Search Results

Search found 16488 results on 660 pages for 'informed search'.

Page 44/660 | < Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >

  • What is good side of PageRank?

    - by SharkTheDark
    I am doing research about backlinks/PR/SEO/Search Result position and all I read about is that PageRank is not important, that it worth before but now it's not important at all. Only thing I found useful about it that is "change Search Result position", but ONLY if there are two sites with same keywords and same text content value, then Search Engine will check which site has higher PR and place that site above lowest one. Google counts PR importance as 20% for displaying search rankings, and Yahoo! is like 3%... Correct me if I am wrong... Is there any other good thing from it?

    Read the article

  • Oracle E-Business Products New Search Helpers for Guided Resolution of Customer Issues

    - by user793044
    Oracle E-Business Proactive Support has created many new guided resolution documents that you may find helpful in resolving issues in your EBS applications.  These new documents are called “Search Helpers” and they guide you through your issue to a solution.  They are meant to be an easy and fast method to finding a relevant, complete solution. Hundreds of notes and service requests were reviewed and the best solutions to these known issues were selected.  For some issues, notes were updated to better clarify the solution.  In other cases, if a note with a solution did not already exist, one was created. You start the process by selecting the scenario you have encountered.  You may have received an error message, or there may be a particular area of the application in which you have encountered an issue.  Based on your selection of the issue, the Search Helper will present one or more additional possible symptoms.  When you have selected from both of these two sections, you are then presented with one or more articles known to have fully solved this issue in the past.  Several EBS products have produced Search Helpers documents.  Take a look at Doc ID 1501724.1 for an index of the current EBS Search Helpers.  Here is an example of a Search Helper from the Receivables Transactions area: After selecting the Functional Area of "Entering / Updating Transactions" a list of Known Symptoms is presented: And, when "Transaction numbers are not in sequence" is selected, a solution link is provided for Document ID 197212.1: How To Setup Gapless Document Sequencing in Receivables. The EBS applications that currently have published Search Helpers are: Advanced Pricing Applications Technology Configurator General Ledger Human Capital Management Inventory Management Order Management Payables Process Manufacturing Purchasing Receivables Shipping Value Chain Planning

    Read the article

  • How do I search nodes of XML document for text? Or convert to SQL tables?

    - by netefficacy
    Hi I have an XML file and would like to run a search on the nodes for text that matches user input. My options are: Convert the XML file to a SQL table and run the search against the table records. Search the XML nodes themselves. The problem is that I cannot find a open source conversion utility, nor can I figure out how to search the XML nodes. I can use PHP, Ruby, or Python for the search code. Any pointers on how can I do 1 or 2? Thanks

    Read the article

  • Dates search in Drupal (greater than, less than) using CCK / views / facelet?

    - by guillefar
    I'm working in a site that manage events (like parties). Each event could have several fields, including date, that the user could add thanks to CCK module. Now, the problem is when I have to search using those fields. I could not find how to search for events between a range of dates. I discover the facelet module, which is pretty good, and it is very useful for some kind of search, but as far as I can see it is not possible search in a range. Also I do some testing using views, but again, with no results. I can not find how to search a date "greater than" and "less than". I will really appreciate any help.

    Read the article

  • what data structure should I use for hash lookup as well as binary search?

    - by zebraman
    I am working on a school homework. I have a list of names. I want to be able to perform binary search on these names (find all names between a lower and upper bound) for first name as well as last name, and perform keyword searches as well (this will be accomplished using hashing. For example, if I have the names Garfield Cat Snoopy Dog Captain Crunch Fat Cat then a binary search of first names (C,H) will return Captain Crunch, Fat Cat, and Garfield Cat. A binary search of last names (Cr,D) will return Captain Crunch. A keyword search of 'cat' will return Fat Cat and Garfield Cat. I understand binary search will only work on a sorted list, but since I am planning on searching two different criteria, I will have to sort the list by last name or first name depending on what I'm searching for. I feel like it will be too inefficient to have to resort the list each time I want to perform a new binary search. Would it just be better for me to set up and maintain two sorted lists (one for sorted by first name, one for sorted by last name)? Also, for hashing, will I have to set up a different table of names for that as well? I understand each keyword will hash to some value determined by a hash function, and this value (or key) is a table address where the corresponding names are stored. So I just want to know what would be the best way to solve this problem? Maintaining separate structures, or is there a way to efficiently do everything I want with just one data structure?

    Read the article

  • sharepoint 2010 search error give me correlation id and event viewer is empty and no log there

    - by saber tabatabaee yazdi
    we have a farm of SharePoint 2010 that worked properly since last week. we configure and start the search service last week and it is also worked and when we test it with some criteria , worked , and results appear for us so we are very happy. but after few days when we search , occur this error: after that we delete application service and reconfure. and now when we open any document libraries occur this error: but lists open correctly without any error An unexpected error has occurred. Troubleshoot issues with Microsoft SharePoint Foundation. Correlation ID: 5becf903-d13e-4490-a23c-d7e4f68ca769 please help us.

    Read the article

  • How to setup Lucene search for a B2B web app?

    - by Bill Paetzke
    Given: 5000 databases (spread out over 5 servers) 1 database per client (so you can infer there are 1000 clients) 2 to 2000 users per client (let's say avg is 100 users per client) Clients (databases) come and go every day (let's assume most remain for at least one year) Let's stay agnostic of language or sql brand, since Lucene (and Solr) have a breadth of support The Question: How would you setup Lucene search so that each client can only search within its database? How would you setup the index(es)? Would you need to add a filter to all search queries? If a client cancelled, how would you delete their (part of the) index? (this may be trivial--not sure yet) Possible Solutions: Make an index for each client (database) Pro: Search is faster (than one-index-for-all method). Indices are relative to the size of the client's data. Con: I'm not sure what this entails, nor do I know if this is beyond Lucene's scope. Have a single, gigantic index with a database_name field. Always include database_name as a filter. Pro: Not sure. Maybe good for tech support or billing dept to search all databases for info. Con: Search is slower (than index-per-client method). Flawed security if query filter removed. For Example: Joel Spolsky said in Podcast #11 that his hosted web app product, FogBugz On-Demand, uses Lucene. He has thousands of on-demand clients. And each client gets their own database. His situation is quite similar to mine. Although, he didn't elaborate on the setup (particularly indices); hence, the need for this question. One last thing: I would also accept an answer that uses Solr (the extension of Lucene). Perhaps it's better suited for this problem. Not sure.

    Read the article

  • Using the Search API with Sharepoint Foundation 2010 - 0 results

    - by MB
    I am a sharepoint newbee and am having trouble getting any search results to return using the search API in Sharepoint 2010 Foundation. Here are the steps I have taken so far. The Service Sharepoint Foundation Search v4 is running and logged in as Local Service Under Team Site - Site Settings - Search and Offline Availability, Indexing Site Content is enabled. Running the PowerShell script Get-SPSearchServiceInstance returns TypeName : SharePoint Foundation Search Description : Search index file on the search server Id : 91e01ce1-016e-44e0-a938-035d37613b70 Server : SPServer Name=V-SP2010 Service : SPSearchService Name=SPSearch4 IndexLocation : C:\Program Files\Common Files\Microsoft Shared\Web Server Exten sions\14\Data\Applications ProxyType : Default Status : Online When I do a search using the search textbox on the team site I get a results as I would expect. Now, when I try to duplicate the search results using the Search API I either receive an error or 0 results. Here is some sample code: using Microsoft.SharePoint.Search.Query; using (var site = new SPSite(_sharepointUrl, token)) { // FullTextSqlQuery fullTextSqlQuery = new FullTextSqlQuery(site) { QueryText = String.Format("SELECT Title, SiteName, Path FROM Scope() WHERE \"scope\"='All Sites' AND CONTAINS('\"{0}\"')", searchPhrase), //QueryText = String.Format("SELECT Title, SiteName, Path FROM Scope()", searchPhrase), TrimDuplicates = true, StartRow = 0, RowLimit = 200, ResultTypes = ResultType.RelevantResults //IgnoreAllNoiseQuery = false }; ResultTableCollection resultTableCollection = fullTextSqlQuery.Execute(); ResultTable result = resultTableCollection[ResultType.RelevantResults]; DataTable tbl = new DataTable(); tbl.Load(result, LoadOption.OverwriteChanges); } When the scope is set to All Sites I retrieve an error about the search scope not being available. Other search just return 0 results. Any ideas about what I am doing wrong?

    Read the article

  • How to perform a binary search on IList<T>?

    - by Daniel Brückner
    Simple question - given an IList<T> how do you perform a binary search without writing the method yourself and without copying the data to a type with build-in binary search support. My current status is the following. List<T>.BinarySearch() is not a member of IList<T> There is no equivalent of the ArrayList.Adapter() method for List<T> IList<T> does not inherit from IList, hence using ArrayList.Adapter() is not possible I tend to believe that is not possible with build-in methods, but I cannot believe that such a basic method is missing from the BCL/FCL. If it is not possible, who can give the shortest, fastest, smartest, or most beatiful binary search implementation for IList<T>? UPDATE We all know that a list must be sorted before using binary search, hence you can assume that it is. But I assume (but did not verify) it is the same problem with sort - how do you sort IList<T>? CONCLUSION There seems to be no build-in binary search for IList<T>. One can use First() and OrderBy() LINQ methods to search and sort, but it will likly have a performance hit. Implementing it yourself (as an extension method) seems the best you can do.

    Read the article

  • On Windows 7, how can I make the Start Menu search feature include matches from within words, not just the start of the word?

    - by Gabriel
    I have a program installed called WinSCP. When I press the Windows key and type "SCP", I get "No items match your search." Is there a configuration option I can set somewhere, so that this item will be found? I'm not looking for a specific solution for this particular program, but something general, so that if there's a program named XYZ, I can find it via the Start Menu search by entering YZ. EDIT TO ADD: I'm looking for a "set-it and forget-it" type of configuration change, so that within-word searching happens always, automatically. I don't want to have to type a * before every query. Apparently this wasn't clear from what I wrote above.

    Read the article

  • Informed TDD &ndash; Kata &ldquo;To Roman Numerals&rdquo;

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/28/informed-tdd-ndash-kata-ldquoto-roman-numeralsrdquo.aspxIn a comment on my article on what I call Informed TDD (ITDD) reader gustav asked how this approach would apply to the kata “To Roman Numerals”. And whether ITDD wasn´t a violation of TDD´s principle of leaving out “advanced topics like mocks”. I like to respond with this article to his questions. There´s more to say than fits into a commentary. Mocks and TDD I don´t see in how far TDD is avoiding or opposed to mocks. TDD and mocks are orthogonal. TDD is about pocess, mocks are about structure and costs. Maybe by moving forward in tiny red+green+refactor steps less need arises for mocks. But then… if the functionality you need to implement requires “expensive” resource access you can´t avoid using mocks. Because you don´t want to constantly run all your tests against the real resource. True, in ITDD mocks seem to be in almost inflationary use. That´s not what you usually see in TDD demonstrations. However, there´s a reason for that as I tried to explain. I don´t use mocks as proxies for “expensive” resource. Rather they are stand-ins for functionality not yet implemented. They allow me to get a test green on a high level of abstraction. That way I can move forward in a top-down fashion. But if you think of mocks as “advanced” or if you don´t want to use a tool like JustMock, then you don´t need to use mocks. You just need to stand the sight of red tests for a little longer ;-) Let me show you what I mean by that by doing a kata. ITDD for “To Roman Numerals” gustav asked for the kata “To Roman Numerals”. I won´t explain the requirements again. You can find descriptions and TDD demonstrations all over the internet, like this one from Corey Haines. Now here is, how I would do this kata differently. 1. Analyse A demonstration of TDD should never skip the analysis phase. It should be made explicit. The requirements should be formalized and acceptance test cases should be compiled. “Formalization” in this case to me means describing the API of the required functionality. “[D]esign a program to work with Roman numerals” like written in this “requirement document” is not enough to start software development. Coding should only begin, if the interface between the “system under development” and its context is clear. If this interface is not readily recognizable from the requirements, it has to be developed first. Exploration of interface alternatives might be in order. It might be necessary to show several interface mock-ups to the customer – even if that´s you fellow developer. Designing the interface is a task of it´s own. It should not be mixed with implementing the required functionality behind the interface. Unfortunately, though, this happens quite often in TDD demonstrations. TDD is used to explore the API and implement it at the same time. To me that´s a violation of the Single Responsibility Principle (SRP) which not only should hold for software functional units but also for tasks or activities. In the case of this kata the API fortunately is obvious. Just one function is needed: string ToRoman(int arabic). And it lives in a class ArabicRomanConversions. Now what about acceptance test cases? There are hardly any stated in the kata descriptions. Roman numerals are explained, but no specific test cases from the point of view of a customer. So I just “invent” some acceptance test cases by picking roman numerals from a wikipedia article. They are supposed to be just “typical examples” without special meaning. Given the acceptance test cases I then try to develop an understanding of the problem domain. I´ll spare you that. The domain is trivial and is explain in almost all kata descriptions. How roman numerals are built is not difficult to understand. What´s more difficult, though, might be to find an efficient solution to convert into them automatically. 2. Solve The usual TDD demonstration skips a solution finding phase. Like the interface exploration it´s mixed in with the implementation. But I don´t think this is how it should be done. I even think this is not how it really works for the people demonstrating TDD. They´re simplifying their true software development process because they want to show a streamlined TDD process. I doubt this is helping anybody. Before you code you better have a plan what to code. This does not mean you have to do “Big Design Up-Front”. It just means: Have a clear picture of the logical solution in your head before you start to build a physical solution (code). Evidently such a solution can only be as good as your understanding of the problem. If that´s limited your solution will be limited, too. Fortunately, in the case of this kata your understanding does not need to be limited. Thus the logical solution does not need to be limited or preliminary or tentative. That does not mean you need to know every line of code in advance. It just means you know the rough structure of your implementation beforehand. Because it should mirror the process described by the logical or conceptual solution. Here´s my solution approach: The arabic “encoding” of numbers represents them as an ordered set of powers of 10. Each digit is a factor to multiply a power of ten with. The “encoding” 123 is the short form for a set like this: {1*10^2, 2*10^1, 3*10^0}. And the number is the sum of the set members. The roman “encoding” is different. There is no base (like 10 for arabic numbers), there are just digits of different value, and they have to be written in descending order. The “encoding” XVI is short for [10, 5, 1]. And the number is still the sum of the members of this list. The roman “encoding” thus is simpler than the arabic. Each “digit” can be taken at face value. No multiplication with a base required. But what about IV which looks like a contradiction to the above rule? It is not – if you accept roman “digits” not to be limited to be single characters only. Usually I, V, X, L, C, D, M are viewed as “digits”, and IV, IX etc. are viewed as nuisances preventing a simple solution. All looks different, though, once IV, IX etc. are taken as “digits”. Then MCMLIV is just a sum: M+CM+L+IV which is 1000+900+50+4. Whereas before it would have been understood as M-C+M+L-I+V – which is more difficult because here some “digits” get subtracted. Here´s the list of roman “digits” with their values: {1, I}, {4, IV}, {5, V}, {9, IX}, {10, X}, {40, XL}, {50, L}, {90, XC}, {100, C}, {400, CD}, {500, D}, {900, CM}, {1000, M} Since I take IV, IX etc. as “digits” translating an arabic number becomes trivial. I just need to find the values of the roman “digits” making up the number, e.g. 1954 is made up of 1000, 900, 50, and 4. I call those “digits” factors. If I move from the highest factor (M=1000) to the lowest (I=1) then translation is a two phase process: Find all the factors Translate the factors found Compile the roman representation Translation is just a look-up. Finding, though, needs some calculation: Find the highest remaining factor fitting in the value Remember and subtract it from the value Repeat with remaining value and remaining factors Please note: This is just an algorithm. It´s not code, even though it might be close. Being so close to code in my solution approach is due to the triviality of the problem. In more realistic examples the conceptual solution would be on a higher level of abstraction. With this solution in hand I finally can do what TDD advocates: find and prioritize test cases. As I can see from the small process description above, there are two aspects to test: Test the translation Test the compilation Test finding the factors Testing the translation primarily means to check if the map of factors and digits is comprehensive. That´s simple, even though it might be tedious. Testing the compilation is trivial. Testing factor finding, though, is a tad more complicated. I can think of several steps: First check, if an arabic number equal to a factor is processed correctly (e.g. 1000=M). Then check if an arabic number consisting of two consecutive factors (e.g. 1900=[M,CM]) is processed correctly. Then check, if a number consisting of the same factor twice is processed correctly (e.g. 2000=[M,M]). Finally check, if an arabic number consisting of non-consecutive factors (e.g. 1400=[M,CD]) is processed correctly. I feel I can start an implementation now. If something becomes more complicated than expected I can slow down and repeat this process. 3. Implement First I write a test for the acceptance test cases. It´s red because there´s no implementation even of the API. That´s in conformance with “TDD lore”, I´d say: Next I implement the API: The acceptance test now is formally correct, but still red of course. This will not change even now that I zoom in. Because my goal is not to most quickly satisfy these tests, but to implement my solution in a stepwise manner. That I do by “faking” it: I just “assume” three functions to represent the transformation process of my solution: My hypothesis is that those three functions in conjunction produce correct results on the API-level. I just have to implement them correctly. That´s what I´m trying now – one by one. I start with a simple “detail function”: Translate(). And I start with all the test cases in the obvious equivalence partition: As you can see I dare to test a private method. Yes. That´s a white box test. But as you´ll see it won´t make my tests brittle. It serves a purpose right here and now: it lets me focus on getting one aspect of my solution right. Here´s the implementation to satisfy the test: It´s as simple as possible. Right how TDD wants me to do it: KISS. Now for the second equivalence partition: translating multiple factors. (It´a pattern: if you need to do something repeatedly separate the tests for doing it once and doing it multiple times.) In this partition I just need a single test case, I guess. Stepping up from a single translation to multiple translations is no rocket science: Usually I would have implemented the final code right away. Splitting it in two steps is just for “educational purposes” here. How small your implementation steps are is a matter of your programming competency. Some “see” the final code right away before their mental eye – others need to work their way towards it. Having two tests I find more important. Now for the next low hanging fruit: compilation. It´s even simpler than translation. A single test is enough, I guess. And normally I would not even have bothered to write that one, because the implementation is so simple. I don´t need to test .NET framework functionality. But again: if it serves the educational purpose… Finally the most complicated part of the solution: finding the factors. There are several equivalence partitions. But still I decide to write just a single test, since the structure of the test data is the same for all partitions: Again, I´m faking the implementation first: I focus on just the first test case. No looping yet. Faking lets me stay on a high level of abstraction. I can write down the implementation of the solution without bothering myself with details of how to actually accomplish the feat. That´s left for a drill down with a test of the fake function: There are two main equivalence partitions, I guess: either the first factor is appropriate or some next. The implementation seems easy. Both test cases are green. (Of course this only works on the premise that there´s always a matching factor. Which is the case since the smallest factor is 1.) And the first of the equivalence partitions on the higher level also is satisfied: Great, I can move on. Now for more than a single factor: Interestingly not just one test becomes green now, but all of them. Great! You might say, then I must have done not the simplest thing possible. And I would reply: I don´t care. I did the most obvious thing. But I also find this loop very simple. Even simpler than a recursion of which I had thought briefly during the problem solving phase. And by the way: Also the acceptance tests went green: Mission accomplished. At least functionality wise. Now I´ve to tidy up things a bit. TDD calls for refactoring. Not uch refactoring is needed, because I wrote the code in top-down fashion. I faked it until I made it. I endured red tests on higher levels while lower levels weren´t perfected yet. But this way I saved myself from refactoring tediousness. At the end, though, some refactoring is required. But maybe in a different way than you would expect. That´s why I rather call it “cleanup”. First I remove duplication. There are two places where factors are defined: in Translate() and in Find_factors(). So I factor the map out into a class constant. Which leads to a small conversion in Find_factors(): And now for the big cleanup: I remove all tests of private methods. They are scaffolding tests to me. They only have temporary value. They are brittle. Only acceptance tests need to remain. However, I carry over the single “digit” tests from Translate() to the acceptance test. I find them valuable to keep, since the other acceptance tests only exercise a subset of all roman “digits”. This then is my final test class: And this is the final production code: Test coverage as reported by NCrunch is 100%: Reflexion Is this the smallest possible code base for this kata? Sure not. You´ll find more concise solutions on the internet. But LOC are of relatively little concern – as long as I can understand the code quickly. So called “elegant” code, however, often is not easy to understand. The same goes for KISS code – especially if left unrefactored, as it is often the case. That´s why I progressed from requirements to final code the way I did. I first understood and solved the problem on a conceptual level. Then I implemented it top down according to my design. I also could have implemented it bottom-up, since I knew some bottom of the solution. That´s the leaves of the functional decomposition tree. Where things became fuzzy, since the design did not cover any more details as with Find_factors(), I repeated the process in the small, so to speak: fake some top level, endure red high level tests, while first solving a simpler problem. Using scaffolding tests (to be thrown away at the end) brought two advantages: Encapsulation of the implementation details was not compromised. Naturally private methods could stay private. I did not need to make them internal or public just to be able to test them. I was able to write focused tests for small aspects of the solution. No need to test everything through the solution root, the API. The bottom line thus for me is: Informed TDD produces cleaner code in a systematic way. It conforms to core principles of programming: Single Responsibility Principle and/or Separation of Concerns. Distinct roles in development – being a researcher, being an engineer, being a craftsman – are represented as different phases. First find what, what there is. Then devise a solution. Then code the solution, manifest the solution in code. Writing tests first is a good practice. But it should not be taken dogmatic. And above all it should not be overloaded with purposes. And finally: moving from top to bottom through a design produces refactored code right away. Clean code thus almost is inevitable – and not left to a refactoring step at the end which is skipped often for different reasons.   PS: Yes, I have done this kata several times. But that has only an impact on the time needed for phases 1 and 2. I won´t skip them because of that. And there are no shortcuts during implementation because of that.

    Read the article

  • Create Auto Customization Criteria OAF Search Page

    - by PRajkumar
    1. Create a New Workspace and Project Right click Workspaces and click create new OAworkspace and name it as PRajkumarCustSearch. Automatically a new OA Project will also be created. Name the project as CustSearchDemo and package as prajkumar.oracle.apps.fnd.custsearchdemo   2. Create a New Application Module (AM) Right Click on CustSearchDemo > New > ADF Business Components > Application Module Name -- CustSearchAM Package -- prajkumar.oracle.apps.fnd.custsearchdemo.server   3. Enable Passivation for the Root UI Application Module (AM) Right Click on CustSearchAM > Edit SearchAM > Custom Properties > Name – RETENTION_LEVEL Value – MANAGE_STATE Click add > Apply > OK   4. Create Test Table and insert data some data in it (For Testing Purpose)   CREATE TABLE xx_custsearch_demo (   -- ---------------------     -- Data Columns     -- ---------------------     column1                  VARCHAR2(100),     column2                  VARCHAR2(100),     column3                  VARCHAR2(100),     column4                  VARCHAR2(100),     -- ---------------------     -- Who Columns     -- ---------------------     last_update_date    DATE         NOT NULL,     last_updated_by     NUMBER   NOT NULL,     creation_date          DATE         NOT NULL,     created_by               NUMBER   NOT NULL,     last_update_login   NUMBER  );   INSERT INTO xx_custsearch_demo VALUES('v1','v2','v3','v4',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v1','v3','v4','v5',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v2','v3','v4','v5',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v3','v4','v5','v6',SYSDATE,0,SYSDATE,0,0); Now we have 4 records in our custom table   5. Create a New Entity Object (EO) Right click on SearchDemo > New > ADF Business Components > Entity Object Name – CustSearchEO Package -- prajkumar.oracle.apps.fnd.custsearchdemo.schema.server Database Objects -- XX_CUSTSEARCH_DEMO   Note – By default ROWID will be the primary key if we will not make any column to be primary key   Check the Accessors, Create Method, Validation Method and Remove Method   6. Create a New View Object (VO) Right click on CustSearchDemo > New > ADF Business Components > View Object Name -- CustSearchVO Package -- prajkumar.oracle.apps.fnd.custsearchdemo.server   In Step2 in Entity Page select CustSearchEO and shuttle them to selected list   In Step3 in Attributes Window select columns Column1, Column2, Column3, Column4, and shuttle them to selected list   In Java page deselect Generate Java file for View Object Class: CustSearchVOImpl and Select Generate Java File for View Row Class: CustSearchVORowImpl   7. Add Your View Object to Root UI Application Module Select Right click on CustSearchAM > Application Modules > Data Model Select CustSearchVO and shuttle to Data Model list   8. Create a New Page Right click on CustSearchDemo > New > Web Tier > OA Components > Page Name -- CustSearchPG Package -- prajkumar.oracle.apps.fnd.custsearchdemo.webui   9. Select the CustSearchPG and go to the strcuture pane where a default region has been created   10. Select region1 and set the following properties: ID -- PageLayoutRN Region Style -- PageLayout AM Definition -- prajkumar.oracle.apps.fnd.custsearchdemo.server.CustSearchAM Window Title – AutoCustomize Search Page Window Title – AutoCustomization Search Page Auto Footer -- True   11. Add a Query Bean to Your Page Right click on PageLayoutRN > New > Region Select new region region1 and set following properties ID – QueryRN Region Style – query Construction Mode – autoCustomizationCriteria Include Simple Panel – False Include Views Panel – False Include Advanced Panel – False   12. Create a New Region of style table Right Click on QueryRN > New > Region Using Wizard Application Module – prajkumar.oracle.apps.fnd.custsearchdemo.server.CustSearchAM Available View Usages – CustSearchVO1   In Step2 in Region Properties set following properties Region ID – CustSearchTable Region Style – Table   In Step3 in View Attributes shuttle all the items (Column1, Column2, Column3, Column4) available in “Available View Attributes” to Selected View Attributes: In Step4 in Region Items page set style to “messageStyledText” for all items   13. Select CustSearchTable in Structure Panel and set property Width to 100%   14. Include Simple Search Panel Right Click on QueryRN > New > simpleSearchPanel Automatically region2 (header Region) and region1 (MessageComponentLayout Region) created Set Following Properties for region2 Id – SimpleSearchHeader Text -- Simple Search   15. Now right click on message Component Layout Region (SimpleSearchMappings) and create two message text input beans and set the below properties to each   Message TextInputBean1 Id – SearchColumn1 Search Allowed – True Data Type – VARCHAR2 Maximum Length – CSS Class – OraFieldText Prompt – Column1   Message TextInputBean2 Id – SearchColumn2 Search Allowed -- True Data Type – VARCHAR2 Maximum Length – 100 CSS Class – OraFieldText Prompt – Column2   16. Now Right Click on query Components and create simple Search Mappings. Then automatically SimpleSearchMappings and QueryCriteriaMap1 created   17.  Now select the QueryCriteriaMap1 and set the below properties Id – SearchColumn1Map Search Item – SearchColumn1 Result Item – Column1   18. Now again right click on simpleSearchMappings -> New -> queryCriteriaMap, and then set the below properties Id – SearchColumn2Map Search Item – SearchColumn2 Result Item – Column2   19. Congratulation you have successfully finished Auto Customization Search page. Run Your CustSearchPG page and Test Your Work            

    Read the article

  • ASP.NET MVC search route

    - by sahina
    I setup a search route: routes.MapRoute( "Search", "Search/{q}", new { controller = "Search", action = "Index" } ); The search form has an input box and a button. I want the search with a GET as below. <% using(Html.BeginForm("Index", "Search", FormMethod.Get)) {%> <%:Html.TextBox("q")%> <span class="query-button"> <input type="submit" value="select" /></span> <% } %> </div> The action on the SearchController is: public ActionResult Index(string q) { // search logic here return View(new SearchResult(q)); } The URL becomes like this: http://localhost:19502/search?q=mvc+is+great But I want the search to be like: http://localhost:19502/search/mvc+is+great How do I setup the route or the Html.BeginForm

    Read the article

  • Duplicate GET request from multiple IPs - can anyone explain this?

    - by dwq
    We've seen a pattern in our webserver access logs which we're having problem explaining. A GET request appears in the access log which is a legitimate, but private, url as part of normal e-commerce website use (by private, we mean there is a unique key in a url form variable generated specifically for that customer session). Then a few seconds later we get hit with an identical request maybe 10-15 times within the space of a second. The duplicate requests are all from different IP addresses. The UserAgent for the duplicates are all the same (but different from the original request). The reverse DNS lookup on the IPs for all the duplicates requests resolve to the same large hosting company. Can anyone think of a scenario what would explain this? EDIT 1 Here's an example that's probably anonymised beyond being any actual use, but it might give an idea of the sort of pattern we're seeing (it's from a search query as they sometimes get duplicated too): xx.xx.xx.xx - - [21/Jun/2013:21:42:57 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "http://www.ourdomain.com/index.html" "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0)" xx.xx.xx.xx - - [21/Jun/2013:21:43:03 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:03 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:04 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:04 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:04 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:04 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:04 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:04 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:04 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" xx.xx.xx.xx - - [21/Jun/2013:21:43:04 +0100] "GET /search.html?search=widget&Submit=Search HTTP/1.0" 200 5475 "" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_7) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.91 Safari/534.30" UPDATE 2 Sometimes it is part of a checkout flow that's duplicated to I'd think twitter is unlikely.

    Read the article

  • How does java.util.Collections.contains() perform faster than a linear search?

    - by The111
    I've been fooling around with a bunch of different ways of searching collections, collections of collections, etc. Doing lots of stupid little tests to verify my understanding. Here is one which boggles me (source code further below). In short, I am generating N random integers and adding them to a list. The list is NOT sorted. I then use Collections.contains() to look for a value in the list. I intentionally look for a value that I know won't be there, because I want to ensure that the entire list space is probed. I time this search. I then do another linear search manually, iterating through each element of the list and checking if it matches my target. I also time this search. On average, the second search takes 33% longer than the first one. By my logic, the first search must also be linear, because the list is unsorted. The only possibility I could think of (which I immediately discard) is that Java is making a sorted copy of my list just for the search, but (1) I did not authorize that usage of memory space and (2) I would think that would result in MUCH more significant time savings with such a large N. So if both searches are linear, they should both take the same amount of time. Somehow the Collections class has optimized this search, but I can't figure out how. So... what am I missing? import java.util.*; public class ListSearch { public static void main(String[] args) { int N = 10000000; // number of ints to add to the list int high = 100; // upper limit for random int generation List<Integer> ints; int target = -1; // target will not be found, forces search of entire list space long start; long end; ints = new ArrayList<Integer>(); start = System.currentTimeMillis(); System.out.print("Generating new list... "); for (int i = 0; i < N; i++) { ints.add(((int) (Math.random() * high)) + 1); } end = System.currentTimeMillis(); System.out.println("took " + (end-start) + "ms."); start = System.currentTimeMillis(); System.out.print("Searching list for target (method 1)... "); if (ints.contains(target)) { // nothing } end = System.currentTimeMillis(); System.out.println(" Took " + (end-start) + "ms."); System.out.println(); ints = new ArrayList<Integer>(); start = System.currentTimeMillis(); System.out.print("Generating new list... "); for (int i = 0; i < N; i++) { ints.add(((int) (Math.random() * high)) + 1); } end = System.currentTimeMillis(); System.out.println("took " + (end-start) + "ms."); start = System.currentTimeMillis(); System.out.print("Searching list for target (method 2)... "); for (Integer i : ints) { // nothing } end = System.currentTimeMillis(); System.out.println(" Took " + (end-start) + "ms."); } }

    Read the article

  • Can not search my company howto blog site anylonger in Sharepoint

    - by Worldunix
    I have a Howto company Blog site that i post to for my clients to access for help. For some reason it has stopped letting anyone search on it. I can search for Mysites or users. But when you drop down the tab to search: This Site: "blog site name" you get the following reply: No results matching your search were found. Check your spelling. Are the words in your query spelled correctly? Try using synonyms. Maybe what you're looking for uses slightly different words. Make your search more general. Try more general terms in place of specific ones. Try your search in a different scope. Different scopes can have different results. I have tried the following command: from the Index server net stop osearch net start osearch iisreset /noforce But still not able to search a local blog site I can only search for users and Sites. please help Don

    Read the article

  • Can not search my company howto blog site anylonger in Sharepoint

    - by Worldunix
    I have a Howto company Blog site that i post to for my clients to access for help. For some reason it has stopped letting anyone search on it. I can search for Mysites or users. But when you drop down the tab to search: This Site: "blog site name" you get the following reply: No results matching your search were found. Check your spelling. Are the words in your query spelled correctly? Try using synonyms. Maybe what you're looking for uses slightly different words. Make your search more general. Try more general terms in place of specific ones. Try your search in a different scope. Different scopes can have different results. I have tried the following command: from the Index server net stop osearch net start osearch iisreset /noforce But still not able to search a local blog site I can only search for users and Sites. please help Don

    Read the article

  • Removing malware of a particular kind

    - by Cyclone
    I need to remove some malware from my computer. It is a trojan, and very annoying. It blocks access to Google and search sites. The trojan, with its name spelled out on each line cause it seems to block sites when i reference it in a url, is a r t (some text to mess it up) e m (more text i s First off, what is it, what does it do? Second, why can't I access google or yahoo or any other search sites at all? Third, can it be removed via McAffee? It says it quarantined it when I scanned I found a suspicious process "c"s"r"s"s".exe and it will not let me terminate it, and this is what Mcaffee says it is. Why on earth isn't Mcaffee getting rid of it? I even blocked internet access for this program. Thanks so much, I get kinda freaked out with things like this... Here is my entire Hosts file: 127.0.0.1 go.mail.ru 127.0.0.1 nova.rambler.ru 127.0.0.1 google.ad 127.0.0.1 www.google.ad 127.0.0.1 google.ae 127.0.0.1 www.google.ae 127.0.0.1 google.am 127.0.0.1 www.google.am 127.0.0.1 google.com.ar 127.0.0.1 www.google.com.ar 127.0.0.1 google.as 127.0.0.1 www.google.as 127.0.0.1 google.at 127.0.0.1 www.google.at 127.0.0.1 google.com.au 127.0.0.1 www.google.com.au 127.0.0.1 google.az 127.0.0.1 www.google.az 127.0.0.1 google.ba 127.0.0.1 www.google.ba 127.0.0.1 google.be 127.0.0.1 www.google.be 127.0.0.1 google.bg 127.0.0.1 www.google.bg 127.0.0.1 google.bs 127.0.0.1 www.google.bs 127.0.0.1 google.com.by 127.0.0.1 www.google.com.by 127.0.0.1 google.ca 127.0.0.1 www.google.ca 127.0.0.1 google.ch 127.0.0.1 www.google.ch 127.0.0.1 google.cn 127.0.0.1 www.google.cn 127.0.0.1 google.cz 127.0.0.1 www.google.cz 127.0.0.1 google.de 127.0.0.1 www.google.de 127.0.0.1 google.dk 127.0.0.1 www.google.dk 127.0.0.1 google.ee 127.0.0.1 www.google.ee 127.0.0.1 google.es 127.0.0.1 www.google.es 127.0.0.1 google.fi 127.0.0.1 www.google.fi 127.0.0.1 google.fr 127.0.0.1 www.google.fr 127.0.0.1 google.gr 127.0.0.1 www.google.gr 127.0.0.1 google.com.hk 127.0.0.1 www.google.com.hk 127.0.0.1 google.hr 127.0.0.1 www.google.hr 127.0.0.1 google.hu 127.0.0.1 www.google.hu 127.0.0.1 google.ie 127.0.0.1 www.google.ie 127.0.0.1 google.co.il 127.0.0.1 www.google.co.il 127.0.0.1 google.co.in 127.0.0.1 www.google.co.in 127.0.0.1 google.is 127.0.0.1 www.google.is 127.0.0.1 google.it 127.0.0.1 www.google.it 127.0.0.1 google.co.jp 127.0.0.1 www.google.co.jp 127.0.0.1 google.kg 127.0.0.1 www.google.kg 127.0.0.1 google.co.kr 127.0.0.1 www.google.co.kr 127.0.0.1 google.li 127.0.0.1 www.google.li 127.0.0.1 google.lt 127.0.0.1 www.google.lt 127.0.0.1 google.lu 127.0.0.1 www.google.lu 127.0.0.1 google.lv 127.0.0.1 www.google.lv 127.0.0.1 google.md 127.0.0.1 www.google.md 127.0.0.1 google.com.mx 127.0.0.1 www.google.com.mx 127.0.0.1 google.nl 127.0.0.1 www.google.nl 127.0.0.1 google.no 127.0.0.1 www.google.no 127.0.0.1 google.co.nz 127.0.0.1 www.google.co.nz 127.0.0.1 google.com.pe 127.0.0.1 www.google.com.pe 127.0.0.1 google.com.ph 127.0.0.1 www.google.com.ph 127.0.0.1 google.pl 127.0.0.1 www.google.pl 127.0.0.1 google.pt 127.0.0.1 www.google.pt 127.0.0.1 google.ro 127.0.0.1 www.google.ro 127.0.0.1 google.ru 127.0.0.1 www.google.ru 127.0.0.1 google.com.ru 127.0.0.1 www.google.com.ru 127.0.0.1 google.com.sa 127.0.0.1 www.google.com.sa 127.0.0.1 google.se 127.0.0.1 www.google.se 127.0.0.1 google.com.sg 127.0.0.1 www.google.com.sg 127.0.0.1 google.si 127.0.0.1 www.google.si 127.0.0.1 google.sk 127.0.0.1 www.google.sk 127.0.0.1 google.co.th 127.0.0.1 www.google.co.th 127.0.0.1 google.com.tj 127.0.0.1 www.google.com.tj 127.0.0.1 google.tm 127.0.0.1 www.google.tm 127.0.0.1 google.com.tr 127.0.0.1 www.google.com.tr 127.0.0.1 google.com.tw 127.0.0.1 www.google.com.tw 127.0.0.1 google.com.ua 127.0.0.1 www.google.com.ua 127.0.0.1 google.co.uk 127.0.0.1 www.google.co.uk 127.0.0.1 google.co.vi 127.0.0.1 www.google.co.vi 127.0.0.1 google.com 127.0.0.1 www.google.com 127.0.0.1 google.us 127.0.0.1 www.google.us 127.0.0.1 google.com.pl 127.0.0.1 www.google.com.pl 127.0.0.1 google.co.hu 127.0.0.1 www.google.co.hu 127.0.0.1 google.ge 127.0.0.1 www.google.ge 127.0.0.1 google.kz 127.0.0.1 www.google.kz 127.0.0.1 google.co.uz 127.0.0.1 www.google.co.uz 127.0.0.1 bing.com 127.0.0.1 www.bing.com 127.0.0.1 search.yahoo.com 127.0.0.1 ca.search.yahoo.com 127.0.0.1 ar.search.yahoo.com 127.0.0.1 cl.search.yahoo.com 127.0.0.1 co.search.yahoo.com 127.0.0.1 mx.search.yahoo.com 127.0.0.1 espanol.search.yahoo.com 127.0.0.1 qc.search.yahoo.com 127.0.0.1 ve.search.yahoo.com 127.0.0.1 pe.search.yahoo.com 127.0.0.1 at.search.yahoo.com 127.0.0.1 ct.search.yahoo.com 127.0.0.1 dk.search.yahoo.com 127.0.0.1 fi.search.yahoo.com 127.0.0.1 fr.search.yahoo.com 127.0.0.1 de.search.yahoo.com 127.0.0.1 it.search.yahoo.com 127.0.0.1 nl.search.yahoo.com 127.0.0.1 no.search.yahoo.com 127.0.0.1 ru.search.yahoo.com 127.0.0.1 es.search.yahoo.com 127.0.0.1 se.search.yahoo.com 127.0.0.1 ch.search.yahoo.com 127.0.0.1 uk.search.yahoo.com 127.0.0.1 asia.search.yahoo.com 127.0.0.1 au.search.yahoo.com 127.0.0.1 one.cn.yahoo.com 127.0.0.1 hk.search.yahoo.com 127.0.0.1 in.search.yahoo.com 127.0.0.1 id.search.yahoo.com 127.0.0.1 search.yahoo.co.jp 127.0.0.1 kr.search.yahoo.com 127.0.0.1 malaysia.search.yahoo.com 127.0.0.1 nz.search.yahoo.com 127.0.0.1 ph.search.yahoo.com 127.0.0.1 sg.search.yahoo.com 127.0.0.1 tw.search.yahoo.com 127.0.0.1 th.search.yahoo.com 127.0.0.1 vn.search.yahoo.com 127.0.0.1 images.google.com 127.0.0.1 images.google.ca 127.0.0.1 images.google.co.uk 127.0.0.1 news.google.com 127.0.0.1 news.google.ca 127.0.0.1 news.google.co.uk 127.0.0.1 video.google.com 127.0.0.1 video.google.ca 127.0.0.1 video.google.co.uk 127.0.0.1 blogsearch.google.com 127.0.0.1 blogsearch.google.ca 127.0.0.1 blogsearch.google.co.uk 127.0.0.1 searchservice.myspace.com 127.0.0.1 ask.com 127.0.0.1 www.ask.com 127.0.0.1 search.aol.com 127.0.0.1 search.netscape.com 127.0.0.1 yandex.ru 127.0.0.1 www.yandex.ru 127.0.0.1 yandex.ua 127.0.0.1 www.yandex.ua 127.0.0.1 search.about.com 127.0.0.1 www.verizon.net 127.0.0.1 verizon.net

    Read the article

  • Your Job Search Should be More Than Just a New Year's Resolution

    - by david.talamelli
    I love the beginning of a new year, it is a great chance to refocus and either re-evaluate goals you are working to or even set new ones. I don't have any statistics to measure this but I am sure that one of the more popular new year's resolutions in the general workforce is to either get a new job or work to further develop one's career. I think this is a good idea, in today's competitive work force people should have a plan of what they want to do, what role they are after and how to get there. One common mistake I think many people make though is that a career plan shouldn't be a once a year thought. When people finish with the holiday season with their new year's resolution to find a new job fresh in their mind, you can see the enthusiasm and motivation a person has to make something happen. Emails are sent, calls are made, applications are made, networking is happening, etc..... Finding the right role that you are after however can be difficult, while it would be great if that dream role was available just at the time you happened to be looking for it - in reality this is not always the case. Job Seekers need to keep reminding themselves that while sometimes that dream job they are after is available at the same time they are looking, that also a Job search can be a difficult and long process. Many people who set out with the best of intentions in January to find a new job can soon lose interest in a job search if they do not immediately find a role. Just like the Christmas decorations are put away and the photos from New Year's are stored away - a Job Seeker's motivation may slowly decrease until that person finds themselves 12 months later in the same situation in same role and looking for that new opportunity again. Rather than just "going for it" and looking for a role in the month of January, a person's job search or career plan should be an ongoing activity and thought process that is constantly updated and evaluated over the course of the year. It can be hard to stay motivated over an extended period of time, especially when you are newly motivated and ready for that new role and the results are not immediate. Rather than letting your job search fall down the priority list and into the "too hard basket" a few ideas that may keep your enthusiasm fresh Update your resume every 6 months, even if you are not looking for a job - it is easy to forget what you have accomplished if you don't keep your details updated. Also it is good to be prepared and have a resume ready to go in case you do get an unexpected phone call for that 'dream job' you have been hoping for. Work out what you want out of your next role before you begin your job search - rather than aimlessly searching job ads or talking to people - think of the organisations or type of role you would like before you search. If you know what you are looking for it will be much easier to work out how to get there than if you do not know what you want. Don't expect immediate results once you decide to look for another job, things don't always fall into place. Timing and delivery can be important pieces of being selected for a role, companies don't hire every role in January. Have an open mind - people you meet or talk to may not result in immediate results for your job search but every connection may help you get a bit closer to what you are after . These actions will not guarantee a positive result, but in today's competitive work force every little of extra preparation and planning helps. All the best for 2011 and I hope your career plan whatever it may be is a success.

    Read the article

  • Key Techniques For Search Engine Optimization in 2010

    The art of creating web pages which will rank high in search engine returns is called Search Engine Optimization or SEO. By optimizing certain elements or sections in the HTML code of each page, SEO can be accomplished. The search engines specifically read these sections. The level of optimization can help determine the amount free referral traffic.

    Read the article

  • NLP - Queries using semantic wildcards in full text searching, maybe with Lucene?

    - by Zsolt
    Let's say I have a big corpus (for example in english or an arbitrary language), and I want to perform some semantic search on it. For example I have the query: "Be careful: [art] armada of [sg] is coming to [do sg]!" And the corpus contains the following sentence: "Be careful: an armada of alien ships is coming to destroy our planet!" It can be seen that my query string could contain "semantic placeholders", such as: [art] - some placeholder for articles (for example a / an in English) [sg], [do sg] - some placeholders for NPs and VPs (subjects and predicates) I would like to develop a library which would be capable to handle these queries efficiently. I suspect that some kind of POS-tagging would be necessary for parsing the text, but because I don't want to fully reimplement an already existing full-text search engine to make it work, I'm considering that how could I integrate this behaviour into a search engine like Lucene? I know there are SpanQueries which could behave similarly in some cases, but as I can see, Lucene doesn't do any semantic stuff with stored texts. It is possible to implement a behavior like this? Or do I have to write an own search engine?

    Read the article

< Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >