Search Results

Search found 16688 results on 668 pages for 'expression language'.

Page 408/668 | < Previous Page | 404 405 406 407 408 409 410 411 412 413 414 415  | Next Page >

  • [Linux] Incremental search on command line?

    - by florianbw
    I'd like to write small scripts which feature incremental search (find-as-you-type) on the command line. Use case: I have my mobile phone connected via USB, Using gammu --sendsms TEXT I can write text messages. I have the phonebook as CSV, and want to search-as-i-type on that. What's the easiest/best way to do it? It might be in bash/zsh/perl/python or any other scripting language. Thanks!

    Read the article

  • Why are interfaces unusable in PHP?

    - by streetparade
    I mean an interface definition without defining the return type makes it unusable? This makes more Clear Interface run { public function getInteger(); } class MyString implements run { public function myNumber() { } public function getInteger() { return "Not a number"; } } In Java every Interface has a return type like Integer,String,Void I know that PHP is unfortunately a loosly typed Language but isnt there a Solution for that Problem? Is it Possible to defining a Interface with a Return type like Integer?

    Read the article

  • Writing a script in Java?

    - by giri
    I am working with telecom company. I am familiar with Java programming language. But now I have a task to write a script, with Linux operating systems. I have to write a script for fetching data from other computer and check some conditions. How can I do that using Java?

    Read the article

  • SWT-like GUI toolkit for C

    - by user345409
    Hello, do you know any cross-platform gui toolkit like swt for C (using default widgets in each operating system = right pics on eclipse.org/swt) ? There is an implementation of swt for D language called DWT but I need it for C or C++. Thanks.

    Read the article

  • remove repeated vaules _stack&array

    - by Fatimah
    I want to write a program to implement an array-based stack, which accept integer numbers entered by the user.the program will then identify any occurrences of a given value from user and remove the repeated values from the stack,(using Java programming language). I just need your help of writing (removing values method) e.g. input:6 2 3 4 3 8 output:6 2 4 8

    Read the article

  • Are there any data-binding solution that works in C++ and GWT and supports structures polymorphism?

    - by user116854
    I expect it should share a common description, like XmlSchema or IDL and should generate classes for target language. I found Thrift and it's really nice solution, but it doesn't support structures polymorphism. I would like to have collections of base class objects, where I could place instances of subclasses, serialize this and deserialize at the opposite side. Some mechanism of polymorphic behavior support, like Visitor, would be a perfect. Does anybody know something suitable for these requirements?

    Read the article

  • detect when a webpage is updated

    - by Martin Trigaux
    Hello, There is a website (very simple) which will be updated soon and I'd like to receive an alert at the moment it changes (like a sound, a popup,...) I guess I should send request every x minutes and compare the result with what's now but I don't know how to do that. I don't really care about the language used, I know java, python, php, a bit of c and bash (I'm on linux)... Thank you

    Read the article

  • Intermediate values in C++

    - by sterh
    Hello. I can not find how to implement a design in C++. In the language of Delphi in case the operator can write the following design: case s[j] of '0'..'9','A'..'Z','a'..'z','_': doSomeThing(); How can i do the same in c++. Attracts me is the construction type 'a' .. 'z' and etc... Thank you

    Read the article

  • Classification question

    - by adam
    If php and ruby are languages, and cake and rails are frameworks, how do CMS like drupal and joomla fit into the scheme... can you use them in any language and any framework?

    Read the article

  • Is UTF-8 enough for all common languages?

    - by jack
    I just wanted to develop a translation app in a Django projects which enables registered users with certain permissions to translate every single message it appears in latest version. My question is, what character set should I use for database tables in this translation app? Looks like some european language characters cannot be stored in UTF-8?

    Read the article

  • Suspend orientation change

    - by OkyDokyman
    Documentation says: "a configuration change (such as a change in screen orientation, language, input devices, etc) will cause your current activity to be destroyed, going through the normal activity lifecycle process of onPause(), onStop(), and onDestroy()." I would like to suspend the orientation change, since it crashes my app if it was done in the middle of a a loop (of reading a file). How can I do this? Also - looking for some kind of "onOrientationChnage" function :)

    Read the article

  • has c++ outlived its usefulness? [closed]

    - by user303030
    With the advent of more powerful computers and the difficulties with memory management, pointers and archaic mechanisms for constructing functions and classes, has C++ outlived its usefulness? Have the problems and challenges with development made this language too difficult to understand?

    Read the article

  • What is Linq?

    - by Aamir Hasan
    The way data can be retrieved in .NET. LINQ provides a uniform way to retrieve data from any object that implements the IEnumerable<T> interface. With LINQ, arrays, collections, relational data, and XML are all potential data sources. Why LINQ?With LINQ, you can use the same syntax to retrieve data from any data source:var query = from e in employeeswhere e.id == 1select e.nameThe middle level represents the three main parts of the LINQ project: LINQ to Objects is an API that provides methods that represent a set of standard query operators (SQOs) to retrieve data from any object whose class implements the IEnumerable<T> interface. These queries are performed against in-memory data.LINQ to ADO.NET augments SQOs to work against relational data. It is composed of three parts.LINQ to SQL (formerly DLinq) is use to query relational databases such as Microsoft SQL Server. LINQ to DataSet supports queries by using ADO.NET data sets and data tables. LINQ to Entities is a Microsoft ORM solution, allowing developers to use Entities (an ADO.NET 3.0 feature) to declaratively specify the structure of business objects and use LINQ to query them. LINQ to XML (formerly XLinq) not only augments SQOs but also includes a host of XML-specific features for XML document creation and queries. What You Need to Use LINQLINQ is a combination of extensions to .NET languages and class libraries that support them. To use it, you’ll need the following: Obviously LINQ, which is available from the new Microsoft .NET Framework 3.5 that you can download at http://go.microsoft.com/?linkid=7755937.You can speed up your application development time with LINQ using Visual Studio 2008, which offers visual tools such as LINQ to SQL designer and the Intellisense  support with LINQ’s syntax.Optionally, you can download the Visual C# 2008 Expression Edition tool at www.microsoft.com/vstudio/express/download. It is the free edition of Visual Studio 2008 and offers a lot of LINQ support such as Intellisense and LINQ to SQL designer. To use LINQ to ADO.NET, you need SQL

    Read the article

  • Parallelism in .NET – Part 2, Simple Imperative Data Parallelism

    - by Reed
    In my discussion of Decomposition of the problem space, I mentioned that Data Decomposition is often the simplest abstraction to use when trying to parallelize a routine.  If a problem can be decomposed based off the data, we will often want to use what MSDN refers to as Data Parallelism as our strategy for implementing our routine.  The Task Parallel Library in .NET 4 makes implementing Data Parallelism, for most cases, very simple. Data Parallelism is the main technique we use to parallelize a routine which can be decomposed based off data.  Data Parallelism refers to taking a single collection of data, and having a single operation be performed concurrently on elements in the collection.  One side note here: Data Parallelism is also sometimes referred to as the Loop Parallelism Pattern or Loop-level Parallelism.  In general, for this series, I will try to use the terminology used in the MSDN Documentation for the Task Parallel Library.  This should make it easier to investigate these topics in more detail. Once we’ve determined we have a problem that, potentially, can be decomposed based on data, implementation using Data Parallelism in the TPL is quite simple.  Let’s take our example from the Data Decomposition discussion – a simple contrast stretching filter.  Here, we have a collection of data (pixels), and we need to run a simple operation on each element of the pixel.  Once we know the minimum and maximum values, we most likely would have some simple code like the following: for (int row=0; row < pixelData.GetUpperBound(0); ++row) { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This simple routine loops through a two dimensional array of pixelData, and calls the AdjustContrast routine on each pixel. As I mentioned, when you’re decomposing a problem space, most iteration statements are potentially candidates for data decomposition.  Here, we’re using two for loops – one looping through rows in the image, and a second nested loop iterating through the columns.  We then perform one, independent operation on each element based on those loop positions. This is a prime candidate – we have no shared data, no dependencies on anything but the pixel which we want to change.  Since we’re using a for loop, we can easily parallelize this using the Parallel.For method in the TPL: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Here, by simply changing our first for loop to a call to Parallel.For, we can parallelize this portion of our routine.  Parallel.For works, as do many methods in the TPL, by creating a delegate and using it as an argument to a method.  In this case, our for loop iteration block becomes a delegate creating via a lambda expression.  This lets you write code that, superficially, looks similar to the familiar for loop, but functions quite differently at runtime. We could easily do this to our second for loop as well, but that may not be a good idea.  There is a balance to be struck when writing parallel code.  We want to have enough work items to keep all of our processors busy, but the more we partition our data, the more overhead we introduce.  In this case, we have an image of data – most likely hundreds of pixels in both dimensions.  By just parallelizing our first loop, each row of pixels can be run as a single task.  With hundreds of rows of data, we are providing fine enough granularity to keep all of our processors busy. If we parallelize both loops, we’re potentially creating millions of independent tasks.  This introduces extra overhead with no extra gain, and will actually reduce our overall performance.  This leads to my first guideline when writing parallel code: Partition your problem into enough tasks to keep each processor busy throughout the operation, but not more than necessary to keep each processor busy. Also note that I parallelized the outer loop.  I could have just as easily partitioned the inner loop.  However, partitioning the inner loop would have led to many more discrete work items, each with a smaller amount of work (operate on one pixel instead of one row of pixels).  My second guideline when writing parallel code reflects this: Partition your problem in a way to place the most work possible into each task. This typically means, in practice, that you will want to parallelize the routine at the “highest” point possible in the routine, typically the outermost loop.  If you’re looking at parallelizing methods which call other methods, you’ll want to try to partition your work high up in the stack – as you get into lower level methods, the performance impact of parallelizing your routines may not overcome the overhead introduced. Parallel.For works great for situations where we know the number of elements we’re going to process in advance.  If we’re iterating through an IList<T> or an array, this is a typical approach.  However, there are other iteration statements common in C#.  In many situations, we’ll use foreach instead of a for loop.  This can be more understandable and easier to read, but also has the advantage of working with collections which only implement IEnumerable<T>, where we do not know the number of elements involved in advance. As an example, lets take the following situation.  Say we have a collection of Customers, and we want to iterate through each customer, check some information about the customer, and if a certain case is met, send an email to the customer and update our instance to reflect this change.  Normally, this might look something like: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } } Here, we’re doing a fair amount of work for each customer in our collection, but we don’t know how many customers exist.  If we assume that theStore.GetLastContact(customer) and theStore.EmailCustomer(customer) are both side-effect free, thread safe operations, we could parallelize this using Parallel.ForEach: Parallel.ForEach(customers, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); Just like Parallel.For, we rework our loop into a method call accepting a delegate created via a lambda expression.  This keeps our new code very similar to our original iteration statement, however, this will now execute in parallel.  The same guidelines apply with Parallel.ForEach as with Parallel.For. The other iteration statements, do and while, do not have direct equivalents in the Task Parallel Library.  These, however, are very easy to implement using Parallel.ForEach and the yield keyword. Most applications can benefit from implementing some form of Data Parallelism.  Iterating through collections and performing “work” is a very common pattern in nearly every application.  When the problem can be decomposed by data, we often can parallelize the workload by merely changing foreach statements to Parallel.ForEach method calls, and for loops to Parallel.For method calls.  Any time your program operates on a collection, and does a set of work on each item in the collection where that work is not dependent on other information, you very likely have an opportunity to parallelize your routine.

    Read the article

< Previous Page | 404 405 406 407 408 409 410 411 412 413 414 415  | Next Page >