Search Results

Search found 19676 results on 788 pages for 'hardware interface'.

Page 436/788 | < Previous Page | 432 433 434 435 436 437 438 439 440 441 442 443  | Next Page >

  • Workshops, online content show how Oracle infuses simplicity, mobility, extensibility into user experience

    - by mvaughan
    By Kathy Miedema & Misha Vaughan, Oracle Applications User Experience Oracle has made a huge investment into the user experience of its many different software product families, and recent releases showcase big changes and features that aim to promote end user engagement and efficiency by streamlining navigation and simplifying the user interface. But making Oracle’s enterprise software great-looking and usable doesn’t stop when Oracle products go out the door. The Applications User Experience (UX) team recognizes that our customers may need to customize software to fit their work processes. And that’s why we provide tools such as user experience design patterns to help you maintain the Oracle user experience as you tailor your application to fit your business needs. Often, however, customers may need some context around user experience. How has the Oracle user experience been designed and constructed? Why is a good user experience important for users? How does understanding what goes into the user experience benefit the people who purchase the software for users? There’s a short answer to these questions, and you can read about it on Usable Apps. But truly understanding Oracle’s investment and seeing how it applies across product families occasionally requires a deeper dive into the Oracle user experience, especially if you’re an influencer or decision-maker about Oracle products. To help frame these decisions, the Communications & Outreach team has developed several targeted workshops that explore what Oracle means when it talks about user experience, and provides a roadmap into where the Oracle user experience is going. These workshops require non-disclosure agreements, and have been delivered to Oracle sales folks, Oracle partners, Oracle ACE Directors and ACEs, and a few customers. Some of these audience members have been developers or have a technical background; just as many did not. Here’s a breakdown of the kind of training you can get around the Oracle user experience from the OAUX Communications & Outreach team.For Partners: George Papazzian, Principal, Naviscent with Joyce Ohgi, Oracle Oracle Fusion Applications HCM Pre-Sales Seminar:  In concert with Worldwide Alliances  and  Channels under Applications Partner Enablement Director Jonathan Vinoskey’s guidance, the Applications User Experience team delivers a two-day workshop.  Day one focuses on Oracle Fusion Applications HCM and pre-sales strategy, and Day two focuses on positioning and leveraging Oracle’s investment in the Oracle Fusion Applications user experience.  The next workshops will occur on the following dates: December 4-5, 2013 @ Manchester, UK January 29-30, 2014 @ Reston, Virginia February 2014 @ Guadalajara, Mexico (email: Shannon Whiteman) March 11-12, 2014 @ Dubai, United Arab Emirates April 1-2, 2014 @ Chicago, Illinois Partner Advisory Board: A two-day board meeting in the U.S. and U.K. to discuss four main user experience areas for Oracle Fusion Applications: simplicity, visualization & analytics, mobility, & futures. This event is limited to Oracle Diamond Partners, UX bloggers, and key UX influencers and requires legal documentation.  We will be talking about the Oracle applications UX strategy and roadmap. Partner Implementation Training on User Interface: How to Build Great-Looking, Usable Apps:  In this two-day, hands-on workshop built around Oracle’s Application Development Framework, learn how to build desktop and mobile user interfaces and mobile user interfaces based on Oracle’s experience with Fusion Applications. This workshop is for partners with a technology background who are looking for ways to tailor Fusion Applications using ADF, or have built their own custom solutions using ADF. It includes an introduction to UX design patterns and provides tools to build usability-tested UX designs. Nov 5-6, 2013 @ Redwood Shores, CA, USA January 28-29th, 2014 @ Reston, Virginia, USA February 25-26, 2014 @ Guadalajara, Mexico March 9-10, 2014 @ Dubai, United Arab Emirates To register, contact [email protected] Simplified UI Customization & Extensibility:  Pilot workshop:  We will be reviewing the proposed content for communicating the user experience tool kit available with the next release of Oracle Fusion Applications.  Our core focus will be on what toolkit components our system implementors and independent software vendors will need to respond to customer demand, whether they are extending Fusion Applications, or building custom applications, that will need to leverage the simplified UI. Dec 11th, 2013 @ Reading, UK For information: contact [email protected] Private lab tour and demos: Interested in seeing what’s going on in the Apps UX Labs?  If you are headed to the San Francisco Bay Area, let us know. We can arrange a spin through our usability labs at headquarters. OAUX Expo: This open-house forum gives partners a look at what the UX team is working on, and showcases the next-generation user experiences in a demo environment where attendees can see and touch the applications. UX Direct: Use the same methods that Oracle uses to develop its own user experiences. We help you define your users and their needs, and then provide direction on how to tailor the best user experience you can for them. For CustomersAngela Johnston, Gozel Aamoth, Teena Singh, and Yen Chan, Oracle Lab tours: See demos of soon-to-be-released products, and take a spin on usability research equipment such as our eye-tracker. Watch this video to get an idea of what you’ll see. Get our newsletter: Learn about newly released products and see where you can meet us at user group conferences. Participate in a feedback session: Join a focus group or customer feedback session to get an early look at user experience designs for the next generation of software, and provide your thoughts on how well it will work. Join the OUAB: The Oracle Usability Advisory Board meets several times a year to discuss trends in the workforce and provide direction on user experience designs. UX Direct: Use the same methods that Oracle uses to develop its own user experiences. We help you define your users and their needs, and then provide direction on how to tailor the best user experience you can for them. For Developers (customers, partners, and consultants): Plinio Arbizu, SP Solutions, Richard Bingham, Oracle, Balaji Kamepalli, EiSTechnoogies, Praveen Pillalamarri, EiSTechnologies How to Build Great-Looking, Usable Apps: This workshop is for attendees with a strong technology background who are looking for ways to tailor customer software using ADF. It includes an introduction to UX design patterns and provides tools to build usability-tested UX designs.  See above for dates and times. UX design patterns web site: Cut the length of your project down by months. Use these patterns to build out the task flow you need to develop for your users. The patterns have already been usability-tested and represent the best practices that the Oracle UX research team has found in its studies. UX Direct: Use the same methods that Oracle uses to develop its own user experiences. We help you define your users and their needs, and then provide direction on how to tailor the best user experience you can for them. For Oracle Sales Mike Klein, Jeremy Ashley, Brent White, Oracle Contact your local sales person for more information about the Oracle user experience and the training available from the Applications User Experience Communications & Outreach team. See customer-friendly user experience collateral ranging from the new simplified UI in Oracle Fusion Applications Release 7, to E-Business Suite user experience highlights, to Siebel, PeopleSoft, and JD Edwards user experience highlights.   Receive access to the same pre-sales and implementation training we provide to partners. For Oracle Sales only: Oracle-only training on the Oracle Fusion Applications UX Innovation Sales Kit.

    Read the article

  • Java Cloud Service Integration using Web Service Data Control

    - by Jani Rautiainen
    Java Cloud Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance.This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance.In this article a custom application integrating with Fusion Application using Web Service Data Control will be implemented. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration. Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source. The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the “Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud” link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guide. For details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Create Application In this example the “JcsWsDemo” application created in the “Java Cloud Service Integration using Web Service Proxy” article is used as the base. Create Web Service Data Control In this example we will use a Web Service Data Control to integrate with Credit Rule Service in Fusion Applications. The data control will be used to query data from Fusion Applications using a web service call and present the data in a table. To generate the data control choose the “Model” project and navigate to "New -> All Technologies -> Business Tier -> Data Controls -> Web Service Data Control" and enter following: Name: CreditRuleServiceDC URL: https://ic-[POD].oracleoutsourcing.com/icCnSetupCreditRulesPublicService/CreditRuleService?WSDL Service: {{http://xmlns.oracle.com/apps/incentiveCompensation/cn/creditSetup/creditRule/creditRuleService/}CreditRuleService On step 2 select the “findRule” operation: Skip step 3 and on step 4 define the credentials to access the service. Do note that in this example these credentials are only used if testing locally, for JCS deployment credentials need to be manually updated on the EAR file: Click “Finish” and the proxy generation is done. Creating UI In order to use the data control we will need to populate complex objects FindCriteria and FindControl. For simplicity in this example we will create logic in a managed bean that populates the objects. Open “JcsWsDemoBean.java” and add the following logic: Map findCriteria; Map findControl; public void setFindCriteria(Map findCriteria) { this.findCriteria = findCriteria; } public Map getFindCriteria() { findCriteria = new HashMap(); findCriteria.put("fetchSize",10); findCriteria.put("fetchStart",0); return findCriteria; } public void setFindControl(Map findControl) { this.findControl = findControl; } public Map getFindControl() { findControl = new HashMap(); return findControl; } Open “JcsWsDemo.jspx”, navigate to “Data Controls -> CreditRuleServiceDC -> findRule(Object, Object) -> result” and drag and drop the “result” node into the “af:form” element in the page: On the “Edit Table Columns” remove all columns except “RuleId” and “Name”: On the “Edit Action Binding” window displayed enter reference to the java class created above by selecting “#{JcsWsDemoBean.findCriteria}”: Also define the value for the “findControl” by selecting “#{JcsWsDemoBean.findControl}”. Deploy to JCS For WS DC the authentication details need to be updated on the connection details before deploying. Open “connections.xml” by navigating “Application Resources -> Descriptors -> ADF META-INF -> connections.xml”: Change the user name and password entry from: <soap username="transportUserName" password="transportPassword" To match the access details for the target environment. Follow the same steps as documented in previous article ”Java Cloud Service ADF Web Application”. Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsWsDemo-ViewController-context-root/faces/JcsWsDemo.jspx When accessed the first 10 rules in the system are displayed: Summary In this article we learned how to integrate with Fusion Applications using a Web Service Data Control in JCS. In future articles various other integration techniques will be covered. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}

    Read the article

  • Cloud Computing = Elasticity * Availability

    - by Herve Roggero
    What is cloud computing? Is hosting the same thing as cloud computing? Are you running a cloud if you already use virtual machines? What is the difference between Infrastructure as a Service (IaaS) and a cloud provider? And the list goes on… these questions keep coming up and all try to fundamentally explain what “cloud” means relative to other concepts. At the risk of over simplification, answering these questions becomes simpler once you understand the primary foundations of cloud computing: Elasticity and Availability.   Elasticity The basic value proposition of cloud computing is to pay as you go, and to pay for what you use. This implies that an application can expand and contract on demand, across all its tiers (presentation layer, services, database, security…).  This also implies that application components can grow independently from each other. So if you need more storage for your database, you should be able to grow that tier without affecting, reconfiguring or changing the other tiers. Basically, cloud applications behave like a sponge; when you add water to a sponge, it grows in size; in the application world, the more customers you add, the more it grows. Pure IaaS providers will provide certain benefits, specifically in terms of operating costs, but an IaaS provider will not help you in making your applications elastic; neither will Virtual Machines. The smallest elasticity unit of an IaaS provider and a Virtual Machine environment is a server (physical or virtual). While adding servers in a datacenter helps in achieving scale, it is hardly enough. The application has yet to use this hardware.  If the process of adding computing resources is not transparent to the application, the application is not elastic.   As you can see from the above description, designing for the cloud is not about more servers; it is about designing an application for elasticity regardless of the underlying server farm.   Availability The fact of the matter is that making applications highly available is hard. It requires highly specialized tools and trained staff. On top of it, it's expensive. Many companies are required to run multiple data centers due to high availability requirements. In some organizations, some data centers are simply on standby, waiting to be used in a case of a failover. Other organizations are able to achieve a certain level of success with active/active data centers, in which all available data centers serve incoming user requests. While achieving high availability for services is relatively simple, establishing a highly available database farm is far more complex. In fact it is so complex that many companies establish yearly tests to validate failover procedures.   To a certain degree certain IaaS provides can assist with complex disaster recovery planning and setting up data centers that can achieve successful failover. However the burden is still on the corporation to manage and maintain such an environment, including regular hardware and software upgrades. Cloud computing on the other hand removes most of the disaster recovery requirements by hiding many of the underlying complexities.   Cloud Providers A cloud provider is an infrastructure provider offering additional tools to achieve application elasticity and availability that are not usually available on-premise. For example Microsoft Azure provides a simple configuration screen that makes it possible to run 1 or 100 web sites by clicking a button or two on a screen (simplifying provisioning), and soon SQL Azure will offer Data Federation to allow database sharding (which allows you to scale the database tier seamlessly and automatically). Other cloud providers offer certain features that are not available on-premise as well, such as the Amazon SC3 (Simple Storage Service) which gives you virtually unlimited storage capabilities for simple data stores, which is somewhat equivalent to the Microsoft Azure Table offering (offering a server-independent data storage model). Unlike IaaS providers, cloud providers give you the necessary tools to adopt elasticity as part of your application architecture.    Some cloud providers offer built-in high availability that get you out of the business of configuring clustered solutions, or running multiple data centers. Some cloud providers will give you more control (which puts some of that burden back on the customers' shoulder) and others will tend to make high availability totally transparent. For example, SQL Azure provides high availability automatically which would be very difficult to achieve (and very costly) on premise.   Keep in mind that each cloud provider has its strengths and weaknesses; some are better at achieving transparent scalability and server independence than others.    Not for Everyone Note however that it is up to you to leverage the elasticity capabilities of a cloud provider, as discussed previously; if you build a website that does not need to scale, for which elasticity is not important, then you can use a traditional host provider unless you also need high availability. Leveraging the technologies of cloud providers can be difficult and can become a journey for companies that build their solutions in a scale up fashion. Cloud computing promises to address cost containment and scalability of applications with built-in high availability. If your application does not need to scale or you do not need high availability, then cloud computing may not be for you. In fact, you may pay a premium to run your applications with cloud providers due to the underlying technologies built specifically for scalability and availability requirements. And as such, the cloud is not for everyone.   Consistent Customer Experience, Predictable Cost With all its complexities, buzz and foggy definition, cloud computing boils down to a simple objective: consistent customer experience at a predictable cost.  The objective of a cloud solution is to provide the same user experience to your last customer than the first, while keeping your operating costs directly proportional to the number of customers you have. Making your applications elastic and highly available across all its tiers, with as much automation as possible, achieves the first objective of a consistent customer experience. And the ability to expand and contract the infrastructure footprint of your application dynamically achieves the cost containment objectives.     Herve Roggero is a SQL Azure MVP and co-author of Pro SQL Azure (APress).  He is the co-founder of Blue Syntax Consulting (www.bluesyntax.net), a company focusing on cloud computing technologies helping customers understand and adopt cloud computing technologies. For more information contact herve at hroggero @ bluesyntax.net .

    Read the article

  • NVIDIA x server - "sudo nvidia config" does not generate a working 'xorg.config'

    - by Mike
    I am over 18 hours deep on this challenge. I got to this point and am stuck. very stuck. Maybe you can figure it out? Ubuntu Version 12.04 LTS with all the updates installed. Problem: The default settings in "etc/X11/xorg.conf" that are generated by the "nvidia-xconfig" tool, do not allow the NVIDIA x server to connect to the driver in my "System Settings Additional Driver window". (that's how I understand it. Lots of information below). Symptoms of Problem "System Settings Additional Driver" window has drivers, but the nvidia x server cannot connect/utilize any of the 4 drivers. the drivers are activated, but not in use. When I go to "System Tools Administration NVIDIA x server settings" I get an error that basically tells me to create a default file to initialize the NVIDIA X server (screen shot below). This is the messages the terminal gives after running a "sudo nvidia-xconfig" command for the first time. It seems that the generated file by the tool i just ran is generating a bad/unusable file: If I run the "sudo nvidia-xconfig" command again, I wont get an error the second time. However when I reboot, the default file that is generated (etc/X11/xorg.conf) simply puts the screen resolution at 800 x 600 (or something big like that). When I try to go to NVIDIA x server settings I am greeted with the same screen as the screen shot as in symptom 2 (no option to change the resolution). If I try to go to "system settings display" there are no other resolutions to choose from. At this point I must delete the newly minted "xorg.conf" and reinstate the original in its place. Here are the contents of the "xorg.conf" that is generated first (the one missing required information): # nvidia-xconfig: X configuration file generated by nvidia-xconfig # nvidia-xconfig: version 304.88 (buildmeister@swio-display-x86-rhel47-06) Wed Mar 27 15:32:58 PDT 2013 Section "ServerLayout" Identifier "Layout0" Screen 0 "Screen0" InputDevice "Keyboard0" "CoreKeyboard" InputDevice "Mouse0" "CorePointer" EndSection Section "Files" EndSection Section "InputDevice" # generated from default Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/psaux" Option "Emulate3Buttons" "no" Option "ZAxisMapping" "4 5" EndSection Section "InputDevice" # generated from default Identifier "Keyboard0" Driver "kbd" EndSection Section "Monitor" Identifier "Monitor0" VendorName "Unknown" ModelName "Unknown" HorizSync 28.0 - 33.0 VertRefresh 43.0 - 72.0 Option "DPMS" EndSection Section "Device" Identifier "Device0" Driver "nvidia" VendorName "NVIDIA Corporation" EndSection Section "Screen" Identifier "Screen0" Device "Device0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Depth 24 EndSubSection EndSection Hardware: I ran the "lspci|grep VGA". There results are: 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 01:00.0 VGA compatible controller: NVIDIA Corporation GF108 [Quadro 1000M] (rev a1) More Hardware info: Ram: 16GB CPU: Intel Core i7-2720QM @2.2GHz * 8 Other: 64 bit. This is a triple boot computer and not a VM. Attempts With Not Success on My End: 1) Tried to append the "xorg.conf" with what I perceive is missing information and obviously it didn't fly. 2) All the other stuff I tried got me to this point. 3) See if this link is helpful to you (I barely get it, but i get enough knowing that a smarter person might find this useful): http://manpages.ubuntu.com/manpages/lucid/man1/nvidia-xconfig.1.html 4) I am completely new to Linux (40 hours over past week), but not to programming. However I am very serious about changing over to Linux. When you respond (I hope someone responds...) please respond in a way that a person new to Linux can understand. 5) By the way, the reason I am in this mess is because I MUST have a second monitor running from my laptop, and "System Settings Display" doesn't recognize my second display. I know it is possible to make the second display work in my system, because when I boot from the install CD, I perform work on the native laptop monitor, but the second monitor shows a purple screen with Ubuntu in the middle, so I know the VGA port is sending a signal out. If this is too much for you to tackle please suggest an alternative method to get a second display. I don't want to go to windows but I cannot have a single display. I am really fudged here. I hope some smart person can help. Thanks in advance. Mike. **********************EDIT #1********************** More Details About Graphics Card I was asked "which brand of nvidia-card do you have exactly?" Here is what I did to provide more info (maybe relevant, maybe not, but here is everything): 1) Took my Lenovo W520 right apart to see if there is an identifier on the actual card. However I realized that if I get deep enough to take a look, the laptop "won't like it". so I put it back together. Figuring out the card this way is not an option for me right now. 2) (My computer is triple boot) I logged into Win7 and ran 'dxdiag' command. here is the screen shot: 3) I tried to look on the lenovo website for more details... but no luck. I took a look at my receipts and here is info form receipt: System Unit: W520 NVIDIA Quadro 1000M 2GB 4) In win7 I went to the NVIDIA website and used the option to have my card 'scanned' by a Java applet to determine the latest update for my card. I tried the same with Ubuntu but I can't get the applet to run. Here is the recommended driver from from the NVIDIA Applet for my card for Win7 (I hope this shines some light on the specifics of the card): Quadro/NVS/Tesla/GRID Desktop Driver Release R319 Version: 320.00 WHQL Release Date: 3.5.2013 5) Also I went on the NVIDIA driver search and looked through every possible combination of product type + product series + product to find all the combinations that yield a 1000M card. My card is: Product Type: Quadro Product Series: Quadro Series (Notebooks) Product: 1000M ***********************EDIT #2******************* Additional Symptoms Another question that generated more symptoms I previously didn't mention was: "After generating xorg.conf by nvidia-xconfig, go to additional drivers, do you see nvidia-304?" 1) I took a screen shot of the "additional drivers" right after generating xorg.conf by nvidia-xconfig. Here it is: 2) Then I did a reboot. Now Ubuntu is 600 x 800 resolution. When I logged in after the computer came up I got an error (which I always get after generating xorg.conf by nvidia-xconfig and rebooting) 3) To finally answer the question - No. There is no "NVIDIA-304" driver. Screen shot of additional drivers after generating xorg.conf by nvidia-xconfig and rebooting : At this point I revert to the original xorg.conf and delete the xorg.conf generated by Nvidia.

    Read the article

  • Using Sitecore RenderingContext Parameters as MVC controller action arguments

    - by Kyle Burns
    I have been working with the Technical Preview of Sitecore 6.6 on a project and have been for the most part happy with the way that Sitecore (which truly is an MVC implementation unto itself) has been expanded to support ASP.NET MVC. That said, getting up to speed with the combined platform has not been entirely without stumbles and today I want to share one area where Sitecore could have really made things shine from the "it just works" perspective. A couple days ago I was asked by a colleague about the usage of the "Parameters" field that is defined on Sitecore's Controller Rendering data template. Based on the standard way that Sitecore handles a field named Parameters, I was able to deduce that the field expected key/value pairs separated by the "&" character, but beyond that I wasn't sure and didn't see anything from a documentation perspective to guide me, so it was time to dig and find out where the data in the field was made available. My first thought was that it would be really nice if Sitecore handled the parameters in this field consistently with the way that ASP.NET MVC handles the various parameter collections on the HttpRequest object and automatically maps them to parameters of the action method executing. Being the hopeful sort, I configured a name/value pair on one of my renderings, added a parameter with matching name to the controller action and fired up the bugger to see... that the parameter was not populated. Having established that the field's value was not going to be presented to me the way that I had hoped it would, the next assumption that I would work on was that Sitecore would handle this field similar to how they handle other similar data and would plug it into some ambient object that I could reference from within the controller method. After a considerable amount of guessing, testing, and cracking code open with Redgate's Reflector (a must-have companion to Sitecore documentation), I found that the most direct way to access the parameter was through the ambient RenderingContext object using code similar to: string myArgument = string.Empty; var rc = Sitecore.Mvc.Presentation.RenderingContext.CurrentOrNull; if (rc != null) {     var parms = rc.Rendering.Parameters;     myArgument = parms["myArgument"]; } At this point, we know how this field is used out of the box from Sitecore and can provide information from Sitecore's Content Editor that will be available when the controller action is executing, but it feels a little dirty. In order to properly test the action method I would have to do a lot of setup work and possible use an isolation framework such as Pex and Moles to get at a value that my action method is dependent upon. Notice I said that my method is dependent upon the value but in order to meet that dependency I've accepted another dependency upon Sitecore's RenderingContext.  I'm a big believer in, when possible, ensuring that any piece of code explicitly advertises dependencies using the method signature, so I found myself still wanting this to work the same as if the parameters were in the request route, querystring, or form by being able to add a myArgument parameter to the action method and have this parameter populated by the framework. Lucky for us, the ASP.NET MVC framework is extremely flexible and provides some easy to grok and use extensibility points. ASP.NET MVC is able to provide information from the request as input parameters to controller actions because it uses objects which implement an interface called IValueProvider and have been registered to service the application. The most basic statement of responsibility for an IValueProvider implementation is "I know about some data which is indexed by key. If you hand me the key for a piece of data that I know about I give you that data". When preparing to invoke a controller action, the framework queries registered IValueProvider implementations with the name of each method argument to see if the ValueProvider can supply a value for the parameter. (the rest of this post will assume you're working along and make a lot more sense if you do) Let's pull Sitecore out of the equation for a second to simplify things and create an extremely simple IValueProvider implementation. For this example, I first create a new ASP.NET MVC3 project in Visual Studio, selecting "Internet Application" and otherwise taking defaults (I'm assuming that anyone reading this far in the post either already knows how to do this or will need to take a quick run through one of the many available basic MVC tutorials such as the MVC Music Store). Once the new project is created, go to the Index action of HomeController.  This action sets a Message property on the ViewBag to "Welcome to ASP.NET MVC!" and invokes the View, which has been coded to display the Message. For our example, we will remove the hard coded message from this controller (although we'll leave it just as hard coded somewhere else - this is sample code). For the first step in our exercise, add a string parameter to the Index action method called welcomeMessage and use the value of this argument to set the ViewBag.Message property. The updated Index action should look like: public ActionResult Index(string welcomeMessage) {     ViewBag.Message = welcomeMessage;     return View(); } This represents the entirety of the change that you will make to either the controller or view.  If you run the application now, the home page will display and no message will be presented to the user because no value was supplied to the Action method. Let's now write a ValueProvider to ensure this parameter gets populated. We'll start by creating a new class called StaticValueProvider. When the class is created, we'll update the using statements to ensure that they include the following: using System.Collections.Specialized; using System.Globalization; using System.Web.Mvc; With the appropriate using statements in place, we'll update the StaticValueProvider class to implement the IValueProvider interface. The System.Web.Mvc library already contains a pretty flexible dictionary-like implementation called NameValueCollectionValueProvider, so we'll just wrap that and let it do most of the real work for us. The completed class looks like: public class StaticValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider;     public StaticValueProvider(ControllerContext controllerContext)     {         var parameters = new NameValueCollection();         parameters.Add("welcomeMessage", "Hello from the value provider!");         _wrappedProvider = new NameValueCollectionValueProvider(parameters, CultureInfo.InvariantCulture);     }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } Notice that the only entry in the collection matches the name of the argument to our HomeController's Index action.  This is the important "secret sauce" that will make things work. We've got our new value provider now, but that's not quite enough to be finished. Mvc obtains IValueProvider instances using factories that are registered when the application starts up. These factories extend the abstract ValueProviderFactory class by initializing and returning the appropriate implementation of IValueProvider from the GetValueProvider method. While I wouldn't do so in production code, for the sake of this example, I'm going to add the following class definition within the StaticValueProvider.cs source file: public class StaticValueProviderFactory : ValueProviderFactory {     public override IValueProvider GetValueProvider(ControllerContext controllerContext)     {         return new StaticValueProvider(controllerContext);     } } Now that we have a factory, we can register it by adding the following line to the end of the Application_Start method in Global.asax.cs: ValueProviderFactories.Factories.Add(new StaticValueProviderFactory()); If you've done everything right to this point, you should be able to run the application and be presented with the home page reading "Hello from the value provider!". Now that you have the basics of the IValueProvider down, you have everything you need to enhance your Sitecore MVC implementation by adding an IValueProvider that exposes values from the ambient RenderingContext's Parameters property. I'll provide the code for the IValueProvider implementation (which should look VERY familiar) and you can use the work we've already done as a reference to create and register the factory: public class RenderingContextValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider = null;     public RenderingContextValueProvider(ControllerContext controllerContext)     {         var collection = new NameValueCollection();         var rc = RenderingContext.CurrentOrNull;         if (rc != null && rc.Rendering != null)         {             foreach(var parameter in rc.Rendering.Parameters)             {                 collection.Add(parameter.Key, parameter.Value);             }         }         _wrappedProvider = new NameValueCollectionValueProvider(collection, CultureInfo.InvariantCulture);         }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } In this post I've discussed the MVC IValueProvider used to map data to controller action method arguments and how this can be integrated into your Sitecore 6.6 MVC solution.

    Read the article

  • How accurate is "Business logic should be in a service, not in a model"?

    - by Jeroen Vannevel
    Situation Earlier this evening I gave an answer to a question on StackOverflow. The question: Editing of an existing object should be done in repository layer or in service? For example if I have a User that has debt. I want to change his debt. Should I do it in UserRepository or in service for example BuyingService by getting an object, editing it and saving it ? My answer: You should leave the responsibility of mutating an object to that same object and use the repository to retrieve this object. Example situation: class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } A comment I received: Business logic should really be in a service. Not in a model. What does the internet say? So, this got me searching since I've never really (consciously) used a service layer. I started reading up on the Service Layer pattern and the Unit Of Work pattern but so far I can't say I'm convinced a service layer has to be used. Take for example this article by Martin Fowler on the anti-pattern of an Anemic Domain Model: There are objects, many named after the nouns in the domain space, and these objects are connected with the rich relationships and structure that true domain models have. The catch comes when you look at the behavior, and you realize that there is hardly any behavior on these objects, making them little more than bags of getters and setters. Indeed often these models come with design rules that say that you are not to put any domain logic in the the domain objects. Instead there are a set of service objects which capture all the domain logic. These services live on top of the domain model and use the domain model for data. (...) The logic that should be in a domain object is domain logic - validations, calculations, business rules - whatever you like to call it. To me, this seemed exactly what the situation was about: I advocated the manipulation of an object's data by introducing methods inside that class that do just that. However I realize that this should be a given either way, and it probably has more to do with how these methods are invoked (using a repository). I also had the feeling that in that article (see below), a Service Layer is more considered as a façade that delegates work to the underlying model, than an actual work-intensive layer. Application Layer [his name for Service Layer]: Defines the jobs the software is supposed to do and directs the expressive domain objects to work out problems. The tasks this layer is responsible for are meaningful to the business or necessary for interaction with the application layers of other systems. This layer is kept thin. It does not contain business rules or knowledge, but only coordinates tasks and delegates work to collaborations of domain objects in the next layer down. It does not have state reflecting the business situation, but it can have state that reflects the progress of a task for the user or the program. Which is reinforced here: Service interfaces. Services expose a service interface to which all inbound messages are sent. You can think of a service interface as a façade that exposes the business logic implemented in the application (typically, logic in the business layer) to potential consumers. And here: The service layer should be devoid of any application or business logic and should focus primarily on a few concerns. It should wrap Business Layer calls, translate your Domain in a common language that your clients can understand, and handle the communication medium between server and requesting client. This is a serious contrast to other resources that talk about the Service Layer: The service layer should consist of classes with methods that are units of work with actions that belong in the same transaction. Or the second answer to a question I've already linked: At some point, your application will want some business logic. Also, you might want to validate the input to make sure that there isn't something evil or nonperforming being requested. This logic belongs in your service layer. "Solution"? Following the guidelines in this answer, I came up with the following approach that uses a Service Layer: class UserController : Controller { private UserService _userService; public UserController(UserService userService){ _userService = userService; } public ActionResult MakeHimPay(string username, int amount) { _userService.MakeHimPay(username, amount); return RedirectToAction("ShowUserOverview"); } public ActionResult ShowUserOverview() { return View(); } } class UserService { private IUserRepository _userRepository; public UserService(IUserRepository userRepository) { _userRepository = userRepository; } public void MakeHimPay(username, amount) { _userRepository.GetUserByName(username).makePayment(amount); } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } Conclusion All together not much has changed here: code from the controller has moved to the service layer (which is a good thing, so there is an upside to this approach). However this doesn't look like it had anything to do with my original answer. I realize design patterns are guidelines, not rules set in stone to be implemented whenever possible. Yet I have not found a definitive explanation of the service layer and how it should be regarded. Is it a means to simply extract logic from the controller and put it inside a service instead? Is it supposed to form a contract between the controller and the domain? Should there be a layer between the domain and the service layer? And, last but not least: following the original comment Business logic should really be in a service. Not in a model. Is this correct? How would I introduce my business logic in a service instead of the model?

    Read the article

  • Cost Comparison Hard Disk Drive to Solid State Drive on Price per Gigabyte - dispelling a myth!

    - by tonyrogerson
    It is often said that Hard Disk Drive storage is significantly cheaper per GiByte than Solid State Devices – this is wholly inaccurate within the database space. People need to look at the cost of the complete solution and not just a single component part in isolation to what is really required to meet the business requirement. Buying a single Hitachi Ultrastar 600GB 3.5” SAS 15Krpm hard disk drive will cost approximately £239.60 (http://scan.co.uk, 22nd March 2012) compared to an OCZ 600GB Z-Drive R4 CM84 PCIe costing £2,316.54 (http://scan.co.uk, 22nd March 2012); I’ve not included FusionIO ioDrive because there is no public pricing available for it – something I never understand and personally when companies do this I immediately think what are they hiding, luckily in FusionIO’s case the product is proven though is expensive compared to OCZ enterprise offerings. On the face of it the single 15Krpm hard disk has a price per GB of £0.39, the SSD £3.86; this is what you will see in the press and this is what sales people will use in comparing the two technologies – do not be fooled by this bullshit people! What is the requirement? The requirement is the database will have a static size of 400GB kept static through archiving so growth and trim will balance the database size, the client requires resilience, there will be several hundred call centre staff querying the database where queries will read a small amount of data but there will be no hot spot in the data so the randomness will come across the entire 400GB of the database, estimates predict that the IOps required will be approximately 4,000IOps at peak times, because it’s a call centre system the IO latency is important and must remain below 5ms per IO. The balance between read and write is 70% read, 30% write. The requirement is now defined and we have three of the most important pieces of the puzzle – space required, estimated IOps and maximum latency per IO. Something to consider with regard SQL Server; write activity requires synchronous IO to the storage media specifically the transaction log; that means the write thread will wait until the IO is completed and hardened off until the thread can continue execution, the requirement has stated that 30% of the system activity will be write so we can expect a high amount of synchronous activity. The hardware solution needs to be defined; two possible solutions: hard disk or solid state based; the real question now is how many hard disks are required to achieve the IO throughput, the latency and resilience, ditto for the solid state. Hard Drive solution On a test on an HP DL380, P410i controller using IOMeter against a single 15Krpm 146GB SAS drive, the throughput given on a transfer size of 8KiB against a 40GiB file on a freshly formatted disk where the partition is the only partition on the disk thus the 40GiB file is on the outer edge of the drive so more sectors can be read before head movement is required: For 100% sequential IO at a queue depth of 16 with 8 worker threads 43,537 IOps at an average latency of 2.93ms (340 MiB/s), for 100% random IO at the same queue depth and worker threads 3,733 IOps at an average latency of 34.06ms (34 MiB/s). The same test was done on the same disk but the test file was 130GiB: For 100% sequential IO at a queue depth of 16 with 8 worker threads 43,537 IOps at an average latency of 2.93ms (340 MiB/s), for 100% random IO at the same queue depth and worker threads 528 IOps at an average latency of 217.49ms (4 MiB/s). From the result it is clear random performance gets worse as the disk fills up – I’m currently writing an article on short stroking which will cover this in detail. Given the work load is random in nature looking at the random performance of the single drive when only 40 GiB of the 146 GB is used gives near the IOps required but the latency is way out. Luckily I have tested 6 x 15Krpm 146GB SAS 15Krpm drives in a RAID 0 using the same test methodology, for the same test above on a 130 GiB for each drive added the performance boost is near linear, for each drive added throughput goes up by 5 MiB/sec, IOps by 700 IOps and latency reducing nearly 50% per drive added (172 ms, 94 ms, 65 ms, 47 ms, 37 ms, 30 ms). This is because the same 130GiB is spread out more as you add drives 130 / 1, 130 / 2, 130 / 3 etc. so implicit short stroking is occurring because there is less file on each drive so less head movement required. The best latency is still 30 ms but we have the IOps required now, but that’s on a 130GiB file and not the 400GiB we need. Some reality check here: a) the drive randomness is more likely to be 50/50 and not a full 100% but the above has highlighted the effect randomness has on the drive and the more a drive fills with data the worse the effect. For argument sake let us assume that for the given workload we need 8 disks to do the job, for resilience reasons we will need 16 because we need to RAID 1+0 them in order to get the throughput and the resilience, RAID 5 would degrade performance. Cost for hard drives: 16 x £239.60 = £3,833.60 For the hard drives we will need disk controllers and a separate external disk array because the likelihood is that the server itself won’t take the drives, a quick spec off DELL for a PowerVault MD1220 which gives the dual pathing with 16 disks 146GB 15Krpm 2.5” disks is priced at £7,438.00, note its probably more once we had two controller cards to sit in the server in, racking etc. Minimum cost taking the DELL quote as an example is therefore: {Cost of Hardware} / {Storage Required} £7,438.60 / 400 = £18.595 per GB £18.59 per GiB is a far cry from the £0.39 we had been told by the salesman and the myth. Yes, the storage array is composed of 16 x 146 disks in RAID 10 (therefore 8 usable) giving an effective usable storage availability of 1168GB but the actual storage requirement is only 400 and the extra disks have had to be purchased to get the  IOps up. Solid State Drive solution A single card significantly exceeds the IOps and latency required, for resilience two will be required. ( £2,316.54 * 2 ) / 400 = £11.58 per GB With the SSD solution only two PCIe sockets are required, no external disk units, no additional controllers, no redundant controllers etc. Conclusion I hope by showing you an example that the myth that hard disk drives are cheaper per GiB than Solid State has now been dispelled - £11.58 per GB for SSD compared to £18.59 for Hard Disk. I’ve not even touched on the running costs, compare the costs of running 18 hard disks, that’s a lot of heat and power compared to two PCIe cards!Just a quick note: I've left a fair amount of information out due to this being a blog! If in doubt, email me :)I'll also deal with the myth that SSD's wear out at a later date as well - that's just way over done still, yes, 5 years ago, but now - no.

    Read the article

  • The Application Architecture Domain

    - by Michael Glas
    I have been spending a lot of time thinking about Application Architecture in the context of EA. More specifically, as an Enterprise Architect, what do I need to consider when looking at/defining/designing the Application Architecture Domain?There are several definitions of Application Architecture. TOGAF says “The objective here [in Application Architecture] is to define the major kinds of application system necessary to process the data and support the business”. FEA says the Application Architecture “Defines the applications needed to manage the data and support the business functions”.I agree with these definitions. They reflect what the Application Architecture domain does. However, they need to be decomposed to be practical.I find it useful to define a set of views into the Application Architecture domain. These views reflect what an EA needs to consider when working with/in the Applications Architecture domain. These viewpoints are, at a high level:Capability View: This view reflects how applications alignment with business capabilities. It is a super set of the following views when viewed in aggregate. By looking at the Application Architecture domain in terms of the business capabilities it supports, you get a good perspective on how those applications are directly supporting the business.Technology View: The technology view reflects the underlying technology that makes up the applications. Based on the number of rationalization activities I have seen (more specifically application rationalization), the phrase “complexity equals cost” drives the importance of the technology view, especially when attempting to reduce that complexity through standardization type activities. Some of the technology components to be considered are: Software: The application itself as well as the software the application relies on to function (web servers, application servers). Infrastructure: The underlying hardware and network components required by the application and supporting application software. Development: How the application is created and maintained. This encompasses development components that are part of the application itself (i.e. customizable functions), as well as bolt on development through web services, API’s, etc. The maintenance process itself also falls under this view. Integration: The interfaces that the application provides for integration as well as the integrations to other applications and data sources the application requires to function. Type: Reflects the kind of application (mash-up, 3 tiered, etc). (Note: functional type [CRM, HCM, etc.] are reflected under the capability view). Organization View: Organizations are comprised of people and those people use applications to do their jobs. Trying to define the application architecture domain without taking the organization that will use/fund/change it into consideration is like trying to design a car without thinking about who will drive it (i.e. you may end up building a formula 1 car for a family of 5 that is really looking for a minivan). This view reflects the people aspect of the application. It includes: Ownership: Who ‘owns’ the application? This will usually reflect primary funding and utilization but not always. Funding: Who funds both the acquisition/creation as well as the on-going maintenance (funding to create/change/operate)? Change: Who can/does request changes to the application and what process to the follow? Utilization: Who uses the application, how often do they use it, and how do they use it? Support: Which organization is responsible for the on-going support of the application? Information View: Whether or not you subscribe to the view that “information drives the enterprise”, it is a fact that information is critical. The management, creation, and organization of that information are primary functions of enterprise applications. This view reflects how the applications are tied to information (or at a higher level – how the Application Architecture domain relates to the Information Architecture domain). It includes: Access: The application is the mechanism by which end users access information. This could be through a primary application (i.e. CRM application), or through an information access type application (a BI application as an example). Creation: Applications create data in order to provide information to end-users. (I.e. an application creates an order to be used by an end-user as part of the fulfillment process). Consumption: Describes the data required by applications to function (i.e. a product id is required by a purchasing application to create an order. Application Service View: Organizations today are striving to be more agile. As an EA, I need to provide an architecture that supports this agility. One of the primary ways to achieve the required agility in the application architecture domain is through the use of ‘services’ (think SOA, web services, etc.). Whether it is through building applications from the ground up utilizing services, service enabling an existing application, or buying applications that are already ‘service enabled’, compartmentalizing application functions for re-use helps enable flexibility in the use of those applications in support of the required business agility. The applications service view consists of: Services: Here, I refer to the generic definition of a service “a set of related software functionalities that can be reused for different purposes, together with the policies that should control its usage”. Functions: The activities within an application that are not available / applicable for re-use. This view is helpful when identifying duplication functions between applications that are not service enabled. Delivery Model View: It is hard to talk about EA today without hearing the terms ‘cloud’ or shared services.  Organizations are looking at the ways their applications are delivered for several reasons, to reduce cost (both CAPEX and OPEX), to improve agility (time to market as an example), etc.  From an EA perspective, where/how an application is deployed has impacts on the overall enterprise architecture. From integration concerns to SLA requirements to security and compliance issues, the Enterprise Architect needs to factor in how applications are delivered when designing the Enterprise Architecture. This view reflects how applications are delivered to end-users. The delivery model view consists of different types of delivery mechanisms/deployment options for applications: Traditional: Reflects non-cloud type delivery options. The most prevalent consists of an application running on dedicated hardware (usually specific to an environment) for a single consumer. Private Cloud: The application runs on infrastructure provisioned for exclusive use by a single organization comprising multiple consumers. Public Cloud: The application runs on infrastructure provisioned for open use by the general public. Hybrid: The application is deployed on two or more distinct cloud infrastructures (private, community, or public) that remain unique entities, but are bound together by standardized or proprietary technology that enables data and application portability. While by no means comprehensive, I find that applying these views to the application domain gives a good understanding of what an EA needs to consider when effecting changes to the Application Architecture domain.Finally, the application architecture domain is one of several architecture domains that an EA must consider when developing an overall Enterprise Architecture. The Oracle Enterprise Architecture Framework defines four Primary domains: Business Architecture, Application Architecture, Information Architecture, and Technology Architecture. Each domain links to the others either directly or indirectly at some point. Oracle links them at a high level as follows:Business Capabilities and/or Business Processes (Business Architecture), links to the Applications that enable the capability/process (Applications Architecture – COTS, Custom), links to the Information Assets managed/maintained by the Applications (Information Architecture), links to the technology infrastructure upon which all this runs (Technology Architecture - integration, security, BI/DW, DB infrastructure, deployment model). There are however, times when the EA needs to narrow focus to a particular domain for some period of time. These views help me to do just that.

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • WebSocket Applications using Java: JSR 356 Early Draft Now Available (TOTD #183)

    - by arungupta
    WebSocket provide a full-duplex and bi-directional communication protocol over a single TCP connection. JSR 356 is defining a standard API for creating WebSocket applications in the Java EE 7 Platform. This Tip Of The Day (TOTD) will provide an introduction to WebSocket and how the JSR is evolving to support the programming model. First, a little primer on WebSocket! WebSocket is a combination of IETF RFC 6455 Protocol and W3C JavaScript API (still a Candidate Recommendation). The protocol defines an opening handshake and data transfer. The API enables Web pages to use the WebSocket protocol for two-way communication with the remote host. Unlike HTTP, there is no need to create a new TCP connection and send a chock-full of headers for every message exchange between client and server. The WebSocket protocol defines basic message framing, layered over TCP. Once the initial handshake happens using HTTP Upgrade, the client and server can send messages to each other, independent from the other. There are no pre-defined message exchange patterns of request/response or one-way between client and and server. These need to be explicitly defined over the basic protocol. The communication between client and server is pretty symmetric but there are two differences: A client initiates a connection to a server that is listening for a WebSocket request. A client connects to one server using a URI. A server may listen to requests from multiple clients on the same URI. Other than these two difference, the client and server behave symmetrically after the opening handshake. In that sense, they are considered as "peers". After a successful handshake, clients and servers transfer data back and forth in conceptual units referred as "messages". On the wire, a message is composed of one or more frames. Application frames carry payload intended for the application and can be text or binary data. Control frames carry data intended for protocol-level signaling. Now lets talk about the JSR! The Java API for WebSocket is worked upon as JSR 356 in the Java Community Process. This will define a standard API for building WebSocket applications. This JSR will provide support for: Creating WebSocket Java components to handle bi-directional WebSocket conversations Initiating and intercepting WebSocket events Creation and consumption of WebSocket text and binary messages The ability to define WebSocket protocols and content models for an application Configuration and management of WebSocket sessions, like timeouts, retries, cookies, connection pooling Specification of how WebSocket application will work within the Java EE security model Tyrus is the Reference Implementation for JSR 356 and is already integrated in GlassFish 4.0 Promoted Builds. And finally some code! The API allows to create WebSocket endpoints using annotations and interface. This TOTD will show a simple sample using annotations. A subsequent blog will show more advanced samples. A POJO can be converted to a WebSocket endpoint by specifying @WebSocketEndpoint and @WebSocketMessage. @WebSocketEndpoint(path="/hello")public class HelloBean {     @WebSocketMessage    public String sayHello(String name) {         return "Hello " + name + "!";     }} @WebSocketEndpoint marks this class as a WebSocket endpoint listening at URI defined by the path attribute. The @WebSocketMessage identifies the method that will receive the incoming WebSocket message. This first method parameter is injected with payload of the incoming message. In this case it is assumed that the payload is text-based. It can also be of the type byte[] in case the payload is binary. A custom object may be specified if decoders attribute is specified in the @WebSocketEndpoint. This attribute will provide a list of classes that define how a custom object can be decoded. This method can also take an optional Session parameter. This is injected by the runtime and capture a conversation between two endpoints. The return type of the method can be String, byte[] or a custom object. The encoders attribute on @WebSocketEndpoint need to define how a custom object can be encoded. The client side is an index.jsp with embedded JavaScript. The JSP body looks like: <div style="text-align: center;"> <form action="">     <input onclick="say_hello()" value="Say Hello" type="button">         <input id="nameField" name="name" value="WebSocket" type="text"><br>    </form> </div> <div id="output"></div> The code is relatively straight forward. It has an HTML form with a button that invokes say_hello() method and a text field named nameField. A div placeholder is available for displaying the output. Now, lets take a look at some JavaScript code: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/HelloWebSocket/hello";     var websocket = new WebSocket(wsUri);     websocket.onopen = function(evt) { onOpen(evt) };     websocket.onmessage = function(evt) { onMessage(evt) };     websocket.onerror = function(evt) { onError(evt) };     function init() {         output = document.getElementById("output");     }     function say_hello() {      websocket.send(nameField.value);         writeToScreen("SENT: " + nameField.value);     } This application is deployed as "HelloWebSocket.war" (download here) on GlassFish 4.0 promoted build 57. So the WebSocket endpoint is listening at "ws://localhost:8080/HelloWebSocket/hello". A new WebSocket connection is initiated by specifying the URI to connect to. The JavaScript API defines callback methods that are invoked when the connection is opened (onOpen), closed (onClose), error received (onError), or a message from the endpoint is received (onMessage). The client API has several send methods that transmit data over the connection. This particular script sends text data in the say_hello method using nameField's value from the HTML shown earlier. Each click on the button sends the textbox content to the endpoint over a WebSocket connection and receives a response based upon implementation in the sayHello method shown above. How to test this out ? Download the entire source project here or just the WAR file. Download GlassFish4.0 build 57 or later and unzip. Start GlassFish as "asadmin start-domain". Deploy the WAR file as "asadmin deploy HelloWebSocket.war". Access the application at http://localhost:8080/HelloWebSocket/index.jsp. After clicking on "Say Hello" button, the output would look like: Here are some references for you: WebSocket - Protocol and JavaScript API JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Binary data as payload Custom payloads using encoder/decoder Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API Capturing WebSocket on-the-wire messages

    Read the article

  • Premature-Optimization and Performance Anxiety

    - by James Michael Hare
    While writing my post analyzing the new .NET 4 ConcurrentDictionary class (here), I fell into one of the classic blunders that I myself always love to warn about.  After analyzing the differences of time between a Dictionary with locking versus the new ConcurrentDictionary class, I noted that the ConcurrentDictionary was faster with read-heavy multi-threaded operations.  Then, I made the classic blunder of thinking that because the original Dictionary with locking was faster for those write-heavy uses, it was the best choice for those types of tasks.  In short, I fell into the premature-optimization anti-pattern. Basically, the premature-optimization anti-pattern is when a developer is coding very early for a perceived (whether rightly-or-wrongly) performance gain and sacrificing good design and maintainability in the process.  At best, the performance gains are usually negligible and at worst, can either negatively impact performance, or can degrade maintainability so much that time to market suffers or the code becomes very fragile due to the complexity. Keep in mind the distinction above.  I'm not talking about valid performance decisions.  There are decisions one should make when designing and writing an application that are valid performance decisions.  Examples of this are knowing the best data structures for a given situation (Dictionary versus List, for example) and choosing performance algorithms (linear search vs. binary search).  But these in my mind are macro optimizations.  The error is not in deciding to use a better data structure or algorithm, the anti-pattern as stated above is when you attempt to over-optimize early on in such a way that it sacrifices maintainability. In my case, I was actually considering trading the safety and maintainability gains of the ConcurrentDictionary (no locking required) for a slight performance gain by using the Dictionary with locking.  This would have been a mistake as I would be trading maintainability (ConcurrentDictionary requires no locking which helps readability) and safety (ConcurrentDictionary is safe for iteration even while being modified and you don't risk the developer locking incorrectly) -- and I fell for it even when I knew to watch out for it.  I think in my case, and it may be true for others as well, a large part of it was due to the time I was trained as a developer.  I began college in in the 90s when C and C++ was king and hardware speed and memory were still relatively priceless commodities and not to be squandered.  In those days, using a long instead of a short could waste precious resources, and as such, we were taught to try to minimize space and favor performance.  This is why in many cases such early code-bases were very hard to maintain.  I don't know how many times I heard back then to avoid too many function calls because of the overhead -- and in fact just last year I heard a new hire in the company where I work declare that she didn't want to refactor a long method because of function call overhead.  Now back then, that may have been a valid concern, but with today's modern hardware even if you're calling a trivial method in an extremely tight loop (which chances are the JIT compiler would optimize anyway) the results of removing method calls to speed up performance are negligible for the great majority of applications.  Now, obviously, there are those coding applications where speed is absolutely king (for example drivers, computer games, operating systems) where such sacrifices may be made.  But I would strongly advice against such optimization because of it's cost.  Many folks that are performing an optimization think it's always a win-win.  That they're simply adding speed to the application, what could possibly be wrong with that?  What they don't realize is the cost of their choice.  For every piece of straight-forward code that you obfuscate with performance enhancements, you risk the introduction of bugs in the long term technical debt of the application.  It will become so fragile over time that maintenance will become a nightmare.  I've seen such applications in places I have worked.  There are times I've seen applications where the designer was so obsessed with performance that they even designed their own memory management system for their application to try to squeeze out every ounce of performance.  Unfortunately, the application stability often suffers as a result and it is very difficult for anyone other than the original designer to maintain. I've even seen this recently where I heard a C++ developer bemoaning that in VS2010 the iterators are about twice as slow as they used to be because Microsoft added range checking (probably as part of the 0x standard implementation).  To me this was almost a joke.  Twice as slow sounds bad, but it almost never as bad as you think -- especially if you're gaining safety.  The only time twice is really that much slower is when once was too slow to begin with.  Think about it.  2 minutes is slow as a response time because 1 minute is slow.  But if an iterator takes 1 microsecond to move one position and a new, safer iterator takes 2 microseconds, this is trivial!  The only way you'd ever really notice this would be in iterating a collection just for the sake of iterating (i.e. no other operations).  To my mind, the added safety makes the extra time worth it. Always favor safety and maintainability when you can.  I know it can be a hard habit to break, especially if you started out your career early or in a language such as C where they are very performance conscious.  But in reality, these type of micro-optimizations only end up hurting you in the long run. Remember the two laws of optimization.  I'm not sure where I first heard these, but they are so true: For beginners: Do not optimize. For experts: Do not optimize yet. This is so true.  If you're a beginner, resist the urge to optimize at all costs.  And if you are an expert, delay that decision.  As long as you have chosen the right data structures and algorithms for your task, your performance will probably be more than sufficient.  Chances are it will be network, database, or disk hits that will be your slow-down, not your code.  As they say, 98% of your code's bottleneck is in 2% of your code so premature-optimization may add maintenance and safety debt that won't have any measurable impact.  Instead, code for maintainability and safety, and then, and only then, when you find a true bottleneck, then you should go back and optimize further.

    Read the article

  • Setting useLegacyV2RuntimeActivationPolicy At Runtime

    - by Reed
    Version 4.0 of the .NET Framework included a new CLR which is almost entirely backwards compatible with the 2.0 version of the CLR.  However, by default, mixed-mode assemblies targeting .NET 3.5sp1 and earlier will fail to load in a .NET 4 application.  Fixing this requires setting useLegacyV2RuntimeActivationPolicy in your app.Config for the application.  While there are many good reasons for this decision, there are times when this is extremely frustrating, especially when writing a library.  As such, there are (rare) times when it would be beneficial to set this in code, at runtime, as well as verify that it’s running correctly prior to receiving a FileLoadException. Typically, loading a pre-.NET 4 mixed mode assembly is handled simply by changing your app.Config file, and including the relevant attribute in the startup element: <?xml version="1.0" encoding="utf-8" ?> <configuration> <startup useLegacyV2RuntimeActivationPolicy="true"> <supportedRuntime version="v4.0"/> </startup> </configuration> .csharpcode { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { background-color: #ffffff; font-family: consolas, "Courier New", courier, monospace; color: black; font-size: small } .csharpcode pre { margin: 0em } .csharpcode .rem { color: #008000 } .csharpcode .kwrd { color: #0000ff } .csharpcode .str { color: #006080 } .csharpcode .op { color: #0000c0 } .csharpcode .preproc { color: #cc6633 } .csharpcode .asp { background-color: #ffff00 } .csharpcode .html { color: #800000 } .csharpcode .attr { color: #ff0000 } .csharpcode .alt { background-color: #f4f4f4; margin: 0em; width: 100% } .csharpcode .lnum { color: #606060 } This causes your application to run correctly, and load the older, mixed-mode assembly without issues. For full details on what’s happening here and why, I recommend reading Mark Miller’s detailed explanation of this attribute and the reasoning behind it. Before I show any code, let me say: I strongly recommend using the official approach of using app.config to set this policy. That being said, there are (rare) times when, for one reason or another, changing the application configuration file is less than ideal. While this is the supported approach to handling this issue, the CLR Hosting API includes a means of setting this programmatically via the ICLRRuntimeInfo interface.  Normally, this is used if you’re hosting the CLR in a native application in order to set this, at runtime, prior to loading the assemblies.  However, the F# Samples include a nice trick showing how to load this API and bind this policy, at runtime.  This was required in order to host the Managed DirectX API, which is built against an older version of the CLR. This is fairly easy to port to C#.  Instead of a direct port, I also added a little addition – by trapping the COM exception received if unable to bind (which will occur if the 2.0 CLR is already bound), I also allow a runtime check of whether this property was setup properly: public static class RuntimePolicyHelper { public static bool LegacyV2RuntimeEnabledSuccessfully { get; private set; } static RuntimePolicyHelper() { ICLRRuntimeInfo clrRuntimeInfo = (ICLRRuntimeInfo)RuntimeEnvironment.GetRuntimeInterfaceAsObject( Guid.Empty, typeof(ICLRRuntimeInfo).GUID); try { clrRuntimeInfo.BindAsLegacyV2Runtime(); LegacyV2RuntimeEnabledSuccessfully = true; } catch (COMException) { // This occurs with an HRESULT meaning // "A different runtime was already bound to the legacy CLR version 2 activation policy." LegacyV2RuntimeEnabledSuccessfully = false; } } [ComImport] [InterfaceType(ComInterfaceType.InterfaceIsIUnknown)] [Guid("BD39D1D2-BA2F-486A-89B0-B4B0CB466891")] private interface ICLRRuntimeInfo { void xGetVersionString(); void xGetRuntimeDirectory(); void xIsLoaded(); void xIsLoadable(); void xLoadErrorString(); void xLoadLibrary(); void xGetProcAddress(); void xGetInterface(); void xSetDefaultStartupFlags(); void xGetDefaultStartupFlags(); [MethodImpl(MethodImplOptions.InternalCall, MethodCodeType = MethodCodeType.Runtime)] void BindAsLegacyV2Runtime(); } } Using this, it’s possible to not only set this at runtime, but also verify, prior to loading your mixed mode assembly, whether this will succeed. In my case, this was quite useful – I am working on a library purely for internal use which uses a numerical package that is supplied with both a completely managed as well as a native solver.  The native solver uses a CLR 2 mixed-mode assembly, but is dramatically faster than the pure managed approach.  By checking RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully at runtime, I can decide whether to enable the native solver, and only do so if I successfully bound this policy. There are some tricks required here – To enable this sort of fallback behavior, you must make these checks in a type that doesn’t cause the mixed mode assembly to be loaded.  In my case, this forced me to encapsulate the library I was using entirely in a separate class, perform the check, then pass through the required calls to that class.  Otherwise, the library will load before the hosting process gets enabled, which in turn will fail. This code will also, of course, try to enable the runtime policy before the first time you use this class – which typically means just before the first time you check the boolean value.  As a result, checking this early on in the application is more likely to allow it to work. Finally, if you’re using a library, this has to be called prior to the 2.0 CLR loading.  This will cause it to fail if you try to use it to enable this policy in a plugin for most third party applications that don’t have their app.config setup properly, as they will likely have already loaded the 2.0 runtime. As an example, take a simple audio player.  The code below shows how this can be used to properly, at runtime, only use the “native” API if this will succeed, and fallback (or raise a nicer exception) if this will fail: public class AudioPlayer { private IAudioEngine audioEngine; public AudioPlayer() { if (RuntimePolicyHelper.LegacyV2RuntimeEnabledSuccessfully) { // This will load a CLR 2 mixed mode assembly this.audioEngine = new AudioEngineNative(); } else { this.audioEngine = new AudioEngineManaged(); } } public void Play(string filename) { this.audioEngine.Play(filename); } } Now – the warning: This approach works, but I would be very hesitant to use it in public facing production code, especially for anything other than initializing your own application.  While this should work in a library, using it has a very nasty side effect: you change the runtime policy of the executing application in a way that is very hidden and non-obvious.

    Read the article

  • Setup Guide for updating local system and the repository with the incremental Solaris 11.1 SRU

    - by Gurubalan
    This guide covers the steps to implement the following setup. I. Updating the local system from Solaris 11.1 to Solaris 11.1 SRU 16.5II. Setting up local system as an IPS Repository Server (HTTP interface)III. Updating the local repository with the incremental Solaris 11.1 SRU 16.5I. Updating the local system from Solaris 11.1 to Solaris 11.1 SRU 16.5We assume that the local system is currently installed with Solaris 11.1 GA and the system doesn't have internet connectivity.What I have:1. Two parts of full repo iso files downloaded from http://www.oracle.com/technetwork/server-storage/solaris11/downloads/index.html. Both files are concatenated to a single file using the following command. $ cat sol-11_1-repo-full.iso-a sol-11_1-repo-full.iso-b > sol-11_1-repo-full.iso I suggest to verify the downloaded file against its md5checksum value [http://download.oracle.com/otn/solaris/11_1/md5sum.txt] using the following command digest -a md5 <file-name>  // the output of this command should match the original checksum value for that file.2. Incremental repo sol-11_1_16_5_0-incr-repo.iso downloaded from MOS [Patch 18269379: ORACLE SOLARIS 11.1.16.5.0 REPO ISO IMAGE (SPARC/X86 (64-BIT)]. You can get the checksum value of incremental repo iso by clicking the check box "show digest details" when you download the file.3. The local system IP is 192.168.10.10 & port 81 is reserved for repo serverPlease note that this repo file (either full or incremental) is common for both SPARC and X86(64BIT).Steps to update the local system: 1. #mounting s11.1 full repo iso to mnt        $ mount -F hsfs /soft/sol-11_1-repo-full.iso /mnt 2. Setting the pkg publisher to full repo source         $ pkg set-publisher -g file:///mnt/repo solaris 3. Perform the update of the packages.        $ pkg updateII. Setting up local system (Oracle Solaris 11.1) as an IPS Repository Server(HTTP interface):Please note that we have already mounted the full repo iso at /mnt    1. # copying /mnt permanently to the disk location at /s11.1        #zfs create -o atime=off -o mountpoint=/s11.1 rpool/s11.1        #rsync -aP /mnt/* /s11.1     2. #unmounting mnt         #umount /mnt3. To allow clients to access the local repository via HTTP, enable the application/pkg/server Service Management Facility (SMF) service.        svccfg -s application/pkg/server setprop pkg/inst_root=<data_source>/repo        eg: $svccfg -s application/pkg/server setprop pkg/inst_root=/s11.1/repo4. Setting port# to 81      svccfg -s application/pkg/server setprop pkg/port=<port_number>      eg: svccfg -s application/pkg/server setprop pkg/port="81"5a. Enable the pkg/server service (if the service is disabled)     $svcs pkg/server     STATE          STIME    FMRI     disabled        19:55:03 svc:/application/pkg/server:default      $svcadm enable pkg/server5b. Refresh/Restart the service, if it is already online       $svcadm refresh application/pkg/server       $svcadm restart application/pkg/server6. Setting pkg publisher on repo server and repo clients:      pkg set-publisher -G '*' -g http://<ip>:<port> solaris      eg: $pkg set-publisher -G '*' -g 'http://192.168.10.10:81' solaris7. Verify the Solaris 11.1 version from the repository         $pkgrepo list -s http://192.168.10.10:81 | grep entire         solaris   entire     0.5.11,5.11-0.175.1.0.0.24.2:20120919T190135Z You will have multiple row entries if the repository is setup with incremental SRUs.III. Updating the local repository with the incremental Solaris 11.1 SRU 16.51. #mounting s11.1 incremental SRU repo iso to mnt        $ mount -F hsfs <full_path_to>/sol-11_1_sruN_bldnum_respinnum-incr-repo.iso  /mnt        $ mount -F hsfs /soft/sol-11_1_16_5_0-incr-repo.iso /mnt2. Updating the local repository        $pkgrecv -s  /mnt/repo -d /s11.1/repo '*'3. Building a Search Index    $pkgrepo -s /s11.1/repo refresh     Initiating repository refresh.4. Refresh/Restart the service       $svcadm refresh svc:/application/pkg/server       $svcadm restart svc:/application/pkg/server5. Verify the repo has the incremental SRU as well.       # pkgrepo list -s http://192.168.10.10:81 | grep entire        solaris   entire      0.5.11,5.11-0.175.1.16.0.5.0:20140218T165248Z       solaris   entire      0.5.11,5.11-0.175.1.0.0.24.2:20120919T190135Z

    Read the article

  • Source-control 'wet-work'?

    - by Phil Factor
    When a design or creative work is flawed beyond remedy, it is often best to destroy it and start again. The other day, I lost the code to a long and intricate SQL batch I was working on. I’d thought it was impossible, but it happened. With all the technology around that is designed to prevent this occurring, this sort of accident has become a rare event.  If it weren’t for a deranged laptop, and my distraction, the code wouldn’t have been lost this time.  As always, I sighed, had a soothing cup of tea, and typed it all in again.  The new code I hastily tapped in  was much better: I’d held in my head the essence of how the code should work rather than the details: I now knew for certain  the start point, the end, and how it should be achieved. Instantly the detritus of half-baked thoughts fell away and I was able to write logical code that performed better.  Because I could work so quickly, I was able to hold the details of all the columns and variables in my head, and the dynamics of the flow of data. It was, in fact, easier and quicker to start from scratch rather than tidy up and refactor the existing code with its inevitable fumbling and half-baked ideas. What a shame that technology is now so good that developers rarely experience the cleansing shock of losing one’s code and having to rewrite it from scratch.  If you’ve never accidentally lost  your code, then it is worth doing it deliberately once for the experience. Creative people have, until Technology mistakenly prevented it, torn up their drafts or sketches, threw them in the bin, and started again from scratch.  Leonardo’s obsessive reworking of the Mona Lisa was renowned because it was so unusual:  Most artists have been utterly ruthless in destroying work that didn’t quite make it. Authors are particularly keen on writing afresh, and the results are generally positive. Lawrence of Arabia actually lost the entire 250,000 word manuscript of ‘The Seven Pillars of Wisdom’ by accidentally leaving it on a train at Reading station, before rewriting a much better version.  Now, any writer or artist is seduced by technology into altering or refining their work rather than casting it dramatically in the bin or setting a light to it on a bonfire, and rewriting it from the blank page.  It is easy to pick away at a flawed work, but the real creative process is far more brutal. Once, many years ago whilst running a software house that supplied commercial software to local businesses, I’d been supervising an accounting system for a farming cooperative. No packaged system met their needs, and it was all hand-cut code.  For us, it represented a breakthrough as it was for a government organisation, and success would guarantee more contracts. As you’ve probably guessed, the code got mangled in a disk crash just a week before the deadline for delivery, and the many backups all proved to be entirely corrupted by a faulty tape drive.  There were some fragments left on individual machines, but they were all of different versions.  The developers were in despair.  Strangely, I managed to re-write the bulk of a three-month project in a manic and caffeine-soaked weekend.  Sure, that elegant universally-applicable input-form routine was‘nt quite so elegant, but it didn’t really need to be as we knew what forms it needed to support.  Yes, the code lacked architectural elegance and reusability. By dawn on Monday, the application passed its integration tests. The developers rose to the occasion after I’d collapsed, and tidied up what I’d done, though they were reproachful that some of the style and elegance had gone out of the application. By the delivery date, we were able to install it. It was a smaller, faster application than the beta they’d seen and the user-interface had a new, rather Spartan, appearance that we swore was done to conform to the latest in user-interface guidelines. (we switched to Helvetica font to look more ‘Bauhaus’ ). The client was so delighted that he forgave the new bugs that had crept in. I still have the disk that crashed, up in the attic. In IT, we have had mixed experiences from complete re-writes. Lotus 123 never really recovered from a complete rewrite from assembler into C, Borland made the mistake with Arago and Quattro Pro  and Netscape’s complete rewrite of their Navigator 4 browser was a white-knuckle ride. In all cases, the decision to rewrite was a result of extreme circumstances where no other course of action seemed possible.   The rewrite didn’t come out of the blue. I prefer to remember the rewrite of Minix by young Linus Torvalds, or the rewrite of Bitkeeper by a slightly older Linus.  The rewrite of CP/M didn’t do too badly either, did it? Come to think of it, the guy who decided to rewrite the windowing system of the Xerox Star never regretted the decision. I’ll agree that one should often resist calls for a rewrite. One of the worst habits of the more inexperienced programmer is to denigrate whatever code he or she inherits, and then call loudly for a complete rewrite. They are buoyed up by the mistaken belief that they can do better. This, however, is a different psychological phenomenon, more related to the idea of some motorcyclists that they are operating on infinite lives, or the occasional squaddies that if they charge the machine-guns determinedly enough all will be well. Grim experience brings out the humility in any experienced programmer.  I’m referring to quite different circumstances here. Where a team knows the requirements perfectly, are of one mind on methodology and coding standards, and they already have a solution, then what is wrong with considering  a complete rewrite? Rewrites are so painful in the early stages, until that point where one realises the payoff, that even I quail at the thought. One needs a natural disaster to push one over the edge. The trouble is that source-control systems, and disaster recovery systems, are just too good nowadays.   If I were to lose this draft of this very blog post, I know I’d rewrite it much better. However, if you read this, you’ll know I didn’t have the nerve to delete it and start again.  There was a time that one prayed that unreliable hardware would deliver you from an unmaintainable mess of a codebase, but now technology has made us almost entirely immune to such a merciful act of God. An old friend of mine with long experience in the software industry has long had the idea of the ‘source-control wet-work’,  where one hires a malicious hacker in some wild eastern country to hack into one’s own  source control system to destroy all trace of the source to an application. Alas, backup systems are just too good to make this any more than a pipedream. Somehow, it would be difficult to promote the idea. As an alternative, could one construct a source control system that, on doing all the code-quality metrics, would systematically destroy all trace of source code that failed the quality test? Alas, I can’t see many managers buying into the idea. In reading the full story of the near-loss of Toy Story 2, it set me thinking. It turned out that the lucky restoration of the code wasn’t the happy ending one first imagined it to be, because they eventually came to the conclusion that the plot was fundamentally flawed and it all had to be rewritten anyway.  Was this an early  case of the ‘source-control wet-job’?’ It is very hard nowadays to do a rapid U-turn in a development project because we are far too prone to cling to our existing source-code.

    Read the article

  • How to configure TATA Photon+ EC1261 HUAWEI

    - by user3215
    I'm running ubuntu 10.04. I have a newly purchased TATA Photon+ Internet connection which supports Windows and Mac. On the Internet I found a article saying that it could be configured on Linux. I followed the steps to install it on Ubuntu from this link. I am still not able to get online, and need some help. Also, it is very slow, but I was told that I would see speeds up to 3.1MB. I dont have wvdial installed and cannot install it from apt as I'm not connected to internet Booting from windows I dowloaded "wvdial" .deb package and tried to install on ubuntu but it's ended with dependency problem. Automatically, don't know how, I got connected to internet only for once. Immediately I installed wvdial package after this I followed the tutorials(I could not browse and upload the files here) . From then it's showing that the device is connected in the network connections but no internet connection. Once I disable the device, it won't show as connected again and I'll have to restart my system. Sometimes the device itself not detected(wondering if there is any command to re-read the all devices). output of wvdialconf /etc/wvdial.cof: #wvdialconf /etc/wvdial.conf Editing `/etc/wvdial.conf'. Scanning your serial ports for a modem. ttyS0<*1>: ATQ0 V1 E1 -- failed with 2400 baud, next try: 9600 baud ttyS0<*1>: ATQ0 V1 E1 -- failed with 9600 baud, next try: 115200 baud ttyS0<*1>: ATQ0 V1 E1 -- and failed too at 115200, giving up. Modem Port Scan<*1>: S1 S2 S3 WvModem<*1>: Cannot get information for serial port. ttyUSB0<*1>: ATQ0 V1 E1 -- failed with 2400 baud, next try: 9600 baud ttyUSB0<*1>: ATQ0 V1 E1 -- failed with 9600 baud, next try: 9600 baud ttyUSB0<*1>: ATQ0 V1 E1 -- and failed too at 115200, giving up. WvModem<*1>: Cannot get information for serial port. ttyUSB1<*1>: ATQ0 V1 E1 -- failed with 2400 baud, next try: 9600 baud ttyUSB1<*1>: ATQ0 V1 E1 -- failed with 9600 baud, next try: 9600 baud ttyUSB1<*1>: ATQ0 V1 E1 -- and failed too at 115200, giving up. WvModem<*1>: Cannot get information for serial port. ttyUSB2<*1>: ATQ0 V1 E1 -- OK ttyUSB2<*1>: ATQ0 V1 E1 Z -- OK ttyUSB2<*1>: ATQ0 V1 E1 S0=0 -- OK ttyUSB2<*1>: ATQ0 V1 E1 S0=0 &C1 -- OK ttyUSB2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 -- OK ttyUSB2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 -- OK ttyUSB2<*1>: Modem Identifier: ATI -- Manufacturer: +GMI: HUAWEI TECHNOLOGIES CO., LTD ttyUSB2<*1>: Speed 9600: AT -- OK ttyUSB2<*1>: Max speed is 9600; that should be safe. ttyUSB2<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 -- OK Found a modem on /dev/ttyUSB2. Modem configuration written to /etc/wvdial.conf. ttyUSB2<Info>: Speed 9600; init "ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0" output of wvdial: #wvdial --> WvDial: Internet dialer version 1.60 --> Cannot get information for serial port. --> Initializing modem. --> Sending: ATZ ATZ OK --> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 OK --> Sending: AT+CRM=1 AT+CRM=1 OK --> Modem initialized. --> Sending: ATDT#777 --> Waiting for carrier. ATDT#777 CONNECT --> Carrier detected. Starting PPP immediately. --> Starting pppd at Sat Oct 16 15:30:47 2010 --> Pid of pppd: 5681 --> Using interface ppp0 --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> pppd: (u;[08]@s;[08]`{;[08] --> local IP address 14.96.147.104 --> pppd: (u;[08]@s;[08]`{;[08] --> remote IP address 172.29.161.223 --> pppd: (u;[08]@s;[08]`{;[08] --> primary DNS address 121.40.152.90 --> pppd: (u;[08]@s;[08]`{;[08] --> secondary DNS address 121.40.152.100 --> pppd: (u;[08]@s;[08]`{;[08] Output of log message /var/log/messages: Oct 16 15:29:44 avyakta-desktop pppd[5119]: secondary DNS address 121.242.190.180 Oct 16 15:29:58 desktop pppd[5119]: Terminating on signal 15 Oct 16 15:29:58 desktop pppd[5119]: Connect time 0.3 minutes. Oct 16 15:29:58 desktop pppd[5119]: Sent 0 bytes, received 177 bytes. Oct 16 15:29:58 desktop pppd[5119]: Connection terminated. Oct 16 15:30:47 desktop pppd[5681]: pppd 2.4.5 started by root, uid 0 Oct 16 15:30:47 desktop pppd[5681]: Using interface ppp0 Oct 16 15:30:47 desktop pppd[5681]: Connect: ppp0 <--> /dev/ttyUSB2 Oct 16 15:30:47 desktop pppd[5681]: CHAP authentication succeeded Oct 16 15:30:47 desktop pppd[5681]: CHAP authentication succeeded Oct 16 15:30:48 desktop pppd[5681]: local IP address 14.96.147.104 Oct 16 15:30:48 desktop pppd[5681]: remote IP address 172.29.161.223 Oct 16 15:30:48 desktop pppd[5681]: primary DNS address 121.40.152.90 Oct 16 15:30:48 desktop pppd[5681]: secondary DNS address 121.40.152.100 EDIT 1 : I tried the following sudo stop network-manager sudo killall modem-manager sudo /usr/sbin/modem-manager --debug > ~/mm.log 2>&1 & sudo /usr/sbin/NetworkManager --no-daemon > ~/nm.log 2>&1 & Output of mm.log: #vim ~/mm.log: ** Message: Loaded plugin Option High-Speed ** Message: Loaded plugin Option ** Message: Loaded plugin Huawei ** Message: Loaded plugin Longcheer ** Message: Loaded plugin AnyData ** Message: Loaded plugin ZTE ** Message: Loaded plugin Ericsson MBM ** Message: Loaded plugin Sierra ** Message: Loaded plugin Generic ** Message: Loaded plugin Gobi ** Message: Loaded plugin Novatel ** Message: Loaded plugin Nokia ** Message: Loaded plugin MotoC Output of nm.log: #vim ~/nm.log: NetworkManager: <info> starting... NetworkManager: <info> modem-manager is now available NetworkManager: SCPlugin-Ifupdown: init! NetworkManager: SCPlugin-Ifupdown: update_system_hostname NetworkManager: SCPluginIfupdown: guessed connection type (eth0) = 802-3-ethernet NetworkManager: SCPlugin-Ifupdown: update_connection_setting_from_if_block: name:eth0, type:802-3-ethernet, id:Ifupdown (eth0), uuid: 681b428f-beaf-8932-dce4-678ed5bae28e NetworkManager: SCPlugin-Ifupdown: addresses count: 1 NetworkManager: SCPlugin-Ifupdown: No dns-nameserver configured in /etc/network/interfaces NetworkManager: nm-ifupdown-connection.c.119 - invalid connection read from /etc/network/interfaces: (1) addresses NetworkManager: SCPluginIfupdown: management mode: unmanaged NetworkManager: SCPlugin-Ifupdown: devices added (path: /sys/devices/pci0000:00/0000:00:14.4/0000:02:02.0/net/eth1, iface: eth1) NetworkManager: SCPlugin-Ifupdown: device added (path: /sys/devices/pci0000:00/0000:00:14.4/0000:02:02.0/net/eth1, iface: eth1): no ifupdown configuration found. NetworkManager: SCPlugin-Ifupdown: devices added (path: /sys/devices/virtual/net/lo, iface: lo) @

    Read the article

  • Oracle Identity Manager Role Management With API

    - by mustafakaya
    As an administrator, you use roles to create and manage the records of a collection of users to whom you want to permit access to common functionality, such as access rights, roles, or permissions. Roles can be independent of an organization, span multiple organizations, or contain users from a single organization. Using roles, you can: View the menu items that the users can access through Oracle Identity Manager Administration Web interface. Assign users to roles. Assign a role to a parent role Designate status to the users so that they can specify defined responses for process tasks. Modify permissions on data objects. Designate role administrators to perform actions on roles, such as enabling members of another role to assign users to the current role, revoke members from current role and so on. Designate provisioning policies for a role. These policies determine if a resource object is to be provisioned to or requested for a member of the role. Assign or remove membership rules to or from the role. These rules determine which users can be assigned/removed as direct membership to/from the role.  In this post, i will share some examples for role management with Oracle Identity Management API.  You can do role operations you can use Thor.API.Operations.tcGroupOperationsIntf interface. tcGroupOperationsIntf service =  getClient().getService(tcGroupOperationsIntf.class);     Assign an user to role :    public void assignRoleByUsrKey(String roleName, String usrKey) throws Exception {         Map<String, String> filter = new HashMap<String, String>();         filter.put("Groups.Role Name", roleName);         tcResultSet role = service.findGroups(filter);         String groupKey = role.getStringValue("Groups.Key");         service.addMemberUser(Long.parseLong(groupKey), Long.parseLong(usrKey));     }  Revoke an user from role:     public void revokeRoleByUsrKey(String roleName, String usrKey) throws Exception {         Map<String, String> filter = new HashMap<String, String>();         filter.put("Groups.Role Name", roleName);         tcResultSet role = service.findGroups(filter);         String groupKey = role.getStringValue("Groups.Key");         service.removeMemberUser(Long.parseLong(groupKey), Long.parseLong(usrKey));     } Get all members of a role :      public List<User> getRoleMembers(String roleName) throws Exception {         List<User> userList = new ArrayList<User>();         Map<String, String> filter = new HashMap<String, String>();         filter.put("Groups.Role Name", roleName);         tcResultSet role = service.findGroups(filter);       String groupKey = role.getStringValue("Groups.Key");         tcResultSet members = service.getAllMemberUsers(Long.parseLong(groupKey));         for (int i = 0; i < members.getRowCount(); i++) {                 members.goToRow(i);                 long userKey = members.getLongValue("Users.Key");                 User member = oimUserManager.findUserByUserKey(String.valueOf(userKey));                 userList.add(member);         }        return userList;     } About me: Mustafa Kaya is a Senior Consultant in Oracle Fusion Middleware Team, living in Istanbul. Before coming to Oracle, he worked in teams developing web applications and backend services at a telco company. He is a Java technology enthusiast, software engineer and addicted to learn new technologies,develop new ideas. Follow Mustafa on Twitter,Connect on LinkedIn, and visit his site for Oracle Fusion Middleware related tips.

    Read the article

  • Exalogic 2.0.1 Tea Break Snippets - Creating a ModifyJeOS VirtualBox

    - by The Old Toxophilist
    Following on from my previous blog entry "Modifying the Base Template" I decided to put together a quick blog to show how to create a small VirtualBox, guest, that can be used to execute the ModifyJeOS and hence edit you templates. One of the main advantages of this is that Templates can be created away from the Exalogic Environment. For the Guest OS I chose OEL 6u3 and decided to create it as a basic server because I did not require a graphical interface but it's a simple change to create it with a GUI. Required Software Virtual Box. Oracle Enterprise Linux. Creating the VM I'll assume that the reader is experienced with Virtual Box and installing OEL and hence will make this section brief. Create VirtualBox Guest Create a new VirtualBox Guest and select oracle Linux 64 bit. Follow through the create process and select Dynamic Disk Size and the default 12GB disk size. The actual image will be a lot smaller than this but the OEL install will fail with insufficient disk space if you attempt a smaller size. Once the guest has been created attach the previously downloaded OEL 6u3 iso to the cd drive and start the guest. Install OEL On starting the guest the system will boot off the associated OEL 6u3 iso and take you through the standard installation process. Select all the appropriate information but when you reach the installation type select Basic Server because we do not need that additional packages and only need to access through the command line interface. Complete the installation and reboot the Guest. At this point we now have a basic OEL server running. Installing Guest Add-ons Before we can easily access the Guest we will need to add the VirtualBox guest add-ons. These will provide better keyboard and mouse integration and allow access the shared folders on the host machine. Before we can do this we will need to do the following: Enable Networking. Install additional rpms.  To enable the networking (eth0), that appears to be disabled by default, we can execute: ifup eth0 This will start the eth0 connection but once the Guest is rebooted the network will be down again. To resolve this you will need to edit the /etc/sysconfig/network-scripts/ifcfg-eth0 file and change the ONBOOT parameter to "yes". Now we have enabled the network we will need to install a number of addition rpm. First we will need to configure the yum repository as follows: [ol6_latest] name=Oracle Linux $releasever Latest ($basearch) baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/latest/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=1 [ol6_ga_base] name=Oracle Linux $releasever GA installation media copy ($basearch) baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/0/base/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=0 [ol6_u1_base] name=Oracle Linux $releasever Update 1 installation media copy ($basearch) baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/1/base/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=0 [ol6_u2_base] name=Oracle Linux $releasever Update 2 installation media copy ($basearch) baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/2/base/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=0 [ol6_u3_base] name=Oracle Linux $releasever Update 3 installation media copy ($basearch) baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/3/base/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=0 [ol6_UEK_latest] name=Latest Unbreakable Enterprise Kernel for Oracle Linux $releasever ($basearch) baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/UEK/latest/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=1 [ol6_UEK_base] name=Unbreakable Enterprise Kernel for Oracle Linux $releasever ($basearch) baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/UEK/base/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=0 Once the repository has been edited we will need to execute the following yum commands: yum update yum install gcc yum install kernel-uek-devel yum install kernel-devel yum install createrepo At this point we now have all the additional packages required to install the VirtualBox Guest Add-ons. So select Devices->InstallGuest Additions on you running guest: This will simply place the VirtualBoxGuestAdditions.iso in the virtual cd and we will need to execute the following before we can run them. mkdir /media/cdrom mount -t iso9660 -o ro /dev/cdrom /media/cdrom cd /media/cdrom/ ls ./VBoxLinuxAdditions.run This will initiate the install and kernel rebuild. What you will notice is that during the installation a Failed will be displayed but this is simply because we have no graphical components. At this point we the installation will also have added the vboxsf group to the system and to access any shared folders we will create our user will need to be a member of this group an so the next stage is to add the root user to this group as follows: usermod -G vboxsf root cat /etc/group cat /etc/passwd init 0 Now simply shutdown the guest and add the Shared folder within your guests settings. Install ModifyJeOS Once the shared folder has been added restart the guest and change directory into the shared folder (/media/sf_<folder name>). For the next step I am assuming the ModifyJeOS rpms are located in the shared folder. We can simply execute: rpm -ivh ovm-modify-jeos-1.1.0-17.el5.noarch.rpm # Test with modifyjeos Using ModifyJeOS I have a modified MountSystemImg.sh script that should be copied into the /root/bin directory (you may need to create this) and from here it can be executed from any location: MountSystemImg.sh #!/bin/sh # The script assumes it's being run from the directory containing the System.img # Export for later i.e. during unmount export LOOP=`losetup -f` export SYSTEMIMG=/mnt/elsystem export TEMPLATEDIR=`pwd` # Make Temp Mount Directory mkdir -p $SYSTEMIMG # Create Loop for the System Image losetup $LOOP System.img kpartx -a $LOOP mount /dev/mapper/`basename $LOOP`p2 $SYSTEMIMG #Change Dir into mounted Image cd $SYSTEMIMG echo "######################################################################" echo "### ###" echo "### Starting Bash shell for editing. When completed log out to ###" echo "### Unmount the System.img file. ###" echo "### ###" echo "######################################################################" echo bash cd ~ cd $TEMPLATEDIR umount $SYSTEMIMG kpartx -d $LOOP losetup -d $LOOP rm -rf $SYSTEMIMG This script will simple create a mount directory, mount the System.img and then start a new shell in the mounted directory. On exiting the shell it will unmount the System.img. It only requires that you execute the script in the directory containing the System.img. These can be created under the mounted shared directory. In the example below I have extracted the Base template within the shared folder and then renamed it OEL_40GB_ROOT before changing into that directory and executing the script.

    Read the article

  • Source-control 'wet-work'?

    - by Phil Factor
    When a design or creative work is flawed beyond remedy, it is often best to destroy it and start again. The other day, I lost the code to a long and intricate SQL batch I was working on. I’d thought it was impossible, but it happened. With all the technology around that is designed to prevent this occurring, this sort of accident has become a rare event.  If it weren’t for a deranged laptop, and my distraction, the code wouldn’t have been lost this time.  As always, I sighed, had a soothing cup of tea, and typed it all in again.  The new code I hastily tapped in  was much better: I’d held in my head the essence of how the code should work rather than the details: I now knew for certain  the start point, the end, and how it should be achieved. Instantly the detritus of half-baked thoughts fell away and I was able to write logical code that performed better.  Because I could work so quickly, I was able to hold the details of all the columns and variables in my head, and the dynamics of the flow of data. It was, in fact, easier and quicker to start from scratch rather than tidy up and refactor the existing code with its inevitable fumbling and half-baked ideas. What a shame that technology is now so good that developers rarely experience the cleansing shock of losing one’s code and having to rewrite it from scratch.  If you’ve never accidentally lost  your code, then it is worth doing it deliberately once for the experience. Creative people have, until Technology mistakenly prevented it, torn up their drafts or sketches, threw them in the bin, and started again from scratch.  Leonardo’s obsessive reworking of the Mona Lisa was renowned because it was so unusual:  Most artists have been utterly ruthless in destroying work that didn’t quite make it. Authors are particularly keen on writing afresh, and the results are generally positive. Lawrence of Arabia actually lost the entire 250,000 word manuscript of ‘The Seven Pillars of Wisdom’ by accidentally leaving it on a train at Reading station, before rewriting a much better version.  Now, any writer or artist is seduced by technology into altering or refining their work rather than casting it dramatically in the bin or setting a light to it on a bonfire, and rewriting it from the blank page.  It is easy to pick away at a flawed work, but the real creative process is far more brutal. Once, many years ago whilst running a software house that supplied commercial software to local businesses, I’d been supervising an accounting system for a farming cooperative. No packaged system met their needs, and it was all hand-cut code.  For us, it represented a breakthrough as it was for a government organisation, and success would guarantee more contracts. As you’ve probably guessed, the code got mangled in a disk crash just a week before the deadline for delivery, and the many backups all proved to be entirely corrupted by a faulty tape drive.  There were some fragments left on individual machines, but they were all of different versions.  The developers were in despair.  Strangely, I managed to re-write the bulk of a three-month project in a manic and caffeine-soaked weekend.  Sure, that elegant universally-applicable input-form routine was‘nt quite so elegant, but it didn’t really need to be as we knew what forms it needed to support.  Yes, the code lacked architectural elegance and reusability. By dawn on Monday, the application passed its integration tests. The developers rose to the occasion after I’d collapsed, and tidied up what I’d done, though they were reproachful that some of the style and elegance had gone out of the application. By the delivery date, we were able to install it. It was a smaller, faster application than the beta they’d seen and the user-interface had a new, rather Spartan, appearance that we swore was done to conform to the latest in user-interface guidelines. (we switched to Helvetica font to look more ‘Bauhaus’ ). The client was so delighted that he forgave the new bugs that had crept in. I still have the disk that crashed, up in the attic. In IT, we have had mixed experiences from complete re-writes. Lotus 123 never really recovered from a complete rewrite from assembler into C, Borland made the mistake with Arago and Quattro Pro  and Netscape’s complete rewrite of their Navigator 4 browser was a white-knuckle ride. In all cases, the decision to rewrite was a result of extreme circumstances where no other course of action seemed possible.   The rewrite didn’t come out of the blue. I prefer to remember the rewrite of Minix by young Linus Torvalds, or the rewrite of Bitkeeper by a slightly older Linus.  The rewrite of CP/M didn’t do too badly either, did it? Come to think of it, the guy who decided to rewrite the windowing system of the Xerox Star never regretted the decision. I’ll agree that one should often resist calls for a rewrite. One of the worst habits of the more inexperienced programmer is to denigrate whatever code he or she inherits, and then call loudly for a complete rewrite. They are buoyed up by the mistaken belief that they can do better. This, however, is a different psychological phenomenon, more related to the idea of some motorcyclists that they are operating on infinite lives, or the occasional squaddies that if they charge the machine-guns determinedly enough all will be well. Grim experience brings out the humility in any experienced programmer.  I’m referring to quite different circumstances here. Where a team knows the requirements perfectly, are of one mind on methodology and coding standards, and they already have a solution, then what is wrong with considering  a complete rewrite? Rewrites are so painful in the early stages, until that point where one realises the payoff, that even I quail at the thought. One needs a natural disaster to push one over the edge. The trouble is that source-control systems, and disaster recovery systems, are just too good nowadays.   If I were to lose this draft of this very blog post, I know I’d rewrite it much better. However, if you read this, you’ll know I didn’t have the nerve to delete it and start again.  There was a time that one prayed that unreliable hardware would deliver you from an unmaintainable mess of a codebase, but now technology has made us almost entirely immune to such a merciful act of God. An old friend of mine with long experience in the software industry has long had the idea of the ‘source-control wet-work’,  where one hires a malicious hacker in some wild eastern country to hack into one’s own  source control system to destroy all trace of the source to an application. Alas, backup systems are just too good to make this any more than a pipedream. Somehow, it would be difficult to promote the idea. As an alternative, could one construct a source control system that, on doing all the code-quality metrics, would systematically destroy all trace of source code that failed the quality test? Alas, I can’t see many managers buying into the idea. In reading the full story of the near-loss of Toy Story 2, it set me thinking. It turned out that the lucky restoration of the code wasn’t the happy ending one first imagined it to be, because they eventually came to the conclusion that the plot was fundamentally flawed and it all had to be rewritten anyway.  Was this an early  case of the ‘source-control wet-job’?’ It is very hard nowadays to do a rapid U-turn in a development project because we are far too prone to cling to our existing source-code.

    Read the article

  • Lenovo V570 CPU fan running constantly, CPU core 1 running over 90%!

    - by Rabbit2190
    I have seen that a lot of people are having this same issue. I am running a Lenovo V570 i5 4 core, 6 gigs of ram, and am running 11.10 Onieric Ocelot. On my system monitor graph it shows CPU at 20%, when I open the monitor it shows core #1 at around 90%, the other cores fluctuate at or below 5-12% if even. Now this seems like a really terrible balance of power between the cores, especially with so much stress on one core only, when these things are designed to work with 4 cores and not at such high temps. My current readings say 64 degrees Celsius, this does not seem normal for any cpu, and I am seriously considering, working on my windows7 partition until I see a real solution to this issue or upgrading to 12.04 right away when it comes out... I have seen countless things saying it has something to do with the Kernel, the kernel on mine is the same as when I upgraded, I really do not like messing with it, as when I had 11.04, I did tinker with it due to the freeze issues I was having, and that just made worse issues. I like this version 11.10 and would like to keep it for a while, but without the fear that my core is going to fry! So any help would be much appreciated! I did try changing a couple things in ACPI, and restarting this did not help, and here I am. I tried one thing prior to that that was listed under a different computer brand, but it would not do a make on the file. I really need help with this, I rely on this computer for a lot of things, and love this OS! Please help so I do not need to resort to my Microsoft partition! PLEASE! Here is the fwts cpufrequ- output: rabbit@rabbit-Lenovo-V570:~$ sudo fwts cpufreq - 00001 fwts Results generated by fwts: Version V0.23.25 (Thu Oct 6 15 00002 fwts :12:31 BST 2011). 00003 fwts 00004 fwts Some of this work - Copyright (c) 1999 - 2010, Intel Corp. 00005 fwts All rights reserved. 00006 fwts Some of this work - Copyright (c) 2010 - 2011, Canonical. 00007 fwts 00008 fwts This test run on 02/04/12 at 17:23:22 on host Linux 00009 fwts rabbit-Lenovo-V570 3.0.0-17-generic-pae #30-Ubuntu SMP Thu 00010 fwts Mar 8 17:53:35 UTC 2012 i686. 00011 fwts 00012 fwts Running tests: cpufreq. 00014 cpufreq CPU frequency scaling tests (takes ~1-2 mins). 00015 cpufreq --------------------------------------------------------- 00016 cpufreq Test 1 of 1: CPU P-State Checks. 00017 cpufreq For each processor in the system, this test steps through 00018 cpufreq the various frequency states (P-states) that the BIOS 00019 cpufreq advertises for the processor. For each processor/frequency 00020 cpufreq combination, a quick performance value is measured. The 00021 cpufreq test then validates that: 00022 cpufreq 1) Each processor has the same number of frequency states 00023 cpufreq 2) Higher advertised frequencies have a higher performance 00024 cpufreq 3) No duplicate frequency values are reported by the BIOS 00025 cpufreq 4) Is BIOS wrongly doing Sw_All P-state coordination across cores 00026 cpufreq 5) Is BIOS wrongly doing Sw_Any P-state coordination across cores 00027 cpufreq Frequency | Speed 00028 cpufreq -----------+--------- 00029 cpufreq 2.45 Ghz | 100.0 % 00030 cpufreq 2.45 Ghz | 83.7 % 00031 cpufreq 2.05 Ghz | 69.2 % 00032 cpufreq 1.85 Ghz | 62.5 % 00033 cpufreq 1.65 Ghz | 55.2 % 00034 cpufreq 1400 Mhz | 48.6 % 00035 cpufreq 1200 Mhz | 41.8 % 00036 cpufreq 1000 Mhz | 34.5 % 00037 cpufreq 800 Mhz | 27.6 % 00038 cpufreq 9 CPU frequency steps supported 00039 cpufreq Frequency | Speed 00040 cpufreq -----------+--------- 00041 cpufreq 2.45 Ghz | 97.7 % 00042 cpufreq 2.45 Ghz | 83.7 % 00043 cpufreq 2.05 Ghz | 69.6 % 00044 cpufreq 1.85 Ghz | 63.3 % 00045 cpufreq 1.65 Ghz | 55.7 % 00046 cpufreq 1400 Mhz | 48.7 % 00047 cpufreq 1200 Mhz | 41.7 % 00048 cpufreq 1000 Mhz | 34.5 % 00049 cpufreq 800 Mhz | 27.5 % 00050 cpufreq Frequency | Speed 00051 cpufreq -----------+--------- 00052 cpufreq 2.45 Ghz | 97.7 % 00053 cpufreq 2.45 Ghz | 84.4 % 00054 cpufreq 2.05 Ghz | 69.6 % 00055 cpufreq 1.85 Ghz | 62.6 % 00056 cpufreq 1.65 Ghz | 55.9 % 00057 cpufreq 1400 Mhz | 48.7 % 00058 cpufreq 1200 Mhz | 41.7 % 00059 cpufreq 1000 Mhz | 34.7 % 00060 cpufreq 800 Mhz | 27.8 % 00061 cpufreq Frequency | Speed 00062 cpufreq -----------+--------- 00063 cpufreq 2.45 Ghz | 100.0 % 00064 cpufreq 2.45 Ghz | 82.6 % 00065 cpufreq 2.05 Ghz | 67.8 % 00066 cpufreq 1.85 Ghz | 61.4 % 00067 cpufreq 1.65 Ghz | 54.9 % 00068 cpufreq 1400 Mhz | 48.3 % 00069 cpufreq 1200 Mhz | 41.1 % 00070 cpufreq 1000 Mhz | 34.3 % 00071 cpufreq 800 Mhz | 27.4 % 00072 cpufreq Frequency | Speed 00073 cpufreq -----------+--------- 00074 cpufreq 2.45 Ghz | 96.2 % 00075 cpufreq 2.45 Ghz | 82.5 % 00076 cpufreq 2.05 Ghz | 69.3 % 00077 cpufreq 1.85 Ghz | 62.7 % 00078 cpufreq 1.65 Ghz | 55.0 % 00079 cpufreq 1400 Mhz | 47.4 % 00080 cpufreq 1200 Mhz | 41.1 % 00081 cpufreq 1000 Mhz | 34.0 % 00082 cpufreq 800 Mhz | 27.2 % 00083 cpufreq Frequency | Speed 00084 cpufreq -----------+--------- 00085 cpufreq 2.45 Ghz | 96.5 % 00086 cpufreq 2.45 Ghz | 83.6 % 00087 cpufreq 2.05 Ghz | 68.1 % 00088 cpufreq 1.85 Ghz | 61.7 % 00089 cpufreq 1.65 Ghz | 54.9 % 00090 cpufreq 1400 Mhz | 48.0 % 00091 cpufreq 1200 Mhz | 41.1 % 00092 cpufreq 1000 Mhz | 34.2 % 00093 cpufreq 800 Mhz | 27.8 % 00094 cpufreq Frequency | Speed 00095 cpufreq -----------+--------- 00096 cpufreq 2.45 Ghz | 96.4 % 00097 cpufreq 2.45 Ghz | 82.6 % 00098 cpufreq 2.05 Ghz | 68.8 % 00099 cpufreq 1.85 Ghz | 60.5 % 00100 cpufreq 1.65 Ghz | 52.4 % 00101 cpufreq 1400 Mhz | 48.8 % 00102 cpufreq 1200 Mhz | 41.1 % 00103 cpufreq 1000 Mhz | 34.2 % 00104 cpufreq 800 Mhz | 26.4 % 00105 cpufreq Frequency | Speed 00106 cpufreq -----------+--------- 00107 cpufreq 2.45 Ghz | 95.3 % 00108 cpufreq 2.45 Ghz | 82.5 % 00109 cpufreq 2.05 Ghz | 65.5 % 00110 cpufreq 1.85 Ghz | 62.8 % 00111 cpufreq 1.65 Ghz | 54.8 % 00112 cpufreq 1400 Mhz | 48.0 % 00113 cpufreq 1200 Mhz | 41.2 % 00114 cpufreq 1000 Mhz | 34.2 % 00115 cpufreq 800 Mhz | 27.3 % 00116 cpufreq Frequency | Speed 00117 cpufreq -----------+--------- 00118 cpufreq 2.45 Ghz | 96.3 % 00119 cpufreq 2.45 Ghz | 83.4 % 00120 cpufreq 2.05 Ghz | 68.3 % 00121 cpufreq 1.85 Ghz | 61.9 % 00122 cpufreq 1.65 Ghz | 54.9 % 00123 cpufreq 1400 Mhz | 48.0 % 00124 cpufreq 1200 Mhz | 41.1 % 00125 cpufreq 1000 Mhz | 34.2 % 00126 cpufreq 800 Mhz | 27.3 % 00127 cpufreq Frequency | Speed 00128 cpufreq -----------+--------- 00129 cpufreq 2.45 Ghz | 100.0 % 00130 cpufreq 2.45 Ghz | 77.9 % 00131 cpufreq 2.05 Ghz | 64.6 % 00132 cpufreq 1.85 Ghz | 54.0 % 00133 cpufreq 1.65 Ghz | 51.7 % 00134 cpufreq 1400 Mhz | 45.2 % 00135 cpufreq 1200 Mhz | 39.0 % 00136 cpufreq 1000 Mhz | 33.1 % 00137 cpufreq 800 Mhz | 25.5 % 00138 cpufreq Frequency | Speed 00139 cpufreq -----------+--------- 00140 cpufreq 2.45 Ghz | 93.4 % 00141 cpufreq 2.45 Ghz | 75.7 % 00142 cpufreq 2.05 Ghz | 64.5 % 00143 cpufreq 1.85 Ghz | 59.1 % 00144 cpufreq 1.65 Ghz | 51.4 % 00145 cpufreq 1400 Mhz | 45.9 % 00146 cpufreq 1200 Mhz | 39.3 % 00147 cpufreq 1000 Mhz | 32.7 % 00148 cpufreq 800 Mhz | 25.8 % 00149 cpufreq Frequency | Speed 00150 cpufreq -----------+--------- 00151 cpufreq 2.45 Ghz | 92.1 % 00152 cpufreq 2.45 Ghz | 78.1 % 00153 cpufreq 2.05 Ghz | 65.7 % 00154 cpufreq 1.85 Ghz | 58.6 % 00155 cpufreq 1.65 Ghz | 52.5 % 00156 cpufreq 1400 Mhz | 45.7 % 00157 cpufreq 1200 Mhz | 39.3 % 00158 cpufreq 1000 Mhz | 32.7 % 00159 cpufreq 800 Mhz | 24.3 % 00160 cpufreq Frequency | Speed 00161 cpufreq -----------+--------- 00162 cpufreq 2.45 Ghz | 88.9 % 00163 cpufreq 2.45 Ghz | 79.8 % 00164 cpufreq 2.05 Ghz | 58.4 % 00165 cpufreq 1.85 Ghz | 52.6 % 00166 cpufreq 1.65 Ghz | 46.9 % 00167 cpufreq 1400 Mhz | 41.0 % 00168 cpufreq 1200 Mhz | 35.1 % 00169 cpufreq 1000 Mhz | 29.1 % 00170 cpufreq 800 Mhz | 22.9 % 00171 cpufreq Frequency | Speed 00172 cpufreq -----------+--------- 00173 cpufreq 2.45 Ghz | 92.8 % 00174 cpufreq 2.45 Ghz | 80.1 % 00175 cpufreq 2.05 Ghz | 66.2 % 00176 cpufreq 1.85 Ghz | 59.5 % 00177 cpufreq 1.65 Ghz | 52.9 % 00178 cpufreq 1400 Mhz | 46.2 % 00179 cpufreq 1200 Mhz | 39.5 % 00180 cpufreq 1000 Mhz | 32.9 % 00181 cpufreq 800 Mhz | 26.3 % 00182 cpufreq Frequency | Speed 00183 cpufreq -----------+--------- 00184 cpufreq 2.45 Ghz | 92.9 % 00185 cpufreq 2.45 Ghz | 79.5 % 00186 cpufreq 2.05 Ghz | 66.2 % 00187 cpufreq 1.85 Ghz | 59.6 % 00188 cpufreq 1.65 Ghz | 52.9 % 00189 cpufreq 1400 Mhz | 46.7 % 00190 cpufreq 1200 Mhz | 39.6 % 00191 cpufreq 1000 Mhz | 32.9 % 00192 cpufreq 800 Mhz | 26.3 % 00193 cpufreq FAILED [MEDIUM] CPUFreqCPUsSetToSW_ANY: Test 1, Processors 00194 cpufreq are set to SW_ANY. 00195 cpufreq FAILED [MEDIUM] CPUFreqSW_ANY: Test 1, Firmware not 00196 cpufreq implementing hardware coordination cleanly. Firmware using 00197 cpufreq SW_ANY instead?. 00198 cpufreq 00199 cpufreq ========================================================= 00200 cpufreq 0 passed, 2 failed, 0 warnings, 0 aborted, 0 skipped, 0 00201 cpufreq info only. 00202 cpufreq ========================================================= 00204 summary 00205 summary 0 passed, 2 failed, 0 warnings, 0 aborted, 0 skipped, 0 00206 summary info only. 00207 summary 00208 summary Test Failure Summary 00209 summary ==================== 00210 summary 00211 summary Critical failures: NONE 00212 summary 00213 summary High failures: NONE 00214 summary 00215 summary Medium failures: 2 00216 summary cpufreq test, at 1 log line: 193 00217 summary "Processors are set to SW_ANY." 00218 summary cpufreq test, at 1 log line: 195 00219 summary "Firmware not implementing hardware coordination cleanly. Firmware using SW_ANY instead?." 00220 summary 00221 summary Low failures: NONE 00222 summary 00223 summary Other failures: NONE 00224 summary 00225 summary Test |Pass |Fail |Abort|Warn |Skip |Info | 00226 summary ---------------+-----+-----+-----+-----+-----+-----+ 00227 summary cpufreq | | 2| | | | | 00228 summary ---------------+-----+-----+-----+-----+-----+-----+ 00229 summary Total: | 0| 2| 0| 0| 0| 0| 00230 summary ---------------+-----+-----+-----+-----+-----+-----+ rabbit@rabbit-Lenovo-V570:~$

    Read the article

  • Enable wireless on Dell Inspiron 1300

    - by Simon
    As per subject, I've looked at various resources and attempted ndiswrapper solutions, found a one-click solution that lead to a 404 and this but none works. I've run all updates. Once I managed to lose my wired connection as well and had to reinstall. This is my first hour with Linux. iwconfig gives this before I do anything: lo no wireless extensions. wlan0 IEEE 802.11bg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=0 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:on eth0 no wireless extens Thanks for responding lspci returns 00:00.0 Host bridge: Intel Corporation Mobile 915GM/PM/GMS/910GML Express Processor to DRAM Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort+ >SERR- <PERR- INTx- Latency: 0 Capabilities: <access denied> Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03) (prog-if 00 [VGA controller]) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at dff00000 (32-bit, non-prefetchable) [size=512K] Region 1: I/O ports at eff8 [size=8] Region 2: Memory at c0000000 (32-bit, prefetchable) [size=256M] Region 3: Memory at dfec0000 (32-bit, non-prefetchable) [size=256K] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: intelfb, i915 00:02.1 Display controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Region 0: Memory at dff80000 (32-bit, non-prefetchable) [size=512K] Capabilities: <access denied> 00:1b.0 Audio device: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) High Definition Audio Controller (rev 03) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 42 Region 0: Memory at dfebc000 (64-bit, non-prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 1 (rev 03) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=0b, subordinate=0b, sec-latency=0 I/O behind bridge: 00002000-00002fff Memory behind bridge: 30000000-301fffff Prefetchable memory behind bridge: 0000000030200000-00000000303fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.3 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 4 (rev 03) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=0c, subordinate=0d, sec-latency=0 I/O behind bridge: 0000d000-0000dfff Memory behind bridge: dfc00000-dfdfffff Prefetchable memory behind bridge: 00000000d0000000-00000000d01fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #1 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 4: I/O ports at bf80 [size=32] Kernel driver in use: uhci_hcd 00:1d.1 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #2 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin B routed to IRQ 17 Region 4: I/O ports at bf60 [size=32] Kernel driver in use: uhci_hcd 00:1d.2 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #3 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin C routed to IRQ 18 Region 4: I/O ports at bf40 [size=32] Kernel driver in use: uhci_hcd 00:1d.3 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #4 (rev 03) (prog-if 00 [UHCI]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin D routed to IRQ 19 Region 4: I/O ports at bf20 [size=32] Kernel driver in use: uhci_hcd 00:1d.7 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB2 EHCI Controller (rev 03) (prog-if 20 [EHCI]) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at b0000000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev d3) (prog-if 01 [Subtractive decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Bus: primary=00, secondary=02, subordinate=02, sec-latency=32 I/O behind bridge: 0000f000-00000fff Memory behind bridge: dfb00000-dfbfffff Prefetchable memory behind bridge: 00000000fff00000-00000000000fffff Secondary status: 66MHz- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort+ <SERR- <PERR- BridgeCtl: Parity- SERR+ NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> 00:1f.0 ISA bridge: Intel Corporation 82801FBM (ICH6M) LPC Interface Bridge (rev 03) Subsystem: Dell Device 01c9 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Kernel modules: iTCO_wdt, intel-rng 00:1f.1 IDE interface: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) IDE Controller (rev 03) (prog-if 8a [Master SecP PriP]) Subsystem: Dell Device 01c9 Control: I/O+ Mem- BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: I/O ports at 01f0 [size=8] Region 1: I/O ports at 03f4 [size=1] Region 2: I/O ports at 0170 [size=8] Region 3: I/O ports at 0374 [size=1] Region 4: I/O ports at bfa0 [size=16] Kernel driver in use: ata_piix 02:00.0 Ethernet controller: Broadcom Corporation BCM4401-B0 100Base-TX (rev 02) Subsystem: Dell Device 01c9 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 64 Interrupt: pin A routed to IRQ 18 Region 0: Memory at dfbfc000 (32-bit, non-prefetchable) [size=8K] Capabilities: <access denied> Kernel driver in use: b44 Kernel modules: b44 02:03.0 Network controller: Broadcom Corporation BCM4318 [AirForce One 54g] 802.11g Wireless LAN Controller (rev 02) Subsystem: Dell Wireless 1370 WLAN Mini-PCI Card Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 64 Interrupt: pin A routed to IRQ 17 Region 0: Memory at dfbfe000 (32-bit, non-prefetchable) [size=8K] Kernel driver in use: b43-pci-bridge Kernel modules: ssb and the rfkill shows 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no Just checking addtional drivers. Says no additional driver installed in this system

    Read the article

  • Kubuntu 12.04 - Touchpad and keyboard stopped working at random

    - by StepTNT
    As in the title, I've got this problem with my Kubuntu 12.04. At first I've thought that the whole system was hung, but it happened again 5 minutes ago and, while the keyboard and the touchpad stopped working, the music was still playing, so I guess that's just an "input" problem, because the system was still working! Any solution? Is there some data that you need to know about my setup? EDIT: Added my lshw outout description: Notebook product: N53SV () vendor: ASUSTeK Computer Inc. version: 1.0 serial: B2N0AS17695408A width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: boot=normal chassis=notebook family=N uuid=8083F2DA-A43E-E081-3F3F-BCAEC55F8AA1 *-core description: Motherboard product: N53SV vendor: ASUSTeK Computer Inc. physical id: 0 version: 1.0 serial: BSN12345678901234567 slot: MIDDLE *-firmware description: BIOS vendor: American Megatrends Inc. physical id: 0 version: N53SV.214 date: 08/10/2011 size: 64KiB capacity: 2496KiB capabilities: pci upgrade shadowing cdboot bootselect edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer acpi usb smartbattery biosbootspecification *-cpu description: CPU product: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz serial: To Be Filled By O.E.M. slot: CPU 1 size: 800MHz capacity: 4GHz width: 64 bits clock: 100MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer xsave avx lahf_lm ida arat epb xsaveopt pln pts tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=1 threads=2 *-cache description: L1 cache physical id: 5 slot: L1-Cache size: 32KiB capacity: 32KiB capabilities: internal write-back instruction *-memory description: System Memory physical id: 40 slot: System board or motherboard size: 10GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0,8 ns) product: 99U5428-040.A00LF vendor: Kingston physical id: 0 serial: 103C28C3 slot: ChannelA-DIMM0 size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0,8 ns) product: HMT325S6BFR8C-H9 vendor: Hynix/Hyundai physical id: 1 serial: 58383D1F slot: ChannelA-DIMM1 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: SODIMM DDR3 Synchronous 1333 MHz (0,8 ns) product: HMT325S6BFR8C-H9 vendor: Hynix/Hyundai physical id: 2 serial: 58183D19 slot: ChannelB-DIMM0 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:3 description: SODIMM DDR3 Synchronous 1333 MHz (0,8 ns) product: HMT325S6BFR8C-H9 vendor: Hynix/Hyundai physical id: 3 serial: 58183C8F slot: ChannelB-DIMM1 size: 2GiB width: 64 bits clock: 1333MHz (0.8ns) *-pci description: Host bridge product: 2nd Generation Core Processor Family DRAM Controller vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 09 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-pci:0 description: PCI bridge product: Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port vendor: Intel Corporation physical id: 1 bus info: pci@0000:00:01.0 version: 09 width: 32 bits clock: 33MHz capabilities: pci pm msi pciexpress normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:d000(size=4096) memory:db000000-dc0fffff ioport:c0000000(size=301989888) *-generic UNCLAIMED description: Unassigned class product: Illegal Vendor ID vendor: Illegal Vendor ID physical id: 0 bus info: pci@0000:01:00.0 version: ff width: 32 bits clock: 66MHz capabilities: bus_master vga_palette cap_list configuration: latency=255 maxlatency=255 mingnt=255 resources: memory:db000000-dbffffff memory:c0000000-cfffffff memory:d0000000-d1ffffff ioport:d000(size=128) memory:dc000000-dc07ffff *-display description: VGA compatible controller product: 2nd Generation Core Processor Family Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 09 width: 64 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:47 memory:dc400000-dc7fffff memory:b0000000-bfffffff ioport:e000(size=64) *-communication description: Communication controller product: 6 Series/C200 Series Chipset Family MEI Controller #1 vendor: Intel Corporation physical id: 16 bus info: pci@0000:00:16.0 version: 04 width: 64 bits clock: 33MHz capabilities: pm msi bus_master cap_list configuration: driver=mei latency=0 resources: irq:48 memory:df00b000-df00b00f *-usb:0 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 vendor: Intel Corporation physical id: 1a bus info: pci@0000:00:1a.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:16 memory:df008000-df0083ff *-multimedia description: Audio device product: 6 Series/C200 Series Chipset Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:49 memory:df000000-df003fff *-pci:1 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:c000(size=4096) memory:de600000-deffffff ioport:d4200000(size=10485760) *-pci:2 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:b000(size=4096) memory:ddc00000-de5fffff ioport:d3700000(size=10485760) *-network description: Wireless interface product: AR9285 Wireless Network Adapter (PCI-Express) vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 01 serial: 48:5d:60:f2:2c:fd width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=ath9k driverversion=3.2.0-24-generic firmware=N/A ip=192.168.1.6 latency=0 link=yes multicast=yes wireless=IEEE 802.11bgn resources: irq:17 memory:ddc00000-ddc0ffff *-pci:3 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 4 vendor: Intel Corporation physical id: 1c.3 bus info: pci@0000:00:1c.3 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:43 ioport:a000(size=4096) memory:dd200000-ddbfffff ioport:d2c00000(size=10485760) *-usb description: USB controller product: FL1000G USB 3.0 Host Controller vendor: Fresco Logic physical id: 0 bus info: pci@0000:04:00.0 version: 04 width: 32 bits clock: 33MHz capabilities: pm msi pciexpress xhci bus_master cap_list configuration: driver=xhci_hcd latency=0 resources: irq:19 memory:dd200000-dd20ffff *-pci:4 description: PCI bridge product: 6 Series/C200 Series Chipset Family PCI Express Root Port 6 vendor: Intel Corporation physical id: 1c.5 bus info: pci@0000:00:1c.5 version: b5 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:44 ioport:9000(size=4096) memory:dc800000-dd1fffff ioport:d2100000(size=10485760) *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:05:00.0 logical name: eth0 version: 06 serial: bc:ae:c5:5f:8a:a1 size: 10Mbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half firmware=rtl_nic/rtl8168e-2.fw latency=0 link=no multicast=yes port=MII speed=10Mbit/s resources: irq:46 ioport:9000(size=256) memory:d2104000-d2104fff memory:d2100000-d2103fff *-usb:1 description: USB controller product: 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:23 memory:df007000-df0073ff *-isa description: ISA bridge product: HM65 Express Chipset Family LPC Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-storage description: SATA controller product: 6 Series/C200 Series Chipset Family 6 port SATA AHCI Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 logical name: scsi2 version: 05 width: 32 bits clock: 66MHz capabilities: storage msi pm ahci_1.0 bus_master cap_list emulated configuration: driver=ahci latency=0 resources: irq:45 ioport:e0b0(size=8) ioport:e0a0(size=4) ioport:e090(size=8) ioport:e080(size=4) ioport:e060(size=32) memory:df006000-df0067ff *-disk description: ATA Disk product: ST9750420AS vendor: Seagate physical id: 0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 0002 serial: 5WS0A7QR size: 698GiB (750GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=e0c5913d *-volume:0 description: Windows FAT volume vendor: MSDOS5.0 physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 version: FAT32 serial: 4ce5-3acb size: 3004MiB capacity: 3004MiB capabilities: primary fat initialized configuration: FATs=2 filesystem=fat *-volume:1 description: EXT4 volume vendor: Linux physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 logical name: / version: 1.0 serial: c198cc2a-d86a-4460-a4d5-3fc0b21e439c size: 28GiB capacity: 28GiB capabilities: primary journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2012-03-15 16:53:54 filesystem=ext4 lastmountpoint=/ modified=2012-05-02 18:52:04 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,user_xattr,acl,barrier=1,data=ordered mounted=2012-05-09 19:06:01 state=mounted *-volume:2 description: Windows NTFS volume physical id: 3 bus info: scsi@0:0.0.0,3 logical name: /dev/sda3 version: 3.1 serial: 4c1cdebc-ec09-2947-a3b5-c1f9f1cddc1c size: 152GiB capacity: 152GiB capabilities: primary bootable ntfs initialized configuration: clustersize=4096 created=2011-02-22 16:02:47 filesystem=ntfs label=OS state=clean *-volume:3 description: Extended partition physical id: 4 bus info: scsi@0:0.0.0,4 logical name: /dev/sda4 size: 514GiB capacity: 514GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume:0 description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 10GiB capabilities: nofs *-logicalvolume:1 description: HPFS/NTFS partition physical id: 6 logical name: /dev/sda6 capacity: 504GiB *-cdrom description: DVD-RAM writer product: BD-MLT UJ240AS vendor: MATSHITA physical id: 1 bus info: scsi@2:0.0.0 logical name: /dev/cdrom logical name: /dev/cdrw logical name: /dev/dvd logical name: /dev/dvdrw logical name: /dev/sr0 version: 1.00 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-serial UNCLAIMED description: SMBus product: 6 Series/C200 Series Chipset Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:df005000-df0050ff ioport:e040(size=32)

    Read the article

  • Orchestrating the Virtual Enterprise

    - by John Murphy
    During the American Industrial Revolution, the Ford Motor Company did it all. It turned raw materials into a showroom full of Model Ts. It owned a steel mill, a glass factory, and an automobile assembly line. The company was both self-sufficient and innovative and went on to become one of the largest and most profitable companies in the world. Nowadays, it's unusual for any business to follow this vertical integration model because its much harder to be best in class across such a wide a range of capabilities and services. Instead, businesses focus on their core competencies and outsource other business functions to specialized suppliers. They exchange vertical integration for collaboration. When done well, all parties benefit from this arrangement and the collaboration leads to the creation of an agile, lean and successful "virtual enterprise." Case in point: For Sun hardware, Oracle outsources most of its manufacturing and all of its logistics to third parties. These are vital activities, but ones where Oracle doesn't have a core competency, so we shift them to business partners who do. Within our enterprise, we always retain the core functions of product development, support, and most of the sales function, because that's what constitutes our core value to our customers. This is a perfect example of a virtual enterprise.  What are the implications of this? It means that we must exchange direct internal control for indirect external collaboration. This fundamentally changes the relative importance of different business processes, the boundaries of security and information sharing, and the relationship of the supply chain systems to the ERP. The challenge is that the systems required to support this virtual paradigm are still mired in "island enterprise" thinking. But help is at hand. Developments such as the Web, social networks, collaboration, and rules-based orchestration offer great potential to fundamentally re-architect supply chain systems to better support the virtual enterprise.  Supply Chain Management Systems in a Virtual Enterprise Historically enterprise software was constructed to automate the ERP - and then the supply chain systems extended the ERP. They were joined at the hip. In virtual enterprises, the supply chain system needs to be ERP agnostic, sitting above each of the ERPs that are distributed across the virtual enterprise - most of which are operating in other businesses. This is vital so that the supply chain system can manage the flow of material and the related information through the multiple enterprises. It has to have strong collaboration tools. It needs to be highly flexible. Users need to be able to see information that's coming from multiple sources and be able to react and respond to events across those sources.  Oracle Fusion Distributed Order Orchestration (DOO) is a perfect example of a supply chain system designed to operate in this virtual way. DOO embraces the idea that a company's fulfillment challenge is a distributed, multi-enterprise problem. It enables users to manage the process and the trading partners in a uniform way and deliver a consistent user experience while operating over a heterogeneous, virtual enterprise. This is a fundamental shift at the core of managing supply chains. It forces virtual enterprises to think architecturally about how best to construct their supply chain systems.  Case in point, almost everyone has ordered from Amazon.com at one time or another. Our orders are as likely to be fulfilled by third parties as they are by Amazon itself. To deliver the order promptly and efficiently, Amazon has to send it to the right fulfillment location and know the availability in that location. It needs to be able to track status of the fulfillment and deal with exceptions. As a virtual enterprise, Amazon's operations, using thousands of trading partners, requires a very different approach to fulfillment than the traditional 'take an order and ship it from your own warehouse' model. Amazon had no choice but to develop a complex, expensive and custom solution to tackle this problem as there used to be no product solution available. Now, other companies who want to follow similar models have a better off-the-shelf choice -- Oracle Distributed Order Orchestration (DOO).  Consider how another of our customers is using our distributed orchestration solution. This major airplane manufacturer has a highly complex business and interacts regularly with the U.S. Government and major airlines. It sits in the middle of an intricate supply chain and needed to improve visibility across its many different entities. Oracle Fusion DOO gives the company an orchestration mechanism so it could improve quality, speed, flexibility, and consistency without requiring an organ transplant of these highly complex legacy systems. Many retailers face the challenge of dealing with brick and mortar, Web, and reseller channels. They all need to be knitted together into a virtual enterprise experience that is consistent for their customers. When a large U.K. grocer with a strong brick and mortar retail operation added an online business, they turned to Oracle Fusion DOO to bring these entities together. Disturbing the Peace with Acquisitions Quite often a company's ERP system is disrupted when it acquires a new company. An acquisition can inject a new set of processes and systems -- or even introduce an entirely new business like Sun's hardware did at Oracle. This challenge has been a driver for some of our DOO customers. A large power management company is using Oracle Fusion DOO to provide the flexibility to rapidly integrate additional products and services into its central fulfillment operation. The Flip Side of Fulfillment Meanwhile, we haven't ignored similar challenges on the supply side of the equation. Specifically, how to manage complex supply in a flexible way when there are multiple trading parties involved? How to manage the supply to suppliers? How to manage critical components that need to merge in a tier two or tier three supply chain? By investing in supply orchestration solutions for the virtual enterprise, we plan to give users better visibility into their network of suppliers to help them drive down costs. We also think this technology and full orchestration process can be applied to the financial side of organizations. An example is transactions that flow through complex internal structures to minimize tax exposure. We can help companies manage those transactions effectively by thinking about the internal organization as a virtual enterprise and bringing the same solution set to this internal challenge.  The Clear Front Runner No other company is investing in solving the virtual enterprise supply chain issues like Oracle is. Oracle is in a unique position to become the gold standard in this market space. We have the infrastructure of Oracle technology. We already have an Oracle Fusion DOO application which embraces the best of what's required in this area. And we're absolutely committed to extending our Fusion solution to other use cases and delivering even more business value.

    Read the article

  • To SYNC or not to SYNC – Part 3

    - by AshishRay
    I can't believe it has been almost a year since my last blog post. I know, that's an absolute no-no in the blogosphere. And I know that "I have been busy" is not a good excuse. So - without trying to come up with an excuse - let me state this - my apologies for taking such a long time to write the next Part. Without further ado, here goes. This is Part 3 of a multi-part blog article where we are discussing various aspects of setting up Data Guard synchronous redo transport (SYNC). In Part 1 of this article, I debunked the myth that Data Guard SYNC is similar to a two-phase commit operation. In Part 2, I discussed the various ways that network latency may or may not impact a Data Guard SYNC configuration. In this article, I will talk in details regarding why Data Guard SYNC is a good thing. I will also talk about distance implications for setting up such a configuration. So, Why Good? Why is Data Guard SYNC a good thing? Because, at the end of the day, this gives you the assurance of zero data loss - it doesn’t matter what outage may befall your primary system. Befall! Boy, that sounds theatrical. But seriously - think about this - it minimizes your data risks. That’s a big deal. Whether you have an outage due to bad disks, faulty hardware components, hardware / software bugs, physical data corruptions, power failures, lightning that takes out significant part of your data center, fire that melts your assets, water leakage from the cooling system, human errors such as accidental deletion of online redo log files - it doesn’t matter - you can have that “Om - peace” look on your face and then you can failover to the standby system, without losing a single bit of data in your Oracle database. You will be a hero, as shown in this not so imaginary conversation: IT Manager: Well, what’s the status? You: John is doing the trace analysis on the storage array. IT Manager: So? How long is that gonna take? You: Well, he is stuck, waiting for a response from <insert your not-so-favorite storage vendor here>. IT Manager: So, no root cause yet? You: I told you, he is stuck. We have escalated with their Support, but you know how long these things take. IT Manager: Darn it - the site is down! You: Not really … IT Manager: What do you mean? You: John is stuck, but Sreeni has already done a failover to the Data Guard standby. IT Manager: Whoa, whoa - wait! Failover means we lost some data, why did you do this without letting the Business group know? You: We didn’t lose any data. Remember, we had set up Data Guard with SYNC? So now, any problems on the production – we just failover. No data loss, and we are up and running in minutes. The Business guys don’t need to know. IT Manager: Wow! Are we great or what!! You: I guess … Ok, so you get it - SYNC is good. But as my dear friend Larry Carpenter says, “TANSTAAFL”, or "There ain't no such thing as a free lunch". Yes, of course - investing in Data Guard SYNC means that you have to invest in a low-latency network, you have to monitor your applications and database especially in peak load conditions, and you cannot under-provision your standby systems. But all these are good and necessary things, if you are supporting mission-critical apps that are supposed to be running 24x7. The peace of mind that this investment will give you is priceless, especially if you are serious about HA. How Far Can We Go? Someone may say at this point - well, I can’t use Data Guard SYNC over my coast-to-coast deployment. Most likely - true. So how far can you go? Well, we have customers who have deployed Data Guard SYNC over 300+ miles! Does this mean that you can also deploy over similar distances? Duh - no! I am going to say something here that most IT managers don’t like to hear - “It depends!” It depends on your application design, application response time / throughput requirements, network topology, etc. However, because of the optimal way we do SYNC, customers have been able to stretch Data Guard SYNC deployments over longer distances compared to traditional, storage-centric ways of doing this. The MAA Database 10.2 best practices paper Data Guard Redo Transport & Network Configuration, and Oracle Database 11.2 High Availability Best Practices Manual talk about some of these SYNC-related metrics. For example, a test deployment of Data Guard SYNC over 330 miles with 10ms latency showed an impact less than 5% for a busy OLTP application. Even if you can’t deploy Data Guard SYNC over your WAN distance, or if you already have an ASYNC standby located 1000-s of miles away, here’s another nifty way to boost your HA. Have a local standby, configured SYNC. How local is “local”? Again - it depends. One customer runs a local SYNC standby across the campus. Another customer runs it across 15 miles in another data center. Both of these customers are running Data Guard SYNC as their HA standard. If a localized outage affects their primary system, no problem! They have all the data available on the standby, to which they can failover. Very fast. In seconds. Wait - did I say “seconds”? Yes, Virginia, there is a Santa Claus. But you have to wait till the next blog article to find out more. I assure you tho’ that this time you won’t have to wait for another year for this.

    Read the article

  • Hosting and consuming WCF services without configuration files

    - by martinsj
    In this post, I'll demonstrate how to configure both the host and the client in code without the need for configuring services i the <system.serviceModel> section of the config-file. In fact, you don't need a  <system.serviceModel> section at all. What you'll do need (and want) sometimes, is the Uri of the service in the configuration file. Configuring the Uri of the the service is actually only needed for the client or when self-hosting, not when hosting in IIS. So, exactly What do we need to configure? The binding type and the binding constraints The metadata behavior Debug behavior You can of course configure even more, and even more if you want to, WCF is after all the king of configuration… As an example I'll be hosting and consuming a service that removes most of the default constraints for WCF-services, using a BasicHttpBinding. Of course, in regards to security, it is probably better to have some constraints on the server, but this is only a demonstration. The ServerConfig class in the code beneath is a static helper class that will be used in the examples. In this post, I’ll be using this helper-class for all configuration, for both the server and the client. In WCF, the  client and the server have both their own WCF-configuration. With this piece of code, they will be sharing the same configuration. 1: public static class ServiceConfig 2: { 3: public static Binding DefaultBinding 4: { 5: get 6: { 7: var binding = new BasicHttpBinding(); 8: Configure(binding); 9: return binding; 10: } 11: } 12:  13: public static void Configure(HttpBindingBase binding) 14: { 15: if (binding == null) 16: { 17: throw new ArgumentException("Argument 'binding' cannot be null. Cannot configure binding."); 18: } 19:  20: binding.SendTimeout = new TimeSpan(0, 0, 30, 0); // 30 minute timeout 21: binding.MaxBufferSize = Int32.MaxValue; 22: binding.MaxBufferPoolSize = 2147483647; 23: binding.MaxReceivedMessageSize = Int32.MaxValue; 24: binding.ReaderQuotas.MaxArrayLength = Int32.MaxValue; 25: binding.ReaderQuotas.MaxBytesPerRead = Int32.MaxValue; 26: binding.ReaderQuotas.MaxDepth = Int32.MaxValue; 27: binding.ReaderQuotas.MaxNameTableCharCount = Int32.MaxValue; 28: binding.ReaderQuotas.MaxStringContentLength = Int32.MaxValue; 29: } 30:  31: public static ServiceMetadataBehavior ServiceMetadataBehavior 32: { 33: get 34: { 35: return new ServiceMetadataBehavior 36: { 37: HttpGetEnabled = true, 38: MetadataExporter = {PolicyVersion = PolicyVersion.Policy15} 39: }; 40: } 41: } 42:  43: public static ServiceDebugBehavior ServiceDebugBehavior 44: { 45: get 46: { 47: var smb = new ServiceDebugBehavior(); 48: Configure(smb); 49: return smb; 50: } 51: } 52:  53:  54: public static void Configure(ServiceDebugBehavior behavior) 55: { 56: if (behavior == null) 57: { 58: throw new ArgumentException("Argument 'behavior' cannot be null. Cannot configure debug behavior."); 59: } 60: 61: behavior.IncludeExceptionDetailInFaults = true; 62: } 63: } Configuring the server There are basically two ways to host a WCF service, in IIS and self-hosting. When hosting a WCF service in a production environment using SOA architecture, you'll be most likely hosting it in IIS. When testing the service in integration tests, it's very handy to be able to self-host services in the unit-tests. In fact, you can share the the WCF configuration for self-hosted services and services hosted in IIS. And that is exactly what you want to do, testing the same configurations for test and production environments.   Configuring when Self-hosting When self-hosting, in order to start the service, you'll have to instantiate the ServiceHost class, configure the  service and open it. 1: // Create the service-host. 2: var host = new ServiceHost(typeof(MyService), endpoint); 3:  4: // Configure the binding 5: host.AddServiceEndpoint(typeof(IMyService), ServiceConfig.DefaultBinding, endpoint); 6:  7: // Configure metadata behavior 8: host.Description.Behaviors.Add(ServiceConfig.ServiceMetadataBehavior); 9:  10: // Configure debgug behavior 11: ServiceConfig.Configure((ServiceDebugBehavior)host.Description.Behaviors[typeof(ServiceDebugBehavior)]); 12: 13: // Start listening to the service 14: host.Open(); 15:  Configuring when hosting in IIS When you create a WCF service application with the wizard in Visual Studio, you'll end up with bits and pieces of code in order to get the service running: Svc-file with codebehind. A interface to the service Web.config In order to get rid of the configuration in the <system.serviceModel> section, which the wizard has generated for us, we must tell the service that we have a factory that will create the service for us. We do this by changing the markup for the svc-file: 1: <%@ ServiceHost Language="C#" Debug="true" Service="Namespace.MyService" Factory="Namespace.ServiceHostFactory" %> The markup tells IIS that we have a factory called ServiceHostFactory for this service. The service factory has a method we can override which will be called when someone asks IIS for the service. There are overloads we can override: 1: System.ServiceModel.ServiceHostBase CreateServiceHost(string constructorString, Uri[] baseAddresses) 2: System.ServiceModel.ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses) 3:  In this example, we'll be using the last one, so our implementation looks like this: 1: public class ServiceHostFactory : System.ServiceModel.Activation.ServiceHostFactory 2: { 3:  4: protected override System.ServiceModel.ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses) 5: { 6: var host = base.CreateServiceHost(serviceType, baseAddresses); 7: host.Description.Behaviors.Add(ServiceConfig.ServiceMetadataBehavior); 8: ServiceConfig.Configure((ServiceDebugBehavior)host.Description.Behaviors[typeof(ServiceDebugBehavior)]); 9: return host; 10: } 11: } 12:  1: public class ServiceHostFactory : System.ServiceModel.Activation.ServiceHostFactory 2: { 3: 4: protected override System.ServiceModel.ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses) 5: { 6: var host = base.CreateServiceHost(serviceType, baseAddresses); 7: host.Description.Behaviors.Add(ServiceConfig.ServiceMetadataBehavior); 8: ServiceConfig.Configure((ServiceDebugBehavior)host.Description.Behaviors[typeof(ServiceDebugBehavior)]); 9: return host; 10: } 11: } 12: As you can see, we are using the same configuration helper we used when self-hosting. Now, when you have a factory, the <system.serviceModel> section of the configuration can be removed, because the section will be ignored when the service has a custom factory. If you want to configure something else in the config-file, one could configure in some other section.   Configuring the client Microsoft has helpfully created a ChannelFactory class in order to create a proxy client. When using this approach, you don't have generate those awfull proxy classes for the client. If you share the contracts with the server in it's own assembly like in the layer diagram under, you can share the same piece of code. The contracts in WCF are the interface to the service and if any, the datacontracts (custom types) the service depends on. Using the ChannelFactory with our configuration helper-class is very simple: 1: var identity = EndpointIdentity.CreateDnsIdentity("localhost"); 2: var endpointAddress = new EndpointAddress(endPoint, identity); 3: var factory = new ChannelFactory<IMyService>(DeployServiceConfig.DefaultBinding, endpointAddress); 4: using (var myService = new factory.CreateChannel()) 5: { 6: myService.Hello(); 7: } 8: factory.Close();   Happy configuration!

    Read the article

  • CodePlex Daily Summary for Monday, August 18, 2014

    CodePlex Daily Summary for Monday, August 18, 2014Popular ReleasesMagick.NET: Magick.NET 7.0.0.0001: Magick.NET linked with ImageMagick 7-Beta.CMake Tools for Visual Studio: CMake Tools for Visual Studio 1.2: This release adds the following new features and bug fixes from CMake Tools for Visual Studio 1.1: Added support for CMake 3.0. Added support for word completion. Added IntelliSense support for the CMAKEHOSTSYSTEM_INFORMATION command. Fixed syntax highlighting for tokens beginning with escape sequences. Fixed issue uninstalling CMake Tools for Visual Studio after Visual Studio has been uninstalled.GW2 Personal Assistant Overlay: GW2 Personal Assistant Overlay 1.1: Overview1.1 is the second 'stable' release of the GW2 Personal Assistant Overlay. This version includes just a couple of very minor features and some minor bug fixes. For details regarding installation, setup, and general use, see Documentation. Note: If you were using a previous version, you will probably want to copy over the following user settings files: GW2PAO.DungeonSettings.xml GW2PAO.EventSettings.xml GW2PAO.WvWSettings.xml GW2PAO.ZoneCompletionSettings.xml New FeaturesAdded new "No...WallSwitch: WallSwitch 1.2.5: Version 1.2.5 Changes: Added support for sequential order in collage mode. Added option to display multiple images per switch in collage mode. Fixed bug where border width wasn't being loaded properly, and was reverting to default values. Fixed bug where sequential order was repeating images on multiple monitors. Decreased likelihood of random images being repeated.OpenCppCoverage: OpenCppCoverage 0.9.1: - Add Jenkins support. - Command line argument can be placed inside a config file. If you do not have Visual Studio C++ 2013 you need to download redistributable packages: http://www.microsoft.com/en-us/download/details.aspx?id=40784Easy Backup Windows Service: Release 2.0 with CU: Fix log error when "To" directory not exist in fyle system. Force run program as administrator by default. Add 'everyday' schedule element. Update solution to VS 2013.Easy Backup Application: Release 2.0 with CU: Fix log error when "To" directory not exist in fyle system. Fix app location initialization. Force run program as administrator by default. Update solution to VS 2013.TEBookConverter: 1.5: Added: Turkish and French translations Added: A few interface changes Removed: SkinDynamulet: Dynamulet v0.1: DynamoDB Transaction Server v0.1Console parallel nunit tests runner: ConsoleUnitTestsRunner 1.03: bugfixingFluentx: Fluentx v1.5.3: Added few more extension methods.fastJSON: v2.1.2: 2.1.2 - bug fix circular referencesJPush.NET: JPush Server SDK 1.2.1 (For JPush V3): Assembly: 1.2.1.24728 JPush REST API Version: v3 JPush Documentation Reference .NET framework: v4.0 or above. Sample: class: JPushClientV3 2014 Augest 15th.SEToolbox: SEToolbox 01.043.008 Release 1: Changed ship/station names to use new DisplayName instead of Beacon/Antenna. Fixed issue with updated SE binaries 01.043.018 using new Voxel Material definitions.Google .Net API: Drive.Sample: Google .NET Client API – Drive.SampleInstructions for the Google .NET Client API – Drive.Sample</h2> http://code.google.com/p/google-api-dotnet-client/source/browse/?repo=samples#hg%2FDrive.SampleBrowse Source, or main file http://code.google.com/p/google-api-dotnet-client/source/browse/Drive.Sample/Program.cs?repo=samplesProgram.cs <h3>1. Checkout Instructions</h3> <p><b>Prerequisites:</b> Install Visual Studio, and <a href="http://mercurial.selenic.com/">Mercurial</a>.</p> ...FineUI - jQuery / ExtJS based ASP.NET Controls: FineUI v4.1.1: -??Form??????????????(???-5929)。 -?TemplateField??ExpandOnDoubleClick、ExpandOnEnter、ExpandToSelectRow????(LZOM-5932)。 -BodyPadding???????,??“5”“5 10”,???????????“5px”“5px 10px”。 -??TriggerBox?EnableEdit=false????,??????????????(Jango_Jing-5450)。 -???????????DataKeyNames???????????(yygy-6002)。 -????????????????????????(Gnid-6018)。 -??PageManager???AutoSizePanelID????,??????????????????(yygy-6008)。 -?FState???????????????,????????????????(????-5925)。 -??????OnClientClick???return?????????(FineU...DNN CMS Platform: 07.03.02: Major Highlights Fixed backwards compatibility issue with 3rd party control panels Fixed issue in the drag and drop functionality of the File Uploader in IE 11 and Safari Fixed issue where users were able to create pages with the same name Fixed issue that affected older versions of DNN that do not include the maxAllowedContentLength during upgrade Fixed issue that stopped some skins from being upgraded to newer versions Fixed issue that randomly showed an unexpected error during us...WordMat: WordMat for Mac: WordMat for Mac has a few limitations compared to the Windows version - Graph is not supported (Gnuplot, GeoGebra and Excel works) - Units are not supported yet (Coming up) The Mac version is yet as tested as the windows version.MFCMAPI: August 2014 Release: Build: 15.0.0.1042 Full release notes at SGriffin's blog. If you just want to run the MFCMAPI or MrMAPI, get the executables. If you want to debug them, get the symbol files and the source. The 64 bit builds will only work on a machine with Outlook 2010/2013 64 bit installed. All other machines should use the 32 bit builds, regardless of the operating system. Facebook BadgeEWSEditor: EwsEditor 1.10 Release: • Export and import of items as a full fidelity steam works - without proxy classes! - I used raw EWS POSTs. • Turned off word wrap for EWS request field in EWS POST windows. • Several windows with scrolling texts boxes were limiting content to 32k - I removed this restriction. • Split server timezone info off to separate menu item from the timezone info windows so that the timezone info window could be used without logging into a mailbox. • Lots of updates to the TimeZone window. • UserAgen...New Projectsballmon: ballmonExchange Database Recovery With and Without Log Files is Possible: This segments giving an overview of Exchange Server transaction log files. It describes process how users can recover their database with & without log filesFabs.Net: Ego tatmini ve gelisme amaçli yaptigim bir projedir.JacoChat: JacoChat is a simple chatting interface that uses my personal webserver as a "wall" for people to chat on.ManagedWin32: ManagedWin32 is a library that exposes the Win32 API to .NET applications.Open XML Extensions: The project provides additions to the Open XML SDK and related projects (e.g., PowerTools for Open XML), starting with MemoryStreams for Open XML Documents.orntic: Project for insurace companyTBOX: The Treasure Box Library: TBOX is a mutli-platform c library for unix, windows, mac, ios, android, etc. It includes asio, stream, container, algorithm, xml and other library modules.WeatherTS: Typescript weather application.?????@/????: ??????????????:????,????,????,???????,????????,??????:????????,?????! ?????????: ????????????????????,????????:??、??、???,?????????????????????! ????-??: ??????????????,????,???????????????。

    Read the article

< Previous Page | 432 433 434 435 436 437 438 439 440 441 442 443  | Next Page >