Search Results

Search found 2896 results on 116 pages for 'comparison operators'.

Page 43/116 | < Previous Page | 39 40 41 42 43 44 45 46 47 48 49 50  | Next Page >

  • Fastest reliable way for Clojure (Java) and Ruby apps to communicate

    - by jkndrkn
    Hi There, We have cloud-hosted (RackSpace cloud) Ruby and Java apps that will interact as follows: Ruby app sends a request to Java app. Request consists of map structure containing strings, integers, other maps, and lists (analogous to JSON). Java app analyzes data and sends reply to Ruby App. We are interested in evaluating both messaging formats (JSON, Buffer Protocols, Thrift, etc.) as well as message transmission channels/techniques (sockets, message queues, RPC, REST, SOAP, etc.) Our criteria: Short round-trip time. Low round-trip-time standard deviation. (We understand that garbage collection pauses and network usage spikes can affect this value). High availability. Scalability (we may want to have multiple instances of Ruby and Java app exchanging point-to-point messages in the future). Ease of debugging and profiling. Good documentation and community support. Bonus points for Clojure support. What combination of message format and transmission method would you recommend? Why? I've gathered here some materials we have already collected for review: Comparison of various java serialization options Comparison of Thrift and Protocol Buffers (old) Comparison of various data interchange formats Comparison of Thrift and Protocol Buffers Fallacies of Protocol Buffers RPC features Discussion of RPC in the context of AMQP (Message-Queueing) Comparison of RPC and message-passing in distributed systems (pdf) Criticism of RPC from perspective of message-passing fan Overview of Avro from Ruby programmer perspective

    Read the article

  • How do disable Rails submit buttons alongside Prototype helpers & RJS?

    - by Jesse
    I'm trying to follow this post http://stackoverflow.com/questions/576240/how-can-i-unobtrusively-disable-submit-buttons-with-javascript-and-prototype but I can't get it to work. The form triggers an RJS function, so I need to keep the helpers' onclick events intact. The RJS returns/reloads the same forms along with two new texts. I'm really confused. Here is my rails code for the forms: .span-20#comparison / new comparison . . . / voting forms (also reloaded) .span-4.prepend-3.append-6 - form_remote_tag :action => url_for(:controller => :comparisons), :method => :post do = hidden_field_tag :poem1_id, poems[:a].id = hidden_field_tag :poem2_id, poems[:b].id = hidden_field_tag :response, 1 = submit_tag "Vote for me", :disabled => false, :disable_with => 'Vote for me', :class => "compare" .span-4.append-3.last - form_remote_tag :action => url_for(:controller => :comparisons), :method => :post do = hidden_field_tag :poem1_id, poems[:a].id = hidden_field_tag :poem2_id, poems[:b].id = hidden_field_tag :response, 2 = submit_tag "Vote for me", :disable_with => 'Vote for me', :class => "compare" .span-4.prepend-8.append-8.prepend-top.last - form_remote_tag :action => url_for(:controller => :comparisons), :method => :post do = hidden_field_tag :poem1_id, poems[:a].id = hidden_field_tag :poem2_id, poems[:b].id = hidden_field_tag :response, 'draw' = submit_tag "Declare Draw", :disable_with => 'Declare Draw', :class => "compare" RJS page.replace_html :comparison, :partial => 'poems', :object => @poems page.insert_html :top, :previous, :partial => 'comparison', :object => @comparison page << "Effect.ScrollTo($('top'));"

    Read the article

  • How to disable Rails submit buttons alongside Prototype helpers & RJS?

    - by Jesse
    I'm trying to follow this post http://stackoverflow.com/questions/576240/how-can-i-unobtrusively-disable-submit-buttons-with-javascript-and-prototype but I can't get it to work. The form triggers an RJS function, so I need to keep the helpers' onclick events intact. The RJS returns/reloads the same forms along with two new texts. I'm really confused. Here is my rails code for the forms: .span-20#comparison / new comparison . . . / voting forms (also reloaded) .span-4.prepend-3.append-6 - form_remote_tag :action => url_for(:controller => :comparisons), :method => :post do = hidden_field_tag :poem1_id, poems[:a].id = hidden_field_tag :poem2_id, poems[:b].id = hidden_field_tag :response, 1 = submit_tag "Vote for me", :disabled => false, :disable_with => 'Vote for me', :class => "compare" .span-4.append-3.last - form_remote_tag :action => url_for(:controller => :comparisons), :method => :post do = hidden_field_tag :poem1_id, poems[:a].id = hidden_field_tag :poem2_id, poems[:b].id = hidden_field_tag :response, 2 = submit_tag "Vote for me", :disable_with => 'Vote for me', :class => "compare" .span-4.prepend-8.append-8.prepend-top.last - form_remote_tag :action => url_for(:controller => :comparisons), :method => :post do = hidden_field_tag :poem1_id, poems[:a].id = hidden_field_tag :poem2_id, poems[:b].id = hidden_field_tag :response, 'draw' = submit_tag "Declare Draw", :disable_with => 'Declare Draw', :class => "compare" RJS page.replace_html :comparison, :partial => 'poems', :object => @poems page.insert_html :top, :previous, :partial => 'comparison', :object => @comparison page << "Effect.ScrollTo($('top'));"

    Read the article

  • What's New in Database Lifecycle Management in Enterprise Manager 12c Release 3

    - by HariSrinivasan
    Enterprise Manager 12c Release 3 includes improvements and enhancements across every area of the product. This blog provides an overview of the new and enhanced features in the Database Lifecycle Management area. I will deep dive into specific features more in depth in subsequent posts. "What's New?"  In this release, we focused on four things: 1. Lifecycle Management Support for new Database12c - Pluggable Databases 2. Management of long running processes, such as a security patch cycle (Change Activity Planner) 3. Management of large number of systems by · Leveraging new framework capabilities for lifecycle operations, such as the new advanced ‘emcli’ script option · Refining features such as configuration search and compliance 4. Minor improvements and quality fixes to existing features · Rollback support for Single instance databases · Improved "OFFLINE" Patching experience · Faster collection of ORACLE_HOME configurations Lifecycle Management Support for new Database 12c - Pluggable Databases Database 12c introduces Pluggable Databases (PDBs), the brand new addition to help you achieve your consolidation goals. Pluggable databases offer unprecedented consolidation at database level and native lifecycle verbs for creating, plugging and unplugging the databases on a container database (CDB). Enterprise Manager can supplement the capabilities of pluggable databases by offering workflows for migrating, provisioning and cloning them using the software library and the deployment procedures. For example, Enterprise Manager can migrate an existing database to a PDB or clone a PDB by storing a versioned copy in the software library. One can also manage the planned downtime related to patching by  migrating the PDBs to a new CDB. While pluggable databases offer these exciting features, it can also pose configuration management and compliance challenges if not managed properly. Enterprise Manager features like inventory management, topology associations and configuration search can mitigate the sprawl of PDBs and also lock them to predefined golden standards using configuration comparison and compliance rules. Learn More ... Management of Long Running datacenter processes - Change Activity Planner (CAP) Currently, customers resort to cumbersome methods to create, execute, track and monitor change activities within their data center. Some customers use traditional tools such as spreadsheets, project planners and in-house custom built solutions. Customers often have weekly sync up meetings across stake holders to collect status and updates. Some of the change activities, for example the quarterly patch set update (PSU) patch rollouts are not single tasks but processes with multiple tasks. Some of those tasks are performed within Enterprise Manager Cloud Control (for example Patch) and some are performed outside of Enterprise Manager Cloud Control. These tasks often run for a longer period of time and involve multiple people or teams. Enterprise Manger Cloud Control supports core data center operations such as configuration management, compliance management, and automation. Enterprise Manager Cloud Control release 12.1.0.3 leverages these capabilities and introduces the Change Activity Planner (CAP). CAP provides the ability to plan, execute, and track change activities in real time. It covers the typical datacenter activities that are spread over a long period of time, across multiple people and multiple targets (even target types). Here are some examples of Change Activity Process in a datacenter: · Patching large environments (PSU/CPU Patching cycles) · Upgrading large number of database environments · Rolling out Compliance Rules · Database Consolidation to Exadata environments CAP provides user flows for Compliance Officers/Managers (incl. lead administrators) and Operators (DBAs and admins). Managers can create change activity plans for various projects, allocate resources, targets, and groups affected. Upon activation of the plan, tasks are created and automatically assigned to individual administrators based on target ownership. Administrators (DBAs) can identify their tasks and understand the context, schedules, and priorities. They can complete tasks using Enterprise Manager Cloud Control automation features such as patch plans (or in some cases outside Enterprise Manager). Upon completion, compliance is evaluated for validations and updates the status of the tasks and the plans. Learn More about CAP ...  Improved Configuration & Compliance Management of a large number of systems Improved Configuration Comparison:  Get to the configuration comparison results faster for simple ad-hoc comparisons. When performing a 1 to 1 comparison, Enterprise Manager will perform the comparison immediately and take the user directly to the results without having to wait for a job to be submitted and executed. Flattened system comparisons reduce comparison setup time and reduce complexity. In addition to the previously existing topological comparison, users now have an option to compare using a “flattened” methodology. Flattening means to remove duplicate target instances within the systems and remove the hierarchy of member targets. The result are much easier to spot differences particularly for specific use cases like comparing patch levels between complex systems like RAC and Fusion Apps. Improved Configuration Search & Advanced EMCLI Script option for Mass Automation Enterprise manager 12c introduces a new framework level capability to be able to script and stitch together multiple tasks using EMCLI. This powerful capability can be leveraged for lifecycle operations, especially when executing a task over a large number of targets. Specific usages of this include, retrieving a qualified list of targets using Configuration Search and then using the resultset for automation. Another example would be executing a patching operation and then re-executing on targets where it may have failed. This is complemented by other enhancements, such as a better usability for designing reusable configuration searches. IN EM 12c Rel 3, a simplified UI makes building adhoc searches even easier. Searching for missing patches is a common use of configuration search. This required the use of the advanced options which are now clearly defined and easy to use. Perform “Configuration Search” using the EMCLI. Users can find and execute Configuration Searches from the EMCLI which can be extremely useful for building sophisticated automation scripts. For an example, Run the Search named “Oracle Databases on Exadata” which finds all Database targets running on top of Exadata. Further filter the results by refining by options like name, host, etc.. emcli get_targets -config_search="Databases on Exadata" –target_name="exa%“ Use this in powerful mass automation operations using the new emcli script option. For example, to solve the use case of – Finding all DBs running on Exadata and housing E-Biz and Patch them. Create a Python script with emcli functions and invoke it in the new EMCLI script option shell. Invoke the script in the new EMCLI with script option directly: $<path to emcli>/emcli @myPSU_Patch.py Richer compliance content:  Now over 50 Oracle Provided Compliance Standards including new standards for Pluggable Database, Fusion Applications, Oracle Identity Manager, Oracle VM and Internet Directory. 9 Oracle provided Real Time Monitoring Standards containing over 900 Compliance Rules across 500 Facets. These new Real time Compliance Standards covers both Exadata Compute nodes and Linux servers. The result is increased Oracle software coverage and faster time to compliance monitoring on Exadata. Enhancements to Patch Management: Overhauled "OFFLINE" Patching experience: Simplified Patch uploads UI to improve the offline experience of patching. There is now a single step process to get the patches into software library. Customers often maintain local repositories of patches, sometimes called software depots, where they host the patches downloaded from My Oracle Support. In the past, you had to move these patches to your desktop then upload them to the Enterprise Manager's Software library through the Enterprise Manager Cloud Control user interface. You can now use the following EMCLI command to upload multiple patches directly from a remote location within the data center: $emcli upload_patches -location <Path to Patch directory> -from_host <HOSTNAME> The upload process filters all of the new patches, automatically selects the relevant metadata files from the location, and uploads the patches to software library. Other Improvements:  Patch rollback for single instance databases, new option in the Patch Plan to rollback the patches added to the patch plans. Upon execution, the procedure would rollback the patch and the SQL applied to the single instance Databases. Improved and faster configuration collection of Oracle Home targets can enable more reliable automation at higher level functions like Provisioning, Patching or Database as a Service. Just to recap, here is a list of database lifecycle management features:  * Red highlights mark – New or Enhanced in the Release 3. • Discovery, inventory tracking and reporting • Database provisioning including o Migration to Pluggable databases o Plugging and unplugging of pluggable databases o Gold image based cloning o Scaling of RAC nodes •Schema and data change management •End-to-end patch management in online and offline modes, including o Patch advisories in online (connected with My Oracle Support) and offline mode o Patch pre-deployment analysis, deployment and rollback (currently only for single instance databases) o Reporting • Upgrade planning and execution of the upgrade process • Configuration management including • Compliance management with out-of-box content • Change Activity Planner for planning, designing and tracking long running processes For more information on Enterprise Manager’s database lifecycle management capabilities, visit http://www.oracle.com/technetwork/oem/lifecycle-mgmt/index.html

    Read the article

  • Case Study: Polystar Improves Telecom Networks Performance with Embedded MySQL

    - by Bertrand Matthelié
    Polystar delivers and supports systems that increase the quality, revenue and customer satisfaction of telecommunication services. Headquarted in Sweden, Polystar helps operators worldwide including Telia, Tele2, Telekom Malysia and T-Mobile to monitor their network performance and improve service levels. Challenges Deliver complete turnkey solutions to customers integrating a database ensuring high performance at scale, while being very easy to use, manage and optimize. Enable the implementation of distributed architectures including one database per server while maintaining a low Total Cost of Ownership (TCO). Avoid growing database complexity as the volume of mobile data to monitor and analyze drastically increases. Solution Evaluation of several databases and selection of MySQL based on its high performance, manageability, and low TCO. The MySQL databases implemented within the Polystar solutions handle on average 3,000 to 5,000 transactions per second. Up to 50 million records are inserted every day in each database. Typical installations include between 50 and 100 MySQL databases, up to 300 for the largest ones. Data is then periodically aggregated, with the original records being overwritten, as the need for detailed information becomes unnecessary to operators after a few weeks. The exponential growth in mobile data traffic driven by the proliferation of smartphones and usage of social media requires ever more powerful solutions to monitor, analyze and turn network data into actionable business intelligence. With MySQL, Polystar can deliver powerful, yet easy to manage, solutions to its customers. MySQL-based Polystar solutions enable operators to monitor, manage and improve the service levels of their telecom networks in over a dozen countries from a single location. The new and innovative MySQL features constantly delivered by Oracle help ensure Polystar that it will be able to meet its customer’s needs as they evolve. “MySQL has been a great embedded database choice for us. It delivers the high performance we need while remaining very easy to use, manage and tune. Power and simplicity at its best.” Mats Söderlindh, COO at Polystar.

    Read the article

  • What if(event) statement means in JavaScript?

    - by j flo
    I'm rather new to JavaScript and programming in general so I am pretty much only used to seeing if statements that have some kind of comparison operator like, if (x < 10) or if(myBool). I have seen an if statement checking against an event, but I don't understand what or why the event is being checked like that. What's the semantic meaning behind that check or comparison? Here is the code in question: if(event){ event.preventDefault(); }

    Read the article

  • Print to UNC Path Permissions

    - by awilinsk
    I am running Windows Server 2008 (not R2) for a print server and I have a program that needs to write to the UNC path of the network printer. I have found that anyone in the Print Operators group is able to write to the UNC path of the network printer, but standard users are not. I have tried adding the same permissions as the Print Operators group to a user, but when I try to write to the UNC path, I get Access Denied. I cannot add users to the Print Operators group because it gives too many permissions. What permissions do I need to set to allow standard users to print to the UNC path of a network printer?

    Read the article

  • Getting text position while parsing pdf with Quartz 2D

    - by Koteg
    Hi guys, another question regarding pdf parsing... Just read PDF Reference version 1.7 "5.3.1 Text-Positioning Operators" and I am a little bit confused. I wrote some code to get transformation matrix and initial text position. CGPDFOperatorTableSetCallback (table, "MP", &op_MP);//Define marked-content point CGPDFOperatorTableSetCallback (table, "DP", &op_DP);//Define marked-content point with property list CGPDFOperatorTableSetCallback (table, "BMC", &op_BMC);//Begin marked-content sequence CGPDFOperatorTableSetCallback (table, "BDC", &op_BDC);//Begin marked-content sequence with property list CGPDFOperatorTableSetCallback (table, "EMC", &op_EMC);//End marked-content sequence //Text State operators CGPDFOperatorTableSetCallback(table, "Tc", &op_Tc); CGPDFOperatorTableSetCallback(table, "Tw", &op_Tw); CGPDFOperatorTableSetCallback(table, "Tz", &op_Tz); CGPDFOperatorTableSetCallback(table, "TL", &op_TL); CGPDFOperatorTableSetCallback(table, "Tf", &op_Tf); CGPDFOperatorTableSetCallback(table, "Tr", &op_Tr); CGPDFOperatorTableSetCallback(table, "Ts", &op_Ts); //text showing operators CGPDFOperatorTableSetCallback(table, "TJ", &op_TJ); CGPDFOperatorTableSetCallback(table, "Tj", &op_Tj); CGPDFOperatorTableSetCallback(table, "'", &op_apostrof); CGPDFOperatorTableSetCallback(table, "\"", &op_double_apostrof); //text positioning operators CGPDFOperatorTableSetCallback(table, "Td", &op_Td); CGPDFOperatorTableSetCallback(table, "TD", &op_TD); CGPDFOperatorTableSetCallback(table, "Tm", &op_Tm); CGPDFOperatorTableSetCallback(table, "T*", &op_T); //text object operators CGPDFOperatorTableSetCallback(table, "BT", &op_BT);//Begin text object CGPDFOperatorTableSetCallback(table, "ET", &op_ET);//End text object So this is the output after application lunch: 2010-09-02 15:09:23.041 testSearch[8251:207] op_BT begin Integer value: 0 2010-09-02 15:09:23.043 testSearch[8251:207] op_BT end 2010-09-02 15:09:23.043 testSearch[8251:207] op_Tf begin Integer value: 1 2010-09-02 15:09:23.044 testSearch[8251:207] op_Tf end 2010-09-02 15:09:23.044 testSearch[8251:207] op_Tm begin Float value: 557.364197 2010-09-02 15:09:23.045 testSearch[8251:207] op_Tm end 2010-09-02 15:09:23.045 testSearch[8251:207] op_TJ begin 2010-09-02 15:09:23.046 testSearch[8251:207] Array string value [0]: F 2010-09-02 15:09:23.046 testSearch[8251:207] Array integer value [1]: 94985208 2010-09-02 15:09:23.047 testSearch[8251:207] Array string value [2]: r 2010-09-02 15:09:23.047 testSearch[8251:207] Array integer value [3]: 94985208 2010-09-02 15:09:23.048 testSearch[8251:207] Array string value [4]: o 2010-09-02 15:09:23.048 testSearch[8251:207] Array integer value [5]: 94985208 2010-09-02 15:09:23.049 testSearch[8251:207] Array string value [6]: m s 2010-09-02 15:09:23.049 testSearch[8251:207] Array integer value [7]: 94985208 2010-09-02 15:09:23.049 testSearch[8251:207] Array string value [8]: a 2010-09-02 15:09:23.050 testSearch[8251:207] Array integer value [9]: 94985208 2010-09-02 15:09:23.050 testSearch[8251:207] Array string value [10]: m 2010-09-02 15:09:23.051 testSearch[8251:207] Array integer value [11]: 94985208 2010-09-02 15:09:23.051 testSearch[8251:207] Array string value [12]: p 2010-09-02 15:09:23.052 testSearch[8251:207] Array integer value [13]: 94985208 2010-09-02 15:09:23.053 testSearch[8251:207] Array string value [14]: l 2010-09-02 15:09:23.054 testSearch[8251:207] Array integer value [15]: 94985208 2010-09-02 15:09:23.055 testSearch[8251:207] Array string value [16]: e t 2010-09-02 15:09:23.055 testSearch[8251:207] Array integer value [17]: 94985208 2010-09-02 15:09:23.057 testSearch[8251:207] Array string value [18]: o r 2010-09-02 15:09:23.057 testSearch[8251:207] Array integer value [19]: 94985208 2010-09-02 15:09:23.058 testSearch[8251:207] Array string value [20]: e 2010-09-02 15:09:23.058 testSearch[8251:207] Array integer value [21]: 94985208 2010-09-02 15:09:23.059 testSearch[8251:207] Array string value [22]: s 2010-09-02 15:09:23.059 testSearch[8251:207] Array integer value [23]: 94985208 2010-09-02 15:09:23.060 testSearch[8251:207] Array string value [24]: u 2010-09-02 15:09:23.061 testSearch[8251:207] Array integer value [25]: 94985208 2010-09-02 15:09:23.061 testSearch[8251:207] Array string value [26]: l 2010-09-02 15:09:23.062 testSearch[8251:207] Array integer value [27]: 94985208 2010-09-02 15:09:23.062 testSearch[8251:207] Array string value [28]: t 2010-09-02 15:09:23.063 testSearch[8251:207] op_TJ end If someone is familiar with text matrix and text positioning operators it would be nice to explain how all those thing work. How to calculate text position (or glyph?) using Tm (transformation matrix and other data)?

    Read the article

  • perl - universal operator overload

    - by Todd Freed
    I have an idea for perl, and I'm trying to figure out the best way to implement it. The idea is to have new versions of every operator which consider the undefined value as the identity of that operation. For example: $a = undef + 5; # undef treated as 0, so $a = 5 $a = undef . "foo"; # undef treated as '', so $a = foo $a = undef && 1; # undef treated as false, $a = true and so forth. ideally, this would be in the language as a pragma, or something. use operators::awesome; However, I would be satisfied if I could implement this special logic myself, and then invoke it where needed: use My::Operators; The problem is that if I say "use overload" inside My::Operators only affects objects blessed into My::Operators. So the question is: is there a way (with "use overoad" or otherwise) to do a "universal operator overload" - which would be called for all operations, not just operations on blessed scalars. If not - who thinks this would be a great idea !? It would save me a TON of this kind of code if($object && $object{value} && $object{value} == 15) replace with if($object{value} == 15) ## the special "is-equal-to" operator

    Read the article

  • Make conversion to a native type explicit in C++

    - by Tal Pressman
    I'm trying to write a class that implements 64-bit ints for a compiler that doesn't support long long, to be used in existing code. Basically, I should be able to have a typedef somewhere that selects whether I want to use long long or my class, and everything else should compile and work. So, I obviously need conversion constructors from int, long, etc., and the respective conversion operators (casts) to those types. This seems to cause errors with arithmetic operators. With native types, the compiler "knows" that when operator*(int, char) is called, it should promote the char to int and call operator*(int, int) (rather than casting the int to char, for example). In my case it gets confused between the various built-in operators and the ones I created. It seems to me like if I could flag the conversion operators as explicit somehow, that it would solve the issue, but as far as I can tell the explicit keyword is only for constructors (and I can't make constructors for built-in types). So is there any way of marking the casts as explicit? Or am I barking up the wrong tree here and there's another way of solving this? Or maybe I'm just doing something else wrong...

    Read the article

  • C++0x Smart Pointer Comparisons: Inconsistent, what's the rationale?

    - by GManNickG
    In C++0x (n3126), smart pointers can be compared, both relationally and for equality. However, the way this is done seems inconsistent to me. For example, shared_ptr defines operator< be equivalent to: template <typename T, typename U> bool operator<(const shared_ptr<T>& a, const shared_ptr<T>& b) { return std::less<void*>()(a.get(), b.get()); } Using std::less provides total ordering with respect to pointer values, unlike a vanilla relational pointer comparison, which is unspecified. However, unique_ptr defines the same operator as: template <typename T1, typename D1, typename T2, typename D2> bool operator<(const unique_ptr<T1, D1>& a, const unique_ptr<T2, D2>& b) { return a.get() < b.get(); } It also defined the other relational operators in similar fashion. Why the change in method and "completeness"? That is, why does shared_ptr use std::less while unique_ptr uses the built-in operator<? And why doesn't shared_ptr also provide the other relational operators, like unique_ptr? I can understand the rationale behind either choice: with respect to method: it represents a pointer so just use the built-in pointer operators, versus it needs to be usable within an associative container so provide total ordering (like a vanilla pointer would get with the default std::less predicate template argument) with respect to completeness: it represents a pointer so provide all the same comparisons as a pointer, versus it is a class type and only needs to be less-than comparable to be used in an associative container, so only provide that requirement But I don't see why the choice changes depending on the smart pointer type. What am I missing? Bonus/related: std::shared_ptr seems to have followed from boost::shared_ptr, and the latter omits the other relational operators "by design" (and so std::shared_ptr does too). Why is this?

    Read the article

  • How to de-dupe identical photos that have a slightly different file size?

    - by GJ.
    I imported many photos using the new "camera import" feature of Dropbox. Many of those were duplicates of photos previously imported by direct copying from the camera. Strangely, the Dropbox import appears to slightly reduce the file size. E.g. here on the right is the file imported through Dropbox: Comparison of the two files using pdiff returns "Images are binary identical", but tools such as fdupes or even the Picasa "show duplicate files" feature, consider them as unique. What can be the cause of this file size change? Is there any way to undo it? Most importantly: how can I de-dupe efficiently without regard to file size comparison? (running pdiff comparison over all photo pairs in my library is obviously impractical...) A solution for either OS X or Windows would do.

    Read the article

  • Runtime error in C code (strange double conversion)

    - by Miro Hassan
    I have a strange runtime error in my C code. The Integers comparison here works fine. But in the Decimals comparison, I always get that the second number is larger than the first number, which is false. I am pretty new to C and programming in general, so this is a complex application to me. #include <stdio.h> #include <stdbool.h> #include <stdlib.h> int choose; long long neLimit = -1000000000; long long limit = 1000000000; bool big(a,b) { if ((a >= limit) || (b >= limit)) return true; else if ((a <= neLimit) || (b <= neLimit)) return true; return false; } void largerr(a,b) { if (a > b) printf("\nThe First Number is larger ..\n"); else if (a < b) printf("\nThe Second Number is larger ..\n"); else printf("\nThe Two Numbers are Equal .. \n"); } int main() { system("color e && title Numbers Comparison && echo off && cls"); start:{ printf("Choose a Type of Comparison :\n\t1. Integers\n\t2. Decimals \n\t\t I Choose Number : "); scanf("%i", &choose); switch(choose) { case 1: goto Integers; break; case 2: goto Decimals; break; default: system("echo Please Choose a Valid Option && pause>nul && cls"); goto start; } } Integers: { system("title Integers Comparison && cls"); long x , y; printf("\nFirst Number : \t"); scanf("%li", &x); printf("\nSecond Number : "); scanf("%li", &y); if (big(x,y)) { printf("\nOut of Limit .. Too Big Numbers ..\n"); system("pause>nul && cls") ; goto Integers; } largerr(x,y); printf("\nFirst Number : %li\nSecond Number : %li\n",x,y); goto exif; } Decimals: { system("title Decimals Comparison && cls"); double x , y; printf("\nFirst Number : \t"); scanf("%le", &x); printf("\nSecond Number : "); scanf("%le", &y); if (big(x,y)) { printf("\nOut of Limit .. Too Big Numbers ..\n"); system("pause>nul && cls") ; goto Decimals; } largerr(x,y); goto exif; } exif:{ system("pause>nul"); system("cls"); main(); } }

    Read the article

  • Developing Schema Compare for Oracle (Part 2): Dependencies

    - by Simon Cooper
    In developing Schema Compare for Oracle, one of the issues we came across was the size of the databases. As detailed in my last blog post, we had to allow schema pre-filtering due to the number of objects in a standard Oracle database. Unfortunately, this leads to some quite tricky situations regarding object dependencies. This post explains how we deal with these dependencies. 1. Cross-schema dependencies Say, in the following database, you're populating SchemaA, and synchronizing SchemaA.Table1: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(Col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1(Col1)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); We need to do a rebuild of SchemaA.Table1 to change Col1 from a VARCHAR2(100) to a NUMBER. This consists of: Creating a table with the new schema Inserting data from the old table to the new table, with appropriate conversion functions (in this case, TO_NUMBER) Dropping the old table Rename new table to same name as old table Unfortunately, in this situation, the rebuild will fail at step 1, as we're trying to create a NUMBER column with a foreign key reference to a VARCHAR2(100) column. As we're only populating SchemaA, the naive implementation of the object population prefiltering (sticking a WHERE owner = 'SCHEMAA' on all the data dictionary queries) will generate an incorrect sync script. What we actually have to do is: Drop foreign key constraint on SchemaA.Table1 Rebuild SchemaB.Table1 Rebuild SchemaA.Table1, adding the foreign key constraint to the new table This means that in order to generate a correct synchronization script for SchemaA.Table1 we have to know what SchemaB.Table1 is, and that it also needs to be rebuilt to successfully rebuild SchemaA.Table1. SchemaB isn't the schema that the user wants to synchronize, but we still have to load the table and column information for SchemaB.Table1 the same way as any table in SchemaA. Fortunately, Oracle provides (mostly) complete dependency information in the dictionary views. Before we actually read the information on all the tables and columns in the database, we can get dependency information on all the objects that are either pointed at by objects in the schemas we’re populating, or point to objects in the schemas we’re populating (think about what would happen if SchemaB was being explicitly populated instead), with a suitable query on all_constraints (for foreign key relationships) and all_dependencies (for most other types of dependencies eg a function using another function). The extra objects found can then be included in the actual object population, and the sync wizard then has enough information to figure out the right thing to do when we get to actually synchronize the objects. Unfortunately, this isn’t enough. 2. Dependency chains The solution above will only get the immediate dependencies of objects in populated schemas. What if there’s a chain of dependencies? A.tbl1 -> B.tbl1 -> C.tbl1 -> D.tbl1 If we’re only populating SchemaA, the implementation above will only include B.tbl1 in the dependent objects list, whereas we might need to know about C.tbl1 and D.tbl1 as well, in order to ensure a modification on A.tbl1 can succeed. What we actually need is a graph traversal on the dependency graph that all_dependencies represents. Fortunately, we don’t have to read all the database dependency information from the server and run the graph traversal on the client computer, as Oracle provides a method of doing this in SQL – CONNECT BY. So, we can put all the dependencies we want to include together in big bag with UNION ALL, then run a SELECT ... CONNECT BY on it, starting with objects in the schema we’re populating. We should end up with all the objects that might be affected by modifications in the initial schema we’re populating. Good solution? Well, no. For one thing, it’s sloooooow. all_dependencies, on my test databases, has got over 110,000 rows in it, and the entire query, for which Oracle was creating a temporary table to hold the big bag of graph edges, was often taking upwards of two minutes. This is too long, and would only get worse for large databases. But it had some more fundamental problems than just performance. 3. Comparison dependencies Consider the following schema: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); What will happen if we used the dependency algorithm above on the source & target database? Well, SchemaA.Table1 has a foreign key reference to SchemaB.Table1, so that will be included in the source database population. On the target, SchemaA.Table1 has no such reference. Therefore SchemaB.Table1 will not be included in the target database population. In the resulting comparison of the two objects models, what you will end up with is: SOURCE  TARGET SchemaA.Table1 -> SchemaA.Table1 SchemaB.Table1 -> (no object exists) When this comparison is synchronized, we will see that SchemaB.Table1 does not exist, so we will try the following sequence of actions: Create SchemaB.Table1 Rebuild SchemaA.Table1, with foreign key to SchemaB.Table1 Oops. Because the dependencies are only followed within a single database, we’ve tried to create an object that already exists. To fix this we can include any objects found as dependencies in the source or target databases in the object population of both databases. SchemaB.Table1 will then be included in the target database population, and we won’t try and create objects that already exist. All good? Well, consider the following schema (again, only explicitly populating SchemaA, and synchronizing SchemaA.Table1): SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); CREATE TABLE SchemaC.Table1 ( Col1 NUMBER);   CREATE TABLE SchemaC.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1); Although we’re now including SchemaB.Table1 on both sides of the comparison, there’s a third table (SchemaC.Table1) that we don’t know about that will cause the rebuild of SchemaB.Table1 to fail if we try and synchronize SchemaA.Table1. That’s because we’re only running the dependency query on the schemas we’re explicitly populating; to solve this issue, we would have to run the dependency query again, but this time starting the graph traversal from the objects found in the other database. Furthermore, this dependency chain could be arbitrarily extended.This leads us to the following algorithm for finding all the dependencies of a comparison: Find initial dependencies of schemas the user has selected to compare on the source and target Include these objects in both the source and target object populations Run the dependency query on the source, starting with the objects found as dependents on the target, and vice versa Repeat 2 & 3 until no more objects are found For the schema above, this will result in the following sequence of actions: Find initial dependenciesSchemaA.Table1 -> SchemaB.Table1 found on sourceNo objects found on target Include objects in both source and targetSchemaB.Table1 included in source and target Run dependency query, starting with found objectsNo objects to start with on sourceSchemaB.Table1 -> SchemaC.Table1 found on target Include objects in both source and targetSchemaC.Table1 included in source and target Run dependency query on found objectsNo objects found in sourceNo objects to start with in target Stop This will ensure that we include all the necessary objects to make any synchronization work. However, there is still the issue of query performance; the CONNECT BY on the entire database dependency graph is still too slow. After much sitting down and drawing complicated diagrams, we decided to move the graph traversal algorithm from the server onto the client (which turned out to run much faster on the client than on the server); and to ensure we don’t read the entire dependency graph onto the client we also pull the graph across in bits – we start off with dependency edges involving schemas selected for explicit population, and whenever the graph traversal comes across a dependency reference to a schema we don’t yet know about a thunk is hit that pulls in the dependency information for that schema from the database. We continue passing more dependent objects back and forth between the source and target until no more dependency references are found. This gives us the list of all the extra objects to populate in the source and target, and object population can then proceed. 4. Object blacklists and fast dependencies When we tested this solution, we were puzzled in that in some of our databases most of the system schemas (WMSYS, ORDSYS, EXFSYS, XDB, etc) were being pulled in, and this was increasing the database registration and comparison time quite significantly. After debugging, we discovered that the culprits were database tables that used one of the Oracle PL/SQL types (eg the SDO_GEOMETRY spatial type). These were creating a dependency chain from the database tables we were populating to the system schemas, and hence pulling in most of the system objects in that schema. To solve this we introduced blacklists of objects we wouldn’t follow any dependency chain through. As well as the Oracle-supplied PL/SQL types (MDSYS.SDO_GEOMETRY, ORDSYS.SI_COLOR, among others) we also decided to blacklist the entire PUBLIC and SYS schemas, as any references to those would likely lead to a blow up in the dependency graph that would massively increase the database registration time, and could result in the client running out of memory. Even with these improvements, each dependency query was taking upwards of a minute. We discovered from Oracle execution plans that there were some columns, with dependency information we required, that were querying system tables with no indexes on them! To cut a long story short, running the following query: SELECT * FROM all_tab_cols WHERE data_type_owner = ‘XDB’; results in a full table scan of the SYS.COL$ system table! This single clause was responsible for over half the execution time of the dependency query. Hence, the ‘Ignore slow dependencies’ option was born – not querying this and a couple of similar clauses to drastically speed up the dependency query execution time, at the expense of producing incorrect sync scripts in rare edge cases. Needless to say, along with the sync script action ordering, the dependency code in the database registration is one of the most complicated and most rewritten parts of the Schema Compare for Oracle engine. The beta of Schema Compare for Oracle is out now; if you find a bug in it, please do tell us so we can get it fixed!

    Read the article

  • How to identify web development benchmarking questions? [closed]

    - by GenericJam
    I am in my final year of college and I have to put forward some sort of thesis for my final year project. The project is a web based attendance system that I am building for the college. I have it about 70% complete in Java. After completing it in Java, the plan is for me to rewrite the server bit in Erlang and then release the bitter rivals in a head to head cage match. The idea being that there is some sort of grounds for comparison. There are a few hurdles along the way, such as me learning Erlang. I understand that a performance comparison like this isn't strictly scientific as there are many factors such as the programmer (myself); the hardware it runs on; etc... but it is meant to be a reasonable comparison of the merits of using Java vs. Erlang for web development. I need help in identifying what the relevant questions are that my project could address. Even though the project scope is fixed, I am trying to shoehorn in some worthwhile scientific inquiries.

    Read the article

  • Plan Operator Tuesday round-up

    - by Rob Farley
    Eighteen posts for T-SQL Tuesday #43 this month, discussing Plan Operators. I put them together and made the following clickable plan. It’s 1000px wide, so I hope you have a monitor wide enough. Let me explain this plan for you (people’s names are the links to the articles on their blogs – the same links as in the plan above). It was clearly a SELECT statement. Wayne Sheffield (@dbawayne) wrote about that, so we start with a SELECT physical operator, leveraging the logical operator Wayne Sheffield. The SELECT operator calls the Paul White operator, discussed by Jason Brimhall (@sqlrnnr) in his post. The Paul White operator is quite remarkable, and can consume three streams of data. Let’s look at those streams. The first pulls data from a Table Scan – Boris Hristov (@borishristov)’s post – using parallel threads (Bradley Ball – @sqlballs) that pull the data eagerly through a Table Spool (Oliver Asmus – @oliverasmus). A scalar operation is also performed on it, thanks to Jeffrey Verheul (@devjef)’s Compute Scalar operator. The second stream of data applies Evil (I figured that must mean a procedural TVF, but could’ve been anything), courtesy of Jason Strate (@stratesql). It performs this Evil on the merging of parallel streams (Steve Jones – @way0utwest), which suck data out of a Switch (Paul White – @sql_kiwi). This Switch operator is consuming data from up to four lookups, thanks to Kalen Delaney (@sqlqueen), Rick Krueger (@dataogre), Mickey Stuewe (@sqlmickey) and Kathi Kellenberger (@auntkathi). Unfortunately Kathi’s name is a bit long and has been truncated, just like in real plans. The last stream performs a join of two others via a Nested Loop (Matan Yungman – @matanyungman). One pulls data from a Spool (my post – @rob_farley) populated from a Table Scan (Jon Morisi). The other applies a catchall operator (the catchall is because Tamera Clark (@tameraclark) didn’t specify any particular operator, and a catchall is what gets shown when SSMS doesn’t know what to show. Surprisingly, it’s showing the yellow one, which is about cursors. Hopefully that’s not what Tamera planned, but anyway...) to the output from an Index Seek operator (Sebastian Meine – @sqlity). Lastly, I think everyone put in 110% effort, so that’s what all the operators cost. That didn’t leave anything for me, unfortunately, but that’s okay. Also, because he decided to use the Paul White operator, Jason Brimhall gets 0%, and his 110% was given to Paul’s Switch operator post. I hope you’ve enjoyed this T-SQL Tuesday, and have learned something extra about Plan Operators. Keep your eye out for next month’s one by watching the Twitter Hashtag #tsql2sday, and why not contribute a post to the party? Big thanks to Adam Machanic as usual for starting all this. @rob_farley

    Read the article

  • How does a website like Mathway work?

    - by Bob
    I recently found a website called Mathway Basically, it works by allowing you to choose your "level of math" (which it uses to determine what tools it should provide to you) and then allows you to input a math problem which it then solves for you, and gives you detailed solutions (you have to try it, it's really cool). I was wondering how it worked on two levels. First off, how would they parse the math problem (and all the sometimes foreign mathematical operators)? How do they get from text to numbers, variables, and operators? Second, how do they generate the explanations? While you have to pay for the detailed solutions (which are explanations of how they solved the problem), I've seen their preview screenshots, and it looks very detailed. The explanations are given in full, accurate sentences. How would they generate something like that?

    Read the article

  • Easy QueryBuilder - A User-Friendly Ad-Hoc Advanced Search Solution

    Constructing an easy and powerful QueryBuilder interface becomes more important for complex data grid filtering and accurate reporting services. In this article, I'll discuss how to build a query search engine using ASP.NET AJAX and dynamic SQL. The main goal is to provide an interactive interface to allow users select query attributes, operators, attribute values, and T-SQL operators so that the data context query list can be easily composed and a search engine is invoked.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • shift reduce&& reduce reduce errors in build parser for python garmmer

    - by user366580
    i wanna build buttom up parser by java cup i write code in java cup , it is for python language so i used grammer was written in this site : but not all grammer , i choice partial set ,just while , identifer also i smiplified them when i did compile for the java cup that i write by write this command in command prompt window : java java_cup.Main -parser CalcParser -symbols CalcSymbol < javacupfile.cup i get conflict errors ,they are of type reduce-shift conflict and reduce-reduce conflict you can see to print screen of the errors in these links image 1 click here to see imge1 the grammer was in EBNF form in as refernce site and i convert it to BNF form maybe i make mistake in converting so i get such errors the origanl grammmer was // grammer in EBNF form identifier ::= (letter|"_") (letter | digit | "_")* letter ::= lowercase | uppercase lowercase ::= "a"..."z" uppercase ::= "A"..."Z" digit ::= "0"..."9 compound_stmt ::= if_stmt | while_stmt for_stmt ::= "for" target_list "in" expression_list ":" suite ["else" ":" suite] while_stmt ::= "while" expression ":" suite ["else" ":" suite] suite ::= stmt_list NEWLINE stmt_list ::= simple_stmt (";" simple_stmt)* [";"] simple_stmt ::= expression_stmt expression_stmt ::= expression_list expression_list ::= expression ( "," expression )* [","] expression ::= conditional_expression conditional_expression ::= or_test ["if" or_test "else" expression] or_test ::= and_test | or_test "or" and_test and_test ::= not_test | and_test "and" not_test not_test ::= comparison | "not" not_test comparison ::= or_expr ( comp_operator or_expr )* comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!=" | "is" ["not"] | ["not"] "in" or_expr ::= xor_expr | or_expr "|" xor_expr xor_expr ::= and_expr | xor_expr "^" and_expr and_expr ::= "&" | and_expr the grammer after converting to BNF form identifier ::=letterletter| letterdigit| letter"_"| "_"letter | "_"digit | "_""_" letter ::= lowercase | uppercase lowercase ::= "a"..."z" uppercase ::= "A"..."Z" digit ::= "0"..."9 while_stmt ::= "while" expression ":" suite "else" ":" suite |"while" expression ":" suite suite ::= stmt_list NEWLINE stmt_list ::= simple_stmt ";" simple_stmt stmt_list|";" simple_stmt ::= expression_stmt expression_stmt ::= expression_list expression_list ::= expression "," expression expression_list| "," expression ::= conditional_expression conditional_expression ::= or_test "if" or_test "else" expression |or_test or_test ::= and_test | or_test "or" and_test and_test ::= not_test | and_test "and" not_test not_test ::= comparison | "not" not_test comparison ::= or_expr comp_operator or_expr comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!=" | "is" ["not"] | ["not"] "in" or_expr ::= xor_expr | or_expr "|" xor_expr xor_expr ::= and_expr | xor_expr "^" and_expr and_expr ::= "&" | and_expr and the java cup file that i compile and get those errors is import java.io.*; terminal COMA; terminal ELSE; terminal WHILE; terminal NEWLINE; terminal SEMCOLON; terminal CAMMA; terminal IF; terminal OR; terminal AND; terminal NOT; terminal LESS; terminal GREATER; terminal EQUAL; terminal GREATERorE; terminal LESSorE; terminal NEQUAL; terminal OROP; terminal XOROP; terminal ANDOP; terminal Integer DIGIT; terminal java.lang.String LOWERCASE; terminal java.lang.String UPPERCASE; non terminal java.lang.String IDENTIFIER; non terminal java.lang.String LETTER; non terminal COMPOUND_STMT; non terminal WHILE_STMT; non terminal EXPRESSION; non terminal SUITE ; non terminal STMT_LIST; non terminal SIMPLE_STMT; non terminal EXPRESSION_STMT; non terminal EXPRESSION_LIST; non terminal CONDITITONAL_EXPRESSION; non terminal OR_TEST; non terminal AND_TEST; non terminal NOT_TEST; non terminal COMPARISON; non terminal COMP_OPERATOR; non terminal OR_EXPR; non terminal XOR_EXPR; non terminal AND_EXPR; IDENTIFIER ::=LETTER{: System.out.printf("lowercase"); :}| {: System.out.printf("uppercase"); :} LETTER{: System.out.printf("lowercase"); :}| {: System.out.printf("uppercase"); :}| LETTER{: System.out.printf("lowercase"); :}| {: System.out.printf("uppercase"); :} DIGIT; LETTER ::= LOWERCASE | UPPERCASE; COMPOUND_STMT ::=WHILE_STMT; WHILE_STMT ::= WHILE{: System.out.printf( "while"); :} EXPRESSION COMA {: System.out.printf(":"); :} SUITE ELSE {: System.out.printf("else" ); :} COMA{: System.out.printf( ":" ); :} SUITE |WHILE{: System.out.printf( "while" ); :} EXPRESSION COMA{: System.out.printf( ":" ); :} SUITE; SUITE ::= STMT_LIST NEWLINE{: System.out.printf( "newline" ); :}; STMT_LIST ::= SIMPLE_STMT SEMCOLON{: System.out.printf( ";" ); :} SIMPLE_STMT STMT_LIST|SEMCOLON{: System.out.printf( ";" ); :}; SIMPLE_STMT ::=EXPRESSION_STMT; EXPRESSION_STMT ::=EXPRESSION_LIST; EXPRESSION_LIST ::= EXPRESSION CAMMA{: System.out.printf( "," ); :} EXPRESSION EXPRESSION_LIST| CAMMA{: System.out.printf( "," ); :}; EXPRESSION ::= CONDITITONAL_EXPRESSION; CONDITITONAL_EXPRESSION ::= OR_TEST IF{: System.out.printf( "if"); :} OR_TEST ELSE{: System.out.printf("else"); :} EXPRESSION |OR_TEST; OR_TEST ::= AND_TEST | OR_TEST OR{: System.out.printf( "or"); :} AND_TEST; AND_TEST ::= NOT_TEST | AND_TEST AND{: System.out.printf( "and"); :} NOT_TEST; NOT_TEST ::= COMPARISON | NOT{: System.out.printf("not"); :} NOT_TEST; COMPARISON ::= OR_EXPR COMP_OPERATOR OR_EXPR ; COMP_OPERATOR ::= LESS{: System.out.printf( "<"); :} | GREATER{: System.out.printf(">"); :} | EQUAL{: System.out.printf("=="); :} | GREATERorE{: System.out.printf(">="); :} | LESSorE{: System.out.printf("<="); :} | NEQUAL{: System.out.printf("!="); :}; OR_EXPR ::= XOR_EXPR | OR_EXPR OROP{: System.out.printf("|"); :} XOR_EXPR; XOR_EXPR ::= AND_EXPR | XOR_EXPR XOROP {: System.out.printf("^"); :}XOR_EXPR; AND_EXPR ::= ANDOP{: System.out.printf("&"); :} | AND_EXPR; can any one told me how can solve this errors to build parser correcrtly??

    Read the article

  • What disk image should I use with VirtualBox, VDI, VMDK, VHD or HDD?

    - by Sorin Sbarnea
    Latest versions of VirtualBox supports several formats for virtual disks, but they forgot to provide a comparison between them. VDI VMDK VHD HDD Now, I am interested about a recommendation or comparison that considers the following: be able to use dynamic sizing be able to have snapshots be able to move my virtual machine to another OS or even another free virtualization solution with minimal effort (probably something that would run fine on Ubuntu). performance

    Read the article

  • What editions of Windows Server 2008 support print server?

    - by Aequitarum Custos
    Client is creating a server that will be running our website and dual purposed to act as a print server. We're trying to determine if Server 2008 Web Edition supports being a print server, however the comparison chart I found here only mentions Internet Print Client. Unfortunately I work at a software company, so no one knows, and Microsoft's feature comparison isn't being incredibly helpful. If Web Edition does not support Print Server, what is the recommended edition for a Web and Print server machine?

    Read the article

  • Linq to Entities : using ToLower() on NText fields

    - by Julien N
    I'm using SQL Server 2005, with a case sensitive database.. In a search function, I need to create a Linq To Entities (L2E) query with a "where" clause that compare several strings with the data in the database with these rules : The comparison is a "Contains" mode, not strict compare : easy as the string's Contains() method is allowed in L2E The comparison must be case insensitive : I use ToLower() on both elements to perform an insensitive comparison. All of this performs really well but I ran into the following Exception : "Argument data type ntext is invalid for argument 1 of lower function" on one of my fields. It seems that the field is a NText field and I can't perform a ToLower() on that. What could I do to be able to perform a case insensitive Contains() on that NText field ?

    Read the article

  • PHP DateTime Regex

    - by CogitoErgoSum
    Hey, long story short I have inherited some terrible code. As a result a string comparison is buggy when comparing dates due to the format of the date. I am trying to convert the date to a valid DateFormat syntax so I can run a proper comparison. These are some samples of the current format: 12/01/10 at 8:00PM 12/31/10 at 12:00PM 12/10/09 at 5:00AM and so forth. I'd like to convert this to a YYYYMMDDHHMM format i.e 201012012000 for comparison purposes. If anyone can give me a quick regex snippet to do this that'd be appreciated as right now i'm hitting a brick wall for a regex. I can do it by exploding the string over several times etc but I'd rather do it in a more efficient manner. Thanks!

    Read the article

< Previous Page | 39 40 41 42 43 44 45 46 47 48 49 50  | Next Page >