack = itemsToAnimate[i]; itemToTrack.x -= playerSpeed * elapsed; if(itemToTrack.bounds.intersects(hero.bounds)) { itemsToAnimate.splice(i, 1); this.removeChild(itemToTrack); } if(itemToTrack.x < -50) { itemsToAnimate.splice(i, 1); this.removeChild(itemToTrack); } } } private function createEggItems():void { if(Math.random() > 0.95){ var itemToTrack:Item = new Item(Math.ceil(Math.random() * 10)); itemToTrack.x = stage.stageWidth + 50; itemToTrack.y = int(Math.random() * (gameArea.bottom - gameArea.top)) + gameArea.top; this.addChild(itemToTrack); itemsToAnimate.push(itemToTrack); } } private function cameraShake():void { if(hitObstacle > 0) { this.x = Math.random() * hitObstacle; this.y = Math.random() * hitObstacle; } else if(x != 0) { this.x = 0; this.y = 0; lives--; } } private function initObstacle():void { if(obstacleGapCount < 1200) { obstacleGapCount += playerSpeed * elapsed; } else if(obstacleGapCount !=0) { obstacleGapCount = 0; createObstacle(Math.ceil(Math.random() * 5), Math.random() * 1000 + 1000); } } private function animateObstacles():void { var obstacleToTrack:Obstacle; for(var i:uint = 0; i<obstaclesToAnimate.length; i++) { obstacleToTrack = obstaclesToAnimate[i]; if(obstacleToTrack.alreadyHit == false && obstacleToTrack.bounds.intersects(hero.bounds)) { obstacleToTrack.alreadyHit = true; obstacleToTrack.rotation = deg2rad(70); hitObstacle = 30; playerSpeed *= 0.5; } if(obstacleToTrack.distance > 0) { obstacleToTrack.distance -= playerSpeed * elapsed; } else { if(obstacleToTrack.watchOut) { obstacleToTrack.watchOut = false; } obstacleToTrack.x -= (playerSpeed + obstacleToTrack.speed) * elapsed; } if(obstacleToTrack.x < -obstacleToTrack.width || gameState == "over") { obstaclesToAnimate.splice(i, 1); this.removeChild(obstacleToTrack); } } } private function checkElapsed(event:Event):void { timePrevious = timeCurrent; timeCurrent = getTimer(); elapsed = (timeCurrent - timePrevious) * 0.001; } private function createObstacle(type:Number, distance:Number):void{ var obstacle:Obstacle = new Obstacle(type, distance, true, 300); obstacle.x = stage.stageWidth; this.addChild(obstacle); if(type >= 4) { if(Math.random() > 0.5) { obstacle.y = gameArea.top; obstacle.position = "top" } else { obstacle.y = gameArea.bottom - obstacle.height; obstacle.position = "bottom"; } } else { obstacle.y = int(Math.random() * (gameArea.bottom - obstacle.height - gameArea.top)) + gameArea.top; obstacle.position = "middle"; } obstaclesToAnimate.push(obstacle); } } }

    Read the article

  • Improving SpriteBatch performance for tiles

    - by Richard Rast
    I realize this is a variation on what has got to be a common question, but after reading several (good answers) I'm no closer to a solution here. So here's my situation: I'm making a 2D game which has (among some other things) a tiled world, and so, drawing this world implies drawing a jillion tiles each frame (depending on resolution: it's roughly a 64x32 tile with some transparency). Now I want the user to be able to maximize the game (or fullscreen mode, actually, as its a bit more efficient) and instead of scaling textures (bleagh) this will just allow lots and lots of tiles to be shown at once. Which is great! But it turns out this makes upward of 2000 tiles on the screen each time, and this is framerate-limiting (I've commented out enough other parts of the game to make sure this is the bottleneck). It gets worse if I use multiple source rectangles on the same texture (I use a tilesheet; I believe changing textures entirely makes things worse), or if you tint the tiles, or whatever. So, the general question is this: What are some general methods for improving the drawing of thousands of repetitive sprites? Answers pertaining to XNA's SpriteBatch would be helpful but I'm equally happy with general theory. Also, any tricks pertaining to this situation in particular (drawing a tiled world efficiently) are also welcome. I really do want to draw all of them, though, and I need the SpriteMode.BackToFront to be active, because

    Read the article

  • Design pattern for animation sequence in LibGDX

    - by kevinyu
    What design pattern to use for sequence of animation that involve different actor in libGDX. For example I am making a game to choose a wolf from a group of sheeps. The first animation played when the game begin is the wolf enter the field that is filled with two sheeps.Then the wolf disguise as a sheep and goes to the center of the screen. Then the game will shuffle the sheeps. After it finished it will ask the player where is the wolf. The game wait for player input. After that the game will show animation to show the player whether their answer is right or wrong. I am currently using State design pattern. There are four states wolfEnterState,DisguiseState,ShuffleState,UserInputState, and answerAnimationState. I feel that my code is messy. I use addAction with action sequence and action completion(new Runnable()) a lot. I feel that the action sequence is getting long. Is there a better solution for this kind of problem

    Read the article

  • What is the kd tree intersection logic?

    - by bobobobo
    I'm trying to figure out how to implement a KD tree. On page 322 of "Real time collision detection" by Ericson The text section is included below in case Google book preview doesn't let you see it the time you click the link text section Relevant section: The basic idea behind intersecting a ray or directed line segment with a k-d tree is straightforward. The line is intersected against the node's splitting plane, and the t value of intersection is computed. If t is within the interval of the line, 0 <= t <= tmax, the line straddles the plane and both children of the tree are recursively descended. If not, only the side containing the segment origin is recursively visited. So here's what I have: (open image in new tab if you can't see the lettering) The logical tree Here the orange ray is going thru the 3d scene. The x's represent intersection with a plane. From the LEFT, the ray hits: The front face of the scene's enclosing cube, The (1) splitting plane The (2.2) splitting plane The right side of the scene's enclosing cube But here's what would happen, naively following Ericson's basic description above: Test against splitting plane (1). Ray hits splitting plane (1), so left and right children of splitting plane (1) are included in next test. Test against splitting plane (2.1). Ray actually hits that plane, (way off to the right) so both children are included in next level of tests. (This is counter-intuitive - shouldn't only the bottom node be included in subsequent tests) Can some one describe what happens when the orange ray goes through the scene correctly?

    Read the article

< Previous Page | 402 403 404 405 406 407 408 409 410 411 412 413  | Next Page >